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Abstract. There are many available methods for generating synthetic
data streams. Such methods have been justified by the need to study the
efficacy of algorithms on a theoretically infinite stream, and also a lack of
real-world data of sufficient size. Although multi-label classification has
attracted considerable interest in recent years, most of this work has been
carried out in the context of a batch learning environment rather than a
data stream. This paper makes an in-depth analysis of multi-label data,
and presents a general framework for generating synthetic multi-label
data streams.

1 Introduction

A multi-label data stream is a data stream with the same properties as multi-
label data. Multi-label learning problems, where an instance is assigned multiple
labels from a finite set of labels, have received considerable attention in the
machine learning literature, but prior work focusses almost exclusively on a
batch learning environment with train-test or cross-validation scenarios. The
problem of multi-label data streams has received much less attention.

Many real world practical problems involve data which can be considered
as a multi-label data stream. For example news articles, e-mails, RSS-feeds,
newsgroups, bookmarking, and medical text classification.

Labels can be considered as subject categories, tags, author names, or even
diagnoses (in the case of the medical domain), as long as the set of labels is
finite and known at the time of classification. Instances will always arrive in time
order. Classification in such an environment involves an emphasis on efficiency
and adaptivity:

– Incremental learning: examples processed one at a time; must be able to
predict as new instances become available

– Efficiency: limited amount of time and memory; able to handle large vol-
umes of new instances

– Adaptivity: must be able to handle to concept drift

Despite the ubiquitous presence of multi-label data streams in the real world,
they can rarely be easily assimilated on a large scale with both labels and times-
tamps intact and there may issues with sensitive data – for example with e-mail,



personal bookmarking, and medical text corpora. In many cases, in-depth do-
main knowledge may be necessary to determine and pinpoint changes to the
concepts represented by the data.

Hence the reasons to generate synthetic multi-label data streams are to:

– increase the pool of multi-label stream data and thereby also increase the
depth of analysis and conclusions which can be drawn in respect to the
performance of various algorithms;

– allow a theoretically infinite data stream; and
– help conduct specific analysis of incremental multi-label algorithms.

This paper involves an in depth study of multi-label data, and presents a
framework for generating synthetic multi-label data streams in order to facilitate
the study and evaluation of multi-label algorithms in this area.

2 Prior Work

The notation to define a multi-label data stream is as follows.

– Let X = R
d denote the input space

– Let X ∈ X be an instance

– Let L = {l1, l2, · · · , lN} denote the finite label set
– Let li ∈ L be a single label
– Let S = (l1, l2, · · · , lN) ∈ {0, 1}N be a label subset representing S ⊆ L where:

S[i] =

{

1 if li ∈ S
0 if li /∈ S

– Let d = (X, S) be a multi-label example consisting of an instance and rele-
vant labels

– Let D = d0, d1, · · · be a theoretically infinite stream of multi-label examples

2.1 Synthetic Multi-label Data

Generating synthetic data streams has been investigated in the past for single-
label data. The work in [4] provides the MOA framework which contains a variety of
methods for the generation and classification of single-label data streams. This is
expanded by [1] which additionally considers concept drift, as opposed to simply
an incremental context. There are also numerous examples of purpose-specific
multi-label data being generated.

The authors of [10] generate a multi-label synthetic dataset with three labels
and two features. The examples pertaining to certain labels are associated with
certain Gaussian distributions. Cai [2] uses a tree structure with random weight
vectors generated for each node. Park and Fürnkranz [5] generate data using
a number of labels using a set of pairwise constraints. Random permutations
are generated which satisfy this set, which are in turn decomposed into binary
pairwise preferences.



Kirchenko’s [3] synthetic data involves a special hierarchical case where inner
nodes represent labels. Synthetic data is generated by building a balanced tree
hierarchy and allocating three binary attributes, with 10 training and 5 test
instances generated for each label.

Overall, prior work for generating synthetic multi-label serves only to high-
light certain characteristics of the algorithms that the authors present. The data
usually contains as few as two or three features and labels, relatively few ex-
amples, and was never intended for large scale multi-label evaluation. More im-
portantly, none of these data generation techniques are for creating data stream
contexts, which is a main focus of this paper.

