
CD-MOA: Change Detection Framework

for Massive Online Analysis

Albert Bifet1, Jesse Read2, Bernhard Pfahringer3,
Geoff Holmes3, and Indrė Žliobaitė4

1 Yahoo! Research Barcelona, Spain
abifet@yahoo-inc.com

2 Universidad Carlos III, Spain
jesse@tsc.uc3m.es

3 University of Waikato, New Zealand
{bernhard,geoff}@waikato.ac.nz

4 Aalto University and HIIT, Finland
indre.zliobaite@aalto.fi

Abstract. Analysis of data from networked digital information systems
such as mobile devices, remote sensors, and streaming applications, needs
to deal with two challenges: the size of data and the capacity to be
adaptive to changes in concept in real-time. Many approaches meet the
challenge by using an explicit change detector alongside a classification
algorithm and then evaluate performance using classification accuracy.
However, there is an unexpected connection between change detectors
and classification methods that needs to be acknowledged. The phe-
nomenon has been observed previously, connecting high classification
performance with high false positive rates. The implication is that we
need to be careful to evaluate systems against intended outcomes–high
classification rates, low false alarm rates, compromises between the two
and so forth. This paper proposes a new experimental framework for
evaluating change detection methods against intended outcomes. The
framework is general in the sense that it can be used with other data
mining tasks such as frequent item and pattern mining, clustering etc.
Included in the framework is a new measure of performance of a change
detector that monitors the compromise between fast detection and false
alarms. Using this new experimental framework we conduct an evalu-
ation study on synthetic and real-world datasets to show that classifi-
cation performance is indeed a poor proxy for change detection perfor-
mance and provide further evidence that classification performance is
correlated strongly with the use of change detectors that produce high
false positive rates.

Keywords: data streams, incremental, dynamic, evolving, online.

1 Introduction

Real-time analytics is a term used to identify analytics performed taking into
account recent data that is being generated in real time. The analytical models

A. Tucker et al. (Eds.): IDA 2013, LNCS 8207, pp. 92–103, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



CD-MOA: Change Detection Framework for Massive Online Analysis 93

should be up-to-date to match the current distribution of data. To be able to do
that, models should be able to adapt quickly. Drift detection is a very important
component in adaptive modeling, detecting a change gives a signal about when to
adapt models. Typically, the streaming error of predictive models is monitored
and when the detector raises a change alarm, then the model is updated or
replaced by a new one.

Currently, drift detection methods are typically evaluated by the final clas-
sification accuracy [1,2]. For example, in [2], the authors notice that for a real
dataset, the Electricity Market Dataset [3], performance increases when there
is a large number of false positives (or low ARL0): “Interestingly, the fact that
the best performance is achieved with a low ARL0 suggests that changes are oc-
curring quite frequently.” Thus, evaluating drift detection methods only using
classifiers may not be informative enough, since the adaptation strategy occludes
change detector performance. Further, given that classification is not the only
context for change detection we need to match our drift detection evaluation
methodologies with what it is that we want to achieve from the task as a whole.

This paper investigates change detection for real time predictive modeling,
and presents the following contributions:

1. CD-MOA, a new experimental framework for evaluating concept drift
detection methods,

2. MTR, a new measure of performance of a concept drift detection method.

It is important to note that the framework generalises to other tasks but in
this paper our focus is on change detection in the context of classification. The
proposed framework is intended to serve as a tool for the research community and
industry data analysts for experimentally comparing and benchmarking change
detection techniques on synthetic data where ground truth changes are known.
On real data, the framework allows to find changes in time series, and monitor
the error in classification tasks. The framework and the proposed techniques are
implemented in the open source data stream analysis software MOA and are
available online1.

In Section 2 we present the new change detection framework and propose a
new evaluation measure for change detection. Section 3 presents the results of
our experimental evaluation. We conclude the study in Section 4.

2 Experimental Framework

CD-MOA is a new framework for comparing change detection methods. It is
built as an extension of MOA. Massive Online Analysis (MOA) [4] is a software
environment for implementing algorithms and running experiments for online
learning from data streams.

CD-MOA contains a graphical user interface where experiments can be run.
Figure 1 shows the GUI. It contains three different components. The first is the

1 http://moa.cs.waikato.ac.nz/

http://moa.cs.waikato.ac.nz/


94 A. Bifet et al.

Fig. 1. Example of the new CD-MOA framework graphical user interface

panel where the user can specify the experiment they would like to run. Another
panel in the middle shows the numeric results of the experiment, and the panel
at the bottom displays a plot of the experiment, showing graphically where the
change has been detected.

CD-MOA contains a Java API for easier customization, and implementation
of new methods and experiments. The main components of CD-MOA are:

– Tasks: experiments to run combining change detectors and streams
– Methods: change detection algorithms used to detect change
– Streams: time series used to run the experiment. If they have been artificially

generated and have ground truth, then the system will output the statistics
about detection time.

