
Multi-label Classification with Meta-labels

Jesse Read
Aalto University and HIIT

jesse.read@aalto.fi

Antti Puurula
University of Waikato

asp12@students.waikato.ac.nz

Albert Bifet
Huawei Noah’s Ark Lab
bifet.albert@huawei.com

Abstract—The area of multi-label classification has rapidly
developed in recent years. It has become widely known that the
baseline binary relevance approach can easily be outperformed
by methods which learn labels together. A number of methods
have grown around the label powerset approach, which models
label combinations together as class values in a multi-class
problem. We describe the label-powerset-based solutions under
a general framework of meta-labels and provide some theoret-
ical justification for this framework which has been lacking;
explaining how meta-labels essentially allow a random projection
into a space where non-linearities can easily be tackled with
established linear learning algorithms. The proposed framework
enables comparison and combination of related approaches to
different multi-label problems. We present a novel model in
the framework and evaluate it empirically against several high-
performing methods, with respect to predictive performance and
scalability, on a number of datasets and evaluation metrics. This
deployment obtains competitive accuracy for a fraction of the
computation required by the current meta-label methods for
multi-label classification.

I. INTRODUCTION

Multi-label classification deals with prediction of sets of
label indicators for instances, whereas in the more common
multi-class and binary-label prediction a single class variable
is predicted for each instance. The widely-known binary-
relevance method (BR) learns the relevance of each label
separately as separate binary problems; however this method
has been widely criticized [1], [2], [3], [4], [5] because it does
not model dependence among labels. Another typical solution
is the label-powerset (LP) method [1], [2], [5], where each
distinct labelset assignment is treated as a class in a multi-class
problem, thus modeling labels together and achieving better
predictive performance. However, because label combinations
are exponential with the number of labels, strategies must be
taken to keep the method tractable. Besides this, many labelsets
only occur once, or very infrequently, leading to an unbalanced
problem that is hard to learn from.

In this paper we unite scalable LP-strategies under a
general framework of meta-labels. To help motivate the prob-
lem, consider Tab. I, a toy example. BR would create 3
binary classifiers, each taking a values ∈ {0, 1}, and thus
missing the mutual exclusive relation between labels A and
B. LP creates one multi-class classifier, which assigns values
∈ {010, 101, 011}. Thus the relation between A and B is
captured. However, one of these combinations (011) only
occurs once in the training data. This means a separate decision
boundary to learn with only a single example to learn from.
One strategy might be to eliminate this instance prior to
training, or to learn labels A,B together, and B,C together.
In the following we formalize the methodology behind these
possible strategies.

TABLE I: A toy example dataset of 7 examples, and 3 labels,
with label set L = {A,B,C}.

instance labels vector
1 B [0,1,0]
2 B [0,1,0]
3 B [0,1,0]
4 A,C [1,0,1]
5 A,C [1,0,1]
6 A,C [1,0,1]
7 B,C [0,1,1]

TABLE II: Notation and terminology. We index the instance
space with d = 1, . . . , D, the label space with j = 1, . . . , L
and the meta-labels space with k = 1, . . . ,K.

symbol description example
L label set / L symbols L = {A,B,C} (L = 3)
yj ∈ {0, 1} label relevance y1 = 0, i.e., A is not relevant
y = [y1, . . . , yL] label assignment y = [0, 1, 1], i.e., labels B,C
L = S1 ∪ · · · ∪ SK partition L = {A,B} ∪ {B,C}
Sk ⊆ L k-th partition set S1 = {A,B}
Vk ⊆ 2|Sk| possible values for y′k V1 = {∅, A,AB}

. . .≡ {00, 01, 11}

. . .≡ {0, 1, 3}
y′k ∈ Vk k-th meta-value y′1 = AB
x = [x1, . . . , xD] instance x = [1, 4, 8.8, 0]
(xi,yi) i-th training example See Tab. I

The general multi-label task is to learn from examples
{(xi,yi)}Ni=1 to produce a classifier that can give predic-
tions ŷ = h(x̃) for any test instance x̃. A meta-label1
represents a combination of labels, e.g., the k-th meta-label
might represent combinations of labels A and B, taking
values yk ∈ {∅, A,B,AB} ≡ {00, 01, 10, 11} ≡ {0, 1, 2, 3}.
Tab. II outlines the notation we use. Note that, of course,
the actual concepts labels represent depend on the problem
domain. For example, in image classification, perhaps L =
{beach,sunset,foliage}.

