
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Multi-Dimensional Classification with Super-Classes
Jesse Read, Concha Bielza, Member, IEEE, Pedro Larrañaga, Member, IEEE,

Abstract—The multi-dimensional classification problem is a
generalisation of the recently-popularised task of multi-label
classification, where each data instance is associated with multiple
class variables. There has been relatively little research carried
out specific to multi-dimensional classification and, although
one of the core goals is similar (modelling dependencies among
classes), there are important differences; namely a higher number
of possible classifications. In this paper we present method for
multi-dimensional classification, drawing from the most relevant
multi-label research, and combining it with important novel
developments. Using a fast method to model the conditional de-
pendence between class variables, we form super-class partitions
and use them to build multi-dimensional learners, learning each
super-class as an ordinary class, and thus explicitly modelling
class dependencies. Additionally, we present a mechanism to
deal with the many class values inherent to super-classes, and
thus make learning efficient. To investigate the effectiveness
of this approach we carry out an empirical evaluation on a
range of multi-dimensional datasets, under different evaluation
metrics, and in comparison with high-performing existing multi-
dimensional approaches from the literature. Analysis of results
shows that our approach offers important performance gains
over competing methods, while also exhibiting tractable running
time.

Index Terms—Multi-dimensional classification, problem trans-
formation

I. INTRODUCTION

The goal of multi-dimensional classification is to assign
each data instance to multiple classes. This contrasts with
the traditional task of classification which involves assigning
each instance to a single class. The recently popularised task
of multi-label classification (see [16], [22] for overviews)
can be viewed as a particular case of the multi-dimensional
problem that only involves binary classes, considered as labels
that can be turned on (1) or off (0) for any data instance.
Multi-label classification can be applied to a variety of real-
world problems, but there are many others only suitable for
multi-dimensional classification. For example, an image can
be multi-labelled with a set of concepts (beach, forest, etc.),
but other non-binary information such as the month, season,
number of objects present, or the type of subject, are best
represented in a context which allows for multiple classes of
multiple values; i.e., multi-dimensional classification.

As in multi-label classification, a fundamental goal of multi-
dimensional learning is modelling the relationships (depen-
dencies) between classes and dealing with the computational
complexity that this entails. If classes are completely unre-
lated, it should suffice to create a separate (single-dimensional)

Jesse Read is with the Universidad Carlos III de Madrid, Leganés 28911,
Madrid, Spain

Concha Bielza and Pedro Larrañaga are with the Universidad Politécnica
de Madrid, Boadilla del Monte, 28660, Madrid, Spain

independent model for each class. However, this is unlikely to
occur.

Although all multi-label problems can be considered as
multi-dimensional problems, the reverse is not true, and there
are some crucial differences meaning that much multi-label
research is not directly applicable.

Quantitatively speaking, for d class variables of K possible
values each1, there are Kd possible class assignments in
the multi-dimensional setting, compared to 2d possible label
assignments in a multi-label problem. There is often also a
qualitative difference in the class distribution. Typically in
multi-label classification, each class label is used to indicate
“relevant” / “not relevant”. Of many possible labels, any
particular label will be not relevant most of the time. In other
words, multi-labelling is sparse and imbalanced. On the other
hand, consider a binary class in a multi-dimensional problem
indicating “male” / “female”; clearly (specific prior-knowledge
of the problem aside), we expect an even balance of both
classes. Note that while of course this class label is valid for
multi-label data, the type of distribution it entails is less typical
of one, being more like a ‘category’ than a ‘label’ [16].

In this study, we investigate some existing techniques from
the multi-label literature and combine them with novel devel-
opments suitable for the multi-dimensional domain. The core
contributions of this work are a novel method for combining
classes into super-classes based on conditional dependencies
between classes, and a mechanism to make the resulting
problem tractable for multi-dimensional learning settings by
reducing the number of distinct super-class values. Further-
more, our approach reveals conditional dependencies among
classes and their relative strength (which may be of interest in
data analysis), is equally applicable to multi-label data and,
because it can take any base classifier, it is very flexible
and can be adapted to a wider range of problems than other
methods in the literature.

The rest of the paper is organised as follows. First, we
review multi-dimensional classification and classifiers (Sec-
tion II). We then introduce our super-class classifier (Sec-
tion III), a filtering mechanism to make this tractable (Sec-
tion IV), and combine these into an ensemble approach
(Section V). We then carry out an experimental evaluation and
discuss the relative performance of our classifiers (Section VI),
and finally, we draw conclusions and discuss future work
(Section VII).

II. MULTI-DIMENSIONAL CLASSIFICATION

In multi-dimensional classification, we have a number of
training examples from which we wish to build a classifier

1This is a simplification. As we explain shortly, each class variable can
take a different number of values

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

binary K>2 //

d>1

��

multi-class

d>1

��
multi-label

K>2
// multi-dim.

Fig. 1: The relationship between different classification
paradigms, where d is the number of class variables and K is
the number of values each of these variables may take.

(i.e., some function) that associates multiple class values with
each data instance.

The data instance is represented by a vector of m values
x = (x1, . . . , xm), each drawn from some input domain X1×
· · · × Xm.

The classes associated with each data instance are repre-
sented as a vector of d values y = (y1, . . . , yd) from the
domain Y1×· · ·×Yd where each Yj = {1, . . . ,Kj} is the set
of possible values for the jth class variable. In the traditional
task of (single-dimensional) multi-class classification, there
is only one such variable associated with a data instance,
i.e., (x, y) where y ∈ Y . In multi-label classification, each
|Yj | = 2 (there are only two classes) for all j = 1, . . . , d (i.e.,
binary classification where a label is either relevant or not). In
the multi-dimensional case, each |Yj | = Kj for any positive
integer Kj .

It is important to reiterate that we refer to a class variable as
a target or output variable; a kind of multi-dimensional label
that can take a number of class values (a label, as we refer to
it, is basically a binary class variable).

Figure 1 displays the relationship between the different
classification paradigms in terms of d class variables of K
possible values each. Table I exhibits a toy multi-dimensional
problem where d = 3.

In multi-dimensional learning we assume a set of training
data of N labelled examples D = {(x(i),y(i))}Ni=1, where
y(i) is the class vector assignment of the ith example and y(i)j
is the value of the jth class assigned to the ith example.

We seek to build a classifier h that assigns each instance x
a vector y of class values:

h : X1 × · · · × Xm → Y1 × · · · × Yd
x 7→ y

where h is usually composed of a number of single-
dimensional classifiers h1, h2, . . . (hence the bold notation).
Thus, classifier h outputs prediction vector ŷ for any test
instance x̃:

(ŷ1, . . . , ŷd) = ŷ = h(x̃).

A. Multi-Dimensional Classifiers

A straightforward method for multi-dimensional classifica-
tion is the independent classifiers method (IC); where one
single-dimensional multi-class classifier is used for each class

TABLE I: A multi-dimensional problem of N examples and
d = 3 class variables. Suppose that Y1 = {M,F}, Y2 =
{student,doctor,pilot}, and Y3 = {low,med,high}
such that y = (2, 1, 3) is a female student on a high income.
Each instance is described in this case by five variables
X1, . . . , X5. The goal is to learn to assign class values to
test instances x̃.

s
e
x

p
r
o
f
.

i
n
c
o
m
e

X1 X2 X3 X4 X5 Y1 Y2 Y3

(1) 1 22 0.8 1.8 0 1 1 1
(2) 0 20 0.7 3.5 1 2 1 1
(3) 0 39 0.1 1.2 0 1 2 3
(4) 1 43 0.5 3.2 1 2 3 3

...
...

...
...

...
...

...
...

...
(N) 1 42 0.6 1.3 1 1 2 2
x̃ 0 35 0.8 3.3 1 ? ? ?

variable. Hence, IC trains d classifiers h := (h1, . . . , hd),
where each

hj : X1 × · · · × Xm → Yj

is a standard classifier that learns to associate one of the values
yj ∈ Yj to each data instance. The main problem with IC is
that it does not model class dependencies, and its accuracy
suffers as a result [16], [19], [23], [25].

To overcome the limitation of IC, [19] put forth the idea
(in a multi-label context) of classifier chains (CC). As in IC,
d classifiers are used, but linked in a chain such that each
classifier learns the association of that label given the instance
and the previous label associations in the chain, such that:

hj : X1 × · · · × Xm × Y1 × · · · × Yj−1 → Yj

i.e., ŷj = hj(x̃, ŷ1, . . . , ŷj−1) for any test instance x̃ (classi-
fiers are evaluated in order h1, . . . , hd).

This method has demonstrated high performance in multi-
label domains and is directly applicable to multi-dimensional
classification.

A few Bayesian classifier-chain methods have appeared
recently in the literature. A Bayes-optimal classifier chain was
presented by [6]; however this method is intractable for many
real-world problems because it explores all 2d paths of the
chain (Kd paths if it were used in a multi-dimensional setting).
In [25] a Bayesian network approach is followed according to
the dependency relations between the target variables. This
network is learned as a tree structure d times (where the root
node of the jth tree is the jth class variable). Like other chain-
based methods, the predictive performance of this tree depends
on the order of the nodes.

