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Abstract

This paper presents a Pruned Sets method (PS) for multi-
label classification. It is centred on the concept of treating
sets of labels as single labels. This allows the classifica-
tion process to inherently take into account correlations be-
tween labels. By pruning these sets, PS focuses only on
the most important correlations, which reduces complexity
and improves accuracy. By combining pruned sets in an
ensemble scheme (EPS), new label sets can be formed to
adapt to irregular or complex data. The results from exper-
imental evaluation on a variety of multi-label datasets show
that [E]PS can achieve better performance and train much
faster than other multi-label methods.

1 Introduction

The traditional data mining task of single-label clas-
sification, also known as multi-class classification, as-
signs each instance d a single label l from a previ-
ously known finite set of labels L. A single-label
datasetD is composed of n instance-classification examples
(d0, l0), (d1, l1), · · · , (dn, ln). In a multi-label classification
task, each instance is assigned a subset of labels S ⊆ L. A
multi-label dataset D is therefore composed of n instance-
classification examples (d0, S0), (d1, S1), · · · , (dn, Sn).

Although in the past there has been relatively little re-
search involving the multi-label problem, it is in fact quite
natural to many domains. For example, in text classifica-
tion, a news article about US troops in Iraq could intuitively
be labelled both US and Iraq. In addition to text classi-
fication [9, 15, 7, 10], multi-label domains include scene
classification [17] and genomics [21, 5, 16, 17].

All multi-label problems can be transformed into one
or more single-label problems via some problem transfor-
mation (PT) [17]. In this fashion, any kind of single-label
classifier can be used: single-label classifications are made
and then transformed back into a multi-label representation.
There are many reliable single-label classifiers, all of which
can be employed under a PT method for multi-label classi-
fication. Some of the most successful PT approaches have

worked with Support Vector Machines (SVMs) [7, 8], Naive
Bayes [13, 12, 19] and k Nearest Neighbor [21, 11].

It is also possible to modify an existing single-label algo-
rithm for the purpose of multi-label classification. Much of
the literature is focussed on modifications to C4.5 trees [5,
16] and AdaBoost [6, 15, 9]. Essentially, these modifica-
tions simply employ some form of PT method internally
and can usually be generalised to any single-label classi-
fier. Hence all solutions to multi-label classification involve
some form of PT method.

There are essentially three fundamental PT methods.
They will be referred to in this paper as the Binary Method
(BM), the Ranking Method (RM) and the Combination
Method (CM).

The most widely used approach, the Binary Method
(BM) [17, 7, 8, 21], learns |L| binary classifiers
B0, · · · , B|L|. Each classifier Bj is responsible for predict-
ing the 0/1 association for each label lj ∈ L.

Another commonly employed method, the Ranking
Method (RM) [17, 15, 11], relies on a single-label classifier
giving a probability distribution over all labels. The proba-
bilities define a ranking for the labels. A threshold is used
to determine the final subset of labels from this ranking.

Both BM and RM suffer from the label independence
assumption, and fail to take advantage of any relationships
between labels. This means that they both may compose un-
usually sized multi-label classification subsets or sets whose
elements would never co-occur in practice. Performance
suffers accordingly.

The Combination Method (CM) [17, 18] creates a single-
label problem simply by treating each instance’s label com-
bination (or label set) Si as an atomic label l′i. For exam-
ple, the multi-label set {a, c, d} would become a single la-
bel acd. Hence the set of all distinct label combinations
is transformed into a set of possible single labels L′ to be
considered by the single-label classifier.