Meta-label methods can be carried out in a sequence of
three operations:

1) Partitioning: partition the label set L into meta-labels
S1, . . . , SK , e.g., {A,B}∪ {C} or {A,B}∪ {B,C}

2) Relabeling: decide which values these meta-labels
can take, e.g., y′1 ∈ {01, 10} or y′1 ∈ {00, 01, 10, 11}

3) Recombination: recombine meta-label predictions (or
confidence scores) into a label vector prediction

Fig. 1 shows example partitions; both overlapping and non-
overlapping partition. We can formulate the propagation from

1Terminology varies: [6] refers to ‘super classes’, [1] simply refers to label
subsets, upon which any multi-label classifier can be trained

YCYBYA

Y ′
B,CY ′

A,B

X5X4X3X2X1

(a) {A,B} ∪ {B,C}

YCYBYA

Y ′
A,B Y ′

C

X1 X2 X3 X4 X5

(b) {A,B} ∪ {C}

Fig. 1: An example graphical model with meta-labels Y ′ for
the labels Y and instance attributes X . L = {A,B,C} (L =
3); YA,B indicates a meta-label of labels A and B.

the instance space x to the middle (‘hidden’) meta layer as

y′k = hk(x)

If meta labels are all binary, this is just a binary relevance ap-
proach into the meta-label space, where hk is the independent
model for the k-th meta-label. A second layer propagates from
the meta-labels to the labels, and takes a similar form,

yj = gj(y
′) = gj([h1(x), . . . , hK(x)])

We can easily imagine that, for example,

hk(x) = σ
(D∑
d=1

wk,dxd
)

(1)

and it becomes a neural network, but this is just one possibility.
Unlike a typical hidden-layer neural network, however, we can
have a deterministic decoding of y ← g(y′), and thus back-
propagation is not necessary. For example, in Fig. 1a, we can
set weights (i.e., links) wC = wC,C = wB,BC = wA,BC = 1
and all other weights to 0; and the Eq. 1 form can be used
equally for gj(x). This means that we only have to train a
linear layer, and still have the benefits (non-linearity) of a
hidden layer.

Although the concept of ‘meta-labels’ has been in the
multi-label literature for some time (under various terminol-
ogy), theoretical justification is not always given other than
that is advantageous to ‘model labels together’ or model ‘label
relationships’.

The meta layer allows us to work in a higher meta space,
and allows the application of standard off-the-shelf multi-class
classifiers apt to working in such a space. This meta-labels
space, is easy to create, yet offers the larger hypothesis space
and enables more powerful decision making.

In the following section Section II we elaborate each
essential component of the framework; in Section III we
describe the ensemble component; in Section IV we review
related work; in Section V we carry out empirical evaluations;
and in Section VI we make some concluding remarks.

To the best of our knowledge, we are the first to present a
unified view of multi-label classification learning with meta-
labels, uniting all the diffuse label-powerset-based solutions
together. Under this framework we obtain very competitive

performance and scalability. In fact, our framework has already
contributed to our first and second-place wins on Kaggle
competitions [7], [8]

II. A META-LABEL FRAMEWORK

The general process for multi-label classification with
meta-labels involves the three steps outlined in Section I plus a
choice of multi-class base classifier. The best parameterization
ultimately depends on the underlying base classifier and its
complexity with respect to the dataset dimensions and proper-
ties, and the computational resources available. Later (Section
V) we look into the affect that various configurations have on
predictive and time performance, and memory use.

A. Partitioning

The main challenge with finding a partition is the sheer
number of possibilities to consider. For L = 6, there are 115
possible non-overlapping partitions, and for L = 10 already
115, 975.

