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Abstract—Data streams are being generated in a faster, bigger,
and more commonplace. In this scenario, Hoeffding Trees are
an established method for classification. Several extensions exist,
including high-performing ensemble setups such as online and
leveraging bagging. Also, k-nearest neighbours is a popular
choice, with most extensions dealing with the inherent perfor-
mance limitations over a potentially-infinite stream. At the same
time, gradient descent methods are becoming increasingly pop-
ular, owing to the proliferation of interest and successes in deep
learning. Although deep neural networks can learn incrementally,
they have so far proved too sensitive to hyperparameter options
and initial conditions to be considered an effective ‘off-the-shelf’
data streams solution. In this work, we look at combinations
of Hoeffding trees, nearest neighbour, and gradient descent
methods with a streaming preprocessing approach in the form
of a random feature functions filter for additional predictive
power. Our empirical evaluation yields positive results for the
novel approaches that we experiment with, and also highlight
important issues, and shed light on promising future directions
in approaches to data stream classification.

I. INTRODUCTION

There is a trend towards working with big and dynamic data
sources. This tendency is clear both in real world applications
and the academic literature. Many modern data sources are
not only dynamic but often generated at high speed and must
be classified in real time. Such contexts can be found in
sensor applications (e.g., tracking and activity monitoring), de-
mand prediction (e.g., of electricity), manufacturing processes,
robotics, email, news feeds, and social networks. Real-time
analysis of data streams is becoming a key area of data mining
research as the number of applications in this area grows.

The requirements for a classifier in a data stream are to

• Be able to make a classification at any time
• Deal with a potentially infinite number of examples
• Access each example in the stream just once

These requirements can in fact be met by variety of
learning schemes, including even batch learners (e.g., [1]),
where batches are constantly gathered over time, and newer
models replace older ones as memory fills up. Nevertheless,
incremental methods remain strongly preferred in the data
streams literature, and particularly the Hoeffding tree (HT) and
its variations [2], [3], k-nearest neighbours (kNN) [4]. Support
for these options is given by large-scale empirical comparisons
[5], where it is also found that methods such as naive Bayes

and stochastic gradient descent-based (SGD) – although nat-
urally incremental – are relatively poor performers.

Massive Online Analysis (MOA) [6] is a software environ-
ment for implementing algorithms and running experiments
for online learning from data streams in Java. It implements a
large number of modern methods for classification in streams.

In this paper we make use of MOA’s extensive library
of methods to form novel combinations and further employ
an extremely rapid preprocessing technique of projecting the
input into a new space via random feature functions. This leads
to an empirical evaluation with benchmark and state of the art
methods, and a discussion of implications of the results.

Classification in data streams is a major area of research, in
which Hoeffding trees have long been a favoured method. The
main contribution of this paper is to show that random feature
function can be leveraged by other algorithms to obtain similar
or even improved performance over tree-based methods.

II. HOEFFDING TREE AND EXTENSIONS

Hoeffding trees [2] are state-of-the-art in classification for
data streams and they predict by choosing the majority class
at each leaf. However, these trees may be conservative at
first and in many situations naive Bayes method outperforms
the standard Hoeffding tree initially, although it is eventually
overtaken [7]. A proposed hybrid adaptive method (by [7]) is a
Hoeffding tree with naive Bayes at the leaves, i.e., returning a
naive Bayes prediction at the leaves, if it has been so far more
accurate overall than the majority class. Given it’s widespread
acceptance, this is the default in MOA, and we denote this
method in the experimental section simply as HT. In fact, the
naive Bayes classification comes for free, since it can be made
with the same statistics that are collected anyway by the tree.

In this paper we adapt this methodology to deal with other
classifiers in a similar way, namely kNN and an SGD-based
method (rather than naive Bayes) at the leaves. We denote
these cases HT-kNN and HT-SGD, respectively. For example,
in HT-SGD, a gradient descent learner is employed in the
leaves of each tree. Similarly to HT, predictions by the kNN
and an SGD-based method are only used if they are more
accurate on average than the majority class.