CD-MOA is connected to MOA, and it is easy to use the change detec-
tor methods in CD-MOA to evaluate classifiers, checking how their accuracy
evolves. For evaluation purposes, all the methods in CD-MOA have a measure
of the resources consumed: time, memory, and RAM-Hours, a measure of the
cost of the mining process that merges time and memory into a single measure.

2.1 Evaluation of Change Detection

Change detection is a challenging task due to a fundamental limitation [5]: the
design of a change detector is a compromise between detecting true changes and
avoiding false alarms.



CD-MOA: Change Detection Framework for Massive Online Analysis 95

When designing a change detection algorithm one needs to balance false and
true alarms and minimize the time from the change actually happening to de-
tection. The following existing criteria [5,6] formally capture these properties for
evaluating change detection methods.

Mean Time between False Alarms (MTFA) characterizes how often we
get false alarms when there is no change. The false alarm rate FAR is defined
as 1/MTFA. A good change detector would have high MTFA.

Mean Time to Detection (MTD) characterizes the reactivity of the system
to changes after they occur. A good change detector would have small MTD.

Missed Detection Rate (MDR) gives the probability of not receiving an
alarm when there has been a change. It is the fraction of non-detected
changes in all the changes. A good detector would have small or zero MDR.

Average Run Length (ARL(θ)) generalizes over MTFA and MTD. It quan-
tifies how long we have to wait before we detect a change of size θ in the
variable that we are monitoring.

ARL(θ = 0) = MTFA, ARL(θ �= 0) = MTD

Our framework needs to know ground truth changes in the data for evaluation
of change detection algorithms. Thus, we generate synthetic datasets with ground
truth. Before a true change happens, all the alarms are considered as false alarms.
After a true change occurs, the first detection that is flagged is considered as
the true alarm. After that and before a new true change occurs, the consequent
detections are considered as false alarms. If no detection is flagged between
two true changes, then it is considered a missed detection. These concepts are
graphically illustrated in Figure 2.

Fig. 2. The setting of change detection evaluation

We propose a new quality evaluation measure that monitors the compromise
between fast detection and false alarms:

MTR(θ) =
MTFA

MTD
× (1−MDR) =

ARL(0)

ARL(θ)
× (1−MDR). (1)

This measure MTR (Mean Time Ratio) is the ratio between the mean time
between false alarms and the mean time to detection, multiplied by the proba-
bility of detecting an alarm. An ideal change detection algorithm would have a



96 A. Bifet et al.

low false positive rate (which means a high mean time between false alarms), a
low mean time to detection, and a low missed detection rate.

Comparing two change detectors for a specific change θ is easy with this new
measure: the algorithm that has the highest MTR(θ) value is to be preferred.

2.2 Change Detectors

A change detector or drift detector is an algorithm that takes a stream of in-
stances as input and outputs an alarm if it detects a change in the distribution of
the data. A detector may often be combined with a predictive model to output a
prediction of the next instance to come. In general, the input to a change detec-
tion algorithm is a sequence x1, x2, . . . , xt, . . . of data points whose distribution
varies over time in an unknown way. At each time step the algorithm outputs:

1. an estimate of the parameters of the input distribution, and

2. an alarm signal indicating whether a change in this distribution has occurred.

We consider a specific, but very frequent case, of this setting with all xt

being real values. The desired estimate is usually the current expected value
of xt, and sometimes other statistics of the distribution such as, for instance,
variance. The only assumption about the distribution of x is that each xt is
drawn independently from each other. This assumption may be not satisfied if
xt is an error produced by a classifier that updates itself incrementally, because
the update depends on the performance, and the next performance depends on
whether we updated it correctly. In practice, however, this effect is negligible, so
treating them independently is a reasonable approach.

The most general structure of a change detection algorithm contains three
components:

1. Memory is the component where the algorithm stores the sample data or
data summaries that are considered to be relevant at the current time, i.e.,
the ones that describe the current data distribution.

2. Estimator is an algorithm that estimates the desired statistics on the in-
put data, which may change over time. The algorithm may or may not use
the data contained in Memory. One of the simplest Estimator algorithms
is the linear estimator, which simply returns the average of the data items
contained in Memory. Other examples of run-time efficient estimators are
Auto-Regressive, Auto Regressive Moving Average, and Kalman filters [7].

3. Change detector (hypothesis testing) outputs an alarm signal when it detects
a change in the input data distribution. It uses the output of the Estimator,
and may or may not in addition use the contents of Memory.

There are many different algorithms to detect change in time series. Our new
framework contains the classical ones used in statistical quality control [6], time
series analysis [8], statistical methods and more recent ones such as ADWIN[9].