CM overcomes the label independence problem, but suf-
fers when many combinations are found infrequently in the
dataset. Over many examples, this leads to an overwhelm-
ing selection of label combinations which confuses and im-
balances the single-label classifier. A second crucial disad-
vantage is that CM can only assign label combinations to
test examples where that combination has been seen in the



training set.
Each PT method varies in terms of CPU and memory

requirements. For a dataset D of constant size, BM scales
according to |L| as it needs one classifier for each label.
Although RM only needs one classifier, this classifier is
responsible for assigning probabilities to |L| labels as op-
posed to two. CM’s time complexity is directly proportional
to the number of distinct label combinations in the dataset.
Each of these combinations becomes a single label during
transformation, resulting in potentially very many labels.
This is particularly problematic when using SVMs, which
are binary classifiers and rely on an expensive pair-wise ap-
proach whenever |L| > 2.

An ensemble method for multi-label classification was
recently pioneered by Tsoumakas and Vlahavas in a sys-
tem called RAKEL (RAndom K-labEL subsets) [18]. For
m iterations of the training data, RAKEL draws a random
subset of size k from all labels L and trains a CM classifier
using these labels. The authors use SVMs as the internal
single-label classifier. A voting process using a threshold
t determines the final classification set. Using appropriate
values of m, k and t, RAKEL was shown to be better than
BM and CM.

The following section presents the PS method. PS is
a new method for multi-label classification that addresses
some of the limitations of existing methods. It is designed
to be fast and to feature low error rates over a wide range
of multi-labelling scenarios. In later sections, PS is empiri-
cally evaluated and compared with the existing methods just
described.

2 Pruning Sets

Consider the graphs in Figure 1. The nodes represent
the labels of the Medical dataset (statistics of which can
be found in Section 3.2) and the edges represent label co-
occurrences. In the initial graph, each edge represents one
or more co-occurrences between the two nodes (i.e. la-
bels) it connects. In the second graph, edges which repre-
sent less than two co-occurrences have been removed. In
the third graph, each edge represents at least three label
co-occurrences in the dataset. This leaves a simple repre-
sentation which exposes the core label relationships of the
dataset. Note also that this representation still covers 92%
of all examples.

The primary motivation behind PS is to capitalise on the
most important label relationships found within a multi-
label dataset. It focusses on the more frequent label sets
while pruning away and breaking up less frequently occur-
ring sets. By pruning much unnecessary and detrimental
complexity is avoided. A post-pruning step involving set
decomposition ensures the preservation of information from
the pruned examples before they are discarded. Pruning is
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Figure 1. Label co-occurrences in the Medical
dataset.

controlled by a parameter p which determines how often a
label combination must occur for it not to be pruned. The
PS method consists of the following phases:

Initialisation: D is the multi-label training set. A new
empty training setD′ is created to hold the final pruned
training set. An empty set L′ is also created to store la-
bel sets with counts of their occurrences in D.

Phase 1. Consider each label set Si from each training ex-
ample (di, Si) ∈ D. If (Si, c) can be found in L′ for
any count of c, then c is incremented by 1, otherwise a
new pair (Si, 1) is added to L′.

Phase 2. The pruning parameter p is now considered.
Pruning is done via exclusion from the set D′. Only
training examples (di, Si) ∈ D where (Si, c) ∈ L′ for
c > p are added directly to D′. The excluded (pruned)
examples are passed on to Phase 3.

Phase 3. Information is saved from the training examples
which were initially rejected by the pruning parame-
ter. This is done by decomposing each Si into sub-
sets si0, si1, · · · , sin where (sij , c) ∈ L′ and c >
p. These subsets are used to form new examples:
(di, si0), (di, si1), · · · , (di, sin) which are then added
to D′. Strategies decomposing each pruned set Si are
discussed below.

Phase 4. Finally a single-label representation is formed
from D′ using a training procedure like the one used
for CM. This preserves the core label relationships in
the form of combinations within data upon which any
single-label classifier can be employed.

The four phases are marked by numbers in the flow dia-
gram in Figure 2 which outlines the complete PS procedure



Figure 2. The PS algorithm.

from the initial multi-label training set D to the final single
label (SL) representation of the transformed dataset D′.