Not yet mentioned in the literature is the idea of using clustering to cre-
ate multi-label data where cluster centers represent labels. This would presume
the use of a clustering algorithm which can supply probabilities that an instance
belongs to each cluster so that a threshold could be used to influence different de-
grees of multi-labelling. Any data source could be used if the original time order
can be maintained. A related possibility would be to use a time-ordered single-
label dataset and to reclassify using this same ranking-and-threshold method.

The advantage of these techniques is to have data with underlying real-
world concepts. However, the stream cannot be theoretically infinite unless the
source of real world data is, and in such a case the clustering process would then
also have to be incremental. Moreover, access to such an extensive and reliable
source of real-world data streams is still necessary and domain knowledge is still
necessary to analyse concept drift. Finally — this problem would be much more
suited to a multi-label ranking problem, as opposed to classification. Hence we
do not consider this idea further.

The task of generating synthetic multi-label data streams has not yet been
thoroughly investigated, and has been mainly specific to certain algorithms or
scenarios. In following sections, this paper presents a general framework for
multi-label synthetic data generation designed to produce a wide variety of multi-
label data in the form of a data stream.

3 Generating Multi-label Data Streams

The main novelty of the framework presented in this paper stems from the use
of problem transformation, also known as data transformation, well known in
the multi-label literature [8, 6, 9]. It has shown that it is possible to decompose
multi-label data into single-label data. The reverse transformation is also possi-

ble: single-label data can be transformed into multi-label data. This allows for
a generalised framework which can generate multi-label synthetic data indepen-
dently of the actual data-generation process.

Just as problem transformation classification methods use existing single-
label classifiers independently of the transformation method, synthetic multi-
label generation can be carried out independently of the data generation method.
The MOA framework1 [4] provides state-of-the-art functionality for generating

1 http://www.cs.waikato.ac.nz/~abifet/MOA/



single-label synthetic data streams under a variety of schemes, all of which could
be used for creating a multi-label stream. The task of composing a realistic multi-
label data stream from single-label data is discussed in depth in this section and
later the synthetic data generated is evaluated in comparison to real world data.

Figure 1 outlines the overall process to generate a multi-label example. An
initial single-label instance is generated according to label skew, and further
single-label examples are generated and are added according to the probabilities
that they should occur together. Both the feature spaces and label spaces are
combined to form a multi-label example (X, S). All processes, including the
combination of feature spaces (X ⊕ X ′) will be described in this section.

GenerateML()

1 � Generate and filter a single-label example according to skew
2 (X, l)← filter(Pr(l),SL.generateSL())
3 � Formation of a multi-label example
4 (X, S ← {l})
5 � Adding multiple labels l′ where l′ /∈ S
6 while |S| < β
7 do

8 � Generate and filter a single-label example
9 (X ′, l′)← filter(Pr(l′|S), SL.generateSL())

10 � Combine the feature set, and add the label
11 (X, S) = (X ⊕X ′, S = S ∪ l′)
12 � Hence new multi-label example: (X, S)
13 return (X, S)

Fig. 1: Generating a multi-label example. SL.generateSL() represents any
single-label data stream generator from (for example the MOA framework).
filter(γ, D) filters instances from a single-label stream D according to γ, and β
is a constant to help approximate a certain label cardinality.

3.1 Label Skew

The phenomenon of label skew, where a label or subset of labels are particularly
dominant or subordinate in the data, is not unique to multi-label data, but does
tend to be particularly prevalent and exaggerated. This is due to the nature of
multi-label data: each example can be associated with multiple labels and it is
therefore inherently possible for more than one label to dominate the majority
of examples (unlike single-label data). Skew in multi-label data is often intuitive,
especially to text classification. A label such as Economy is likely to be relevant
to many examples in a news articles corpus. It is also likely to be found in com-
bination with other labels, for example {Economy,Politics}, or {Economy,New



Zealand}. Therefore Economy is likely to be very frequent in the data, while
other labels, such as New Zealand, only refer to specific subset of news articles
therefore occur much more infrequently.