If a hierarchy among labels is defined in the dataset, it is
straightforward to partition based on hierarchical proximity, as
in, e.g., [9]. In the absence of a predefined hierarchy, one can
partition on several strategies. HOMER [5] forms a hierarchy
based on balanced k-means clustering of the instance space.
[6] finds a good partition with simulated annealing search of
conditional label dependence, extended from the work of [4]
(marginal label dependence only).

Partitioning heuristically involves some cost; the method
in [6] did not scale well to large datasets, and although that of
[4] was faster, there is little evidence to indicate that marginal
label dependence (i.e., ignoring the input space) is any better
than random partitions. It was specifically demonstrated that
a random partition can work just as well as a dataset-defined
partition [9]. In fact, the RAkEL method [1] demonstrated the
effectiveness of a random overlapping partition of meta-labels.

B. Relabeling

Suppose that we partition into L = {A,B}∪{B,C} (as in
Fig. 1a). A common formulation (e.g., in [1], [6]), is to form
meta-labels from the partition, as for example

Y ′A,B ∈ {00, 01, 10, 11}

The basic LP approach can be applied here – simply by
employing a multi-class classifier.

However, if YAB = 11 (labels A and B together) is only
relevant to a single (or very few) instance in the dataset, it
can impede learning. The Pruned Sets (PS) method [2] prunes
away p-infrequent partitions (those which don’t occur at least
p times). If p = 1, then we now have

YAB ∈ {00, 10, 01}

As before, standard LP (a multi-class classifier) can now be
applied to learn each meta-label. PS was presented as an
alternative to subset/partitioning methods like RAkEL, being
more efficient than LP by this pruning mechanism, rather
than partitioning the label set into subsets. Actually – and
apparently not noticed earlier in the literature – the two can

be combined easily in the same framework as we present later
in Section V; partitions (i.e., meta-labels) can be pruned.

As noticed in [2], if many combinations occur only once,
we may end up discarding much of the data. To combat this
problem, instances can be reintroduced with subsets. Instead
of discarding the instance with the unique combination A,B,
PS can make two new instances, and give one of them A (10)
and the other one B (01). Namely, in [2], the ‘top n’ sets are
reintegrated (or as many exist up to a maximum of n), where
sets are ranked by size and then frequency, e.g., for n = 2, a
pruned instance of labels A,B,C may be reintegrated as two
instances – one labeled AB and the other BC – supposing
that there is no bigger combination than ABC in the training
data, and that AB and BC are both more frequent than AC.

Note the special case, when we prune all the way down to
two combinations, we end up with binary meta-labels, such as

YAB ∈ {0, 1} ≡ {00, 11}

(we either assign both labels A and B or neither of them). This
special case provides particular advantages: it is conceptually
simpler, makes learning faster, and reconstruction of label
vectors (as we address in Section II-C) is easier. It can also
be derived without consideration of ‘partitioning’ at all. For
example, itemsets A,B,AB,ABC,BC can be obtained from
the dataset, and used directly. Due to their binary nature, we
can generate many and incur the same computational cost as
the multi-class meta-label methods. Although, this is exactly
the disadvantage: many more must be generated to get the
same decision power, and the generation process must take
care to cover all labels appropriately (the top n itemsets may
not contain certain labels).

C. Recombination

If the partition is disjoint/non-overlapping, recombination
of meta-labels y′k into labels yj is trivial,

ŷj = gj(y
′) :=

K∑
k=1

[
j ∈ y′k

]
(2)

where y′k ∈ Vk and
[
j ∈ y′k

]
= 1 if y′k’s value indicates j’s

relevance (e.g., if y′k = AB, then A ∈ y′k and C 6∈ y′k);
and ŷj ∈ {0, 1}. For example, y′ = [y′AB , y

′
C] = [01, 1]

recombines to y = [yA, yB , yC] = [0, 1, 1]. For overlapping
partitions, the sum for a label may exceed 1 and thus a
threshold is necessary,

ŷj = gj(y
′) =

[
p(yj) > t

]
(3)

=
[K∑
k=1

Pjk > t
]

(4)

for some threshold t, where P is a L × K matrix of the
posterior probability for each label j given the value of each
meta label k;

Pjk =

{
0 if j 6∈ Vk∑

v∈Vk

[
j ∈ Vk

]
· p(y′k = v|x) otherwise

where p(y′k = V |x) is the posterior given by h(x). An example
is given in Tab. III.