Phase 3 is an important step to re-introduce informa-
tion that would otherwise be lost via the pruning procedure
(without reintroducing all the complexity). There are differ-
ent possible strategies to decompose each label set Si into
more frequently occurring sub-subsets. These subsets are
then reattached to a copy of the instances they originally
belonged to and the resulting examples are included in the
final training set.

This process i independent of the pruning parameter p
and any internal single-label classifier. The goal is twofold:
firstly to preserve as much information as possible about the
relationships found within each label set and, secondly, to
avoid creating too many small new subsets. Adding many
small subsets means a lower average number of labels per
instance which in turn causes too few labels to be predicted
at classification time. This paper presents two strategies for
carrying out this process, each having a parameter b.

Recall that in Phase 3, for each Si ∈ D we generate
every subset sij ⊂ Si where (sij , c) ∈ L′ and c > p.

Strategy A. Rank these subsets firstly by the number of la-
bels they contain and secondly by count c. Keep the
top b ranked subsets.

Strategy B. Keep all subsets of size greater than b.

For clarity, examples of the proposed strategies are out-
lined in Figure 3. Note how all relevant subsets of Si are
discovered, before some of them are discarded, along with
Si. The remaining discovered sets are reattached to a copy
of di and then added to the final training set.

Si {l2, l5, l7} *
Si1 {l2, l5}
Si2 {l5, l7}
Si3 {l7}
Si4 {l5} *

Si {l2, l5, l7} *
Si1 {l2, l5}
Si2 {l5, l7}
Si3 {l7} *
Si4 {l5} *

Strategy A (b = 3) Strategy B (b = 1)
The label sets marked with * are discarded. In this example Si = {l2, l5, l7},
p = 1 and L′ = { ({l5, l7}, 3), ({l2, l5}, 4), ({l7}, 3), ({l5}, 2),
({l2, l5, l7}, 1) }

Figure 3. Examples of Phase 3 strategies A
and B.

2.1 Ensembles of Pruned Sets

PS can leverage the label relationships within label sets
without considering rare or unusual combinations with
other labels. It will function well on many datasets as a
standalone method, demonstrating increased speed over ex-
isting methods as well as reduced error rates. However, as
a standalone method, it still has the limitation of not being
able create new multi-label sets which have not been seen
in the training data. This presents a problem when work-
ing with datasets where labelling is particularly irregular
or complex. A method presented by Read [14] can form
new combinations using probability distributions in a re-
lated fashion to RM. A more general and flexible method
(which does not rely on the probability distribution of the
single-label classifier) is to combine the results of several
classifiers in an ensemble (EPS).

In this paper we propose using PS in an ensemble bag-
ging scheme of m iterations. PS is particularly suited to an
ensemble due to its fast build times, and also, because if
each PS classifier is built on different subsets of the training
set, then different core label combinations can be selected
during the pruning process. These can be combined into
new predictions via a simple voting procedure at classifica-
tion time using a threshold t. The ensemble counters any
over-fitting effects of the pruning process.

The build phase for the ensemble is detailed in Figure
4. The voting scheme for classification is detailed in Figure
5 and can also be understood from the worked example in
Figure 6. Note how, from several core combinations, the
process creates a new prediction which may not have been
known to any of the five PS classifiers.

3 Experimental Evaluation

In this section the performance of PS is demonstrated in
an empirical comparison against all three standard problem
transformation methods, as well as the RAKEL algorithm
mentioned in Section 1. First we will outline some multi-
label evaluation measures, and present a collection of multi-



BUILD(D, p, s,m)

1 � D training set
2 � p pruning parameter
3 � s strategy parameter
4 � m no. of iterations
5 for i← 0 to m
6 do
7 Ci ← new PS Classifier
8 D ←randomizeD
9 Di ← 63.2% of D

10 Train Ci on Di given parameters p and s

Figure 4. The ensemble build phase of EPS.