Although label skew is naturally exaggerated in multi-label data by the pro-
cess of adding multiple labels to single-label data, for the purpose of introducing
and controlling concept drift (addressed below), finer grained control over this
skew is necessary. Exponential or asymptotic distributions can be used to de-
termine frequencies over a random ordering of the class labels. For example,
f(j) = α

j
, where f(j) represents the frequency of the jth label for some constant

α.
New single-label examples can be filtered according to this distribution and

the label skew of a data stream D can easily be manipulated by changing α or
f(j). When a dataset’s label skew is ordered and plotted, a visual representation
is obtained. Figure 2 displays the label skews of some real multi-label datasets
and functions which approximate them.
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Fig. 2: Label skew for various datasets (a) and some function approximations
(b). Labels (x axis) sorted by frequency (y axis).

3.2 Label Distribution

The most fundamental difference between multi-label data and single-label data
is that instances may be associated with multiple labels, as opposed to a single
class label. A multi-label dataset has an average number of labels assigned per
example. The average number of labels per example is the label cardinality:

LC(D) =
1

|D|

|D|
∑

i=1

|Si|

Label distribution refers to the overall composition of the label cardinality:
the frequency of label set sizes in the dataset. This can also be represented as a
function g(i) = n where n percent of instances have i labels assigned to them.



A general distinction can be made between two types of label distribution:

Type A : Most examples contain a single label. This is typical of many text
and media classification scenarios where most examples fit naturally under
a single label scheme, but multi-labelling has been introduced to resolve
classification ambiguities. This is the most common type of multi-label data.

Type B : Most examples contain more than one label. The label set is usually
very domain-dependent and chosen specifically to represent a multi-label
scheme.

Examples of Type A include news articles, and media such as images and
video. Most images, for example, may fit naturally into a single-label scheme
and may have labels such as Mountains, Forest, or Sea. Multiple labels are
used to resolve occasional ambiguities such as when Mountains and Forest are
both relevant to one particular image. A good real-world example of this is the
Scene dataset2.

Examples of Type B include biological datasets where genes are expected to
have multiple functions and text datasets like the Enron dataset. Enron origi-
nates from an e-mail corpus3 and this version4 of the dataset contains categories
which almost take the form of a checklist and were obviously conceived with
consideration for multi-label representation. A small subset of Enron’s label set
is shown in Figure 3 to illustrate a Type B labelling scheme.

Label Note

Attachment(s) The e-mail contains attachment
Forwarded The e-mail was forwarded
Legal Advice The e-mail contains legal advice
Humor Written with a tone of humour
Admiration Written with a tone of admiration
. . . . . .

Fig. 3: An example (from Enron) of Type B label distribution

The label distribution of both types approximates a Poisson distribution
(Equation 1). Values of k and λ depend on the data type. Type A’s distribution
can be approximated 0, POISS(k = {0, 1, · · · , |L|}, λ ≈ 0.25). Type B ’s distri-
bution can be approximated by 0, POISS(k = {1, · · · , |L|}, λ = LC(D)) (in the
latter case k = 1 initially, and LC(D) is as defined above).

POISS(k, λ) =
λke−λ

k!
(1)

2 Scene can be obtained from http://mlkd.csd.auth.gr/multilabel.html#Datasets
3 http://www-2.cs.cmu/~enron/
4 Using the labelling scheme http://bailando.sims.berkeley.edu/enron_email.

html, obtainable from http://www.cs.waikato.ac.nz/~jmr30/#datasets



Figure 4 shows the label cardinality distributions of real multi-label datasets
alongside the Poisson functions which approximate them.

In practice, label cardinality (LC) is never greater than about 5.0. If LC(D) ≫
5.0, the problem is usually better treated as a hierarchical problem, or keyword

problem where keywords are not assigned based on a predetermined categorical
structure intended to facilitate browsing, but rather searching, linking or lookup
structures; likewise where |L| ≫ 100.

Earlier, in Figure 1, a constant β is used to control the assignment of labels
so as to adhere to one of the two distributions. This constant is closely linked to
the desired label cardinality: i.e. LC ≈ β.
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Fig. 4: Label distributions of real-world datasets (a) and approximations (b).
The number of labels per example (x axis) against frequency (y axis).

3.3 Label Relationships

There is wide consensus in the literature about the existence of label interde-
pendencies in multi-label data [6, 9, 7, 10]. The underlying relationships between
labels in the data is reflective of the problem domain. The degree of label depen-
dency varies, but any real world data in which labels are completely independent
of each other is not an interesting multi-label problem, but rather |L| separate
binary filtering problems. This implies that labels cannot be selected indepen-
dently or randomly to create a synthetically generated multi-label example.

