
A Deep Interpretation of Classifier Chains

Jesse Read and Jaakko Hollmén

Aalto University, Department of Information and Computer Science
PO Box 15400, FI-00076 Aalto, Espoo, Finland

Helsinki Institute for Information Technology (HIIT), Finland
{jesse.read,jaakko.hollmen}@aalto.fi

Abstract. In the “classifier chains” (CC) approach for multi-label clas-
sification, the predictions of binary classifiers are cascaded along a chain
as additional features. This method has attained high predictive perfor-
mance, and is receiving increasing analysis and attention in the recent
multi-label literature, although a deep understanding of its performance
is still taking shape. In this paper, we show that CC gets predictive power
from leveraging labels as additional stochastic features, contrasting with
many other methods, such as stacking and error correcting output codes,
which use label dependence only as kind of regularization. CC methods
can learn a concept which these cannot, even supposing the same base
classifier and hypothesis space. This leads us to connections with deep
learning (indeed, we show that CC is competitive precisely because it is a
deep learner), and we employ deep learning methods – showing that they
can supplement or even replace a classifier chain. Results are convincing,
and throw new insight into promising future directions.

1 Introduction

Multi-label classification (MLC) is the supervised learning problem where an
instance is associated with multiple binary class variables (i.e., labels), rather
than with a single class, as in traditional classification problems ([12]). The
typical argument (which this paper reanalyzes) is that, since these labels are
often strongly correlated, modeling the dependencies between them allows MLC
methods to improve their performance.

As in general classification scenarios, an n-th feature vector (instance) can

be represented as x(n) = [x
(n)
1 , . . . , x

(n)
D], where each xd ∈ R|d = 1, . . . , D. In the

traditional binary classification task, we are interested in having a model h to
provide a prediction for test instances x̃, i.e., ŷ = h(x̃); where h, probabilistically
speaking, seeks the expectation E[y|x] of unknown p(y|x). In MLC, there are L
binary output class variables (labels), and we are interested in predictions

ŷ = [ŷ1, . . . , ŷL] = h(x̃) = argmax
y∈{0,1}L

p̂(y|x̃)

where yj = 1 indicates the relevance of the j-th label; j = 1, . . . , L.
From N labelled examples (training data) D = {(x(n),y(n))}Nn=1, we infer h.

A most basic solution is to train L binary models. This method is called binary

2

relevance (BR); illustrated graphically in Fig. 1a. BR classifies an x̃ L times as
hBR(x̃) := [h1(x̃), . . . , hL(x̃)].

y4y3y2y1

x

(a) BR

y4y3y2y1

x

(b) CC

Fig. 1: BR (1a) and CC (1b) as graphical models, L = 4. Unlike many typical
Bayesian networks, we have lumped x = [x1, . . . , xD] into a single variable.

Practically the entirety of the multi-label literature points out that the inde-
pendence assumption among the labels leads to suboptimal performance (e.g.,
[16, 7, 3, 15, 20] and references therein), and that for this reason BR cannot achieve
optimal performance. A plethora of methods have been motivated by a perceived
need to modelling this dependence and thus improve over BR. For example, Meta-
BR (MBR, also known in the literature as ‘stacked-BR’ and ‘2BR’) [7, 3] stacks the
output of one BR as input into a second (meta) BR1, so as to learn to correct
errors. For some x̃,

hMBR(x̃) := h′BR(hBR(x̃))

A related approach uses subset mapping (SM, e.g., as in [18]) to force infre-
quent label vector predictions to a more frequent ones,

hSM(x̃) := argmin
y∈Ytrain

`(y, hBR(x̃))

where Ytrain are all distinct y(n) from the training data D and `(y, ŷ) is some
penalty function typically rewarding small Hamming distance and high frequency
in D. SM is very closely related to error-correcting output code methods [6] and,
like MBR, can be seen as a regularizer. The penalty goes to ∞ if y 6∈ Ytrain,
meaning that any predictions of label combinations not seen in the training set
will be ‘corrected’.