An alternative offered in the multi-label literature to chain-
based learning is the so-called label powerset method; which
we shall refer to as the class powerset method (CP) since that
is more fitting for the multi-dimensional context. This method
considers all possible label combinations (i.e., the powerset)
as the set of values of a single class. In practice, it predicts
any combination of the training set as an approximation of the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

full space:

h : X1 × · · · × Xm →DISTINCT{y(1), . . . ,y(N)}
≈ Y1 × · · · × Yd

In other words, the output space is the Cartesian product of
the class spaces, approximated in practice by the distinct class-
combinations in the training set.

Because this method models label dependencies, it often
outperforms IC, but it is usually far too computationally
complex for practical application [23], [19] (even more so
in the multi-dimensional setting where it models up to Kd

class combinations). Additionally, CP easily suffers from class
imbalance and overfitting (by not being able to predict class
combinations it has not seen in the training data). Several
multi-label approaches have been introduced to address these
issues, particularly that of running time, such as RAkEL
[23] which creates an ensemble of random label subsets,
and EPS [17] which eliminates some of the less-frequently
occurring label combinations prior to training. RAKEL could
be adapted to multi-dimensional classification (with changes
to its label-voting ensemble process) but can no longer
compete with more modern methods (as shown in a recent
empirical evaluation by [15]); its label subsets are arbitrary,
without leveraging label-dependency information. EPS’s label-
based (binary-only) ‘subset’ method is unsuitable for multi-
dimensional classification since it is based on finding subsets
y′ ⊆ y ⇔ y′ ∧ y = y′; a concept that does not translate
outside of the binary context.

Compared to the volume and variety of multi-label clas-
sification, there is relatively little work specific to multi-
dimensional classification. We have already mentioned the
relatively recent Bayesian-network approach of [25]. Another
Bayesian approach to multi-dimensional classification is [2],
extended in [3] using Markov blankets; dependencies are mod-
elled among all input and class variables. In [20], ‘predictive
clustering’ decision trees are used. These trees are built with
a standard top-down induction of decision trees, but use a
difference variance function, so that the tree can make multi-
dimensional classifications at the leaves. A newer ensemble
version of this approach is presented in [14] which has proved
highly competitive in multi-label classification, as reported
by [15]. In [24], decision rules are adapted to make multi-
dimensional predictions.

These methods are of the so-called algorithm adaptation
type (adapting probabilistic classifiers, decision trees and deci-
sion rules, respectively); which often excel in certain domains
but are less flexible than problem transformation such as IC,
CC and CP, which can take any base classifier, and thus easily
be adapted to the problem at hand. For example, Support
Vector Machines have been shown to perform very well on
many multi-label problems [19].

In the following sections we present the components of
a multi-dimensional problem transformation method that we
propose, called a Super-class Classifier. Specifically:

1) Section III: creating super-classes; Section III-A: based
on conditional dependency information;

2) Section IV: a filter mechanism to make learning super-
classes more efficient and deal the issue of sparsity; and

3) Section V: a multi-dimensional ensemble process for
this classifier.

This method explicitly models class dependencies without
incurring intractable complexity and, unlike many existing
multi-label methods, it models only the strongest conditional
dependencies. As we show in later sections, it proves very
competitive.

III. A SUPER-CLASS CLASSIFIER FOR
MULTI-DIMENSIONAL CLASSIFICATION

It is already clear that independent classifiers (IC) do
not leverage class-dependency information, and therefore this
approach can yield poor accuracy. In essence, IC assumes
p(y|x) =

∏d
j=1 p(yj |x), which is clearly violated in the

presence of class dependencies.
In light of this, authors in the multi-label literature have

turned to approaches which explicitly model label dependen-
cies, usually approximations of CP, e.g., [17], [19], [23]. How-
ever, these methods superficially tackle CP’s disadvantages: its
time complexity and tendency to overfit the data.

Relatively little of the literature has challenged the as-
sumptions that class dependencies are 1) incomplete and 2)
unequal (although [12], for example, addresses the issue of
‘local’ rather than global correlations). These two assumptions
are almost certainly valid for most real-world scenarios. Not
all classes are always dependent on all other classes (as
assumed by CP), and not with the same strength. This has
important implications in building a classifier. Moreover, we
must take into account that the training data is drawn from
an unknown distribution. Therefore, dependencies in the data
may be inaccurate, (especially in smaller training sets) and
therefore it may even be at best unproductive and at worst
positively harmful to include them in the model.

We can demonstrate this issue with some toy examples. Sup-
pose we have a dataset of examples {(xi,yi)}Ni=1; instances
associated with d = 3 target variables Y1, Y2, Y3, each of
K = 3 classes, i.e., |Y1| = |Y1| = |Y3| = 3. IC models

h1 : X1, . . . ,Xm → {1, 2, 3}
h2 : X1, . . . ,Xm → {1, 2, 3}
h3 : X1, . . . ,Xm → {1, 2, 3}

CP, on the other hand, models

h : X1, . . . ,Xm → DISTINCT{y(1), . . . ,y(N)}

Which is the better model? In an extreme case where
|DISTINCT{y(1), . . . ,y(N)}| = 3, CP is in most cases the
better option: using N examples to learn 3 classes is likely
more easier than using the same number of examples to learn
3×3 = 9 classes (as does IC). However, at the other extreme
where |DISTINCT{y(1), . . . ,y(N)}| = Kd = 27, CP must
learn 27 classes from N examples. IC in this case (which
still only learns 9 classes in total) is far more likely to be the
best model, especially for small N .

Rather than simply deciding between CP and IC for a
particularly problem, we investigate the issue further. The
distribution of our data could be such that (in our toy example)
the dependency between class variables Y1 and Y2 is very

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

high (let’s say p(Y1 = 1, Y2 = 1) = 0.5 and p(Y1 =
3, Y2 = 3) = 0.5), whereas Y3 is independent of Y1, Y2
(p(Y3|Y1, Y2) ≈ p(Y3)) with uniformly distributed values. In
this case the ideal model will be:

h1,2 : X1, . . . ,Xm → DISTINCT{y(1)
1,2, . . . ,y

(N)
1,2 }

= {(1, 1), (3, 3)} ≈ Y1×,Y2
h3 : X1, . . . ,Xm → {1, 2, 3} = Y3

where y1,2 ≡ (y1, y2). This model uses N examples to learn
2 bidimensional class values and 3 single-dimensional class
values. This is a super-class classifier. We can define generally:

hθ := (hS1
, . . . ,hS|θ|)

where θ is a partition of classes

θ = {S1, . . . , S|θ|}

that takes these into account. In the above example the
partition of classes is

θ = {(1, 2), (3)}.

The space of any super-class S ∈ θ is:

YS = DISTINCT{y(1)
S , . . . ,y

(N)
S }

≈ YS1
× . . .× YS|S|

Thus Sj can be considered an ordinary multi-dimensional
class, and can be learned with any off-the-shelf multi-class
classifier. Another way of seeing it, is that the set of super-
classes can be learned by any off-the-shelf multi-dimensional
classifier (e.g., IC) with |θ| classes. A super-class classifier
with a good partition should perform better than both IC and
CP.

Figure 2 illustrates our case for super-classes with respect to
real-world data. We see that the best performance is obtained
for these datasets neither for IC nor CP, but rather for some
partition of super-classes. Specifically, the best performance
on the Music data is obtained with |θ| = 2 super-classes. The
best performance for Parkinson’s is obtained for |θ| = 4.

However, it is also clear that just trying to determine a good
number of super-classes for the partition is not enough. Rather,
it is fundamental to choose a good partition if we hope to
achieve better accuracy than just using either IC or CP. If we
choose a partition randomly, it could perform worse than both
these methods.

Hence, the first objective for creating a super-class classifier
is to find a good partition. The main obstacle is the sheer size
of the space of possible partitions, which for d classes is the
dth Bell number Bd, where B1 = 1 and

Bd =

d−1∑
k=0

(
d− 1

k

)
Bk (1)

for d classes. That is, 203 possible partitions for the relatively
modest dimension of d = 6 and already 115, 975 for d = 10.

In the following, we describe a way to score partitions in
multi-dimensional data by measuring conditional class depen-
dencies, and then how we use this score to search through the
space of possible partitions.

IC 5 4 3 2 CP
0.77

0.775

0.78

0.785

0.79

0.795

0.8

0.805

Best Result

Worst Result

(a) Music Data (d = 6), CLASS ACCURACY

IC 4 3 2 CP

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

Best Result

Worst Result

(b) Parkinson’s Data (d = 5), EXAMPLE ACCURACY

Fig. 2: The best and worst predictive performances for the
Music (top) and Parkinson’s (bottom) data for |θ| = d, . . . , 1
classes (ordered by complexity), where |θ| = d is equivalent
to IC, and |θ| = 1 (super) class is equivalent to CP. The
values for all possible combinations were obtained for a single
train/test split using SVMs as a base classifier, with the best
and worst displayed on the graph. Note that there is, of course,
only a single combination possible with |θ| = 1 and |θ| =
d. See Section VI-A for details on CLASS ACCURACY and
EXAMPLE ACCURACY.