Multi-label relationships usually emerge from a problem domain. These re-
lationships can be viewed as a |L| × |L| probability matrix m where m[k][j] =
Pr(lk|lj). Figure 5 shows matrix representations for the Scene (a) and Yeast

(b) datasets which represent Type A and Type B data, respectively. The label
frequencies are displayed in the matrix diagonal, i.e. m[k][k] = Pr(lk).

The correlations are related to label skew (covered in Section 3.1). That is
to say Pr(lj |lk) is high if Pr(lj) is high, and correspondingly low when Pr(lj)
is low. This is most noticeable in Yeast for labels l11 and l12 where these labels
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(b) Yeast dataset (Type B data).

Fig. 5: Label relationship matrices displayed as heatmaps. The matrix diagonal
represents P (li) for each li ∈ L.

are associated with high frequency and many correlations. Label l8 and l13 show
the converse. Other shade differences represent domain dependent factors which
can be represented in synthetic data by randomisation. In this particular Type

A dataset (Scene), there is only weak skew and the domain-dependent label
correlations stand out clearer.

To generate an artificial matrix m to simulate domain-dependent label cor-
relations, ǫ% of rows under column m[j] are filled with normally-distributed
random numbers where µ = Pr(lj) and σ = 1.0 (other cells are left as ≈ 0.0). ǫ
is related to label cardinality and should be set low for Type A data (low label
cardinality), and high for Type B data (higher label cardinality).

3.4 The Feature Space

A complete framework must be able to transform generated single-label examples
into multi-label examples, and to do so must consider the feature space, and more
importantly, the relationship between feature attributes and labels. Text data
is both intuitive to examine, and also representative of the majority of multi-
label data streams. Tables 1 and 2 show the most frequent words for labels
occurring exclusively of each other, together in combination, and also the global

most frequent words, for comparison. Figures 6a and 6b show the Gaussian
distributions for specific examples taken from the tables. Slashdot5 contains
summaries of news articles and 20 Newsgroups6 contains newsgroup posts.

Referring to these tables and figures, two feature-label effects can be seen
which contain information that can benefit a multi-label algorithm:

A feature-label effect is where a feature identifies a certain label. An intuitive
example is in the Slashdot dataset where ‘linux’ pertains strongly to the label

5 http://slashdot.com
6 http://people.csail.mit.edu/jrennie/20Newsgroups/



Linux, while ‘mobile’ pertains to Mobile, and both words are relevant where
these labels are found in combination.

A feature-combination effect is where a feature identifies a combination of la-
bels. Often some words may occur frequently only when two labels are found in
combination. This is the case in the 20 Newsgroup dataset for the word ‘arms’.
This feature is relevant to politics.guns but tends to occur even more fre-
quently when the newsgroup post is also posted to misc.religion.

There are also various random effects. Words like ‘anonymous’ are generic
and do not provide information regarding the presence of labels or combinations
of labels. They may occur less frequently in a label combination simply because
with an average paragraph length of n words, over several labels, there are fewer
words between labels and words which are more strongly relevant (i.e. resulting
from the feature-label effect and feature-combination effect) take preference.

A surprisingly uncommon and irrelevant effect is the average occurrence of
two features in a combination: P (x|{A, B}) ≈ (P (x|A) + P (x|B))/2 for feature
x and labels A,B. This effect can also be considered random because it does not
tend to indicate the presence of either a specific label or combinations of labels.

Table 1: Slashdot. Most frequent words for labels Linux and Mobile

Global Linux Mobile {Linux,Mobile}

anonymous linux mobile linux
reader ubuntu iphone open
game source anonymous windows
story open reader phone
reports released phone netbook
world anonymous android source
years kernel apple mobile
released software phones free

Table 2: 20 Newsgroups. Most frequent words for labels politics.guns and
religion.misc

Global politics.guns religion.misc {politics.guns,religion.misc}

don people don jews
1 don people arms
2 gun christian bear
people time god don
time government years koresh
good fbi good fbi
make guns time people
3 waco make news
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Fig. 6: Word frequencies for certain labels individually and in combination.