CLASSIFY(d, C0···m, t)

1 � d test example
2 � C0···m PS Classifiers
3 � t threshold
4 for j ← 0 to |L|
5 do Y [j]← 0
6 for i← 0 to m
7 do
8 y ← Classify d using Ci
9 for j ← 0 to |L|

10 do
11 if L[j] ∈ y
12 then Y [j]← Y [j] + 1
13 Y ← normalise Y
14 for j ← 0 to |L|
15 do
16 if Y [j] > t
17 then Y [j]← 1
18 else Y [j]← 0
19 return Y

Figure 5. The ensemble classification phase
of EPS.

L = { A B C D E }
yi0 ( 1 0 1 0 0 )
yi1 ( 0 0 1 1 0 )
yi2 ( 0 0 0 0 1 )
yi3 ( 1 0 1 0 0 )
yi4 ( 0 0 1 1 0 )∑m
j=0 ( 2 0 4 2 1 )

norm ( .22 .00 .44 .22 .11 )
Yi = ( 1 0 1 1 0 )
Yi = { A C D }

This is the ith example. L = {A,B,C,D, E}, m = 5, and t = 0.20. The
prediction bits of the PS classifiers are yi0 · · · yim which are summed for each
label and normalised, giving the final classification (under threshold t) of Yi =
{A,C,D}.

Figure 6. A worked example of the ensemble
voting phase of EPS.

label datasets. Then the experimental process is detailed,
and the results presented and discussed.

3.1 Evaluation Measures

A multi-label classifier will produce a label subset Yi ⊆
L as a classification for an instance di, which can be com-
pared to the true classification Si ⊆ L in order to evaluate
its performance.

As in single-label evaluation, accuracy can be deter-
mined by an “evaluation by example” approach — correctly
labelled instances as a percentage of the total number of in-
stances. In the multi-label case, this means that an instance
di is correct only if Si = Yi.

For the multi-label situation, there is also the option of
“evaluation by label”, whereby each label is evaluated sep-
arately, and the performance is given as the correctly as-
signed labels as a percentage of the total number of labels
in the dataset (|L| × |D|).

However, the former tends to be overly harsh and the
latter overly lenient. Instead, we use accuracy as defined in
[17]. Given a classified multi-label test set D:

Acc(D) =
1

|D|

|D|∑

i=1

|Si ∩ Yi|
|Si ∪ Yi|

We also consider theF1 measure common to information
retrieval. However note that in a multi-label classification
context this measure is label-based as opposed to example-
based and the average is taken over all examples. Given
the classified multi-label dataset D, where pi and ri is the
precision and recall of the predicted labels Yi from the true
labels Si for each instance di:

F1(D) =
1

|D|

|D|∑

i=1

2× pi × ri
pi + ri



Table 1. A collection of multi-label datasets
and associated statistics.

|D| |L| LCard(D) PDist(D)
Scene 2407 6 1.07 0.006

Medical 978 45 1.25 0.096
Yeast 2417 14 4.24 0.082

Enron 1702 53 3.38 0.442
Reuters 6000 103 1.46 0.147

Finally, we consider Hamming loss [17], which is the
number of labels in the intersection of Yi and Si averaged
over all test examples:

Hloss(D) = 1− 1

|D| × |L|

|D|∑

i=1

|Si ∩ Yi|

Hamming loss is an evaluation by label approach. Note that,
contrary to the other two methods, the best possible Ham-
ming loss is 0.0.

