
Deep Learning in Partially-labeled Data Streams

Jesse Read
Aalto University and HIIT

Helsinki, Finland
jesse.read@aalto.fi

Fernando Perez-Cruz
Univ. Carlos III de Madrid

Madrid, Spain
fernando@tsc.uc3m.es

Albert Bifet
Huawei Noah’s Ark Lab

Hong Kong
bifet.albert@huawei.com

ABSTRACT
Of the considerable research on data streams, relatively lit-
tle deals with classification where only some of the instances
in the stream are labeled. Most state-of-the-art data-stream
algorithms do not have an effective way of dealing with un-
labeled instances from the same domain. In this paper we
explore deep learning techniques that provide important ad-
vantages such as the ability to learn incrementally in con-
stant memory, and from unlabeled examples. We develop
two deep learning methods and explore empirically via a se-
ries of empirical evaluations the application to several data
streams scenarios based on real data. We find that our meth-
ods can offer competitive accuracy as compared with exist-
ing popular data-stream learners.

1. INTRODUCTION
There is a trend towards working with dynamic data, both

in the real world and the academic literature. Many mod-
ern data sources are not only dynamic but often generated at
high speed and must be classified in real time. Such contexts
can be found in sensor applications, monitoring (e.g., elec-
tricity) demand, manufacturing processes, robotics, email,
news feeds, and social networks. Real-time analysis of data
streams is becoming a key area of data mining research as
the number of applications in this area grows.

On static datasets (where all training data is available
before training commences), classifiers such as support vec-
tor machines (SVMs) have been very popular on account
of their good performance. However, as these algorithms
are not inherently incremental, they have not proven to be
a competitive and viable data-stream learner. Two main
approaches have surfaced in the literature. Some authors
have adapted existing methods to the incremental setting,
such as very fast decision trees (VFDT), e.g., [8] and lazy
learners like k-nearest neighbors (kNN), e.g., [16]. Other
authors have developed ‘batch-incremental’ methods to al-
low the application of methods like SVMs to data streams;
where, generally, a new model is built when new data is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
April 13 - 17, 2014, Salamanca, Spain.
Copyright 2015 ACM 978-1-4503-3196-8/15/04 ...$15.00
http://dx.doi.org/10.1145/2695664.2695871.

available, and phasing out old models when memory fills up
(the size each batch must be determined automatically or
ad-hoc via a user parameter), as in [13].

VFDTs have often been considered the state of the art on
many streams, [2], as are fast and accurate, although can re-
quire many (labeled) instances to build a good model and of-
ten require explicit detection of concept drift [14]. Likewise,
kNN has also been shown to perform well in data-streams
[16, 14], although as a lazy method, it can only store a fi-
nite ‘window’ of examples. Batch-incremental SVMs and
Decision Trees only perform well on certain datasets with a
well-chosen window size. It is notable that naturally incre-
mental methods, like Naive Bayes and Neural Networks (as-
suming an online learning mechanism) do not usually feature
in the data-stream literature as high-performing classifiers.
We are not aware of any large-scale empirical study where
these classifiers have out-competed with modern VFDTs or
kNN approaches over a range of domains in a data-stream
setting.

We note that the most renown methods up till now have
focused primarily on dealing with high-speed data and de-
tecting drift, under the fully-supervised scenario of a fully-
labeled stream. The case of a partially-labeled stream has
not been thoroughly addressed in data-stream literature (ex-
cept a notable recent exceptions by [10, 12, 3] – which we
discuss in Section 3). Although there are scenarios where
the true label of each example is always known after predic-
tion (such as predicting the weather, or electricity demand),
in many contexts, labeled examples are expensive to obtain
en masse (particularly when examples are labeled manually,
such as e-mail and other textual domains), whereas a data-
stream by definition has many data-instances arriving over
time.

In recent years, in the static setting, neural networks have
attracted renewed interest in the form of deep learning [6];
where layers of hidden units are stacked upon each other to
model patterns in the data. These deep methods can out-
compete SVMs in many problems. In particular with regard
to data streams, we note important advantages; namely,
they a) work with constant memory, b) can easily learn from
unlabeled instances, and c) can obtain high accuracy

This paper investigates if deep learning can offer a new
state of the art for data streams. We employ two deep
learning methods for data-stream classification, and carry
out a series of experiments – both in the context of a par-
tially and fully-labeled stream. Our main contribution is 1)
to improve the performance of several popular (and high-
performing) data-stream methods, and 2) revive the status

of neural network classifiers in data-stream classification.