In implementation, parameters can be used to influence the proportions of
the two effects and a mapping is used to carry this out where each feature
attribute is mapped to either a single label or a label pair or neither while the
remaining proportion implies random effects. Each attribute either implies the
presence of a particular label (the feature-label effect), implies the presence or
absence of a particular combination the (feature-combination effect), or does not
imply anything (a random effect). The process is outlined in Figure 7.

3.5 Concept Drift

It is known that real-world data streams inevitably begin to show changes to
the concepts they represent [1]. This known as concept drift. If the concept drift
is particularly abrupt, it may be called concept shift.

In addition to concept drift in the feature space, as found in single-label
data streams, multi-label data also involves concept drift to label cardinality,
label skew, label distribution, label-label relationships and feature attribute-
label relationships. All of these have been discussed above. Some multi-label
concept drift may also involve a change to the label set (L) itself. Figures 8a
and 8b show the effect under two measures of shift: “label set coverage” refers
to the percentage of instances where label sets overlap the label sets of the
initial instances. Label combinations are recorded for the first 100 examples
d0, · · · , d99 and then the percentage of reused combinations is plotted for each
of the following blocks of 100 examples: d100, · · · , d199, d200, · · · , d299, · · ·. This
is a form of measuring concept drift in the label space. “Accuracy” refers to
classification performance under Naive Bayes with a threshold to create multi-
label sets (refer to the ranking and threshold method in Section 4.1). This is
a way to measure concept drift in both the instance space, and feature space.
Yeast is a randomised batch dataset, as opposed to a stream, and is displayed
for purposes of comparison. In both cases, there is indication of concept drift
when the plot is unstable. 20 Newsgroups shows a very abrupt change in the



CreateML()

1 � Begin with ML example of an empty instance X and relevant labels S
2 (X = (x1, x2, · · · , xN ) ∈ 0N , S)
3 � Generate SL examples to use, one for each label in S
4 (W1, l1), (W2, l2), · · · , (W|S|, l|S|) : li ∈ S
5 � Generate two binary examples; one positive, one negative
6 (V1, 0), (V2, 1)
7 � A mapping of feature attributes to labels or label pairs
8 ζ
9 � For each feature attribute in the feature space X

10 for a← 1 . . . |X|
11 do

12 � if the attribute maps to a single label
13 if |ζ[a]| ≤ 1
14 then

15 � and if that label is relevant to this example
16 if ζ[a] = li : li ∈ S
17 then

18 � Use value from relevant SL example (Wi, li)
19 X[a] = Wi[a]
20 else

21 � Use average from all SL examples (random effect)
22 X[a]← avg(W1[a], W2[a], · · · , W|S|[a])
23 � otherwise, if the attribute maps to a label pair
24 else if |ζ[a]| = 2
25 then

26 � and if that label pair is relevant to this example
27 if ζ[a] ⊆ S
28 then

29 � Use value from positive binary example
30 X[a] = V2[a]
31 else � Use value from negative binary example
32 X[a] = V1[a]
33 � A ML example with completed feature space and label set
34 (X, S)

Fig. 7: Creating a multi-label example from several single-label and binary ex-
amples into a multi-label example. The process can be governed by the mapping
ζ to either influence more of either effect and the empty set ∅ can be used to
create a random effect.



label space, while Enron shows pronounced drift early on. Slashdot varies only
slightly more than the batch dataset Yeast.
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Fig. 8: Label set coverage and accuracy measured over time on real-world data
sets.

Recent work by [1] on single-label data streams models concept drift with a
sigmoid function. The sigmoid function in Equation 2 represents concept drift
for instances d0 · · ·d. This function is also suitable for creating concept drift in
multi-label data, where sigmoid functions are applied to all aspects of multi-label
data: the label skew, distribution, and relationship matrix.

sig(d) =
1

(∆x + e−s(d−d0))
(2)



A value x may represent any value of the original concept, and x′ the same
value in the new concept. To generate a new concept, x′ is chosen randomly from
a Gaussian distribution where µ = x and σ = v where if x′ < 0||x′ > 1 then
x′ = −x′, and where v is supplied as a global parameter to control the extent of
concept drift. Hence the change for a value x is ∆x = (x′ − x).