As an example, movie genres adult and family may be mutually exclusive in
the training set, and having a regularization/correction component to avoid this
classification at test time may lead to improved performance (over BR).

The classifier chains method (CC, [16]), illustrated in Fig. 1b, models label
dependence by using binary label predictions as extra input attributes for the
following classifier, in a chain, and therefore models labels and inputs together,

1 There is no consensus in the literature as to whether it is best to also include the
x-space input again, or simply the label outputs h(x), as input to the meta BR

3

rather than correcting labels as a separate step. In the original formulation with
greedy inference,

hCC(x̃) :=
[
h1(x̃), h2(x̃, h1(x̃)), . . . , hL(x̃, h1(x̃), . . . , hL−1(x̃))

]
.

CC variants have consistently performed strongly in the literature and there have
been numerous extensions, variations and analyses, e.g., [2, 20, 15, 11, 5]. How-
ever, the reasons for its high performance are only recently being unravelled. In
this paper, we throw new light on the subject.

Two focus points for improvement of CC have been the inference, and the or-
der of the labels in the chain. Originally, [16] suggested an ensemble of randomly-
ordered chains (ECC) with voting, whereas two recent high-performing CC meth-
ods [11] and [15], use beam and Monte Carlo search, respectively to obtain one
well-ordered chain. We use the latter, which we denote MCC, in empirical com-
parisons, as well as ECC with 10 random chains.

2 Label Dependence in Multi-label Learning

The idea of leveraging label dependence to improve performance vs BR intu-
itively makes sense. However, the understanding behind this is only recently
taking shape, with the authors of [2, 5, 4] opening an important discussion from
a probabilistic perspective, noting the difference between

– marginal dependence, where p(yj |yk) 6= p(yj); and
– conditional dependence, where p(yj |yk) 6= p(yj |yk,x).

Thus MBR and SM model marginal dependence, whereas CC models conditional
dependence, by learning labels and input together.

An interesting point of debate is the following: given infinite data, can two
separate binary models on labels yj and yk achieve as good performance as one
that models them together (e.g., MBR, CC) – assuming the same base classifier
(say, logistic regression)? Among others, [16, 5] ponder if BR has been underrated
and could equal CC’s performance with enough training data. Indeed, [4] make
the case that it should be possible make risk-minimizing predictions without any
particular effort to detect or model label dependence. This seems to throw into
doubt the bulk of the contributions to the multi-label literature.

It is also worth recalling here, that labels cannot only be learned together
or separately, but also evaluated together or separately. A typical measure for
the latter case is the Hamming score, which is widely used in MLC empirical
evaluations. However, many MLC papers quietly overlook the fact that achieving
statistically significant improvement over BR in this measure is difficult to obtain.
This seems to add to [4]’s claim.

Proposition 1. If we can predict E(Y2|Y1,x) to a certain degree of accuracy
under some evaluation measure, then it is also possible to predict E(Y2|x) with
at least the same accuracy under the same measure.

We elaborate on this in the following sections.

4

3 Analysis on Synthetic Datasets

Using the following synthetic datasets with the methods discussed above (Section
1), with logistic regression as a base classifier, we run some experiments to expand
on the discussion from Section 2. Results are given in Tab. 1.

– Localization: a scenario (see Fig. 2) where labels correspond to pixels which
represent floor tiles in a room, and are active/relevant (yj = 1) if an object
is on them. Light sensors signal detection (with 90% accuracy) xd = 1 if an
active tile lies between the sensor location and the light source. For each of
1000 instances (two thirds of which are used for training), a line of three
tiles is activated (yj = 1 for three j) in a random location in the grid, and
another tile is activated in the furthest corner from that line; which is always
a blind spot (undetectable by sensors). Based on the real-world deployment
of [14].

– Logic: Two binary attributes, X1, X2, deterministically mapped to three la-
bels Y1, Y2, Y3, corresponding to and(X1, X2), or(X1, X2), xor(X1, X2) (bi-
nary logical operations). We generate 20 X1, X2 randomly, and use 12 for
training.