2. DEEP LEARNING IN DATA STREAMS
A data instance x comes from some space Rd and can be

represented by a vector of length d; i.e., x = [x1, . . . , xd].
Let us assume a data stream of instances xt|t = 1, . . . (of
unknown length). Note we use the subscript of a vector
to denote the step in time, and the subscript of a value to
indicate a particular value of a vector (e.g., xk|1 < k < d).

The task of data-stream learning is to learn some classifier
h to provide a classification ŷt+1 for each xt+1:

ŷt+1 = h(x̃t+1)

This classification is often a single class ŷ ∈ {1, . . . , C},
but we generalise to the multi-task/multi-dimensional case
of multiple target variables ŷ ∈ Nk

+, each represented as
vector ŷ = [y1, . . . , yk].

Posterior to classification (time step t) the true classifi-
cation of xt may be provided: yt. Note that we denote
time step t + 1 for testing time and time step t for update
time. At time step t a data-stream learner uses each pair
(xt,yt) as a training example to update its model. In the
fully supervised case, the true classification y is always made
available posterior to classification. In the semi-supervised /
partially-labeled case, only a subset of t = 1, . . . have true la-
bels; thus for some xt there is no ground-truth classification
available.

If we removed the unlabeled examples from the stream,
the problem would be reduced to that of a standard fully-
labeled data stream. But these unlabeled examples may con-
tain useful information for learning. In this work we concern
ourselves with both fully labeled and partially-labeled data
streams and, in latter case, we improve accuracy by making
use of all instances, whether they have labels or not.

2.1 Restricted Boltzmann Machines (RBMs)
A Boltzmann machine is a type of neural network that can

be used to discover the underlying regularities of the train-
ing data. The restricted Boltzmann machine setting (RBM)
[6] deals with two layers of features, a visible layer (the orig-
inal feature-attribute space) and a hidden layer. Units (i.e.,
feature attributes) are fully connected between layers but
unconnected within layers, making this setting tractable to
larger numbers of units.

Figure 1 shows a graphical representation of an RBM.
Given instances from some feature space, an RBM learns to
project such instances into a new ‘hidden’ feature space. The
visible units take the same values as the original instances
x = [x1, . . . , xd], and from these the RBM produces corre-
sponding values for u hidden units z = [z1, . . . , zu] (usually
u < d to create an information bottleneck). Each visible
unit xi is connected to every hidden unit zj via a weight
wij , and vice versa1. The RBM learns these weights. This
process is completely unsupervised, i.e., the class label has
not been considered.

The hidden variables can provide a compact represen-
tation of the underlying patterns and structure of the in-
put. An RBM can capture 2u input space regions, whereas
standard clustering requires O(2u) parameters and exam-
ples to capture this much complexity. Ideally, the learned

1For clarity, we do not include bias units

z4z3z2z1

x5x4x3x2x1

Figure 1: An RBM with d = 5 input units and h = 4 hidden
units. Each edge is associated with a weight wij .

RBM would produce hidden variables that correspond di-
rectly (deterministically) to the label variables, and thus we
could recover the label vector directly given any input vec-
tor. This is seldom the case, but we should expect the hidden
layer of data to be more closely related to the labels than
the original data (and hence be able to learn from it more
easily).

RBMs are energy-based models, where the joint probabil-
ity of visible (x) and hidden units (z) is proportional to the
energy between them:

P (x, z) ∝ e−E(x,z).

Hence, by manipulating the energy E we can in turn gen-
erate the probability P (x, z). Specifically, we minimize the
energy (i.e., find low energy states for the model) which max-
imizes the joint probability of the visible and hidden units.
This is done by learning a weight matrix W , since

E(x, z) = −xW z.

We use contrastive divergence [5] to learn W , an algorithm
algorithmically similar to gradient descent and, as such, we
can run it incrementally, one instance at-a-time. The update
rule for W is:

W ← λW cd(xt) (1)

where cd(xt) is the contrastive divergence of instance xt and
λ is the learning rate.

