
EFFICIENT MONTE CARLO OPTIMIZATION FOR MULTI-LABEL CLASSIFIER CHAINS

Jesse Read, Luca Martino∗

Dept. of Signal Theory and Communications
Univ. Carlos III de Madrid (Spain)

David Luengo∗

Dept. of Circuits and Systems Engineering
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ABSTRACT

Multi-label classification (MLC) is the supervised learning
problem where an instance may be associated with multiple
labels. Modeling dependencies between labels allows MLC
methods to improve their performance at the expense of an
increased computational cost. In this paper we focus on the
classifier chains (CC) approach for modeling dependencies.
On the one hand, the original CC algorithm makes a greedy
approximation, and is fast but tends to propagate errors down
the chain. On the other hand, a recent Bayes-optimal method
improves the performance, but is computationally intractable
in practice. Here we present a novel double-Monte Carlo
scheme (M2CC), both for finding a good chain sequence and
performing efficient inference. The M2CC algorithm remains
tractable for high-dimensional data sets and obtains the best
overall accuracy, as shown on several real data sets with input
dimension as high as 1449 and up to 103 labels.

Index Terms— multi-label classification; Monte Carlo
methods; classifier chains

1. INTRODUCTION

Multi-label classification (MLC) is the supervised learning
problem where an instance may be associated with multiple
labels, rather than with a single label as in traditional binary
or multi-class single-label classification (SLC) problems. The
MLC learning context is receiving increased attention in the
literature, since it arises naturally in a wide variety of do-
mains: text, audio, still images and video, bioinformatics, etc.
[1, 2]. The main challenge in this area is modeling label de-
pendencies without incurring in an intractable complexity.

A basic approach to MLC is provided by the so-called
binary relevance (BR) method, which decomposes the MLC
problem into a set of SLC problems (one per label) and uses a
separate classifier for each label. In this way, the multi-label
problem is turned into a series of standard binary classifica-
tion problems that can be solved with any off-the-shelf binary
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classifier (e.g., a logistic regressor or a support vector ma-
chine). Unfortunately, although BR has a low computational
cost, it cannot provide high performance, because it does not
model dependencies between labels [2, 3, 4, 5, 6].

In order to model dependencies explicitly, several alterna-
tive schemes have been proposed, such as the so-called label
powerset (LP) method [7]. LP considers each potential com-
bination of labels in the MLC problem as a single label. In
this way, the multi-label problem is turned into a traditional
multi-class problem that can be solved using standard meth-
ods. Unfortunately, given the huge number of class values
produced by this transformation, this method is usually un-
feasible for practical application, and suffers from issues like
overfitting. This was recognised by [3, 8], which provide ap-
proximations to the LP scheme that reduce these problems,
although such methods have been superseded in recent years.

A more recent idea is using classifier chains (CC), which
improves the performance of BR and LP by constructing a
sequence of classifiers that make use of previous outputs of
the chain. The original CC method, introduced in [4] and ex-
tended in [5, 9], makes a greedy approximation, and is fast but
tends to propagate errors down the chain. Nevertheless, a very
recent extensive experimental comparison reaffirmed that CC
is among the highest-performing methods for MLC, and rec-
ommended it as a benchmark algorithm [10]. A CC-based
Bayes-optimal method, probabilistic classifier chains (PCC),
has also been recently proposed [5]. However, although it im-
proves the performance of CC, its computational cost is too
large for most real-world applications.

In this paper we introduce a novel method that attains
the performance of PCC, but remains tractable for high-
dimensional data sets. Our approach (M2CC) is based on
a double Monte Carlo optimization technique and, unlike
all other chain-based methods in the literature, it explicitly
searches the space of possible chain-sequences during the
training stage. Hence, predictive performance can be traded
off for scalability depending on the application.

The paper is organized as follows. In Section 2 we review
multi-label classification and the important developments
leading up to this paper. In Section 3 we detail our proposed
novel methods. In Section 4 we carry out empirical evalua-
tions. Finally, in Section 5 we draw some conclusions and
mention possible future work.