A. Modelling class dependencies

There are two types of class dependence. We can consider
unconditional dependence which looks at the probability of
one class given another irrespective of the associated data
instances, i.e., if:

p(Yj , Yk) 6= p(Yj)p(Yk)

then there is unconditional dependence between the jth and
kth classes. There is conditional dependence between these
classes given x if:

p(Yj , Yk|x) 6= p(Yj |x)p(Yk|x)

which can be measured by learning from the data instances.
A good review of dependence (in the multi-label context) is
given in [7].

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

In the multi-label literature, there already exist approaches
for creating partitions θ by measuring unconditional depen-
dence. [21] computes a chi-squared (χ2) score from the
relative frequencies of pairs of classes and proposes a χ2-
dependency ensemble where a large number of labelset parti-
tions are generated randomly, and a score is computed for each
partition by summing the χ2 score for all pairs in the same
set, and subtracting from it the score of all pairs in different
sets:

π(θ) :=
(∑
j,k|∃S:{j,k}⊂S

χ2
j,k

)
−
(∑
q,r|6∃S:{q,r}⊂S

χ2
q,r

)
(2)

The indices j, k represent all pairs found together in some
set S ∈ θ, and q, r are all pairs of labels in separate sets
(there are d(d−1)

2 pairs in total). The top M partitions (a user
parameter) are then used to build an ensemble. This method
can evaluate labelset partitions very rapidly because it does
not rely on building and evaluating internal models. However,
this means the method only measures unconditional label
dependence. While conditional and unconditional dependence
may be related, there is no guarantee that they are [7], and
ultimately it is conditional dependence which is more relevant
to classification accuracy, since that is where the data instance
dimension is considered.

The authors of [21] also present a method for combining
labels based on conditional dependence; beginning with IC
and then iteratively joining the most dependent pair of labels
(again using Eq. (2)) but this time builds and evaluates the
model and accepts it iff its predictive performance improves
on that of the previously accepted model. Because this method
takes into account the instance space (when it builds the clas-
sifier) it gives an indirect measure of conditional dependence.
The main problem with this approach is that it is too slow.
In the worst case, this method builds Bd possible models (see
Eq. (1)) before arriving at a CP model (a single partition),
although, since it searches in a greedy fashion, it is unlikely
to reach the optimal partition at all. Furthermore, there is no
definitive evidence that even a model with a good partition
could compete with an ensemble of several CP-based models
(such as [23], [17]) in the literature.

A related multi-label approach is offered by [11], where
linear correlation coefficients (rather than χ2) are measured
between each pair of classes, and classes are split up into two
groups: independent classes, which are trained using IC, and
dependent classes which are trained all-together by a single
CC classifier. This method assumes that each label is either
independent, or correlated with all other non-independent
labels, and does not consider conditional dependence.

All these methods are multi-label approaches that do not
deal with multi-dimensional learning and the problems asso-
ciated with it, namely a potentially much higher number of
class-value combinations which makes it more difficult to get
a good estimate of any measure of correlation from finite data.

For constructing a Bayesian network, [26] provides an
efficient way of measuring pairwise conditional dependence
in multi-label data, based on the fact that maximising the
likelihood of the data is equivalent to minimising the mutual
information between the data instances and the error. We

modify this measurement strategy for multi-dimensional data;
formulated as follows.

Given training examples {(x(i),y(i))}Ni=1 and IC classifier
h; we can obtain the vector of errors for the ith example as:

ε(i) = I(y(i),h(x(i))) (3)

(ε
(i)
1 , . . . , ε

(i)
d) = (I(y

(i)
1 , h1(x(i))), . . . , I(y

(i)
d , hd(x

(i))))

where ε(i) ∈ {0, 1}d (I(a, b) is an indicator function returning
1 if a = b and 0 if a 6= b). We can then say that the jth and
kth classes are conditionally dependent iff the errors εj and
εk are not independent on each other.

The original Bayesian-network inspired multi-label method
as presented by [26] measures three types of errors for
each label: false positive (1 predicted instead of 0), false
negative (0 predicted instead of 1), or the correct label
predicted (no error). This means an error space of 3 × 3
for each pair of labels j, k. In a multi-dimensional setting,
this would correspond an error space of Kj ×Kk (including
the non-error, i.e., the correct classification). This means
many degrees of freedom and, clearly, without very large
amounts of data, it will be difficult to get good estimates of
the dependency between classes. To make the method more
appropriate for multi-dimensional data we instead consider
the three types of errors e = 1, 2, 3 for each pair of class
values j from Yj , and k from Yk, and calculate the measured
and expected frequencies for each e as

e measured frq. fe(j, k) expected frq. Ee(j, k)

0 1
N

∑N
i=1 ε

(i)
j ε

(i)
k

1
N

∑N
i=1 ε

(i)
j · 1

N

∑N
i=1 ε

(i)
k

1 1
N

∑N
i=1 ε

(i)
j ⊕ ε

(i)
k 1− (E0(j, k) + E2(j, k))

2 1
N

∑N
i=1 ¬ε

(i)
j ¬ε

(i)
k

1
N

∑N
i=1 ¬ε

(i)
j · 1

N

∑N
i=1 ¬ε

(i)
k

where ⊕ is the logical exclusive OR operation, and ¬ is the
logical negation.

We can then calculate the conditional-dependence chi-
squared statistic for these three types of errors:

χ̄2
j,k =

∑
e∈{0,1,2}

(fe(j, k)− Ee(j, k))2

Ee(j, k)
(4)

where we add the bar to the notation to distinguish the fact
that this is a conditional dependence score (unlike Eq. (2) from
[21]).

Finally, similarly to [21], we offset each statistic with the
critical value:

χ̄2
j,k ← χ̄2

j,k − χ̄2
C (5)

where we use χ̄2
C as the critical value for two degrees of

freedom with a p-value of 0.10. If χ̄2
j,k > 0 then the class

values j and k can be considered conditionally dependent.
Algorithm 1 describes the process of creating a matrix of

pairwise conditionally-dependent significance values χ̄2 for all
class pairs.

Given the χ̄2 statistic for all of class pairs, we can calculate
a score for any class-set partition θ = {S1, . . . , S|θ|} like in
Eq. (2).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

Algorithm 1 CONDDEP(h, D̃) Obtaining a conditional depen-
dency matrix
Input:
• trained IC classifier h = (h1, . . . , hd)

• test instances D̃ = {(x̃(i),y(i))}Ñi=1 (with true classifica-
tions); Ñ = |D̃|

Algorithm:
• For i = 1, . . . , Ñ :

1) calculate each error ε(i) = I(y(i),h(x̃(i))) as in
Eq. (3)

• For all pairs {(j, k)}; j < k, j ∈ Yj , k ∈ Yk:
1) calculate χ̄2

j,k, as in Eq. (4)
2) offset χ̄2

j,k ← χ̄2
j,k − χ̄2

C as in Eq. (5)
Output:
• χ̄2 the matrix of all pairwise conditionally dependent

significance values

The score we have obtained here is based on the conditional
label dependence, as we have taken into account the input
space. This calculation is much faster than other methods that
measure conditional class dependencies such as building and
evaluating a model for each θ (as in [21]).

This calculation is fast enough to be able to try many
different partitions, but the potentially huge number of possible
partitions means that it will still be infeasible to search through
them iteratively in many cases. On the other hand, a random
search (as suggested by [21] for unconditional dependencies)
does not take advantage of the relationship between partitions:
if θ = {(0, 3), (2), (1)} is good, then it makes sense to next
try, for example, θ′ = {(0, 3, 2), (1)} or θ′ = {(0, 3), (2, 1)}.

Therefore, we use a simulated annealing scheme [13];
starting with a random partition θ, and progressively mutating
it over a series of steps, and gradually reducing the probability
for “uphill” moves. To mutate a partition θ = {S1, . . . , S|θ|}
into θ′ (i.e., a Markov step within the partition space) with
p(θ′|θ), we select some j ∈ U{1, . . . , d} and some l ∈
U{1, . . . , |θ|}; if j ∈ Sl then we move it into a new set {j},
else we move j into the existing set Sl.

Simulated annealing is not guaranteed to find a global
optimum, but in our experience it will usually find a good
local optimum in this scenario. Furthermore, through empirical
exploration we found that usually there are many (although
quite different) good possible partitions, and that it is much
more effective to make use of several good partitions than to
invest in trying to find a single good one that may be slightly
better. This leads to the introduction of an ensemble scheme,
which we present in Section V.

The most expensive part of Algorithm 1 requires 3(d(d −
1)/2) operations over the error data (each of the 3 types
of error is assessed for all pairwise combinations. Due to
the computational simplicity of these operations, even for
relatively large values of d (100 or so), this will not present
an obstacle (and only requires storing (d(d − 1)/2) values)
compared with the relatively much higher complexity in
building a classifier.