TABLE III: Given a meta-label y′k ∈ {00, 01, 11} for Sk =
{A,B}, and a posterior predictive distribution p(y′k = v|x̃)
for hk(x), the degree of relevance of the labels A and B to x̃
can be approximated by distribution P·k.

j: A B p(y′k = v|x)
v1 0 0 0.0
v2 0 1 0.9
v3 1 1 0.1
P·k 0.1 1.0

TABLE IV: Examples of recombination of meta-label votes
into a label vector. In most cases, we obtain votes upon which
we can apply a thresholded to obtain predictions ŷj ∈ {0, 1}
for j = 1, . . . , L, as per Eq. 3.

(a) Disjoint, Eq. 2

L A B C
y′A,B 0 1

y′C 0
ŷ 0 1 0

(b) With confidence outputs, Eq. 3, Eq. 4

L A B C
Pjk 0.1 1.0
Pjk 0.7 0.3

p(y′j) =
∑

k Pjk 0.1 1.7 0.3
ŷ =

[∑
k Pjk > 0.5

]
0 1 0

Tab. IV steps through the different recombination possi-
bilities. Given appropriate choices for weights wk,j all these
schemes can be represented as

yj = gj(y
′) =

K∑
k=1

hk(x) · wk,j

where wk,j indicates the contribution of each k-th meta-label
to the estimated relevance of each j-th label; as if it were the
hidden layer of a standard neural network scheme.

Because any binary digit can be encoded as decimal, both
the multi-label and multi-target (i.e., each label is multi-valued)
cases are equally applicable in this framework, both in the
cases of the labels and the meta labels. For example, with bi-
nary meta labels YA ∈ {0, 1}, YB ∈ {0, 1}, YAB ∈ {00, 11}},
we obtain identical results as in Fig. III (which had meta
label YAB ∈ {01, 10, 11}) when p(y′A = 1) = 0.0 and
p(y′B = 0) = 1.0 and p(y′AB = 1) = 0.1 (in Eq. 3).

III. ENSEMBLES

Ensemble methods have gained and retained popularity in
the multi-label literature [1], [2], [6] (as well as the machine
learning literature in general) in spite of their inherent tendency
to use more memory and computation power. Meta-labels offer
a high-dimensional class space and can induce a powerful
model but also high variance across different training sets.
Ensembles are a good way to deal with this.

The ensemble strategy is in fact already used within several
‘standalone’ methods. For example, RAkEL is sometimes
referred to as en ensemble scheme of M models, however
these models are not standalone, and only model a subset of
the labels. We note that several RAkELs could be used together
in ensemble, as with any other multi-label method.

Given output ŷ(m) = [ŷ1, . . . , ŷL], from a multi-label

classifiers m = 1, . . . ,M , then, for example,

ŷj = fj([ŷ
(1), . . . , ŷ(M)] ≈

[1

M

M∑
m=1

ŷ
(m)
j > t

]
Where the end term is just a simple majority vote ensemble
with a threshold. More advanced schemes (which we do not
cover here) are equally applicable. This can in fact be seen as
an additional layer on the network, such that

ŷj = fj(g(h(x)))

and all layers can be represented as a four-layer neural net-
work,

ẑ`j = h
(K∑

k=1

hk(z
`−1) · wk,j

)
(5)

for layers ` = 1, . . . , 4, and where hk(z
`−1) computes a

function on the input of the previous layer `, and wk,j is some
weight z1 = x is the first layer, and z4 = y is the final layer
after ensemble voting. This formulation as neural networks
provides a theoretical base to lean on, however, we emphasise
that any linear classifier can be plugged into layer one and
the weights of all remaining layers, while adding depth and
predictive power, are deterministically encodable.