2. MULTI-LABEL CLASSIFICATION (MLC)

Let us assume that we have a set of training data composed
of N labelled examples, D = {(x(i),y(i))}Ni=1, where x(i) =

[x
(i)
1 , . . . , x

(i)
D ]> is the i-th D-dimensional instance (input),

with x(i)d ∈ Xd for 1 ≤ d ≤ D, and y(i) = [y
(i)
1 , . . . , y

(i)
L ]> is

the i-th example’s L× 1 label relevance vector (output), with
y
(i)
j ∈ {0, 1} being its j-th label assignment (1 iff the label is

relevant to x(i), 0 otherwise).
In MLC we seek to learn a function, y = h(x), that

assigns a vector of labels, y ∈ {0, 1}L, to each instance,
x ∈ X1 × · · · × Xd. Let us assume that the true distribu-
tion of the data is f(y|x). From a Bayesian point of view, the
optimal label assignment (i.e., the one with the largest prob-
ability of being the true one) for a given test instance, x∗, is
provided by the maximum a posteriori (MAP) label estimate:

y∗MAP = hMAP(x
∗) = argmax

y
f(y|x∗). (1)

Unfortunately, the true distribution, f(y|x), is usually un-
known, and the classifier has to work with an approximation,
p(y|x), constructed from the training data. Hence, the (pos-
sibly sub-optimal) label prediction is finally given by

y∗ = h(x∗) = argmax
y

p(y|x∗). (2)

2.1. Classifier Chains (CC)

Classifier chains (CC) is based on modeling the correlation
among labels using the chain rule of probability. Given a data
instance, x, and a vector of label indexes, s = [s1, . . . , sL]

>,
obtained as a permutation of {1, . . . , L}, p(y|x, s) may be
expressed as1

p(ỹ|x∗, s) = p(ỹ1|x∗)
L∏

j=2

p(ỹj |x∗, ỹ1, . . . , ỹj−1), (3)

where ỹ = [ỹ1, . . . , ỹL]
> is the permuted label vector, ỹj =

ysj is the j-th label in the permutation, and the probabilities in
(3) are learnt from the labelled data during the training stage.

During the test stage, CC follows a single path greedily
down the chain of L binary classifiers, with the j-th classifier,
hj , predicting the j-th label’s relevance, ỹ∗j , using the test
instance, x∗, and all previous predictions (ỹ∗1 , . . . , ỹ

∗
j−1), as

ỹ∗j = hj(x
∗|s) = argmax

ỹj

p(ỹj |x∗, ỹ∗1 , . . . , ỹ∗j−1). (4)

In carrying out classification down a chain in this way, CC
models label dependencies and, as a result, usually performs
much better than BR, while being similar in memory and time
requirements in practice. However, due to its greedy approach
it is susceptible to errors in the initial links of the chain [5].

1Theoretically, Eq. (3) does not depend on the label order. However, since
all the probabilities in (3) are estimated from the training data, the label order
can have a large effect in practice, as recognized by [5].

2.2. Probabilistic Classifier Chains (PCC)

Probabilistic classifier chains (PCC) was introduced in [5].
In the training phase, PCC is identical to CC. However, dur-
ing the test stage PCC provides Bayes-optimal inference by
exploring all the 2L possible paths of the chain. Hence, for a
given test instance, x∗, PCC provides the optimum label esti-
mate, obtained maximizing the label vector, y, rather than the
individual labels, yj :

ỹ∗ = h(x∗|s) = argmax
ỹ

p(ỹ|x∗, s), (5)

where p(ỹ|x∗, s) is given by (3). In [5] an overall improve-
ment of PCC over CC is reported, but at the price of high com-
putational complexity: it is intractable for more than about 10
labels (≡ 210 paths), which represents the majority of prob-
lems in the multi-label domain.

3. EFFICIENT DOUBLE MONTE CARLO
TECHNIQUE FOR CLASSIFIER CHAINS

In chain-based MLC problems, for any given test instance,
x∗, and label order, s, we wish to find the best label-relevance
vector, y∗ = [ỹ∗1 , . . . , ỹ

∗
L], out of the 2L possible label vectors

or paths. However, the best inference on a poor model will not
be as good as the best inference on a good model. Therefore,
at training time we also wish to find the best chain order or
sequence, s = [s1, . . . , sL], out of the L! possible chains.

Unfortunately, the optimal solution of these two problems
is not feasible for large values of L. Hence, in this section
we introduce an efficient double Monte Carlo strategy for
quasi-optimal inference in Classifier Chains. We present both
a tractable label prediction scheme at test time (MCC) and
a method that performs an additional search for the optimal
chain sequence at build time (M2CC); an issue which, to the
best of our knowledge, has not yet been successfully tackled,
except by means of avoiding it using a network, such as the
conditional dependency network (CDN) of [6].