III. STREAM PREPROCESSING: RANDOM FEATURE
FUNCTIONS

Transforming the feature space prior to learning and clas-
sification is an established idea in the statistical and machine
learning literature [8], for example with basis (or feature-)
functions. Suppose the input instance is x of length d. This
vector is transformed to a new space z = φ(x) via function
φ, creating new vector z of length h. Any off-the-shelf model
now treats z as if it were the input. The functions can be
either chosen suitably by a domain expert, or simply chosen
to achieve a more dimensioned representation of the input.
Polynomials and splines are a typical choice.

Other established examples include using principal com-
ponent analysis (reviewed also in [8]) for this transforma-
tion, and also restricted Boltzmann machines (RBMs) [9].
RBMs can be seen as a probabilistic binary version of PCA,
for finding higher-level feature representations. They have
received widespread popularity in recent years due to their
use in successful deep learning approaches. In this case,
z = φ(x) = f(W>x) for some non-linearity f : a sigmoid
function is typical, but more recently rectified linear units
(ReLUs, [10]) have fallen into favour. The weight matrix W
is learned with gradient-based methods [11], and the projected
output should provide a better feature representation for a
neural network or any off-the-shelf method. This approach
was applied to data streams already in [12], but concluded
that the sensitivity to hyper-parameters and initial conditions
prevented good ‘out-of-the-box’ deployment in data streams.

Approach such as the so-called extreme learning machines
(ELMs) [13] avoid tricky parameterizations by simply using
random functions (indeed, ELMs are basically linear learners
on top of non-linear data transformations). ELMs are typically
presented with radial basis functions, but we use ReLUs due
to their recent popularity and success, and because there are
fewer operations to compute them which makes them more
attractive for big data. Here,

zk = f(ak) = 1ak>0

where ak = W>
k x is the k-th activation function and W is

a random d× h matrix (d input attributes, h output features),
namely in our implementation Wj,k ∼ N (0, 0.1). The terrain
of a ReLU is exemplified in Figure 1. This process can be
initialized essentially instantaneously and we could implement
it in the MOA framework as a streaming filter. Thereby, for
each instance xt = [x1, . . . , xd] at time t in a stream, a new
vector zt = [z1, . . . , zh] can be instantly created at the cost of
a vector-matrix multiplication. A classifier (e.g., HT, kNN, or
SGD) learns from the stream zt|t = 1, 2, . . ..

Regarding HTs with additional algorithms in the leaves (as
described in Section II), this filter can either be placed before
the HT, or before the method in the leaves, or both.

IV. ENSEMBLES IN DATA STREAMS

Bagging is an ensemble method used to improve the
accuracy of classifier methods. Non-streaming bagging [14]
builds a set of M base models, training each model with
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Fig. 1: Terrain of ReLU basis function on two input attributes
x1, x2 the feature function z is given on the vertical axis.

a bootstrap sample of size N created by drawing random
samples with replacement from the original training set. Each
base model’s training set contains each of the original training
example K times where P (K = k) follows a binomial
distribution. This binomial distribution for large values of N
tends to a Poisson(λ = 1) distribution, where Poisson(λ =
1)= exp(−1)/k!. Using this fact, Oza and Russell [15], [16]
proposed Online Bagging, an online method that instead of
sampling with replacement, gives each example a weight
according to Poisson(1). ADWIN Bagging [17] is an adaptive
version of Online Bagging that uses a change detector to
decide when to discard under-performing ensemble models.

Leveraging Bagging (LB, [3]) improves ADWIN Bagging,
increasing the weights of this resampling using a larger value λ
to compute the value of the Poisson distribution. The Poisson
distribution is used to model the number of events occurring
within a given time interval. It proved very competitive.