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

Fig. 2: Top-down view of a grid of L tiles in a room. There are D sensors, which
signal detection (xd = 1) with 90% probability if any of the active tiles (yj = 1)
lie between sensors (black semi circles) and the light source (black bar at the
bottom). Here, three sensors have detected an object. Note the blind spot.

We use two standard, opposing evaluation methods,

Hamming Score :=
1

NL

N∑
n=1

L∑
j=1

[
y
(n)
j = ŷ

(n)
j

]
, and

Exact Match :=
1

N

N∑
n=1

[
y(n) = ŷ(n)

]

5

which are used in almost all MLC evaluations. Hamming Score (which we
mentioned in the previous section) rewards methods for predicting individual
labels well, whereas Exact Match rewards a higher proportion of instances
with all label relevances correct.

Table 1: Predictive Performance on Toy Datasets with per-dataset (rank)
Hamming Score

Dataset BR CC SM MBR ECC MCC

Localization 0.992 (1) 0.992 (1) 0.991 (4) 0.991 (4) 0.991 (4) 0.992 (1)
Logic 0.833 (5) 1.000 (1) 0.750 (6) 0.875 (3) 0.875 (3) 1.000 (1)

Exact Match

Dataset BR CC SM MBR ECC MCC

Localization 0.412 (5) 0.491 (2) 0.455 (3) 0.408 (6) 0.447 (4) 0.497 (1)
Logic 0.500 (6) 1.000 (1) 0.625 (3) 0.625 (3) 0.625 (3) 1.000 (1)

Given much of the discussion in the literature, one could understand that
a method which models label dependence would excel on Localization. This
could be claimed for exact match; but the number of correct label relevances
(Hamming score) is essentially identical across all methods. Despite the obvi-
ous label dependence here (wrt the position and shape of the ‘relevant’ pixels),
conditioning on x (i.e., training BR) suffices for high label-wise precision.

The results on Logic indicate the opposite case: BR is clearly unable to learn
the concept, even though we can be sure that E[y3|y2, y1,x] = E[y3|x]. Further-
more, although SM and MBR model label dependence, they cannot learn the con-
cept either: their regularization cannot make up for the fact that their underlying
BR models fail. CC and MCC score perfectly. ECC under-performs, so apparently
CC only performs well under certain label orders (and got ‘lucky’); confirmed by
MCC, which finds one good order before final training. MBR does actually have a
structure suitable for learning xor, but apparently training cannot leverage it
properly.

The authors of [5] uncovered a similar case with their probabilistic classi-
fier chains (originally presented in [2], using Bayes-optimal inference instead of
greedy inference for CC), putting it down to this method’s “expanded hypothe-
sis space” (it trials all 2L combinations for ŷ at inference time). This, however,
cannot be the complete answer, since the original CC makes L separate binary
decisions just like BR; thus the same hypothesis space.

With real-world datasets it is difficult to postulate, but on the Logic dataset
it is clear that BR’s accuracy will never reach 1 even under infinite data, since its
h3 model will never learn xor. The performance gap in Tab. 1 is a convincing

6

50 percentage points for Exact Match. CC’s h3 is a perfect model, even with
the same base classifier.

In the next section we explain how CC works as a deep structure, of up to L
levels (let us simply state that any structure of more than one level is deep) and
for this reason can outperform BR as well as the ‘regularization’-type methods
like MBR and SM.

4 Why Classifier Chains Works

Fig. 3 shows CC on Logic. It is clear how it learns the xor label (Y3): by leveraging
off labels Y1 and Y2, which are acting like hidden units of a neural network. In
terms of neural networks it is actually more than required; Fig. 3c shows the
smallest neural network that can learn xor as demonstrated in [17]2.

y3y2y1

x

(a) CC standard depiction

y3

y2y1

x

(b) redrawn wrt y3

y3

y2y1

x

(c) Minimum net-
work able to learn
xor function

Fig. 3: CC with three labels, as in the Logic dataset. Note we show (for now)
x = [x1, x2] as a single variable.