2.2 Deep Belief Networks (DBNs)
RBMs can be stacked on top of each other to form so-

called DBNs [6]. This ‘deep’ nature provides important ad-
vantages in learning the underlying patterns of the data.
The RBMs are trained greedily (and in the data-stream case,
can be trained incrementally): the first RBM takes instances

xt from the input space and produces outputs z
(1)
t , then the

second RBM takes inputs z
(1)
t as the inputs, and produces

z
(2)
t , and so on and so forth until z

(`)
t (for ` layers).

Again, we point out that these deep Boltzmann machines
function in an unsupervised and incremental fashion using
only the input space. The final phase is to carry out su-
pervised learning (whenever labels are available). In this
work we use two strategies for this, to carry out learning
and classification in a data-stream context.

DBN-h.
Many discriminative supervised methods can learn well

simply by treating the top layer output as inputs [7]. Thus,
we can build any data-stream model h directly from the

top-layer instances z
(`)
t |t = 1, . . . as if they were the original

input space, with the labels yt|t = 1, . . . to create model.
The DBN is trained using all xt, and when a yt is available,

Figure 2: DBN-h: A data stream learner h learns

from all (z
(2)
1 ,y1), . . . , (z

(2)
t ,yt) and produces predictions

ŷ1, . . . , ŷt+1.

yt
oo g

h.update

ŷt+1OO

h.predict

z
(`)
t z

(`)
t+1OO

RBM.update/propagate

xt+1 xt+2

then h learns from pair (zt,yt). It makes predictions ŷt+1 =

h(zt+1
(`)) = h(DBN(xt+1)) where z

(`)
t+1 is the output from

the DBN (given input xt+1). See Figure 2.

DBN-BP.
In our second method, we use the network to predict the

labels directly, by adding a final layer of equivalent dimen-
sion to the label space (of k units). To make the predictions
correspond to the labels, we run the back propagation algo-
rithm to fine-tune the weights of the network (with respect
to label assignments), as in in [6]: each instance xt is fed
in at the bottom, and propagated upward to the final layer

as z
(`)
t ≡ ŷ. The errors are then back propagated through

the network, updating the weights (previously initialized by
the RBMs) in the process. The only difference from DBN-h
is that h is a linear layer, and the weights of the RBMs are
updated.

Algorithm 1 illustrates the algorithm we use to bring to-
gether an RBM with any standard data-stream classifier
(specified by the user). In the case of our DBN-BP method,
this classifier (a back-propagated neural network) also up-
dates the weights set by the RBM.

Algorithm 1 Update algorithm at timestep t, given an
RBM or DBN and data-stream classifier.

1. transform xt into zt via RBM(s)
2. if this is a labeled example (i.e., ∃yt):

• update the classifier h with example (zt,yt)
3. update the RBM with xt, see Eq. (1)

3. RELATED WORK
Work on dealing with partially-labeled data streams is a

very small portion of the overall data-stream literature. [10]
provides a neural network-based approach for semi-supervised
data stream classification. [12] uses a micro-clustering tech-
nique. We remark again that DBMs, as we work with in
this paper, provide a much more powerful framework than
clustering. In [3] the main use of unlabeled examples is to
help detect concept drift, although using the expectation-
maximization algorithm (EM), they can also be used to up-
date the classifier.

A proof of concept for DBNs, using a conditional RBM,
in an incremental setting was provided in [4], but little in-
dication was given to its actual performance with regard
to existing approaches on real-world concept-drifting data
streams.

The task of active learning is similar to the semi-supervised
case in that only a subset of instances are labeled. The main
difference is that the algorithm chooses which instances it
wants labels for; and this is the focus (for example, electing
examples near the decision boundary) rather than trying to
learn from the unlabeled examples. See, for example, [18].

4. EXPERIMENTS
We carry out experiments on some existing real-world

datasets (see below) using the open-source MEKA2 and MOA3

frameworks (MEKA contains wrappers for MOA classifiers).
Our source code will be made available.