3.2 Datasets

There are few benchmark multi-label datasets, however
for these experiments we have collected a variety of datasets
from different domains. Table 1 displays their associated
statistics. Label Cardinality (LCARD) is a standard mea-
sure of “multi-labelled-ness”. It is simply the average num-
ber of labels relevant to each instance, defined for a dataset
D as:

LCard(D) =

∑|D|
i=1 |Si|
|D|

The number of distinct label subsets relative to the total
number of examples can be quantified as the Proportion of
Distinct label combinations:

PDist(D) =
|{S|∃(d, S) ∈ D}|

|D|
The Medical dataset [2] is composed of documents with

a brief free-text summary of patient symptom histories
and their prognoses which are used to predict insurance
codes. The Yeast data [18] relates to protein classification.
Scene [18] relates to the classification of still scenes. Enron
is a subset of the Enron email corpus [1] labelled by [4].
Reuters is a subset of the Reuters RCV1 dataset [10]. The
text datasets — Medical, Enron, and Reuters — were all
parsed into word frequency vectors and they can be found
in their parsed form at [3].

3.3 Experimental Setup

All experiments presented in this paper were carried out
using the WEKA [20] framework. In every case SVMs are

employed as the single-label classifier. Each method is eval-
uated by 5× 2 fold cross validation (CV) on each dataset.

For consistency, the number of iterations is set to 10 for
all ensemble methods. All other parameters are tuned on the
training data using internal 5 fold CV, as are the thresholds.
Parameters are tuned first and then thresholds secondly in
the fashion described below.

EPS finds its optimal parameters using a PS model.
RAKEL needs a threshold to run, which is given the ini-
tial value of 0.5 (as suggested by its authors) then adjusts it
as described below.

During tuning, the values of the parameters were sam-
pled in order of the theoretical complexity they added to
each algorithm. For example RAKEL’s k parameter was
incremented from 2 (the minimum value), whereas the p
parameter for PS was decremented from 5. Parameter val-
ues were limited to only those which allowed the classifier
to build a single model in under one hour (including the in-
ternal CV pertinent to that particular value). For example
k = 10 must be tried under internal 5× CV in less than 1
hour or 10 and all values above will be ignored. The same
logic applies to p values.

As detailed in the RAKEL paper, increments of parame-
ter values of k were 2 when |L| > 14, and 1 otherwise. The
PS method requires a strategy parameter s, denoted by Ab
for strategy A and Bb for strategy B. Values of 1, 2, 3 for b
are examined in both cases.

Once parameter values have been selected, thresholds
are adjusted. This is also done using 5× CV but, in this
case, each fold is tested in a two stage process: the first
stage finds the best threshold t to the nearest 0.1, and the
second stage finds the best value to the nearest 0.01 within
the range (t − 0.05) · · · (t + 0.05). The average taken over
the five folds to produce the final value of t.

It is worth noting that the optimal parameters and thresh-
olds chosen for all algorithms generally tended to be opti-
mal, or close to optimal, within the range of values they
were able to test.

All experiments were carried out on AMD Athlon(tm)
64 CPUs at 2.00GHz, with 1 gigabyte of memory.

3.4 Results

Tables 2, 3 and 4 show the results on all datasets for ac-
curacy, F1 measure and Hamming loss evaluations metrics,
respectively. The average mean and the standard deviations
for each method over all rounds are shown. Bullet points
show significance according to a paired t-test against the
CM method which is most relevant to [E]PS and RAKEL.
Tables 8 and 9 contain the same results, but provide a direct
comparison between RAKEL and [E]PS (instead of CM).

The most frequent parameter configurations and the av-
erage thresholds discovered by the tuning phases are pre-



Table 7. Build time (s) for Reuters. All m = 10
and various p (for [E]PS) and k.

CM 1379
BM 123
RM 505

p=5 p=4 p=3 p=2 p=1
PS 41 58 80 135 246
EPS 194 277 408 719 1,553

k=2 k=25 k=50 k=61* k=102
RAKEL 10 350 3,627 22,337 DNF

*k = 61 is the largest value to complete

sented in Table 6.
The average build times (displayed in seconds) are

shown in Table 5. These times represent only the time taken
to build the complete model for the test data only and do not
include the time taken for the parameter and threshold tun-
ing using internal CV (which may or may not have been
able to test a full parameter range). Hence in many cases
these times represent only a small portion of the total time
required for a particular experiment.