In Fig. 4, as a probabilistic graphical models interpretation, are the junction
trees (see [1]) of two of the models, showing that Fig. 3c can be tractable.
Standard CC (Fig. 3a—3b) is fully connected and thus many forms of inference
are intractable; a known issue [2, 15].

It is a straightforward interpretation of CC to think of labels being used as
features to predict other labels. Let us not forget though that all estimated labels
are derived from the input. Where labels are manually assigned to instances,
then yj = fj(x) are feature functions of the human mind, which (for a logistic
regression base learner hj) is being approximated by a sigmoid function on a
linear combination of the input. From here we could get to conditional random
fields (as in [2]), but we will continue through another route. From the point of

2 Earlier, pessimistic results about solving the XOR problem with neural networks
[13] resulted in the decline of neural networks research

7

y1, y2, y3y1, y2x, y1, y2

(a) Junction Tree of Fig. 3c

f1, f2, f3x, f1, f2, f3 f1, f2, f3, y3

(b) Junction Tree of Fig. 5b

Fig. 4: Junction Trees for different formulations.

view of y3, there are three inputs (x still treated as a single variable),

y3 = h3(f1(x), f2(x, f1(x)),x)

See Fig. 5a. It is clear that f1 and f2 are simply transformations of the input.
In the case of CC with logistic regression as a base classifier,

fj(x) := σ(w>j [x1, . . . , xD, fj−1(x), . . . , f1(x)])

where σ is the logistic/sigmoid function, but we can easily imagine arbitrary
(possibly non-linear) transformations of the input, and an arbitrary number of
such functions: f∗1 (x), . . . , f∗K(x); see Fig. 5b. Note independence among f∗k (x).

y3

f2(·)f1(·)

x

(a) Sigmoid func-
tions

y3

f∗
1 (·) f∗

2 (·) f∗
3 (·)

x

(b) Arbitrary func-
tions

Fig. 5: As in Fig. 3b, but labels are shown as transformations of the input.
Fig. 5a is easily equivalent to Fig. 5b in the case where f∗3 (x) = x, etc.

There is no reason to assume that the number of labels (L) equals the number
of desired features (K). If we include the rest of the labels, expand x into D
nodes, X1, . . . , XD and invert the graph such that the Y label variables are now
at the top, the result is Fig. 6a. These last two changes are purely presentational,
but important for what comes next.

Since f∗k is an arbitrary function, and two hidden layers are enough for uni-
versal approximation ability [9] of any arbitrary function, Fig. 6a is therefore
equivalent to the deep network of Fig. 6b with, e.g., a sigmoid function for all

8

y3y2y1

f∗
4 (·)f∗

3 (·)f∗
2 (·)f∗

1 (·)

x5x4x3x2x1

(a) A non-linear transform of
the feature space

y3y2y1

z4z3z2z1

z4z3z2z1

x5x4x3x2x1

(b) A deep belief network with
two hidden layers

Fig. 6: A network with a non-linear transform of the feature space (left) and
two layers to approximate it (right).

layers; i.e.,

z
[1]
k = σ

(D∑
d=1

xdwdk

)
for the first layer, where wjk is a weight on the link between xd and hidden node
zk.

The two hidden layers can be learned by restricted Boltzmann machines
(RBMs) [8]. This means that training BR on the top layer (z[1] vectors) can
theoretically be as competitive as CC trained on the input (x vectors). In fact
they can be equivalent, except that the RBMs discover feature functions, instead
of trying to approximate the human feature functions (labels) available. Indeed,
we do obtain top performance (as with CC, MCC) on Logic (not shown).

In other words, since all labels are related to the input, with an adequate
(possibly non-linear) binary model, we can predict a label yj just as well as
we could given also the prediction of another label yk. Other labels are simply
additional features of the input, albeit often quite powerful ones, since they
often represent human neural circuitry (i.e., human concepts). The true function
behind the concept is of course typically not known, but given the true outputs
in the training data, they can be approximated (standard supervised learning).