Prior to each experiment, we remove the labels of a certain
portion s of the instances (depending on the experiment) to
simulate a partially-labeled stream; if s = 0.8, for example,
then we remove the label from every fifth instance. In the
case of methods which only deal with labeled examples, they
quietly ignore any instances with no labels associated (once
having predicted a label).

We split each dataset into 20 evenly-sized windows. We
initially construct a model from the instances in the first
window, and then update this model incrementally (one in-
stance at a time) with each of the remaining instances. Prior
to updating, we first gauge the accuracy of the classifier.
Accuracy can be graded individually by window, or as an
average overall.

4.1 Datasets
We select real-world datasets of an incremental nature:

• Enron E-mail Subset (Enron) A set of 1703 emails
from the Enron corpus manually labeled into (an aver-
age of 3.4) k = 53 categories by the UC Berkeley Enron
Email Analysis Project4. A small collection by data
stream standards, but is time-ordered. Each instance
is represented by 1000 binary word-presence feature
attributes.

• 20 Newsgroups (20NG) The classic 20 newsgroups
collection [9] of around 20, 000 articles sourced from
k = 20 newsgroups, with some articles (around 3%)
overlapping between multiple newsgroups. Instances
are ordered by date over several months. Each instance
is represented by 1000 binary word-presence feature
attributes.

• Aviation Safety Reports (TMC7) contains 28, 596
instances of aviation safety reports labeled with prob-
lems being described by these reports (k = 22 possi-
ble problems, an average of 2.16 problems per report).
The version of this dataset we used has 500 feature
attributes.

• Forest Cover Type (CType) One of 7 types of forest
cover is associated with cells based on 54 attributes.
There are 581, 012 instances in total. This dataset is
commonly used in data-stream papers, e.g., [2].

2http://meka.sourceforge.net
3http://moa.cs.waikato.ac.nz/
4http://bailando.sims.berkeley.edu/enron_email.
html

4.2 Evaluation
Because each of these datasets has separate categories, we

create a classifier for each separately, and gauge accuracy as

accuracy =
1

N

N∑
i=1

|yi ∧ ŷi|
|yi ∨ ŷi|

where ∨ and ∧ are the logical OR and AND operations,
applied vector-wise. This measure is common to multi-label
evaluation, for example [17, 15]. If there is only one label
assigned, this measure will default to ordinary accuracy.

Therefore, each dataset really provides k separate prob-
lems. For Enron and TMC2007 we learn h1, . . . , hk classifiers
separately for each problem of k categories (or labels). For
20NG and CType, due to the very sparse / absence of multi-
labeling we learn a single multi-class classifier of k possible
classes (and duplicate each (xt,yt) where

∑k
j=1 yj > 1, i.e.,

with multiple categories assigned). Both of these strategies
has been used for some time in the multi-label literature.
Although more competitive methods for dealing with mul-
tiple labels have appeared in recent times (a good survey is
provided in [11]), we emphasise that we are only interested
in the relative performances of methods in a data-stream
scenario here, and are not trying to improve on the state-of-
the-art in multi-label classification.

4.3 Results and Discussion
In all experiments we use RBMs with the following param-

eters: u = 50 hidden units, λ = 0.1 learning rate and 1000
epochs over the initial window. Except with DBN-BP, where
we use λ = 0.1 for the BP neural network updates, and
λ = 0.01 for the unsupervised RBM updates and (with the
idea that the discriminative component should learn faster).

We use a small portion of the initial instances to begin the
DBN (for a number of epochs), then update it thenceforth

incrementally (where each xt is propagated up to z
(`)
t before

x(t+1) arrives).
In the first experiment (results in Figure 3, Table 1), we

take a couple of popular data-stream algorithms from the lit-
erature – k-nearest neighbours (kNN), and Hoeffding Trees
(HT) – and compare their performance with and without an
RBM-transformed feature space, for a range of rates of su-
pervision (1.0, . . . , 0.2). With kNN we use a rolling batch of
size 1000 (first in first out). We use HT with default param-
eters in MOA, having Naive Bayes at the leaves.

In a second experiment (results in Figure 4, Table 2), we
compare the performance of popular kNN (a high-performer
in data streams, as shown in [16, 14]) and state-of-the-art
leveraging bagged HT (LB/HT) [2] with the performance of
our DBNs: our deep-Boltzmann-machine with HT (DBN-h,
where h = kNN or HT depending on the experiment) and our
back-propagation tuned deep belief network DBN-BP.