IV. RELATED WORK

The most closely related work is that of RAkEL [1] and
HOMER [5] which we already described above and compare
to in the empirical evaluation of the following section.

Creating meta-labels to represent label combinations can be
viewed as compressing the label space. Compressed sensing
addresses the problem in a related way, by predicting com-
pressed labels [10], taking advantage of the fact that, for sparse
labeling, the number of subproblems are logarithmic with the
total number of possible labels. PCA can compress the label
space into a different dimension [11]. Again here, prediction
is done in this new dimension, and then predictions are cast
back into the original label space.

We have already mentioned connections to neural-
networks. BPMLL [3] is a multi-label neural network approach
well known in the multi-label literature, which trains a hidden
layer and uses backpropagation. Our framework does not
require backpropagation, because the hidden layer can be seen
as a random projection from the label space. Extreme learning
machines [12] (ELMs) are based on a similar principal (but not
designed specifically for multi-label classification), and can be
seen as multi-layered neural networks where the middle layer
comes from random feature functions, making the network
shallower (in terms of which parameters have to be learned)
and thus easier to learn. A difference of ELMs is that the
middle hidden layer is projected forward from the input space,
whereas we project backward from the label space (which is
available to us in the multi-label context).

V. EXPERIMENTS

We implemented our meta-label approaches using the Meka
framework2 and our source code is available in the most

2http://meka.sourceforge.net

TABLE V: Multi-label / Meta-label Methods

Key Name / Description

BR Binary Relevance (L partitions)
LP Label Powerset (1 partition)
Hd Hierarchical [dataset-defined] disjoint partitions (with LP)
Rd K Random disjoint equal sized partitions (with LP)
RAkELp Random overlapping k-sized pruned partitions (with pruned LP)
HOMER K Hierarchical [random equalsized, via clustering] partitions (with LP)
BPMLL Backprop. neural network
EpRd Ensembles of 10 pruned Rd (with pruned LP)

recent version. As a base classifier to learn meta-labels, we
use support vector machines (SVMs) – namely, Weka’s SMO
implementation – on account of its popularity and good out-
of-the-box performance, as found elsewhere in the literature
([1], [2], [13]). We display results of

ACCURACY :=
1

N

N∑
i=1

|yi ∧ ŷi|
|yi ∨ ŷi|

as Accuracy in, e.g., [2], [13], known commonly as JACCARD
INDEX in information retrieval. We obtained similar relative
results under other measures (not displayed due to lack of
space) which can be confirmed by using our implementations
on the Meka framework.

The main methods we look at are listed in Tab. V, although
we describe particular variations as we present results. We do
not normally consider BR and LP meta-label methods because
they do not have a separate ‘middle’ layer of labels – but they
can be viewed as two ‘extremes’ of meta-labeling: LP has a
single meta-label of up to 2L values, and BR has L meta-labels
of only 2 values (∈ {0, 1}), which correspond to the original
labels. Although the components behind them already existed
in the literature, RAkELp and EpRd are novel combinations
of those components which we present within our framework.

Tab. VI lists the datasets we consider. All datasets in this
collection have been studied in a large scale comparison [13],
and are available for download3.

TABLE VI: Datasets and associated statistics; LC is label car-
dinality (average number of labels relevant to each example).

N L d LC Type

emotions 593 6 72 1.87 audio
scene 2407 6 294 1.07 image
yeast 2417 14 103 4.24 biology

medical 978 45 1449 1.25 medical/text
enron 1702 53 1001 3.38 text

tmc2007 28596 22 500 2.16 text
mediamill 43907 101 120 4.38 video

bibtex 7395 159 1836 2.40 text
delicious 16105 983 500 19.02 text

bookmarks 87856 208 2150 2.28 text

Before beginning a general evaluation, we analyzed a
number of methods on the enron dataset. This dataset has
a reasonable number of labels (53) and, more importantly,
a predefined hierarchy4, and thus allows us to compare the