As an optional second part to the algorithm, we can fine
tune the partition θ with internal validation; based on the idea
that an actual trained model will provide the most accurate
gauge of final performance. We already explained that internal
building and validation is too slow to explore the partition
space in most cases, but we can assume that our simulated
annealing scheme brings us close to a maximum (or at least
a good local maximum), and uses a much smaller number of
iterations to ‘fine tune’ the partition. In this phase we mutate
the set in the same way as before, but this time we use the
internal train/test split to build and evaluate the model, and we
always accept it if it is better than the previous.

Algorithm 2 details the full algorithm for creating a super-
class classifier (SC) from a given training set. Any multi-
dimensional classifier can be used to learn the super-classes as
if they were ordinary classes. IC is an obvious option, but any
multi-dimensional method can be applied, such as a classifier
chain (CC). T + T ′ is the total number of partitions we look
at. If T ′ > 0 (in the second step using internal validation),
then we denote this as SC′.

The super-class method should perform better than either
IC or CP. However, because of our method’s close relation
to CP (training several classes as a single class) it may suffer
from some of the same problems, depending on the size of
the super-classes, such as overfitting, and running-time issues.
In the following section we introduce a filter for any multi-
dimensional dataset (or class-subset thereof) which improves
both the predictive and time performance of CP-like methods,
and makes super-class classifiers more applicable to many real-
world problems.

IV. A NEAREST-NEIGHBOUR REPLACEMENT FILTER FOR
MULTI-DIMENSIONAL TRAINING DATA

A major issue with super-classes, particularly in the multi-
dimensional domain, is the number of possible values they
can take. Combining two classes will create up to Kj ×Kk

possible values. This means that some of the disadvantages
pertaining to CP are still relevant: fewer examples per value
which leads to higher complexity, overfitting, and difficulty in
learning a concept.

To make training super-classes feasible, we use a nearest-
neighbour replacement filter (NNR) to reduce the number
of values associated with each class in the training data. A
related mechanism was introduced in [17] called “pruning and
subsampling”, but this is only suitable for multi-label data.
Here we develop a more advanced version which is suitable
for multi-dimensional data.

The NNR filter can be applied on any multi-dimensional
dataset D, or a column-wise class subset of this original
dataset, i.e., having classes S ⊆ {1, . . . , d}. However, for
simplicity and generality, we just refer to D in the following
explanation.

The idea of NNR is straightforward: identify all p-infrequent
class-values and replace them with their n-most-frequent near-
est neighbours.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

Algorithm 2 Super-class classifier (SC) construction; produc-
ing hθ parameterised by θ
Input:
• A training set D = {(x(i),y(i))}Ni=1

• A function p(θ′|θ) which mutates θ
• A function π(θ) which evaluates θ according to χ̄2, see

Eq. (2)
• A function q(hθ, D̃) which evaluates hθ on D̃ (required

only when T ′ > 0)
Algorithm:
• Create internal train Dtrain ⊂ D and test Dtest ⊂ D sets

(where D = Dtrain ∪ Dtest)
• Train a standard IC classifier h on Dtrain
• Create matrix χ̄2 = CONDDEP(h,Dtest)
• Randomly generate an initial partition θ
• for t = 1, . . . , T :

1) θ′ ∼ p(θ′|θ)
2) draw a uniform random number u ∼ U([0, 1])

3) if min
[
1, exp(|π(θ′)− π(θ)| 1t)

]
> u:

– θ ← θ′ // accept
• if T ′ > 0

1) Train hθ on Dtrain

• for t = 1, . . . , T ′:
1) θ′ ∼ p(θ|θt)
2) Train hθ′ on Dtrain
3) if q(hθ′ ,Dtest) > q(hθ,Dtest):

– hθ ← hθ′ // accept
• Train hθ on D

Output:
• Super-class classifier hθ

Definition The frequency of a class-value y in D is:
N∑
i=1

I(y,y(i)).

Definition A class value y is p-infrequent in D if:
N∑
i=1

I(y,y(i)) ≤ p

Algorithm 3 outlines the NNR filter. Basically, it replaces
any examples (x,y) that have an infrequent y, with examples
(x,y1), . . . , (x,yn) where each yi is frequent in the data and
has a Hamming distance from y by at most 1. Each of these
new examples is given a weight of 1

n (not shown in the pseudo-
code).

This means that noise is introduced at a cost of reducing the
number of class values. However, we expect classification to
improve, since we introduce only one bit of noise for each new
example created and, as we explain in the following section,
some noise is not necessarily a problem and can even be
beneficial. That is to say, the increased learning ability of the
classifier by having a higher ratio of data instances to class
values will counteract the small amount of noise while at the
same time, the complexity of the classifier is greatly reduced.

Figure 3 shows the effect of p and n in practice. With p,
the number of instances stays relatively constant, whereas the
number of class values drops rapidly (and with it – running
time). In this case, accuracy stays constant or increases until
around p = 7 and best results are obtained between p = 3
and p = 6. Any value n > 0 (for fixed p = 3) exceeds the
original accuracy, whereas the effect on running time is less
influential: It is negligibly increased until n ≥ 4 (thereupon
the maximum number of possible neighbours is reached). In
this example it is clear that NNR is beneficial, both in terms
of speed and accuracy.

It is possible to choose p to control the number of dis-
tinct class values (that have a frequency of 1). And thus
enforce a maximum complexity of this number instead of
O(min(N,Kd)). However, in practice, we have not found the
need for this, since even small values of p will greatly reduce
the number of classes and thus the running time of whichever
base classifier is used.

Algorithm 3 The NNR filter (NNR). Examples with p-
infrequent class combinations are replaced with their n-most-
frequent nearest neighbours in a dataset; where DIST is a
Hamming distance function: DIST(y′,y) =

∑d
j=1 I(y′j , yj).

Input:
• A dataset D
• p parameter defining the p-frequency
• n parameter defining the number of nearest neighbours

to use
Algorithm:

1) build φ(y) := a map which returns the frequency of y
in D

2) D′ ← {}
3) for (x,y) ∈ D:

• if φ(y) ≤ p (i.e., y is p-infrequent in D):
– V = (y′1, . . . ,y

′
o)

where ∀y′ : ∃(x′,y′) ∈ D, DIST(y,y′) ≤ 1 (is
in D and like y) and
where ∀1 ≤ q < r ≤ o : φ(y′q) > φ(yr) (sorted
by frequency)

– V ← V1:n take the top n elements
– ∀y ∈ V : D′ ← D′ ∪ (x,y′)

• else:
– D′ ← D′ ∪ (x,y)

Output:
• Dataset D′

Recall that in the super-class context, we have a partition
of the class space θ = {S1, . . . , S|θ|} where each S represents
a set of classes. Then we define the dataset containing only
these classes as DS = {(x(i),y

(i)
S)}Ni=1. This is the dataset

used to build hS . Before training each individual super-class
classifier we first pass the data through NNR prior to training;
such that for each S ∈ θ:

hs : X1, . . . ,Xm → DISTINCT{NNR({y(1)
S , . . . ,y

(N ′)
S }, p, n)}

≈ YS1
× . . .× YS|S| (6)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

number of examples

distinct classes

running time

example accuracy

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

number of examples

running time

example accuracy

Fig. 3: Top: NNR on the Parkinson’s dataset for varying
values of p (horizontal axis), for n = 2. At p = 0 NNR
is disabled; all other values (accuracy, running time, etc)
are plotted as proportional to those obtained at p = 0. In
this example we consider a single super-class of all 5 class
variables. Bottom: the same, but for varying values of n
(horizontal axis), for p = 3.

where NNR(D, p, n) is the set of all y from a dataset processed
by NNR (Algorithm 3). N ′ is the number of examples in the
output dataset D′, not necessarily the same as N . Given some
super-class classifier hθ = hS1

, . . . ,hS|θ| and data D, we train
each hS on data NNR(DS , p, n).

There are possible scenarios where NNR will appear to
have difficulty. Referring back to the toy dataset in Table I,
imagine that we have a super-class Y2,3 (modelling income
and profession together as a single variable). If there is
a single entry {student,high}, NNR with p = 3, n = 1
will replace it with a new example, such as {student,low}.
This has clearly introduced the wrong concept. However we
probably have lots of examples for {student,low} (we are
guaranteed to have at least p), and the wrong information will
just become noise. If we, for some reason, had many examples
of {student,high}, it would not have been pruned in the

first place!
If a rare kind of instance occurs in the test data, it is

still possible to make a correct classification by way of a
voting scheme. We introduce such a scheme in the following
section, based on the principles of the well-known bootstrap
aggregation (Bagging) procedure [4].

As a final remark on NNR, note that it is more suited
to super-class partitions than not having partitions: the more
dependent class variables are on each other the more likely the
super-class values are to pertain to a few core combinations,
and the super-class partitions are based precisely upon class
dependence.

V. AN ENSEMBLE OF SUPER-CLASS CLASSIFIERS

Ensembles are known for increasing the power of base
classifiers, and have been used prolifically in the multi-label
literature (e.g., [25], [23], [18]). They are also ideal for
reducing overfitting when the base classifier is particularly
affected by relatively small variations in the training data.
This is the case in our super-class methods, with respect
to class dependencies (χ̄2), as well as our NNR filter with
respect to the frequency of certain class-value combinations.
In particular, we cannot expect a single super-class partition to
represent all the class dependencies in a dataset; however an
ensemble of these, each with a slightly different partition, can
arrive much closer to this goal. Hence, we look at ensembles
of super-classes classifiers (ESC).