RBMs can offer significant improvements in prediction
performance, up to 10 percentage points. As expected, they
are typically more resistant to low levels of supervision, as
seen in Figures 3a, 3c, and 3e.

Our DBN-BP method performs strongly, notably on Enron
and 20NG (best average accuracy). This is significant, since
in general neural-network approaches have not often been
taken seriously the data-stream literature (in terms of being
‘state-of-the-art’). The DBN-h methods also performs very
well overall; showing that deep learning methods can extract
important structure from the original input space in a data

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

DBM-HT
DBM-kNN

DBN-BP
LB-HT

kNN

(a) Enron / 0.2 supervision

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(b) 20NG / 0.2 supervision

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(c) TMC7 / 0.2 supervision

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

DBM-HT
DBM-kNN

DBN-BP
LB-HT

kNN

(d) CType / 0.2 supervision

Figure 4: Performance over time (19 windows) for our DBN-
kNN, DBN-HT and DBN-BP compared with HT-LB and kNN. STD
indicates the standalone method h (either kNN or HT, depend-
ing on the experiment).

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

1.0 0.8 0.6 0.4 0.2

a
v
e
ra

g
e
 a

c
c
u
ra

c
y
 (

a
c
ro

s
s
 1

9
 w

in
d
o
w

s
)

level of supervision

HT
RBM-HT

(a) Enron : HT vs. RBM-HT

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

1.0 0.8 0.6 0.4 0.2

a
v
e
ra

g
e
 a

c
c
u
ra

c
y
 (

a
c
ro

s
s
 1

9
 w

in
d
o
w

s
)

level of supervision

HT
RBM-HT

(b) 20NG : HT vs. RBM-HT

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

1.0 0.8 0.6 0.4 0.2

a
v
e
ra

g
e
 a

c
c
u
ra

c
y
 (

a
c
ro

s
s
 1

9
 w

in
d
o
w

s
)

level of supervision

HT
RBM-HT

(c) TMC7 : HT vs. RBM-HT

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

1.0 0.8 0.6 0.4 0.2

a
v
e
ra

g
e
 a

c
c
u
ra

c
y
 (

a
c
ro

s
s
 1

9
 w

in
d
o
w

s
)

level of supervision

HT
RBM-HT

(d) CType : HT vs. RBM-HT

 0.23

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0.33

 0.34

1.0 0.8 0.6 0.4 0.2

a
v
e
ra

g
e
 a

c
c
u
ra

c
y
 (

a
c
ro

s
s
 1

9
 w

in
d
o
w

s
)

level of supervision

kNN
RBM-kNN

(e) Enron : kNN vs. RBM-kNN

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

1.0 0.8 0.6 0.4 0.2

a
v
e
ra

g
e
 a

c
c
u
ra

c
y
 (

a
c
ro

s
s
 1

9
 w

in
d
o
w

s
)

level of supervision

kNN
RBM-kNN

(f) 20NG : kNN vs. RBM-kNN

 0.33

 0.34

 0.35

 0.36

 0.37

 0.38

 0.39

 0.4

 0.41

 0.42

 0.43

1.0 0.8 0.6 0.4 0.2

a
v
e
ra

g
e
 a

c
c
u
ra

c
y
 (

a
c
ro

s
s
 1

9
 w

in
d
o
w

s
)

level of supervision

kNN
RBM-kNN

(g) TMC7 : kNN vs. RBM-kNN

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

1.0 0.8 0.6 0.4 0.2

a
v
e
ra

g
e
 a

c
c
u
ra

c
y
 (

a
c
ro

s
s
 1

9
 w

in
d
o
w

s
)

level of supervision

kNN
RBM-kNN

(h) CType : kNN vs. RBM-kNN

Figure 3: Average predictive performance (over 19 windows) for varying supervision with and without RBMs; using both
kNN and HT as classifiers, on the original and RBM-processed feature space.

Table 1: Total running times (rounded to the nearest sec-
ond) for full supervision in format: build time on initial
window + 19 (evaluated windows) × average time per eval-
uated window.