3.1. Training step: finding the best chain

In order to obtain the best chain (i.e., the optimal label order)
during the training step we introduce a payoff function,

J(s) =

N∑
i=1

p(y(i)|x(i), s), (6)

and the optimal sequence, ŝ, is the one that maximizes (6)
over the set of L! possible sequences, i.e.,

ŝ = argmax
s

J(s) = argmax
s

N∑
i=1

p(y(i)|x(i), s). (7)

The exact solution of (7) is intractable even for medium
values of L. Therefore, we propose using the Monte Carlo



Algorithm 1 Finding a suitable ŝ

Input:
• D = {(x(i),y(i))}Di=1: training data
• π(s|st−1): proposal function
• T ′: number of iterations

Algorithm:
1. Start with some random sequence, s0, and build an ini-

tial model, p(y|x, s0).
2. For t = 1, . . . , T ′:

(a) Draw s′ ∼ π(s|st−1) and build model p(y|x, s′).
(b) if J(s′) > J(st−1)

• st ← s′ accept.
(c) else

• st ← st−1 reject.
Output:
• ŝ = sT ′ : estimated label sequence.

approach summarized in Algorithm 1 to perform an efficient
exploration of the label-sequence space. This algorithm starts
with a randomly chosen label sequence, s0, which is then
modified trying to find local maximum of the payoff func-
tion at least. More specifically, given a sequence st−1 the
proposal function π(st|st−1) consists of choosing uniformly
two positions of the label sequence (1 ≤ `,m ≤ L) and
swapping the labels corresponding to those positions, so that
st(`) = st−1(m) and st(m) = st−1(`− 1).

3.2. Inference (test) step: finding the best path y∗

In the test step, for a given test instance, x∗, for which the
true label association is unknown, and a label order (either
estimated for M2CC or randomly chosen for MCC), we wish to
find the optimal label vector that maximizes (5). In general,
this problem can be solved analytically for low values of L
by exploring all the 2L possible paths, as in the PCC method
[5]. However, when L grows this method quickly becomes
computationally intractable. Therefore, we propose here us-
ing the random search Monte Carlo approach shown in Al-
gorithm 2 to approximate (5). This algorithm starts from the
greedy inference offered by standard CC, draws samples y(i),
i = 1, ..., T according to the model p(ỹt|x∗, ŝ), providing a
predicted label sequence

y∗ = argmax p(ỹ∗t |x∗, ŝ), (8)

where ỹ∗t (1 ≤ t ≤ T ) are the samples accepted by the algo-
rithm.

4. EXPERIMENTS

We perform experiments on a collection of real world data
sets familiar in the multi-label literature [3, 4, 5], whose char-
acteristics are shown in Table 1. We compare our two novel
methods (MCC and M2CC) to baseline BR [7], the original

Algorithm 2 Finding y∗ for a given test instance x∗.
Input:
• x∗: test instance.
• ŝ: label order (estimated or chosen randomly).
• p(y|x, ŝ): probabilistic model (from training stage).

Algorithm:
1. Obtain an initial path, y0, using CC.
2. For t = 1, . . . , T :

(a) Draw y′ ∼ p(y|x∗, ŝ)
(b) if p(y′|x∗, ŝ) > p(yt|x∗, ŝ)

• yt ← y′ accept.
(c) else

• yt ← yt−1 reject.
Output:
• y∗ = yT : predicted label assignment.

Table 1. Multi-label datasets characteristics: n indicates nu-
meric variables; b indicates binary variables, LC is label car-
dinality: average number of relevant labels per example.

N L D LC Type
Music 593 6 72n 1.87 audio
Scene 2407 6 294n 1.07 image
Yeast 2417 14 103n 4.24 biology

Genbase 661 27 1185b 1.25 biology
Medical 978 45 1449b 1.25 text

Enron 1702 53 1001b 3.38 text
Reuters 6000 103 500n 1.46 text

classifier chains method CC [4], the Bayes-optimal rendi-
tion PCC [5]; and also the conditional dependency networks
method CDN of [6] under I = 1000 total iterations. For
our methods, we use T = 100 (inference y-step) and just
T ′ = 10 for M2CC (training s-step).2 As a base classifier
we use support vector machines fitted with logistic models in
order to have a probabilistic output [11].3

We carry out 5-fold cross validation (CV). Results for pre-
dictive performance are displayed in Table 2. As a perfor-
mance measure we have used the exact match score (inversely
equivalent to subset zero-one loss),

EXACT MATCH =
1

N

N∑
i=1

I(y(i) = y∗(i)),

where I(·) is an indicator function (returning 1 iff the logical
condition is fulfilled and zero otherwise), as this is the loss
function minimized by the MAP estimator [5].Results under
other measures of evaluation can be seen in [13]. Note that,
since PCC is only tractable on datasets where L < 10, we can

2Better results can be obtained by increasing T ′ at the cost of more run-
ning time; however even T = 10′ proves enough to improve the predictive
performance under our method.

3All methods are implemented and will be made available within the
MEKA framework (http://meka.sourceforge.net).