A Bagging ensemble [4] involves creating M new training
sets; each training set is formed by sampling with replacement
from the original training data N ′ times (typically N ′ = N ,
but not necessarily so). That is to say, some examples will
probably be duplicated in the new dataset of N ′ examples.
NNR, as described in the previous section, already samples
with replacement (whenever class combinations are infre-
quent) and thus we already benefit from the advantages asso-
ciated with Bagging. For this reason, we only take a random
cut of the original training set for each ensemble member
without replacement, knowing that NNR will duplicate some
examples. We take specifically 67%; but note that this number
is not directly in relation with the 63.2% expected number of
duplicate examples under Bagging where N = N ′, rather it
is our experience that this number (or thereabouts) tends to
yield approximately N ≈ N ′ in practice, as in Figure 3.

It also common in ensembles to introduce variation into the
individual models. In our case, we use a different random seed
(and thus start with a different initial partition) for each super-
class; and in NNR we use model parameter p ∼ U{1, . . . , 5}
(a random value between 1 and 5 inclusive for each model).

Each model of a multi-dimensional ensemble classifier
returns a probability mass distribution for each jth class, for
any test instance x̃. For the mth model and the jth class, we
get a vector, which in the probabilistic case is

w
(m)
j =

(
p(Yj = 1|x̃), . . . , p(Yj = Kj |x̃)

)
such that w(m)

j,v ≡ p(Yj = v|x̃) (or approximation thereof, if
the base classifier is not probabilistic), i.e., the probability that
the jth class takes value v ∈ {1, . . . ,Kj} according to the mth

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

model. As the final classification for the jth class for a test
instance, we simply assign the value which m = 1, . . . ,M
models, to predict

ŷj = argmax
v=1,...,Kj

M∑
m=1

w
(m)
j,v

This voting process is particularly helpful for offsetting
effects of any noise introduced by NNR in our super-class
scheme. Although NNR may purge a low-frequency example
from the training data, the ensemble can recover this com-
bination for a test instance by votes for any of its parts.
Continuing the example at the end of Section IV, {student,
high} could be recovered by strong voting for combinations
involving either of these class values.

That said, this prediction-phase is a generic procedure
for any multi-dimensional ensemble method. It is similar to
probabilistic method that [1] found to work well for Bagging
ensembles in a single-dimensional context.

VI. EXPERIMENTS

We conduct an empirical evaluation on a range of real-
world datasets, comparing our methods with the baseline inde-
pendent classifiers (IC) as well as competitive methods from
the literature, under two contrasting measures of predictive
performance, and an analysis of running times.

We used the MEKA framework (http://meka.sourceforge.
net): an open-source Java framework based on the WEKA
framework for machine learning [10], adding support for
multi-label and multi-dimensional classification and evalua-
tion. The source code for all methods in this evaluation will
be made available within MEKA. We also used the CLUS
framework for one of the algorithms from the literature,
although we ported these results into MEKA’s evaluation.

In all experiments we randomise the order of instances in
the datasets and carry out 5-fold cross-validation.

A. Evaluation Metrics

We evaluate the predictive performance of methods using
two metrics; example accuracy, which considers a vector of
class values as a single classification (that can either be fully
correct or incorrect):

EXAMPLE ACCURACY =
1

N

N∑
i=1

I(ŷ(i),y(i))

and class accuracy, which is the average accuracy of each
class (scored separately):

CLASS ACCURACY =
1

d

d∑
j=1

1

N

N∑
i=1

I(ŷ
(i)
j , y

(i)
j)

where I(a, b) is the indicator function as used also earlier.
A relatively high result for EXAMPLE ACCURACY means

that class dependencies are being taken into account. On the
other hand, a relatively high result for CLASS ACCURACY
means that each dimension is being predicted well individu-
ally, but the combinations of all predicted classes may contain

TABLE II: A sample of multi-dimensional datasets and their
associated statistics: Number of examples N , number of
classes d, number of values per target K, and number of
attributes m. We have separated the multi-label datasets (where
K = 2) with a horizontal line.

N d K m

Solar Flare 323 3 5 10x
Bridges 107 5 2–6 7x
Thyroid 9172 7 2–5 7n, 20b, 1x
Parkinson’s 488 5 3 18n, 1b, 39x
Music 593 6 2 72n
Scene 2407 6 2 294n
Yeast 2417 14 2 103n
Enron 1702 53 2 1001b
TMC07 28596 22 2 500b

n, b, and x indicate numeric, binary, and nominal attributes, respectively.

conflicting results. Generally, we would expect IC to perform
relatively better under CLASS ACCURACY, since EXAMPLE
ACCURACY tends to reward CP-like methods. This is exactly
what we saw in Figure 2.

Many evaluation metrics commonly used in multi-label
evaluation (such as F-measure metrics) are not suitable for the
multi-dimensional domain where outputs are not necessarily
binary, nor can be thought of as being ‘retrieved’ or not.

We also consider running time (training testing time) in
seconds. All experiments are run on Intel Xeon 3.16GHz CPUs
allowing up to 2GB of RAM in each case.

B. Datasets

Table II displays the datasets we use. Solar Flare (cate-
gorising solar flares), Bridges (estimating bridge properties
from certain constraints) and Thyroid (estimating types of
thyroid problems given patient attributes) are from the UCI
collection [9]. Parkinson’s (determining the classes of disabil-
ities incurred by Parkinson’s patients) was used by [3]. Unfor-
tunately, there are not yet many publicly available standardised
multi-dimensional datasets, so we boost our collections with
some of the datasets most commonly used in the multi-
label literature: Music (labelling tracks with emotions), Scene
(labelling images with scene concepts), Yeast (genes are asso-
ciated with multiple biological functions), Enron (Labelled e-
mail messages from the Enron corpus), and TMC07 (aviation
reports diagnosed with multiple problems); used and described
in, for example, [23], [6], [17], [19].

The three target attributes of Solar Flare correspond to
types of solar flares seen in a 24 hour period. In Bridges,
bridge design properties are predicted based on specification
properties. Thyroid and Parkinson’s are medical datasets. In
Music, pieces of music are associated with various emotions.
Scene is an image annotation problem. Yeast is a biological
dataset where genes are associated with (potentially multiple)
biological functions.

C. Methods and Parameters

From the novel material in this paper we setup the following
methods:

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

1) ECP: an ensemble of 10 class-powerset classifiers, using
NNR for tractability

2) ESC: an ensemble of 10 super-class classifiers with
NNR, T = 1000, T ′ = 0

3) ESC′: an ensemble of 10 super-class classifiers with
NNR, T = 1000, T ′ = 10

all with p ∼ U{1, . . . , 5} and n = 2 for each instantiation of
NNR, with a cut of 67%.

We compare to [25]’s ensembles of Bayesian classifier
chains (EBCC); [14]’s EPCT: a Bagging ensemble of predictive
clustering decision trees; and to ECC (ensembles of classifier
chains) from [19]. Additionally, we compare to some well-
known methods from the multi-label literature (where appro-
priate, on the multi-label datasets): [23]’s RAkEL and [5]’s
Instance-Based Logistic-Regression method (IBLR).

A variant of EPCT and ECC (which we mentioned in Sec-
tion II-A) were recently rated among the highest performing in
the multi-label literature by the extensive empirical evaluation
of [15]. As it happens, both methods are directly applicable to
multi-dimensional data, and thus make an ideal comparison for
our experiments. EBCC is one of the few methods focussing
exclusively on multi-dimensional data.

Note that [14]’s PCT method performs best under a random
forest paradigm, at least in the comparison of [15]. We use a
standard bagging scheme so as to compare directly with the
other ensemble methods in comparison (which are all bagging
schemes). In any case, we found that the difference between
bagging and random forest is marginal compared to difference
between the different methods used in our comparison (see the
results and following discussion).

Additionally, by comparing to ECP, we will be able to see
if our super-class methods (ESC and ESC′) are justifiable;
and furthermore, ECP provides a good approximation of the
baseline class powerset method CP, which is otherwise not a
viable option due to its computational complexity.

We use both Support Vector Machines (SVMs) and Naive
Bayes as the base multi-class classifier2 on all problem-
transformation methods. Note that this naturally excludes
the algorithm-adaptation methods EPCT (decision trees) and
IBLR (instance-based logistic regression).

We use M = 10 models in each ensemble (as found to
work well in, for example, in [19]), except for EBCC where
the authors specifically recommend using d models (where
the j-th class node is the root in the j-th model). We use the
probabilistic voting scheme described in Section V.

D. Results

Table III and Table V display the mean results for predictive
performance with the rank for each method per dataset, and
their average rank over all datasets, for multi-dimensional and
multi-label datasets respectively. We conducted the Nemenyi
test [8] (with a significance level of p = 0.1) on these rankings,
and display the results as a � b, indicating that algorithm a is

2Using the implementations provided in the WEKA framework with default
parameters; binary SVMs are made multi-class capable with a pair-wise imple-
mentation – it is recommended to tune parameters for maximum performance

0 100 200 300 400 500 600 700 800 900 1000
−40

−30

−20

−10

0

10

20

30

40

50

60

Fig. 4: The score (see Eq. (2)) of the partition in selection at
each step t = 1, . . . , T of our simulated-annealing scheme, on
the Music data. Note that the partition space is explored more
liberally at first, before settling in to a maximum.