Again, we can run a filter on the input instances before
entering the ensemble of trees, or at the leaves. It is even
possible to run the filter again on the output of an ensemble
(i.e., the votes), before running an additional stacking proce-
dure. This kind of methodology can give way to rather ‘deep’
classifiers. Figure 2 illustrates a possible setup. In this sense of
multiple levels we could also call our approach deep learning.
It is debatable whether decision trees can be called a deep
method (their levels involve partitioning an existing feature
set rather than because they simple partition a space rather
than create higher-level feature space). However, several of
the methods we investigate have at least multiple levels of
feature transformation, which is behind the power of most
deep methods. In the following section we investigate the
empirical performance of several novel combinations based
on the methodology described so far.

V. EXPERIMENTS

Among the methods we investigate (e.g., HT, kNN, SGD),
different levels of filters and ensembles and possibly additional
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Fig. 2: An example setup: Input x is filtered (i.e., projected)
to random layer z (first layer of connections), which goes to
an ensemble of, for example, HTs (second layer), wherein
instances are partitioned to the leaves and are again filtered
(third layer) and used as training for, say, SGD, producing (in
the firth layer of connections) final vote y. Note, however, that
we only draw the final two layers wrt to the first of the HT
models.

classification in the leaves (in the case of HT), there are a
multitude of possible combinations. We first investigate the
viability of random feature functions and their effect on the
different classifiers (comparing these common methods with
their ‘filtered’ versions that we denote HT-SGD, kNN-F, and
SGD-F. This study led us to novel combinations, which we
further compare to the benchmark methods and state-of-the-
art Leveraging Bagging (LB-HT).

All experiments were carried out using the MOA framework
[6] with prequential evaluation: each individual example is
used to test the model before it is used for training, and
from this the accuracy can be incrementally updated. We used
an 8-core (3.20GHz each) desktop machine allowing up to 1
gigabyte of RAM per run (all methods were able to finish).

Table I lists the data sources used. A thorough description
of most of the datasets is given in [5]. Of the others, LOC1
and LOC2 are datasets dealing with classifying the location
of an object in a grid of 5×5 and 50×50 pixels respectively,
described in [18]. SUSY [19] has features that are kinematic
properties measured by particle detectors in an accelerator.
The binary class distinguishes between a signal process which
produces supersymmetric particles and a background process
which does not. It is one of the largest datasets in the UCI
repository that we could find.

For the feature filter we used parameters h = 5d hidden
units for kNN-F and h = 10d for SGD-F and HT-F (a decision
based on the relative computational sensitivity of kNN to a
larger attribute space – for LOC2 this means 25,000 attributes

TABLE I: Data sources used in the experimetnal evaluation.
Synthetic datasets are listed first.

Dataset #Attributes #Instances
RBF1 10 100,000
HYP1 10 100,000
LED1 24 100,000
LOC1 25 100,000
LOC2 2500 100,000
Poker 10 829,201

Electricity 8 45,312
CoverType 54 581,012

SUSY 8 5,000,000

in the projected space for SGD-F, and half of that for kNN-F)
– except where this is varied in Figure 3. For kNN we used
a buffer size of 5000. For LB we specify 10 models. In other
cases, the default parameters in MOA are used.

Figure 3 displays the results of varying the relative size of
the new feature space (wrt to the original feature space) on two
real-world datasets. Note that the feature space is different, so
even when this ratio is 1 : 1, performance may differ.

With regard to kNN, performance improves with more
feature functions. In one of the two cases, this is sufficient
to overtake kNN on the original feature space. Unfortunately,
kNN is particularly sensitive to the number of attributes, so
complexity becomes an issue long before other methods. The
new feature space does not help the performance of HT, and
in neither case does it reach the performance of HT on the
original feature space. In fact, it begins to decrease again.
This is because too many features makes it difficult for HT
to become confident enough to split on, and may split poorly.
Also, by partitioning the feature space, interaction between
the features is lost. SGD reacts best to a new feature space.
As noticed earlier [5], SGD is a poor performer compared to
HTs, however, working in a feature space of random ReLUs,
SGD-F actually reaches HT performance (on SUSY, and looks
promising under ELEC) with similar time complexity. Even
at 1,000 times the original feature space, running time is
acceptable (only a several seconds per 10,000 instances). On
the other hand, the increased memory use is significant across
all methods. SGD requires 1,000 times more memory in this
setting.