Whereas a typical basis function is deterministic, the f∗k (x) are not (neces-
sarily), as reflected in the RBMs. Guided by this, in the next section we employ
some deep learning methods and show them to be effective. But Tab. 2 already
hints that random features can help in a classifier-chains approach (particularly
when the chain is carefully ordered). Models with random activations have been
considered in e.g., [19], or in ‘extreme learning machines’ [10] – but as a single
hidden layer and not directly into the label space as we consider here.

9

Table 2: Per-label accuracy on the Music dataset (see, e.g., [12]), from 5×CV,
with (+) and without 10 random labels (i.e., feature functions), of the form

yk = σ(
∑D

d=1 wdkxd) for random w.
label CC CC+ MCC MCC+

amazed 0.759 0.793 0.772 0.776
happy 0.688 0.692 0.722 0.734

relaxing 0.764 0.755 0.764 0.781
quiet 0.895 0.890 0.882 0.895
sad 0.835 0.819 0.793 0.827

aggressive 0.759 0.814 0.793 0.819

5 Deep Multi-label Learning

Since labels can be seen as high-level features of the input, other higher-level
features should also positively affect predictive performance. For example, from
an image, a feature for the presence of a grainy surface such as sand or pebbles,
or for being adjacent to a (significant) body of water should help us predict
beach just as much (or better) than label urban. We can use RBMs to learn
layers of such hidden features, in an unsupervised fashion. These hidden layers
can capture complex dependencies and structure from the input space.

If the features are powerful, the label variables become independent. This is
intuitively attractive, because humans do not recognise beaches depending on
the probability that what they see is urban or not. Unfortunately, learning high
level features in an unsupervised fashion is not as easy as trying to approximate
labels from training data. Powerful algorithms and computational resources are
needed – a currently active field of research.

Tab. 3 show results, comparing baseline BR, MBR, and MCC, with deep learning
approaches3: namely two RBMs plus a multi-label learner, either BR, MCC, or
with back-propagation (BP) as in [8] but for MLC; all denoted with D. Also
we included [21]’s BP multi-label learner (BPMLL); a multi-layer neural network
not initialized using RBMs. All experiments in this paper are carried out with
the Weka-based Meka framework4 with a setup like [15] (the datasets are
described there). We used a single parameter combination for RBMs for all
datasets (namely 30 hidden units per layer, learning rate 0.1, momentum 0.2,
5000 iterations) chosen ad-hoc – to avoid intensive parameter tuning on many
datasets. Implementations are available within Meka. All base classifiers hj
are logistic regression (Weka’s implementation). We evaluated using Hamming
score and exact match described earlier, and additionally the micro averaged
F-measure,

Micro Averaged F1 := F1([y
(1)
1 , . . . , y

(N)
L], [ŷ

(1)
1 , . . . , ŷ

(N)
L])

where F1(a,b) returns the F1 score of binary vectors a and b.

3 Space does not permit a review of RBMs and deep learning, see e.g., [8] for details
4 http://meka.sourceforge.net

10

Table 3: Predictive performance on real datasets, with dataset-wise (rank).

Exact Match

Dataset BR MBR BPMLL MCC D·MCC D·BR DBP

music 0.193 (6) 0.193 (6) 0.252 (3) 0.208 (5) 0.218 (4) 0.267 (2) 0.287 (1)
scene 0.286 (6) 0.292 (5) 0.554 (2) 0.353 (4) 0.476 (3) 0.582 (1) 0.183 (7)
yeast 0.150 (5) 0.137 (7) 0.161 (4) 0.198 (2) 0.204 (1) 0.149 (6) 0.179 (3)
genbase 0.960 (3) 0.955 (4) 0.271 (7) 0.965 (1) 0.965 (1) 0.950 (5) 0.950 (5)
medical 0.439 (4) 0.457 (3) 0.194 (7) 0.474 (2) 0.361 (5) 0.200 (6) 0.521 (1)
enron 0.022 (5) 0.022 (5) 0.010 (7) 0.028 (4) 0.161 (1) 0.054 (2) 0.043 (3)