The variable s controls the abruptness of the drift. Large values of s create
rapid concept drift while smaller values create a more gradual concept drift. The
value of s is directly related to the length of change (d0 − d) via a constant e.g.
(d0 − d) = s

8 .
Figure 9 displays sigmoid functions given different values of s and v. Note

that in practice, the functions would be centered around x′ − ((x′ − x)/2) and
not 0.5.
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4 Results and Discussion

Table 3 shows the range of parameters for generating multi-label data streams
under the MOA-based framework. An approximation of label cardinality (−z)
and a mapping of feature-label relationships (−a,−b) is sufficient to influence
all multi-label dimensions of a dataset.

4.1 Resulting Datasets

In Table 4, statistics are displayed of three real-world multi-label datasets and
two synthetic multi-label datasets generated using the framework introduced
in this paper. Synth6 has been designed to approximate Scene and Synth8 is
intended to represent a new Type B dataset.

Table 5 displays the performance of various standard multi-label base meth-
ods on the same datasets as in Table 4. The majority combination simply selects



Table 3: Possible parameters for synthetic data generation.

parameter type description symbol

−g class single-label generator SL

−i int number of instances |D|
−c int number of labels |L|
−u int number of attributes |X|
−r int random seed option

−z float desired label cardinality β, ǫ
−a float proportion Label-Effect mappings ζ
−b float proportion Combination-Effect mappings ζ

−v int average extent of change ∆
−x int length/range of change d− d0

−p int beginning point of change d0

Table 4: Statistics relating to real-world and synthetic datasets.

Method Scene Synth6 Yeast Enron Synth8

|L| 6 6 14 53 23
|X| 300 300 100 1000 500
Type A A B B B
Attributes num. num. num sparse num.
Label Cardinality 1.07 1.06 4.24 3.38 2.73
Percent Unique 0.006 0.012 0.082 0.442 0.313

the most popular label combination for each test example. The other methods
are well known problem transformation methods, all reviewed in [8]. The label

powerset method treats each multi-label set as a single label, the binary rele-

vance method treats each label as a separate binary problem, and the ranking

and threshold method ranks the relevance of labels to each test example and se-
lects a subset of the highest ranked labels using a threshold to be the multi-label
classification set.

Problem transformation methods require a base single-label classifier to carry
out classifications. We use Naive Bayes as the base classifier, which allows incre-
mental classification, even for the label powerset method which requires labels
to be added dynamically. The table compares the accuracy of these methods.
Accuracy is determined as in [8], but in this case the accuracy is measured for
each new example in the stream in a test then train scenario.

The variety in the results is to be expected due to the different dimensions
of each dataset and each method but, importantly, accuracy is higher than the
default method. This means that the method for combining label and feature
spaces is creating multi-label relevant information simulative of real-world data.

Finally synthetic concept drift is considered. Figure 10 plots the label set

coverage 10a and average accuracy 10b over time. Label set coverage varies over
the range of the drift, before stabilising afterwards. In terms of shift, the coverage
drops sharply and stabilises. Accuracy decreases suddenly at the beginning of



Table 5: The average accuracy of various methods on real and synthetic datasets.

Method Scene Synth6 Yeast Enron Synth8

Majority Combination 18.31 18.50 39.05 17.11 20.17
Label Powerset 60.60 34.50 46.63 42.47 37.25
Binary Relevance 46.22 27.50 42.28 18.73 31.42
Ranking and Threshold 65.60 30.25 34.71 23.31 26.37

the shift, but is able to gradually recover, whereas it declines more slowly over
the longer period of the drift and is more negatively effected in the long run.
This is comparable to the analysis of real-world data earlier in Figure 8.
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Fig. 10: Label set coverage and accuracy measured over time on a synthetic data
set.

5 Conclusions and Future Work

This paper conducted an in-depth analysis of multi-label data and how the con-
cepts relating to such data change over time in a data stream context. This lead
to a framework for generating synthetic multi-label data streams. This frame-
work is based on the concept of problem transformation – it creates a multi-label
data stream from a single-label data generator independently of the actual data
generation process. It is possible to generate a wide variety of multi-label data by
configuring a number of parameters. These parameters allow the manipulation
of the multi-label aspects of the data as well as the introduction of concept drift.

Analysis indicates that the data is closely representative of real-world data
and therefore able to serve for the analysis and evaluation of incremental multi-
label algorithms.

Future work will involve conducting large-scale evaluations of multi-label
algorithms using the synthetic multi-label data streams which the framework



is capable of generating. This will aid investigations into the multi-label data
stream context.
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