From this initial investigation we formulate several method
combinations for a more extensive evaluation. Table II displays
the final accuracy over the data stream. The first four columns
represent the baselines and state-of-the-art (LB-HT), and re-
maining columns are a selection of new method combinations.
Figure 4 gives a more detailed over-time view of the largest
dataset (SUSY), with the average performance plotted over
the entire stream over 100 intervals, and also the first 1/10th
of the data (again, over 100 intervals). The second plot gives
more of an idea about how models respond to fresh concepts.
Learning new concepts is a fundamental part in data streams
of adapting to concept drift.

Some of the most important observations and conclusions
are as follows:
• SGD-F (i.e., SGD with random feature functions) should
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Fig. 3: Accuracy (Figure 3a) and Running Time (Figure 3b) on a 10,000-instance segment of two real-world datasets (ELEC and
SUSY) for varying proportions of h (number of hidden units / basis functions) wrt d. kNN has been cut out after h = 1000/d
due to scalability reasons. Note the log scale on the horizontal axis.

be considered as a baseline in data stream evaluations.
Even in this first analysis, it out-competes established
methods like kNN on several datasets.

• kNN benefits relatively less (than SGD) from the feature
functions filter. Accuracy improved only on certain oc-
casions, and the impact on computational performance is
significant. However, on a few datasets accuracy is 5-10
percentage points higher with the filter.

• kNN can be used effectively in the leaves of HT instead
of the default of naive Bayes. There is an additional
computational cost involved, but results showed this to
be highly competitive method – best equal overall in
predictive performance tied with state-of-the-art LB-HT

• HT is difficult to improve on using feature functions (at
least with the ReLUs that we experimented with). Peak

accuracy is reached in relatively short space of time.
• SGD takes longer than HT or LB-HT to reach competitive

accuracy, but the gap narrows significantly with more ex-
amples. On the largest datasets, the final average accuracy
is within a percentage point – and this average includes
initial poorer performance. Therefore, on particularly big
data streams (which are increasingly common), HTs
could find themselves increasingly challenged to stay
ahead of these methods.

• HT-SGD-F is comparable to the state of the art LB-HT
on several datasets, but demonstrates more favourable
running times.

• Unlike many deep learning techniques, these random
functions do not require sensitive calibration.

• Unsurprisingly, kNN-based methods perform best on the



TABLE II: Final Accuracy and Running Times. The dataset-wise ranking is given in (parentheses) and the average of these
ranks is given in the final row.

(a) Accuracy

Dataset HT SGD kNN LB-HT LB-SGD-F kNN-F SGD-F HT-kNN HT-SGD-F
RBF1 75.0 (5) 54.5 (9) 92.0 (2) 88.7 (4) 72.0 (8) 90.4 (3) 72.0 (7) 92.6 (1) 73.7 (6)
RBFD 65.7 (5) 51.3 (9) 88.6 (1) 79.5 (4) 59.8 (8) 86.3 (2) 59.9 (7) 84.9 (3) 59.9 (6)
HYP1 87.7 (1) 50.3 (9) 82.9 (4) 85.7 (2) 67.2 (7) 77.0 (5) 67.2 (7) 83.3 (3) 67.9 (6)
LED1 73.1 (1) 10.3 (9) 62.8 (3) 72.0 (2) 15.6 (6) 49.0 (5) 15.5 (7) 62.8 (3) 15.5 (7)
POKR 76.1 (6) 68.9 (9) 69.3 (8) 87.6 (1) 82.3 (2) 81.5 (4) 81.9 (3) 74.8 (7) 80.1 (5)
LOC1 85.5 (8) 80.4 (9) 91.0 (2) 90.5 (6) 90.7 (4) 88.8 (7) 90.7 (3) 91.3 (1) 90.7 (5)
LOC2 56.3 (5) 51.5 (9) 75.7 (2) 52.6 (8) 56.8 (4) 74.5 (3) 55.9 (7) 75.9 (1) 56.1 (6)
ELEC 79.2 (4) 57.6 (9) 78.4 (5) 89.8 (1) 74.8 (7) 74.2 (8) 74.8 (6) 82.5 (2) 81.8 (3)
COVT 80.3 (5) 60.7 (9) 92.2 (1) 91.7 (2) 78.7 (6) 91.6 (3) 78.7 (7) 91.2 (4) 78.3 (8)
SUSY 78.2 (3) 76.5 (7) 67.5 (9) 78.7 (1) 77.7 (4) 71.2 (8) 77.7 (5) 77.2 (6) 78.4 (2)
avg rank 4.30 8.80 3.70 3.10 5.60 4.80 5.90 3.10 5.40