avg. rank 4.83 5.00 5.00 3.00 2.50 3.67 3.33

Hamming Score

Dataset BR MBR BPMLL MCC D·MCC D·BR DBP

music 0.761 (5) 0.762 (4) 0.776 (2) 0.742 (6) 0.726 (7) 0.772 (3) 0.791 (1)
scene 0.807 (4) 0.802 (6) 0.895 (1) 0.807 (4) 0.847 (3) 0.895 (1) 0.731 (7)
yeast 0.786 (3) 0.780 (5) 0.790 (2) 0.771 (7) 0.780 (5) 0.784 (4) 0.791 (1)
genbase 0.998 (3) 0.998 (3) 0.932 (7) 0.999 (1) 0.999 (1) 0.998 (3) 0.998 (3)
medical 0.980 (4) 0.981 (2) 0.969 (6) 0.981 (2) 0.971 (5) 0.967 (7) 0.984 (1)
enron 0.892 (6) 0.904 (5) 0.939 (3) 0.884 (7) 0.940 (2) 0.947 (1) 0.937 (4)

avg. rank 4.17 4.17 3.50 4.50 3.83 3.17 2.83

Micro-Averaged F1

Dataset BR MBR BPMLL MCC D·MCC D·BR DBP

music 0.570 (7) 0.571 (6) 0.603 (2) 0.574 (5) 0.580 (3) 0.577 (4) 0.629 (1)
scene 0.463 (5) 0.406 (6) 0.668 (1) 0.480 (4) 0.621 (2) 0.576 (3) 0.199 (7)
yeast 0.599 (6) 0.618 (3) 0.633 (2) 0.601 (5) 0.607 (4) 0.588 (7) 0.639 (1)
genbase 0.987 (1) 0.985 (2) 0.276 (5) 0.985 (2) 0.341 (4) 0.200 (6) 0.174 (7)
medical 0.665 (3) 0.655 (4) 0.315 (7) 0.681 (2) 0.557 (5) 0.487 (6) 0.771 (1)
enron 0.372 (5) 0.248 (7) 0.483 (2) 0.353 (6) 0.475 (3) 0.493 (1) 0.466 (4)

avg. rank 4.50 4.67 3.17 4.00 3.50 4.50 3.50

11

Overall D·MCC performs best under exact match, but not as well as D·BR or
DBP (which are closely related) under Hamming score – a result which corre-
sponds with our discussion; D·MCC provides extra depth with a CC, but with the
RBMs underneath BR already becomes very competitive – especially compared
directly to baseline BR. A well-ordered CC (MCC) is still very powerful for exact
match, but even better performance can be obtained with additional learned
features. We could speculate that advances in deep learning should eventually
reduce the effectiveness of CC, as higher-level features make labels more inde-
pendent. Although, on the other hand, many kinds of CC models are more
interpretable than RBMs (and usually faster to train), and may therefore still
be interesting for many applications.

6 Conclusions

The high performance of the classifier chains (CC) approach can be seen as
stemming from its leverage of labels as high-level features in a deep cascading
structure across binary classifiers. This contrasts with many other approaches
based on binary classifiers, that leverage label dependence in a regularization
step, but provide limited additional learning power. We demonstrated several
scenarios where CC can learn a concept where other methods fail.

We argued that if labels can be considered high-level features stemming from
the input, then it is possible to learn such features independently of the training
data. We employed deep-learning approaches (using restricted Boltzmann ma-
chines) to learn such higher-level features, and obtained provide strong perfor-
mance, particularly when supplemented with a top-layer chain. Results indicate
that further advances in multi-label classification will come from better models
of features, and borrow from thus-related fields, rather than obsessive modelling
of high-level label ‘correlations’.

Many deep-learning methods have other important advantages, particularly
in online and semi-supervised settings. We intend to investigate this, as well as
produce further empirical study.

References

1. David Barber. Bayesian Reasoning and Machine Learning. Cambridge University
Press, 2012.

2. Weiwei Cheng, Krzysztof Dembczyński, and Eyke Hüllermeier. Bayes optimal
multilabel classification via probabilistic classifier chains. In ICML ’10: 27th In-
ternational Conference on Machine Learning, pages 279–286, Haifa, Israel, June
2010. Omnipress.