3http://mulan.sourceforge.net/datasets.html and http://sourceforge.net/
projects/meka/files/Datasets/Train-testSplits/

4See http://bailando.sims.berkeley.edu/enron/enron categories.txt

TABLE VII: Methods’ performance on the enron dataset.
The dataset’s predefined hierarchy has 4 leaves, resulting in
4 relatively-balanced partitions. Thus we also set K = 4 for
HOMER, Rd. BR and LP can be seen as having K = L and
K = 1, respectively. Note that we have taken an average of
Rd’s performance (since partitions are random) with different
random seeds.

Method Accuracy Time (s)

BR 0.406 25
LP 0.434 426
HOMER 0.436 93
Hd 0.428 37
Rd 0.435±0.006 121±6

various partitioning methods to form meta-labels including that
of using the dataset-defined hierarchy. Results are in Tab. VII.

As expected, LP is least scalable and BR performs poorest.
Partitioning along a dataset defined hierarchy appears to offer
no better performance than a random partition. This should
not be too disappointing since often there is no such hierarchy
to use anyway. Surprisingly, HOMER offered relatively little
advantage over either a random or dataset-defined hierarchy
partition. These results indicated to us to proceed along the
line of the Rd method.

RAkEL is a special case of meta-labels with overlapping
partitions, rather than disjoint partitions like Rd (namely it
has M partitions randomly drawn from L of size k 5, i.e.,
S1, . . . , SK where all |Sk| = k. In Fig. 2, we fix M = 10,
and increase k. We see that higher k offers higher accuracy
(a result already reported in [1]), but as also noticed in [1],
processing time quickly becomes unattractive, and scaling up
to larger datasets with the same parameters is not feasible. In
our general meta-labels framework, we prune the number of
class values within each of RAkEL’s partitions (RAkELp; the
original RAkEL method does no pruning) but also reintegrate
pruned instances, as described in Section II-B, see also [2].
With pruning, time complexity is almost constant and certainly
not more than linear (wrt k), yet the dimension offered by this
meta-label space still allows for high predictive performance.
In fact, predictive performance is practically indistinguishable
from RAkEL (if anything, slightly higher), whereas time never
exceeds by more than a few seconds that of BR (25 seconds,
see Tab. VII – wheras RAkELp takes at most 32 seconds at
k = 37).

For ensembles of Rd (i.e., M ensemble members, each
with a disjoint split into K meta-labels, thus |Sk| = L

K).
Memory complexity is M × (D + k) and time complexity is
T×N×D×min(N, 2k), where T approximates the complexity
of the base learning (e.g., in the case of gradient descent, T
is the maximum number of learning iterations carried out).
The base learner can easily be changed (thus reducing T),
however there can be considerable difference in accuracy
given different base learners, which is why top-performing
problem-transformation methods use support vector machines
(e.g., [14], [2], [13]), rather than something faster like naive
Bayes). Therefore we are often (understandably) reluctant to

5RAkEL’s k is not the same as our index variable k for meta-labels

0 5 10 15 20 25 30 35 400.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Ac
cu

ra
cy

RAkEL
RAkELp

(a) Accuracy under increasing k

0 5 10 15 20 25 30 35 400

500

1000

1500

2000

Ru
nn

in
g

tim
e

RAkEL
RAkELp

(b) Running time (s) under increasing k

Fig. 2: Performance on Enron with M overlapping partitions
of size k (i.e., RAkEL) and with meta-labels pruned at p =
5, n = 1 (See Section II-B; examples discarded if meta-label
value occurs less than 5 times, but potentially reintegrated with
a more frequent labelset).

use a poorer-performing learner. Another solution to reduce
complexity is to subsample the input space (in terms of N and
D) for each model, as done in [15], among others, where they
reported similar accuracy for as low as 50% of the original
input data per model. This strategy is not specific to meta-
labels, rather can easily be added to any ensemble framework
(a specific case, where decision trees are involved, is a called
a random forest). The remaining terms are M and 2k. Using
disjoint partitions means that each partitioning is a complete
model (unlike, say, RAkEL) and thus we can keep M quite
low (specifically, we use 10). Lastly, by using pruning, it is
straightforward to reduce the 2k term to a constant c� 2k –
determined by an appropriate choice for p, i.e., we can prune
the values of a particular meta-label until we get to a desired
c values.