(a) Running times (s) for kNN

kNN RBM-kNN
Enron 3 + 19× 107 = 2033 10 + 19× 9 = 181
20NG 1 + 19× 680 = 12920 490 + 19× 99 = 2371
TMC7 1 + 19× 653 = 12407 363 + 19× 162 = 3441
CType 0 + 19× 1 = 19 1611 + 19× 7 = 1744

(b) Running times for HT

HT RBM-HT

Enron 10 + 19× 1 = 29 524 + 19× 1 = 543
20NG 41 + 19× 1 = 60 16 + 19× 1 = 35
TMC7 3 + 19× 4 = 79 354 + 19× 1 = 374
CType 1 + 19× 1 = 20 1621 + 19× 1 = 1640

Table 2: Average Accuracy over 19 windows and (rank).

Dataset kNN LB-HT DBN-kNN DBN-HT DBN-BP

Enron 0.23 5 0.26 4 0.27 3 0.29 2 0.38 1
20NG 0.21 4 0.13 5 0.28 3 0.29 2 0.41 1
TMC7 0.38 4 0.52 1 0.29 5 0.44 3 0.49 2
CType 0.91 1 0.83 3 0.90 2 0.60 5 0.72 4
avg. rank 3.50 3.25 3.25 3.00 2.00

stream in real time, and that this has a positive impact on
classification accuracy.

The strengths and limitations of RBMs are clear: RBMs
work best with a large and complex input space, and achieve
much higher results in these contexts; on both Enron and
20NG, DBN-BP obtains over 10 percentage points over the
competitive LB-HT. With smaller, simpler and already fine-
tuned input spaces, the advantages are weaker. This is es-
pecially apparent on CType: standalone kNN performs best.
Clearly, time and memory benefits of RBMs cannot be ob-
tained here either, since the feature space is already small.
This makes sense: deep learning finds structure and patterns
in a complex input space, but in an already well-structured
feature space, it ends up simply recasting the input into an-
other dimension. If the input space of CType were raw pixel
data, we could expect greater gains by using deep learning
strategies.

We note that DBN-h may be somehow overfitting the data
in some cases. For example on Figure 4b, 4c; it performs
very well on some windows, and on other windows its accu-
racy falls dramatically.

It is unusual to see in (Figure 3) that on 20NG with HTs,
the RBM’s performance degrades with less supervision (not
in itself surprising) while the performance of HT actually
improves.

Table 1 shows that, concerning kNN, although there is
a higher initial investment wrt running time in initialising
RBMs, this can quickly pay off by having a smaller input
space (where u < d). Of course standalone kNN’s initiali-
sation is almost instantaneous since it only needs to store
the instances in the initial window in a buffer. HTs are so
efficient that relatively little time savings can be offered by
RBMs, but even under 20NG we see that time savings can
be made. Along with time savings, we can often expect
memory savings. For example, kNN on 20NG will main-
tain up to w × (d + k) = 1, 020, 000 values in memory
(for a moving window of size w = 1000), compared with
(w× (u+k)) + (h∗u) + (u∗u) = 103, 500 values when using
two-layer DBN-kNN and only (h∗u)+(u∗u)+(u∗k) = 53, 500

values for three-layer DBN-BP. The size of a tree is difficult to
estimate a-priori but a tree constructed on an input space
of u = 50 attributes will usually be more compact in many
cases than one constructed on d = 1000 attributes (for ex-
ample).

5. CONCLUSIONS
We have investigated the use of deep learning methods

to incrementally provide a better representation of data-
streams, and thus can improve the accuracy of popular ex-
isting data-stream methods (we look at k-nearest neighbours
and incremental decision trees) by over 10 percentage points
in some cases. At the same time, they can offer (especially in
the case of kNN) significant reductions in running time, even
taking into account the time spent learning from unlabeled
examples.

Furthermore we develop two deep learning approaches,
employing existing classifiers on top of RBMs, and fine-
tuning them using back propagation (and later direct dis-
criminative prediction), respectively. On higher-dimensional
datasets, both methods obtained the highest results overall,
compared with popular and competitive methods from the
literature.