3. Weiwei Cheng and Eyke Hüllermeier. Combining instance-based learning and lo-
gistic regression for multilabel classification. Machine Learning, 76(2-3):211–225,
2009.

4. Krzysztof Dembczyński, Willem Waegeman, Weiwei Cheng, and Eyke Hüllermeier.
On label dependence and loss minimization in multi-label classification. Mach.
Learn., 88(1-2):5–45, July 2012.

12

5. Krzysztof Dembczynski, Willem Waegeman, and Eyke Hllermeier. An analysis of
chaining in multi-label classification. In ECAI: European Conference of Artificial
Intelligence, volume 242 of Frontiers in Artificial Intelligence and Applications,
pages 294–299. IOS Press, 2012.

6. Rayid Ghani. Using error-correcting codes for text classification. In ICML ’00:
17th International Conference on Machine Learning, pages 303–310, Stanford, US,
2000. Morgan Kaufmann Publishers, San Francisco, US.

7. Shantanu Godbole and Sunita Sarawagi. Discriminative methods for multi-labeled
classification. In PAKDD ’04: Eighth Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining, pages 22–30. Springer, 2004.

8. Geoffrey Hinton and Ruslan Salakhutdinov. Reducing the dimensionality of data
with neural networks. Science, 313(5786):504 – 507, 2006.

9. K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366, 1989.

10. Guang-Bin Huang, DianHui Wang, and Yuan Lan. Extreme learning machines: a
survey. International Journal of Machine Learning and Cybernetics, 2(2):107–122,
2011.

11. Abhishek Kumar, Shankar Vembu, Aditya Krishna Menon, and Charles Elkan.
Learning and inference in probabilistic classifier chains with beam search. In Ma-
chine Learning and Knowledge Discovery in Databases, volume 7523, pages 665–
680. Springer, 2012.

12. Gjorgji Madjarov, Dragi Kocev, Dejan Gjorgjevikj, and Sašo Džeroski. An exten-
sive experimental comparison of methods for multi-label learning. Pattern Recog-
nition, 45(9):3084–3104, September 2012.

13. Marvin Minsky and Seymor Papert. Perceptrons — An introduction to Computa-
tional Geometry. The MIT Press, 1969.

14. Jesse Read, Katrin Achutegui, and Joaquin Miguez. A distributed particle filter
for nonlinear tracking in wireless sensor networks. Signal Processing, 98:121–134,
2014.

15. Jesse Read, Luca Martino, and David Luengo. Efficient monte carlo methods for
multi-dimensional learning with classifier chains. Pattern Recognition, 47(3), 2014.

16. Jesse Read, Bernhard Pfahringer, Geoffrey Holmes, and Eibe Frank. Classifier
chains for multi-label classification. Machine Learning, 85(3):333–359, 2011.

17. David E. Rumelhart, James L. McClelland, and PDP Research Group, editors.
Parallel Distributed Processing: Explorations in the Microstructure of Cognition,
Vol. 1: Foundations. MIT Press, Cambridge, MA, USA, 1986.

18. Robert E. Schapire and Yoram Singer. Improved boosting algorithms using
confidence-rated predictions. Machine Learning, 37(3):297–336, December 1999.

19. W. Thomas Miller III, Filson H. Glanz, and L. Gordon Kraft III. CMAC: An as-
sociative neural network alternative to backpropagation. Proceedings of the IEEE,
78(10):1561–1567, October 1990.

20. Julio H. Zaragoza, Luis Enrique Sucar, Eduardo F. Morales, Concha Bielza, and
Pedro Larrañaga. Bayesian chain classifiers for multidimensional classification. In
24th International Conference on Artificial Intelligence (IJCAI ’11), pages 2192–
2197, 2011.

21. Min-Ling Zhang and Zhi-Hua Zhou. Multilabel neural networks with applications
to functional genomics and text categorization. IEEE Transactions on Knowledge
and Data Engineering, 18(10):1338–1351, 2006.