We next took an appropriate configuration of the meta-label
framework (EpRd: Ensembles of meta-labels based on Random
Disjoint partitions, with Pruning), guided by our initial analy-
sis, and compared it to some existing configurations from the
literature. We chose parameters to yield high scalability along
with good predictive performance: M = 10,K = L

10+1 for all
datasets, and pruning of p = 5, n = 1 for datasets emotions
to enron (top to bottom in Tab. VI), p = 7, n = 1 up till
bibtex, p = 20, n = 0 for delicious and p = 100, n = 0
for bookmarks. We use the same dataset splits as in [13]
and thus our results are directly comparable, taking into
account the following: [13] uses the libsvm implementation as
a base classifier, whereas we use Weka’s SMO implementa-

TABLE VIII: General results.

Accuracy (Jaccard Index)

Dataset BR HOMER RAkEL BPMLL EpRd
emotions 0.361 0.471 0.419 0.517 0.542
scene 0.689 0.717 0.734 0.653 0.724
yeast 0.520 0.559 0.531 0.525 0.541
medical 0.206 0.713 0.673 0.495 0.759
enron 0.446 0.478 0.428 0.343 0.473
corel5k 0.030 0.179 0.000 0.133 0.131
tmc2007 0.891 0.888 0.852 0.540 0.635
mediamill 0.403 0.413 0.337 0.373 0.420
bibtex 0.348 0.330 DNF 0.242 0.233
delicious 0.136 0.207 DNF 0.159 0.168
bookmarks DNF DNF DNF 0.147 0.181

Training time

Dataset BR HOMER RAkEL BPMLL EpRd
emotions 4 4 5 1 3
scene 71 68 79 6 5
yeast 145 101 157 6 15
medical 18 16 82 15 4
enron 318 158 493 20 36
corel5k 926 771 3380 191 952
tmc2007 42 645 31 300 102 394 180 3 819
mediamill 85 468 78 195 33 554 369 19 221
bibtex 11 013 2896 DNF 177 230
delicious 57 053 21218 DNF 3 648 51 578
bookmarks DNF DNF DNF 2 682 9 290

tion; We used 3.20 GHz processors and up to 2 GB RAM,
whereas [13] used 2.50 GHz and 64 GB. Additionally to
baseline BR, RAkEL, and HOMER from [13], we deployed
the backpropagation neural network BPMLL from [3] with
the parameters suggested in that paper (one hidden layer, 100
training iterations, learning rate of 0.01). We considered this it
a fitting comparison due to the similarity in formulation with
meta-labels. Needless to say that we did not compare to LP
since on most of these datasets it is completely intractable. All
methods not finishing in under a week are considered Did Not
Finish (DNF).

Tab. VIII displays the results of the general evaluation. Our
configuration, under a general framework of meta-labels, ob-
tains overall similar predictive performance as the deployment
of other related methods, with considerable reduction in run
time (more efficient even than even baseline BR). A standard
backprop neural network is comparably fast but cannot offer
anywhere near the same predictive power.

On bookmarks, most methods did not finish even after
one week, whereas EpRd only took a few hours, and still
outperformed the neural-network (BPMLL). On tmc2007 and
bibtex results were disappointing for EpRd. It is possible that
we set the pruning parameter too high in these cases. We intend
to study these cases in future investigation.