In order to fully examine the complexity of exploring the
parameter ranges of the methods, all the methods were also
timed on a 50/50 train/test split of the Reuters dataset. This
dataset was chosen specifically due to its high |D| and |L|.
In this scenario [E]PS and RAKEL were left to try the full
range of values for their respective p and k parameters. The
methods either completed or ran out of memory (denoted by
DNF). A range of results from this experiment is displayed
in Table 7.

4 Discussion

Both PS and EPS improve consistently on the standard
methods across all measures of evaluation. The improve-
ment is most pronounced on the Yeast and Enron datasets.
Both these datasets have a relatively high label cardinality
and non-uniform labelling schemes. This provides more po-
tential for PS methods to excel, as under this kind of data
they are especially effective.

As expected, PS performs best in an ensemble scheme,
which helps prevent against over-fitting and allows the for-
mation of new label sets. In terms of F1 measure (Table
3) EPS is statistically superior to CM on all datasets except
Medical (where the difference is insignificant).

While the ensemble versions of PS tend to perform bet-
ter, standalone PS still has clear advantages for fast classi-
fication. Its error rate is never significantly more than any
other method, yet, as we see in Table 5, its build times are
a fraction of CM, with which it has most in common. PS

also is competitive with the times of the BM and the RM
methods which both assume label independence.

An interesting feature of standalone PS is that it per-
forms relatively better in terms of accuracy than in terms
of F1 measure (although this difference is not always statis-
tically significant). This is because PS always prunes away
and divides up the most infrequently occurring label sets
which also tend to contain the most labels. At classification
time, this translates into high precision at the cost of recall
and hence the sub-optimal F1 statistic. However, in many
real world scenarios, a consistent emphasis on precision and
high accuracy is more important than an optimum trade-off
between precision and recall. This trend is avoided under an
ensemble scheme, where new combinations are formed and
precision and recall can be easily governed by the threshold.

In direct comparison against state-of-the-art RAKEL
(Tables 8 and 9) the PS methods also prove superior. Aside
from PS’s F1 statistic for the Yeast dataset (due to reasons
just discussed), all versions of PS are either statistically in-
distinguishable from RAKEL or superior. This is partic-
ularly apparent on Reuters where RAKEL clearly failed
to find optimal parameters due to the complexity of this
dataset.

The complexity of RAKEL is one of its main disadvan-
tages. Although in some cases the average final build times
in Table 5 shown for RAKEL are less than those for EPS,
this is misleading. Unlike EPS, which can tune parameters
on a single model (of PS), RAKEL’s full ensemble must be
built to trial each parameter setting for each fold of internal
CV. Parameter tuning for RAKEL is therefore much more
expensive and is often terminated prematurely according to
the conditions outlined in Section 3.3. In other words, it
is computationally expensive and sometimes infeasible for
multi-label methods like RAKEL to discover optimal values
for their parameters.

In Table 7 RAKEL runs out of memory when K = 62
after taking about 6 hours when K = 61. PS completes
with its most time-expensive p value (1) in about 4 minutes
and takes only six times longer in EPS’ bagging scheme
with 10 iterations. This experiment confirms that RAKEL’s
k parameter begins to introduce too much complexity for
complete operation on larger datasets, whereas the PS algo-
rithms remain feasible. This also explains RAKEL’s poor
accuracy and F1 measure on Reuters.

Although it may be argued that RAKEL would perform
better with greater computing resources than reported here,
under such a scenario EPS could also easily increase its
number of iterations. Adding iterations adds at most lin-
ear complexity whereas, in Table 7, we clearly see that
RAKEL’s build time increases by a factor of approximately
ten each time k is doubled.

As an aside, we further discover from the results that the
strategy parameter s of PS is predictable. Table 6 shows



Table 2. Accuracy.