Acknowledgments
This work was supported in part by the Aalto University
AEF research programme http://energyefficiency.aalto.
fi/en/

6. REFERENCES
[1] Albert Bifet and Ricard Gavaldà. Learning from

time-changing data with adaptive windowing. In
SIAM International Conference on Data Mining, 2007.

[2] Albert Bifet, Geoffrey Holmes, and Bernhard
Pfahringer. Leveraging bagging for evolving data
streams. In ECML PKDD’10, pages 135–150, Berlin,
Heidelberg, 2010. Springer-Verlag.

[3] Hanen Borchani, Pedro Larrañaga, and Concha
Bielza. Mining concept-drifting data streams
containing labeled and unlabeled instances. In
IEA/AIE 2010 : 23rd International Conference on
Industrial Engineering and Other Applications of
Applied Intelligent Systems, pages 531–540, 2010.

[4] Roberto Calandra, Tapani Raiko, Marc Peter
Deisenroth, and Federico Montesino-Pouzols. Learning
deep belief networks from non-stationary streams. In
Int. Conf. on Artificial Neural Networks, pages
379–386. Springer, 2012.

[5] Geoffrey Hinton. Training products of experts by
minimizing contrastive divergence. Neural
Computation, 14(8):1711âĂŞ1800, 2000.

[6] Geoffrey Hinton and Ruslan Salakhutdinov. Reducing
the dimensionality of data with neural networks.
Science, 313(5786):504 – 507, 2006.

[7] Geoffrey E. Hinton, Simon Osindero, and Yee Whye
Teh. A fast learning algorithm for deep belief nets.
Neural Computation, 18(7):1527–1554, 2006.

[8] Geoff Hulten, Laurie Spencer, and Pedro Domingos.
Mining time-changing data streams. In KDD, pages
97–106, 2001.

[9] Ken Lang. The 20 newsgroups dataset. “http:
//people.csail.mit.edu/jrennie/20Newsgroups/”,
2008.

[10] Daniel Leite, Pyramo Costa Jr., and Fernando
Gomide. Evolving granular neural network for
semi-supervised data stream classification. In IJCNN
’10: International Joint Conference on Neural
Networks, pages 1–8. IEEE, 2010.

[11] Gjorgji Madjarov, Dragi Kocev, Dejan Gjorgjevikj,
and Saso Dzeroski. An extensive experimental
comparison of methods for multi-label learning.
Pattern Recogn., 45(9):3084–3104, 2012.

[12] Mohammad M. Masud, Jing Gao, Latifur Khan,
Jiawei Han, and Bhavani Thuraisingham. A practical
approach to classify evolving data streams: Training
with limited amount of labeled data. In Proceedings of
the 2008 Eighth IEEE International Conference on
Data Mining, ICDM ’08, pages 929–934, Washington,
DC, USA, 2008. IEEE Computer Society.

[13] Wei Qu, Yang Zhang, Junping Zhu, and Qiang Qiu.
Mining multi-label concept-drifting data streams using
dynamic classifier ensemble. In sian Conference on
Machine Learnin, volume 5828 of Lecture Notes in
Computer Science, pages 308–321. Springer, 2009.

[14] Jesse Read, Albert Bifet, Bernhard Pfahringer, and
Geoff Holmes. Batch-incremental versus
instance-incremental learning in dynamic and evolving
data. In 11th Int. Symposium on Intelligent Data
Analysis, 2012.

[15] Jesse Read, Bernhard Pfahringer, Geoffrey Holmes,
and Eibe Frank. Classifier chains for multi-label
classification. Machine Learning, 85(3):333–359, 2011.

[16] Ammar Shaker and Eyke Hüllermeier. Instance-based
classification and regression on data streams. In
Learning in Non-Stationary Environments, pages
185–201. Springer New York, 2012.

[17] Grigorios Tsoumakas and Ioannis Katakis. Multi label
classification: An overview. International Journal of
Data Warehousing and Mining, 3(3):1–13, 2007.

[18] Indre Zliobaite, Albert Bifet, Geoff Holmes, and
Bernhard Pfahringer. Moa concept drift active
learning strategies for streaming data. Journal of
Machine Learning Research - Proceedings Track,
17:48–55, 2011.