(b) Running Time (s)

Dataset HT SGD kNN LB-HT LB-SGD-F kNN-F SGD-F HT-kNN HT-SGD-F
RBF1 0 (3) 0 (1) 3 (6) 3 (5) 4 (8) 14 (9) 0 (2) 4 (7) 1 (4)
RBFD 1 (3) 0 (1) 3 (6) 2 (5) 4 (8) 15 (9) 0 (2) 4 (7) 1 (4)
HYP1 0 (2) 0 (1) 3 (6) 2 (5) 4 (7) 13 (9) 0 (3) 4 (8) 1 (4)
LED1 0 (2) 0 (1) 7 (6) 2 (5) 17 (8) 40 (9) 1 (3) 8 (7) 1 (4)
POKR 9 (2) 3 (1) 455 (8) 91 (5) 279 (6) 1539 (9) 21 (3) 422 (7) 26 (4)
LOC1 1 (2) 0 (1) 8 (7) 2 (5) 21 (8) 48 (9) 1 (3) 8 (6) 2 (4)
LOC2 9 (2) 4 (1) 1276 (7) 93 (3) 1917 (8) 2270 (9) 367 (5) 1230 (6) 350 (4)
ELEC 1 (3) 0 (1) 14 (7) 10 (6) 9 (5) 49 (9) 1 (2) 19 (8) 2 (4)
COVT 19 (2) 11 (1) 605 (6) 220 (3) 4119 (9) 3998 (8) 233 (4) 727 (7) 250 (5)
SUSY 45 (2) 25 (1) 1464 (8) 530 (5) 1040 (6) 4714 (9) 118 (3) 1428 (7) 159 (4)
avg rank 2.30 1.00 6.70 4.70 7.30 8.90 3.00 7.00 4.10

dataset RBFD which has a drifting concept, since they
automatically phase out older concepts. We did not look
into detail about dealing with concept drift in this paper,
but this can be dealt with by ‘meta methods’, e.g., [20].

• Employing random feature functions as a ‘filter’ in the
MOA framework is a convenient and flexible way to
apply it in a range of different data-stream methods.

VI. SUMMARY, CONCLUSIONS, AND FUTURE WORK

Hoeffding trees and in particular their ensemble derivatives
(such as leveraging bagging) can still be regarded as a state-
of-the-art classifier. However, we experimented with some
promising techniques, namely using k-nearest neighbour and
stochastic gradient descent methods in the leaves. Performance
in an empirical evaluation was encouraging. Furthermore,
looked at the use of random feature functions to automatically
and instantly project the input into a new space. We found
that this could turn a simple gradient descent learner into a
competitive method, and also provided particular benefits for
kNN.

We used an ad-hoc choice of activation function (rectified
linear units) and random weights. In the future we intent to
look at different activation functions, and adding and pruning
units incrementally in the stream over time to respond to make
more efficient use of memory and adapt to drifting concepts.
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