D CM BM RM PS EPS RAKEL
Scene 71.81±1.22 58.28±0.92↘ 71.72±0.98 71.93±1.08 73.80±0.95 71.58±0.89
Yeast 51.98±0.93 49.64±0.88↘ 51.95±0.62 52.82±1.30 55.03±0.93↗ 54.49±0.98↗
Medical 74.71±1.32 73.00±1.08 72.71±1.56 74.63±1.51 74.45±2.28 72.55±2.32
Enron 41.02±1.08 38.64±1.05 27.22±0.31↘ 42.15±0.81 44.09±0.90↗ 42.98±0.63
Reuters 49.17±0.67 31.91±0.76↘ 49.08±0.59 49.83±0.59 49.80±0.59 31.80±0.29↘

↗,↘ statistically significant improvement or degradation

Table 3. F1 measure.

D CM BM RM PS EPS RAKEL
Scene 0.729±0.01 0.671±0.01↘ 0.724±0.01 0.730±0.01 0.752±0.01↗ 0.735±0.01
Medical 0.767±0.01 0.791±0.01↗ 0.743±0.01 0.766±0.02 0.764±0.02 0.784±0.01
Yeast 0.633±0.01 0.630±0.01 0.649±0.01↗ 0.643±0.01 0.665±0.01↗ 0.664±0.01↗
Enron 0.502±0.01 0.504±0.01 0.335±0.00↘ 0.520±0.01 0.543±0.01↗ 0.543±0.01↗
Reuters 0.482±0.01 0.421±0.01↘ 0.485±0.00 0.496±0.00 0.499±0.01↗ 0.418±0.00↘

↗,↘ statistically significant improvement or degradation

Table 4. Hamming loss.

D CM BM RM PS EPS RAKEL
Scene 0.096±0.004 0.111±0.003↘ 0.095±0.003 0.095±0.004 0.090±0.003 0.098±0.004
Medical 0.012±0.001 0.011±0.000 0.013±0.001 0.012±0.001 0.013±0.001 0.012±0.001
Yeast 0.213±0.005 0.202±0.005↗ 0.212±0.009 0.209±0.007 0.211±0.005 0.217±0.008
Enron 0.057±0.001 0.060±0.001 0.055±0.001↗ 0.055±0.001 0.058±0.001 0.057±0.001
Reuters 0.013±0.000 0.011±0.000↗ 0.012±0.000↗ 0.012±0.001 0.013±0.001 0.012±0.000↗

↗,↘ statistically significant improvement or degradation (N.B. lower is better)

Table 5. Build time.

D CM BM RM PS EPS RAKEL
Scene 9.8 10.4 3.7 3.8 18.3 9.2
Medical 36.4 7.7 11.9 9.7 51.2 3.4
Yeast 187.8 11.1 34.0 29.8 172.6 64.8
Enron 1565.8 50.9 84.7 59.5 246.1 465.3
Reuters 1379.1 51.7 72.5 176.2 911.9 110.8

Table 6. Parameters and thresholds.

D CM BM RM PS EPS RAKEL
- - t p, s p, s, t k, t

Scene − − 0.30 4,A2 4,A2,0.37 4,0.30
Medical − − 0.10 1,A2 1,A2,0.30 8,0.19
Yeast − − 0.09 2,B2.5 3,B3,0.07 5,0.20
Enron − − 0.10 1,B2 1,B2,0.08 10,0.09
Reuters − − 0.10 1,A3 1,A3,0.21 16,0.06



Table 8. Accuracy: RAKEL and PS methods.

D RAKEL PS EPS
Scene 71.58±0.89 71.93±1.08 73.80±0.95↗
Medical 72.55±2.32 74.63±1.51 74.45±2.28
Yeast 54.49±0.98 52.82±1.30 55.03±0.93
Enron 42.98±0.63 42.15±0.81 44.09±0.90
Reuters 31.80±0.29 49.83±0.59↗ 49.80±0.59↗
↗,↘ statistically significant improvement or degradation

Table 9. F1 measure: RAKEL and PS methods.