VI. CONCLUSIONS

We presented a general framework for multi-label learn-
ing with meta-labels. Meta-labels are a flexible problem-
transformation based approach that has been taken up at
various points in the literature, on the basis that they model
labels together (unlike binary relevance learning) and can be
more efficient than learning all labels together (as in the label
powerset method). A variety of meta-label methods exist in
the literature, but have not been well connected. We have
united the best of these approaches under a single framework,

with theoretical backing, and explained how the projection
of labels into a new space is the main element behind the
predictive performance. Having a general framework, we were
able to identify strategies that were previously presented and
evaluated individually, and combine them into novel methods.
As an example, we combined pruning strategies with meta-
label formation from disjoint partitions, within an ensemble
scheme. We empirically evaluated this approach and found
a dramatic improvement in running time (up to orders of
magnitude) related high-performance multi-label learners, with
predictive performance at least as good or better than those
methods. In future work, we will carry out further empirical
evaluation on larger datasets.

ACKNOWLEDGMENT

The first author is funded by the Aalto Energy Efficiency
project, http://energyefficiency.aalto.fi/en/.

REFERENCES

[1] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Random k-labelsets for
multi-label classification,” IEEE Transactions on Knowledge and Data
Engineering, vol. 99, no. 1, 2010.

[2] J. Read, B. Pfahringer, and G. Holmes, “Multi-label classification using
ensembles of pruned sets,” in ICDM’08: Eighth IEEE International
Conference on Data Mining. IEEE, 2008, pp. 995–1000.

[3] M.-L. Zhang and Z.-H. Zhou, “Multilabel neural networks with appli-
cations to functional genomics and text categorization,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 18, no. 10, pp. 1338–
1351, 2006.

[4] L. Tenenboim, L. Rokach, and B. Shapira, “Identification of label
dependencies for multi-label classification,” in MLD ’10: 2nd Interna-
tional Workshop on Learning from Multi-Label Data from ICML/COLT
2010, 2010.

[5] G. Tsoumakas, I. Katakis, and I. P. Vlahavas, “Effective and efficient
multilabel classification in domains with large number of labels,” in
ECML/PKDD 2008 Workshop on Mining Multidimensional Data, 2008.

[6] J. Read, C. Bielza, and P. Larrañaga, “Multi-dimensional classification
with super-classes,” Transactions on Knowledge and Data Engineering,
Accepted for publication.

[7] A. Puurula, J. Read, and A. Bifet, “Kaggle LSHTC4 winning solution,”
http://www.kaggle.com/c/lshtc, Tech. Rep., 2014.

[8] G. Tsoumakas, A. Papadopoulos, W. Qian, S. Vologiannidis,
A. D’yakonov, A. Puurula, J. Read, J. Svec, and S. Semenov, “WISE
2014 challenge: Multi-label classification of print media articles to
topics,” in Web Information Systems Engineering - WISE 2014, Pro-
ceedings, Part II, 2014, pp. 541–548.

[9] J. Read, “Scalable multi-label classification,” Ph.D. dissertation, Uni-
versity of Waikato, 2010.

[10] D. Hsu, S. M. Kakade, J. Langford, and T. Zhang, “Multi-label
prediction via compressed sensing,” in NIPS ’09: Neural Information
Processing Systems 2009, 2009.

[11] J. Weston, O. Chapelle, A. Elisseeff, B. Schölkopf, and V. Vapnik,
“Kernel dependency estimation,” in NIPS, 2002, pp. 873–880.

[12] G.-B. Huang, D. Wang, and Y. Lan, “Extreme learning
machines: a survey,” International Journal of Machine Learning
and Cybernetics, vol. 2, no. 2, pp. 107–122, 2011.
http://dx.doi.org/10.1007/s13042-011-0019-y

[13] G. Madjarov, D. Kocev, D. Gjorgjevikj, and S. Džeroski, “An extensive
experimental comparison of methods for multi-label learning,” Pattern
Recognition, vol. 45, no. 9, pp. 3084–3104, Sep. 2012.

[14] G. Tsoumakas and I. P. Vlahavas, “Random k-labelsets: An ensemble
method for multilabel classification,” in ECML ’07: 18th European
Conference on Machine Learning. Springer, 2007, pp. 406–417.

[15] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains
for multi-label classification,” Machine Learning, vol. 85, no. 3, pp.
333–359, 2011.