TABLE VI: The individual contribution of different aspects
of our approach compared to baseline IC: CP (no partitions),
SCT=0 (random partitions, NNR filter), SCT=1000 (partitions
created under the simulated annealing scheme of T = 1000
iterations), SCT

′=10
T=1000(additionally fine-tuned with T ′ = 10

iterations of internal validation), and finally in an ensemble:
ESC′ (also in Table III and Table V).

Music
EXAMPLE ACC. CLASS ACC. TIME (s)

IC 0.270 ± 0.061 0.809 ± 0.015 0.315 ± 0.128
CP 0.345 ± 0.072 0.803 ± 0.022 4.882 ± 0.608
SCT=0 0.287 ± 0.072 0.784 ± 0.019 0.560 ± 0.167
SCT=1000 0.346 ± 0.072 0.797 ± 0.023 0.515 ± 0.139
SCT

′=10
T=1000 0.351 ± 0.084 0.805 ± 0.024 3.448 ± 0.565

ESC′ 0.356 ± 0.032 0.816 ± 0.011 65.232 ± 5.768

Parkinson’s
EXAMPLE ACC. CLASS ACC. TIME (s)

IC 0.164 ± 0.023 0.677 ± 0.012 1.995 ± 0.269
CP 0.211 ± 0.025 0.699 ± 0.030 37.039 ± 6.380
SCT=0 0.143 ± 0.051 0.672 ± 0.016 9.491 ± 0.835
SCT=1000 0.207 ± 0.038 0.688 ± 0.027 8.998 ± 1.761
SCT

′=10
T=1000 0.209 ± 0.030 0.690 ± 0.024 34.351 ± 6.525

ESC′ 0.215 ± 0.031 0.718 ± 0.015 91.328 ± 6.125

found to have statistically better performance than algorithm
b. Table IV displays the average running times of all methods.

Figure 4 shows the progress of one of ESC’s model’s
simulated annealing search on a particular run on Music.
We remark that ESC′ updated the partition twice out of the
T ′ = 10 additional internal validation steps.

Table VI illustrates some of the individual contributions of
the different steps in our approach.

Table VII shows the partitions found by a SC and SC′ model
for five cross-validation folds of the data, on a selection of
datasets.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

TABLE III: Average results for multi-dimensional datasets over 5-fold cross-validation with rankings. Best values are marked
with a (?).

(a) EXAMPLE ACCURACY - SVMS

Dataset BR ECC EBCC EPCT ECP ESC ESC’

Solar 0.817 (2) 0.808 (6) 0.817 (2) 0.796 (7) 0.820 (?) 0.817 (2) 0.817 (2)
Bridges 0.186 (3) 0.159 (5) 0.168 (4) 0.120 (7) 0.131 (6) 0.187 (2) 0.206 (?)
Thyroid 0.781 (7) 0.785 (2) 0.782 (5) 0.944 (?) 0.782 (5) 0.784 (3) 0.784 (3)
Parkinson’s 0.164 (6) 0.172 (5) 0.154 (7) 0.201 (4) 0.224 (2) 0.234 (?) 0.215 (3)

avg. rank 4.50 4.50 4.50 4.75 3.50 2.00 2.25

(b) CLASS ACCURACY - SVMS

Dataset BR ECC EBCC EPCT ECP ESC ESC’

Solar 0.919 (4) 0.917 (6) 0.919 (4) 0.912 (7) 0.924 (?) 0.923 (2) 0.923 (2)
Bridges 0.705 (?) 0.688 (5) 0.689 (4) 0.678 (6) 0.648 (7) 0.705 (?) 0.703 (3)
Thyroid 0.966 (2) 0.966 (2) 0.966 (2) 0.990 (?) 0.966 (2) 0.966 (2) 0.966 (2)
Parkinson’s 0.677 (6) 0.696 (5) 0.670 (7) 0.702 (3) 0.702 (3) 0.718 (?) 0.715 (2)

avg. rank 3.25 4.50 4.25 4.25 3.25 1.50 2.25

(c) EXAMPLE ACCURACY - NAIVE BAYES

Dataset BR ECC EBCC EPCT ECP ESC ESC’

Solar 0.777 (6) 0.786 (5) 0.774 (7) 0.796 (?) 0.792 (2) 0.789 (3) 0.789 (3)
Bridges 0.197 (5) 0.216 (?) 0.216 (?) 0.120 (7) 0.149 (6) 0.216 (?) 0.216 (?)
Thyroid 0.587 (6) 0.625 (5) 0.581 (7) 0.944 (?) 0.821 (2) 0.818 (4) 0.819 (3)
Parkinson’s 0.195 (6) 0.199 (5) 0.193 (7) 0.201 (4) 0.209 (3) 0.211 (?) 0.211 (?)

avg. rank 5.75 4.00 5.50 3.25 3.25 2.25 2.00

(d) CLASS ACCURACY - NAIVE BAYES

Dataset BR ECC EBCC EPCT ECP ESC ESC’

Solar 0.893 (5) 0.888 (6) 0.878 (7) 0.912 (?) 0.911 (2) 0.910 (3) 0.905 (4)
Bridges 0.718 (2) 0.712 (3) 0.722 (?) 0.678 (4) 0.663 (5) 0.663 (5) 0.663 (5)
Thyroid 0.925 (6) 0.935 (5) 0.923 (7) 0.990 (?) 0.970 (2) 0.969 (4) 0.970 (2)
Parkinson’s 0.677 (5) 0.676 (6) 0.642 (7) 0.702 (?) 0.700 (2) 0.696 (4) 0.697 (3)

avg. rank 4.50 5.00 5.50 1.75 2.75 4.00 3.50

TABLE IV: Average running times, in seconds, for all problem-transformation methods under SVMs except Enron (C4.5
Decision Trees) and TMC07 (Naive Bayes); and EPCT. Fastest times are marked in italics.

IC ECC EBCC EPCT ECP ESC ESC′

Solar 0.2 1.1 1.3 0.1 0.8 4.3 17.8
Bridges 0.3 2.1 2.5 0.1 2.7 17.2 75.0
Thyroid 35.3 189.2 196.8 3.7 136.2 155.5 730.7
Parkinson’s 2.0 10.1 17.3 0.4 65.5 19.8 91.3
Music 0.3 2.8 0.5 1.2 30.1 8.2 65.9
Scene 17.2 54.5 90.2 19.3 23.2 52.5 195.7
Yeast 9.4 79.0 28.1 130.0 325.2 119.5 457.6
Enron 95.2 613.5 203.2 102.3 5902.7 3400.2 21610.7
TMC07 33.3 299.0 1185.5 152.5 538.8 869.4 5091.9

E. Discussion

Both ESC and ESC′ obtain the best average ranks over
all evaluation measures, and they consistently outperform the
baseline IC and the competing methods (an improvement
which is statistically significant in several cases).
ECP is arguably the third-strongest method. This tells us

that our NNR mechanism works well, although our super-
class methods provide better – and, at least for ESC, faster –
performance. The exceptions to this are on Solar, Music and
Parkinson’s; but of these, two are much faster under ESC

than ECP.

Our methods regularly outperform methods from the litera-
ture (ECC, EBCC, EPCT) on all but two datasets; EBCC is best
on Bridges and EPCT is best on Thyroid. The classification
paradigm has a big effect on predictive performance depending
on the problem domain. Decision trees are clearly the better
option for the Thyroid data, and Naive Bayes on Bridges.
The algorithm adaptation methods (EPCT, IBLR) perform
relatively strongly against the transformation methods when
the latter employ Naive Bayes; as is to be expected. If SVMs

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

TABLE V: Average results for multi-label datasets over 5-fold cross-validation with rankings. Best values are marked with a
(?).