Table 2. Average exact match over 5-fold CV.
Dataset BR CC PCC CDN MCC M2CC
Music 0.299 0.287 0.346 0.297 0.346 0.361
Scene 0.538 0.545 0.636 0.531 0.636 0.657
Yeast 0.140 0.151 DNF 0.069 0.209 0.206
Genbase 0.941 0.964 DNF 0.945 0.964 0.967
Medical 0.585 0.622 DNF 0.602 0.629 0.627
Enron 0.065 0.099 DNF 0.073 0.101 0.103
Reuters 0.287 0.346 DNF 0.271 0.366 0.364
avg. rank 4.57 3.43 4.71 1.57 1.43

Table 3. Average running time (seconds) over 5-fold CV.
Dataset BR CC PCC CDN MCC M2CC
Music 0 0 0 5 1 4
Scene 12 10 15 92 25 170
Yeast 10 10 DNF 88 32 222
Genbase 10 7 DNF 572 201 382
Medical 9 10 DNF 1546 338 506
Enron 102 91 DNF 3091 706 1399
Reuters 106 119 DNF 14734 1831 20593

Table 4. Average exact match over 5-fold CV.
Dataset ECC EM2CC
Music 0.314 (2) 0.329 (1)
Scene 0.608 (2) 0.633 (1)
Yeast 0.186 (2) 0.193 (1)
Genbase 0.945 (1) 0.945 (1)
Medical 0.643 (2) 0.649 (1)
Enron 0.112 (2) 0.116 (1)
Reuters 0.364 (1) 0.360 (2)
avg. rank 1.71 1.14

only provide results for the first two data sets, with DNF (Did
Not Finish) in Table 2 indicating this fact. Results for running
time performance are also given in Table 3. Furthermore, the
original CC paper [4] also presented CC in Bagging ensembles
(ECC) to improve predictive performance. We also bag M2CC
to create the ensemble method EM2CC. We use 10 models
for each ensemble, each one starting with a different random
initiation of the chain sequence (s0). Results for predictive
performance of EM2CC vs. M2CC are given in Table 4.

As claimed in the literature, CC improves over BR in all
cases. PCC in turn improves on CC in the two cases where it is
tractable. The MCC methods perform the best overall. Both of
them outperform CC on every occasion – with the exception
of ties on Genbase. We note that MCC provides identical re-
sults to PCC on both datasets that it finishes on. M2CC obtains
even higher performance than PCC on these datasets, under-
lining the importance of the chain sequence in constructing
classifier chains, and the fact that we have been able to lever-
age this to create a better model. As expected, M2CC also out-

performs MCC in most cases, and overall, precisely because it
optimises the chain-sequence space, improving the sequence
of labels at training time.

Clearly MCC and M2CC take much longer than the stan-
dard greedy CC method, but they are still tractable on all the
data sets we looked at (unlike PCC) and the improvement in
predictive performance is well worth the trade off. Further-
more, we note that our methods are generally faster than the
conditional dependency network CDN (with the exception of
M2CC on some datasets).

Finally, we note that, although ECC is able to offer an
improvement over CC (particularly on Yeast, Medical and
Enron), EM2CC still maintains a clear advantage over ECC on
all data sets. We also notice that, while a Bagging ensemble
can raise the accuracy of CC, even this additional accuracy
does not always compete well with a single MCC or M2CC
model (if we compare between Tables 2 and 4).

5. CONCLUSIONS AND FUTURE WORK

We have introduced two novel efficient Monte Carlo (MC)
algorithms (MCC and M2CC) for multi-label learning using
classifier chains. The proposed approaches use MC tech-
niques to efficiently search the label-path space at inference
time and also the chain-sequence space at training time in
the case of M2CC. We show through an empirical evaluation
that using these methods results in better predictive perfor-
mance than related methods while remaining computationally
tractable. In future work, we intend to look at more advanced
random search algorithms and dependency structures other
than chain models, as well different payoff functions. We also
plan to extend this work to multi-valued target attributes and
hierarchical MLC problems.

6. RELATION TO PRIOR WORK

This work builds on the classifier chains (CC) framework for
multi-label classification (MLC) [4] and its recent probabilis-
tic extension, probabilistic classifier chains (PCC) [5]. More
specifically, since the Bayes-optimal approach proposed by
PCC is unfeasible in practice due to its computational cost, we
propose a tractable inference scheme, based on Monte Carlo
(MC) methods, which attains a similar performance to PCC.
Furthermore, we also introduce an MC approach for the opti-
mization of the chain of classifiers during the training stage,
an issue that has not been tackled before as far as we know,
except by avoiding it altogether (e.g., by using conditional
dependency networks [6]). Finally, ensemble versions of the
two MC approaches proposed have been developed following
the line of ECC and EPCC [4, 5].
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