D RAKEL PS EPS
Scene 0.735±0.01 0.730±0.01 0.752±0.01↗
Medical 0.784±0.01 0.766±0.02 0.764±0.02
Yeast 0.664±0.01 0.643±0.01↘ 0.665±0.01
Enron 0.543±0.01 0.520±0.01 0.543±0.01
Reuters 0.418±0.00 0.496±0.00↗ 0.499±0.01↗
↗,↘ statistically significant improvement or degradation

that strategyA is selected consistently where LCard(D) is
low, and B when high (refer also to Table 1).

Although in theory the asymptotic complexity bounds
of PS and EPS are not reduced over those of CM or
RAKEL, the practical difference cannot be underestimated.
Multi-labelled data invariably feature a label distribution
conducive to the efficient operation of PS. Multi-labelling
schemes are consistently dominated by a small minority of
core label relationships (as showed in Figure 1 and Table 1).
This assumption can be made despite the exponential num-
ber of combinations which are theoretically possible with
an increasing label set L. The frequency of news articles
labelled Iraq, Antarctica, and Ireland would, in
practice, be low, if not zero. This explains why PS performs
fast despite a theoretical “ worst-case” performance similar
to other methods.

Memory use is examined in Table 10. It is approximated
by the number of instances generated during the problem
transformation of a training set D with L possible labels
(irrespective of any internal single-label classifier). All val-
ues are ‘hard’ except the P runing Function PF (D, p) and
Decomposition Function DF (D, s) which depend on the
distribution of the data in D (and the p and s parameters,
respectively). It is guaranteed that PF (D, p) < |D| and
that DF (D, s) < |D| ×LCard(D), and also that the com-
plexity of PF is inversely proportional to the complexity of
DF . Also, according to the argument concerning the use of
PS in practise presented above, PS tends towards logarith-
mic complexity with respect to p. On Reuters, PS actually
reduces the number of instances in |D| to around 2500 on
average whereas RAKEL creates |D|×k×10 for k ranging

Table 10. Theoretical approximation of mem-
ory use.

BM |L| × |D|
RM |D| × LCard(D)
CM |D|
PS PF (D, p) +DF (D, s)
EPS (PF (⊂ D, p) +DF (⊂ D, s))×m
RAKEL |D| × k ×m

up to |L| (1.82× 106 instances for k = 61). So we observe
that PS is efficient in terms of memory as well as speed.

All results indicate that the improvements PS offers are
not simply incremental. In many cases the error reduction
over other methods is statistically significant, and its perfor-
mance scales favourably across a wide range of multi-label
datasets from different domains including large datasets
with thousands of examples and with over a hundred labels.

5 Conclusions and Future Work

This paper introduced a new method for multi-label clas-
sification using ensembles of pruned sets. The goal of the
pruning procedure is to focus specifically on the core rela-
tionships between labels and thereby to reduce the complex-
ity associated with dealing with a large number of distinct or
infrequent label sets. The PS method is enhanced by strate-
gies to extract and preserve label relationships from pruned
examples without reintroducing the associated complexity.



As a result, the PS method excels in terms of a reduced error
rate as well as build time.

While being fully functional as a standalone method, PS
is particularly suited to ensembles due to its fast operation
and because the randomisation inherent to ensembles coun-
teracts any over-fitting introduced by the pruning phase.
Hence PS was also run within an ensemble bagging scheme
(EPS) for further reductions to the error rate.

We performed empirical statistical evaluation and the re-
sults show that the methods presented in this paper are of-
ten superior alternatives to other multi-label methods over
a range of multi-labelled datasets. Often the improvements
were statistically significant and build times were frequently
reduced. The computational and memory complexity were
analysed both practically and theoretically. All indications
are that the PS methods can be applied effectively and ef-
ficiently to many multi-label classification tasks including
large and complex multi-label datasets.
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