(a) EXAMPLE ACCURACY - SVMS

Dataset BR ECC EBCC EPCT RAKEL IBLR ECP ESC ESC’

Music 0.270 (9) 0.324 (5) 0.323 (6) 0.313 (8) 0.345 (2) 0.316 (7) 0.343 (3) 0.338 (4) 0.356 (?)
Scene 0.527 (9) 0.641 (4) 0.567 (7) 0.565 (8) 0.606 (6) 0.637 (5) 0.698 (3) 0.702 (2) 0.705 (?)
Yeast 0.149 (9) 0.204 (4) 0.177 (7) 0.153 (8) 0.184 (6) 0.199 (5) 0.248 (3) 0.256 (?) 0.256 (?)
Enron 0.108 (8) 0.112 (6) 0.117 (5) 0.124 (4) 0.109 (7) 0.084 (9) 0.166 (?) 0.149 (2) 0.149 (2)
TMC07 0.287 (6) 0.302 (2) DNF 0.249 (7) 0.290 (4) 0.233 (8) 0.301 (3) 0.288 (5) 0.306 (?)

avg. rank 8.20 4.20 6.25 7.00 5.00 6.80 2.60 2.80 1.20
Nemenyi signif.: ECP�BR; ESC�BR; ESC’�BR; ESC’�EBCC; ESC’�EPCT; ESC’�IBLR;

(b) CLASS ACCURACY - SVMS

Dataset BR ECC EBCC EPCT RAKEL IBLR ECP ESC ESC’

Music 0.809 (7) 0.811 (6) 0.814 (3) 0.806 (9) 0.818 (?) 0.812 (4) 0.809 (7) 0.812 (4) 0.816 (2)
Scene 0.894 (8) 0.905 (5) 0.893 (9) 0.900 (7) 0.903 (6) 0.910 (4) 0.917 (?) 0.916 (2) 0.916 (2)
Yeast 0.801 (2) 0.798 (5) 0.793 (8) 0.789 (9) 0.797 (6) 0.799 (4) 0.796 (7) 0.801 (2) 0.802 (?)
Enron 0.939 (7) 0.947 (5) 0.939 (7) 0.951 (3) 0.940 (6) 0.939 (7) 0.950 (4) 0.953 (?) 0.953 (?)
TMC07 0.942 (?) 0.872 (8) DNF 0.931 (6) 0.939 (2) 0.929 (7) 0.937 (3) 0.935 (5) 0.936 (4)

avg. rank 5.00 5.80 6.75 6.80 4.20 5.20 4.40 2.80 2.00

(c) EXAMPLE ACCURACY - NAIVE BAYES

Dataset BR ECC EBCC EPCT RAKEL IBLR ECP ESC’ ESC

Music 0.189 (9) 0.214 (7) 0.211 (8) 0.313 (2) 0.248 (6) 0.316 (?) 0.287 (4) 0.250 (5) 0.294 (3)
Scene 0.171 (9) 0.179 (7) 0.173 (8) 0.565 (2) 0.524 (6) 0.637 (?) 0.558 (3) 0.549 (5) 0.550 (4)
Yeast 0.096 (9) 0.113 (6) 0.101 (8) 0.153 (5) 0.110 (7) 0.199 (3) 0.205 (2) 0.196 (4) 0.206 (?)
Enron 0.002 (9) 0.005 (7) 0.003 (8) 0.124 (4) 0.009 (6) 0.084 (5) 0.166 (?) 0.153 (3) 0.154 (2)
TMC07 0.121 (7) 0.119 (8) 0.116 (9) 0.249 (4) 0.212 (6) 0.233 (5) 0.309 (?) 0.308 (2) 0.308 (2)

avg. rank 8.60 7.00 8.20 3.40 6.20 3.00 2.20 3.80 2.40
Nemenyi signif.: EPCT�BR; IBLR�BR; IBLR�EBCC; ECP�BR; ECP�EBCC; ESC�BR; ESC�EBCC;

(d) CLASS ACCURACY - NAIVE BAYES

Dataset BR ECC EBCC EPCT RAKEL IBLR ECP ESC ESC’

Music 0.743 (9) 0.749 (7) 0.746 (8) 0.806 (2) 0.771 (6) 0.812 (?) 0.779 (3) 0.778 (4) 0.778 (4)
Scene 0.759 (9) 0.764 (7) 0.760 (8) 0.900 (2) 0.877 (3) 0.910 (?) 0.870 (4) 0.867 (5) 0.867 (5)
Yeast 0.699 (8) 0.702 (7) 0.694 (9) 0.789 (2) 0.739 (6) 0.799 (?) 0.774 (3) 0.773 (4) 0.769 (5)
Enron 0.809 (8) 0.824 (7) 0.809 (8) 0.951 (?) 0.926 (6) 0.939 (5) 0.948 (2) 0.944 (3) 0.943 (4)
TMC07 0.879 (7) 0.872 (9) 0.874 (8) 0.931 (4) 0.921 (6) 0.929 (5) 0.937 (?) 0.936 (3) 0.937 (?)

avg. rank 8.20 7.40 8.20 2.20 5.40 2.60 2.60 3.80 3.80
Nemenyi signif.: EPCT�BR; EPCT�ECC; EPCT�EBCC; IBLR�BR; IBLR�EBCC; ECP�BR; ECP�EBCC;

are not used in the problem-transformation methods, other
methods such as EPCT appear much more attractive, particu-
larly in view of its good time performance. This aside, other
trends between Tables III (SVMs) and V (Naive Bayes) are
the same: the ESC methods perform strongly, and consistently
outperform the classifier-chains methods.

As a side note, it is interesting to see the difference between
classifier-chain and super-class methods on several of the
datasets (e.g., Enron, TMC07) under Naive Bayes (the chain
methods performing noticeably poorer).
ESC′ improves on ESC in some cases; thus the extra

computational time invested in fine-tuning the class partitions
by this method can offer some benefit. On the other hand,
ESC′ does not always improve on ESC, for example on the
Parkinson’s data and under CLASS ACCURACY (the latter
case is not surprising since the extra internal step of ESC′

is set to maximise EXAMPLE ACCURACY, although this could

obviously be changed). Using internal folds of cross-validation
(rather than a simple train/test split) may give improved results
for ESC′, although this would lead to longer training times,
and this method is already the slowest overall. It is arguable
that the partition choice of ESC is sufficient and, for most
real-world applications, ESC′ is probably not worth the extra
computational expense. This is also clear from Table VII:
the partition found by SC is typically minimally changed by
the second-stage internal-validation iterations of SC′. This is
of course a positive result; it tells us that our CONDDEP
method is an efficient and effective way to model conditional
dependencies and create partitions based upon them.
EPCT obtains very fast running times, since each ensemble

model is only a single tree model for all classes. The difference
is particularly noticeable on the larger datasets.
ESC can perform slower than ECP, however, the fact it can

also be faster is impressive considering the extra overhead

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

TABLE VII: Partitions discovered in each of five folds at steps
for SC (after T = 1000 iterations of simulated annealing)
and SC′ (after an additional T ′ = 10 iterations of internal
validation) models.

Music
Partition θ of SC |θ|

(1 2 5) (0) (3) (4) 4
(0 5) (2 3 4) (1) 3
(4) (0 2 5) (1) (3) 4
(3) (0 5) (2 4) (1) 4
(1 2 5) (0) (4) (3) 4

Partition θ of SC′ |θ|

(1 5) (4) (0) (3) (2) 5
(0 1 5) (2 3 4) 2
(4) (2 5) (0) (1) (3) 5
(2 4) (0 5) (3) (1) 4
(1 2 5) (4) (0) (3) 4

Parkinson’s
Partition θ of SC |θ|

(0 1 2 3 4) 1
(0 1 2 3 4) 1
(1 2 3 4) (0) 2
(0 1 2 3 4) 1
(0 1 2 3 4) 1

Partition θ of SC′ |θ|

(0 1 3 4) (2) 2
(0 2 3 4) (1) 2
(1 2 4) (0 3) 2
(0 1 3 4) (2) 2
(1 3 4) (0 2) 2

Yeast
Partition θ of SC |θ|

(0 1) (2 3 4 5 6 7 8 9 10) (11 12) (13) 4
(2 3 4 5 6 7 8) (0 1) (9 10 11 12) (13) 4
(13) (0 1 9 10 11 12) (2 3 4 5 6 7 8) 3
(0 1 9 10) (2 3 4 5 6 7 8 11 12) (13) 3
(0 1) (9 10) (2 3 4 5 11 12) (6 7 8) (13) 5

Partition θ of SC′ |θ|

(0 1 12) (2 3 4 5 6 7 8 9 10) (11 13) 3
(2 3 4 5 6 7 8) (0 1 12 13) (9 10 11) 3
(12) (0 1 10 11) (2 3 4 5 6 7 8 9) (13) 4
(0 1 9 10 13) (2 3 4 5 6 7 8 11 12) 2
(0) (1 9 10) (2 3 4 5 8 12) (6 11) (7 13) 5

carried out by ESC: it builds an IC classifier internally
for each ensemble model, calculates all pairwise dependency
significance values and uses them to score 1000 random
partitions. It is clear, then, that our super-class approach can
have a significant effect in reducing time complexity. On Yeast
we see that the time taken by ESC is only a third of that of
ECP, and on Enron we also see an important reduction.

Table VI provides a detailed view of the individual contri-
butions to our final approach. We see that a random partition is
worse in this case than just using CP (as expected). However,
forming good partitions recovers this lost accuracy, while
at the same time being more efficient. In fact, even after
adding T ′ = 10 extra internal-validation iterations SC is still
(marginally) faster than CP – although not in an ensemble.
Again we see that perhaps these T ′ extra iterations are
not actually worth the computational expenditure, particularly
reflecting upon the minimal difference between ESC and ESC′

in Table III, with the former being much faster.
An additional advantage of our SC methods is that they

provide an indication of relationships between classes. Note,
for example, how for Music in Table VII class variables
1, 2 and 5 are grouped together. These correspond in
the data to labels happy-pleased, relaxing-calm,
angry-aggressive. Also, 2 and 4 (corresponding to
relaxing-calm and sad-lonely) often occur together,
whereas 3 (quiet-still) often occurs alone. We can

speculate that (1 2 5) is based on a mutually exclusive relation
(with 5), whereas (2 4) is a strong co-occurrence relation. In
Yeast, labels 2, 3, 4, and 5 are inseparable throughout (this
could be interpreted by a domain specialist).

VII. CONCLUSIONS

We presented a method for multi-dimensional classification
which creates “super-classes” from a partition in the original
set of classes. This is done by using conditional dependence
information to efficiently and effectively searching space of
possible partitions. In order to make this even more efficient,
we presented a filter mechanism to reduce the number of
class-combinations in each super-class training set prior to
training. This is an important adaptation for working with
multi-dimensional data. Finally we created an ensemble of
super-class classifiers, and carried out an experimental eval-
uation on a variety of multi-dimensional data with state-of-
the-art methods from the literature. Our methods convincingly
performed best overall, and also exhibited competitive run-
ning time performance. Additionally our results facilitated an
analysis of class conditional dependencies.

ACKNOWLEDGMENTS

This work has been partly supported by the Spanish gov-
ernment through projects COMONSENS (CSD2008-00010),
TIN2010-20900-C04-04, Consolider Ingenio 2010-CSD2007-
00018 and Cajal Blue Brain of the Spanish Ministry of
Economy and Competitiveness (MINECO). We also thank the
anonymous reviewers for their detailed comments that have
lead to the improvement of this manuscript.

REFERENCES

[1] Eric Bauer and Ron Kohavi. An empirical comparison of voting
classification algorithms: Bagging, boosting, and variants. Mach. Learn.,
36(1-2):105–139, 1999.

[2] Concha Bielza, Guangdi Li, and Pedro Larrañaga. Multi-dimensional
classification with Bayesian networks. International Journal of Approx-
imate Reasoning, 52:705–727, 2011.

[3] Hanen Borchani, Cocha Bielza, Pablo Martı́nez-Martı́n, and Pe-
dro Larrañaga. Markov blanket-based approach for learning multi-
dimensional Bayesian network classifiers: An application to predict
the European quality of life-5dimensions (EQ-5D) from the 39-item
Parkinson’s disease questionnaire (PDQ-39). Journal of Biomedical
Informatics, 45(6):1175–1184, 2012.

[4] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140,
1996.

[5] Weiwei Cheng and Eyke Hüllermeier. Combining instance-based
learning and logistic regression for multilabel classification. Machine
Learning, 76(2-3):211–225, 2009.

[6] Krzysztof Dembczyński, Weiwei Cheng, and Eyke Hüllermeier. Bayes
optimal multilabel classification via probabilistic classifier chains. In
ICML ’10: 27th International Conference on Machine Learning, pages
279–286, 2010.

[7] Krzysztof Dembczyński, Willem Waegeman, Weiwei Cheng, and Eyke
Hüllermeier. On label dependence in multi-label classification. In
Workshop Proceedings of Learning from Multi-Label Data, pages 5–
12, 2010.

[8] Janez Demšar. Statistical comparisons of classifiers over multiple data
sets. The Journal of Machine Learning Research, 7:1–30, 2006.

[9] Andrew A. Frank and Arthur Asuncion. UCI machine learning reposi-
tory, 2010. http://archive.ics.uci.edu/ml.

[10] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Reute-
mann Peter, and Ian H. Witten. The WEKA data mining software: An
update. SIGKDD Explorations, 11(1):10–18, 2009.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

[11] Pablo Hernández-Leal, Felipe Orihuela-Espina, Enrique Sucar, and Ed-
uardo F. Morales. Hybrid binary-chain multi-label classifiers. In The
Sixth European Workshop on Probabilistic Graphical Models, 2012.

[12] Sheng-Jun Huang and Zhi-Hua Zhou. Multi-label learning by exploiting
label correlations locally. In Jörg Hoffmann and Bart Selman, editors,
AAAI. AAAI Press, 2012.

[13] Scott Kirkpatrick, C. Daniel Gelatt, and Mario P. Vecchi. Optimization
by simulated annealing. Science, 220:671–680, 1983.

[14] Dragi Kocev, Celine Vens, Jan Struyf, and Saso Dzeroski. Ensembles
of multi-objective decision trees. In Machine Learning: ECML’07: 18th
European Conference on Machine Learning, Proceedings, volume 4701
of Lecture Notes in Computer Science, pages 624–631. Springer, 2007.

[15] Gjorgji Madjarov, Dragi Kocev, Dejan Gjorgjevikj, and Saso Dzeroski.
An extensive experimental comparison of methods for multi-label learn-
ing. Pattern Recognition, 45(9):3084–3104, 2012.

[16] Jesse Read. Scalable Multi-label Classification. PhD thesis, University
of Waikato, 2010.

[17] Jesse Read, Bernhard Pfahringer, and Geoff Holmes. Multi-label
classification using ensembles of pruned sets. In ICDM’08: Eighth IEEE
International Conference on Data Mining, pages 995–1000. IEEE, 2008.

[18] Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Clas-
sifier chains for multi-label classification. In ECML ’09: 20th European
Conference on Machine Learning, pages 254–269. Springer, 2009.

[19] Jesse Read, Bernhard Pfahringer, Geoffrey Holmes, and Eibe Frank.
Classifier chains for multi-label classification. Machine Learning,
85(3):333–359, 2011.

[20] Jan Struyf, Saso Dzeroski, Hendrik Blockeel, and Amanda Clare. Hier-
archical multi-classification with predictive clustering trees in functional
genomics. In Workshop on Computational Methods in Bioinformatics
at the 12th Portuguese Conference on Artificial Intelligence, pages 272–
283. Springer, 2005.

[21] Lena Tenenboim, Lior Rokach, and Bracha Shapira. Identification
of label dependencies for multi-label classification. In MLD ’10:
2nd International Workshop on Learning from Multi-Label Data from
ICML/COLT 2010, 2010.

[22] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis P. Vlahavas. Mining
multi-label data. In O. Maimon and L. Rokach, editors, Data Mining
and Knowledge Discovery Handbook. 2nd edition, Springer, 2010.

[23] Grigorios Tsoumakas and Ioannis P. Vlahavas. Random k-labelsets:
An ensemble method for multilabel classification. In ECML ’07: 18th
European Conference on Machine Learning, pages 406–417. Springer,
2007.

[24] Bernard Ženko and Sašo Džeroski. Learning classification rules for
multiple target attributes. In PAKDD’08: 12th Pacific-Asia conference
on Advances in Knowledge Discovery and Data mining, PAKDD’08,
pages 454–465. Springer, 2008.

[25] Julio H. Zaragoza, Enrique Sucar, Eduardo F. Morales, Concha Bielza,
and Pedro Larrañaga. Bayesian chain classifiers for multidimensional
classification. In IJCAI ’11: 24th International Conference on Artificial
Intelligence, pages 2192–2197, 2011.

[26] Min-Ling Zhang and Kun Zhang. Multi-label learning by exploiting
label dependency. In KDD ’10: 16th ACM SIGKDD International
conference on Knowledge Discovery and Data mining, pages 999–1008.
ACM, 2010.

Jesse Read is a lecturer (until recently postdoctoral
researcher) in the Department of Signal Theory
and Communications at the Carlos III University
of Madrid (UC3M), Spain. He received his de-
gree in Computer Science with first class honours
from the University of Waikato, New Zealand in
2005, and obtained his PhD also from the Univer-
sity of Waikato in 2010, in the Machine Learning
Group. His main research interests include multi-
label classification, and learning in large-scale and
data-stream contexts.

Concha Bielza received the M.S. degree in math-
ematics from Complutense University of Madrid,
Spain, in 1989 and the Ph.D. degree in computer
science from the Technical University of Madrid
(Universidad Politcnica de Madrid, UPM), in 1996.
Since 2010 she is a full professor of statistics and
operations research with the Department of Artificial
Intelligence, UPM, Madrid. Her research interests
are primarily in the areas of probabilistic graphical
models, decision analysis, metaheuristics for opti-
mization, data mining, classification models, and real

applications, mainly biomedicine and neuroscience. She has over 70 refereed
publications and is currently involved in the Human Brain Project, one of the
two European FET Flagship projects funded over the next 10 years.

Pedro Larrañaga is Full Professor in Computer Sci-
ence and Artificial Intelligence at the Technical Uni-
versity of Madrid (UPM) where he leads the Com-
putational Intelligence Group. His research interests
are in the fields of Bayesian networks, estimation
of distribution algorithms, multi-label classification,
regularization and data streams, with applications in
bioinformatics, biomedicine and neuroscience. He
has supervised more than 20 PhD students, published
more than 100 papers in international journals and
participated in more than 30 projects in collaboration

with the industry. He has also participated in more than 50 projects granted
by public institutions, the most recent one being the Human Brain Project,
selected as one of two European Flagships for the period 2013-2023.

He was Expert Manager of the Computer Technology area, Deputy Direc-
torate of research projects, of the Spanish Ministry of Science and Innovation
from 2007-2010. He is Fellow of the European Artificial Intelligence Society
(ECCAI).