CD-MOA: Change Detection Framework for Massive Online Analysis 97

2.3 Statistical Tests with Stopping Rules

These tests decide between the hypothesis that there is change and the hypoth-
esis that there is no change, using a stopping rule. When this stopping rule
is achieved, then the change detector method signals a change. The following
methods differ in their stopping rule.

The CUSUM Test. The cumulative sum (CUSUM algorithm), which was first
proposed in [10], is a change detection algorithm that raises an alarm when the
mean of the input data is significantly different from zero. The CUSUM input εt
can be any filter residual, for instance the prediction error from a Kalman filter.

The stopping rule of the CUSUM test is as follows:

g0 = 0, gt = max (0, gt−1 + εt − υ), if gt > h then alarm and gt = 0

The CUSUM test is memoryless, and its accuracy depends on the choice of
parameters υ and h. Note that CUSUM is a one sided, or asymmetric test. It
assumes that changes can happen only in one direction of the statistics, detecting
only increases.

The Page Hinckley Test. The Page Hinckley Test [10] stopping rule is as
follows, when the signal is increasing:

g0 = 0, gt = gt−1 + (εt − υ), Gt = min(gt, Gt−1)

if gt −Gt > h then alarm and gt = 0

When the signal is decreasing, instead of Gt = min(gt, Gt−1), we should use
Gt = max(gt, Gt−1) and Gt−gt > h as the stopping rule. Like the CUSUM test,
the Page Hinckley test is memoryless, and its accuracy depends on the choice of
parameters υ and h.

2.4 Drift Detection Method

The drift detection method (DDM) proposed by Gama et al. [1] controls the
number of errors produced by the learning model during prediction. It compares
the statistics of two windows: the first contains all the data, and the second
contains only the data from the beginning until the number of errors increases.
Their method doesn’t store these windows in memory. It keeps only statistics
and a window of recent errors data.

The number of errors in a sample of n examples is modelled by a binomial
distribution. For each point t in the sequence that is being sampled, the error
rate is the probability of misclassifying (pt), with standard deviation given by
st =

√
pt(1 − pt)/t. They assume that the error rate of the learning algorithm

(pt) will decrease while the number of examples increases if the distribution of
the examples is stationary. A significant increase in the error of the algorithm,



98 A. Bifet et al.

suggests that the class distribution is changing and, hence, the actual decision
model is supposed to be inappropriate. Thus, they store the values of pt and st
when pt + st reaches its minimum value during the process (obtaining pmin and
smin). DDM then checks if the following conditions trigger:

– pt+st ≥ pmin+2 ·smin for the warning level. Beyond this level, the examples
are stored in anticipation of a possible change of context.

– pt + st ≥ pmin + 3 · smin for the drift level. Beyond this level the concept
drift is supposed to be true, the model induced by the learning method is
reset and a new model is learnt using the examples stored since the warning
level triggered. The values for pmin and smin are reset.

In the standard notation, they have two hypothesis tests hw for warning and hd

for detection:

– gt = pt+st, if gt ≥ hw then alarm warning, if gt ≥ hd then alarm detection,
where hw = pmin + 2smin and hd = pmin + 3smin.

The test is nearly memoryless, it only needs to store the statistics pt and st, as
well as switch on some memory to store an extra model of data from the time
of warning until the time of detection.

This approach works well for detecting abrupt changes and reasonably fast
changes, but it has difficulties detecting slow gradual changes. In the latter case,
examples will be stored for long periods of time, the drift level can take too much
time to trigger and the examples in memory may overflow.

Baena-Garćıa et al. proposed a new method EDDM (Early Drift Detection
Method) [11] in order to improve DDM. It is based on the estimated distribution
of the distances between classification errors. The window resize procedure is
governed by the same heuristics.

2.5 EWMA Drift Detection Method

A new drift detection method based on an EWMA (Exponential Weighted Mov-
ing Average) chart, was presented by Ross et al. in [2]. It is similar to the
drift detection method (DDM) described previously, but uses an exponentially
weighted moving average chart to update the estimate of error faster.

This method updates the following statistics for each point t in the sequence:

pt = pt−1(t− 1)/t+ εt/t, st =
√
pt(1− pt)

g0 = p0, gt = (1− λ)gt−1 + λεt, s
(g)
t = st

√
λ(1 − (1− 2λ)2t)/(2− λ)

EWMA uses the following trigger conditions:

– gt > hw for the warning level, where hw = pt + 0.5Lts
(g)
t .

– gt > hd for the drift level, where hd = pt + Lts
(g)
t .

The values of Lt are computed using a different polynomial for each choice of
MTFA of the form L(pt) = c0+c1pt+· · ·+cmpmt using a Monte Carlo approach.
A value of λ = 0.2 is recommended by the authors of this method.



CD-MOA: Change Detection Framework for Massive Online Analysis 99

2.6 ADWIN: ADaptive Sliding WINdow Algorithm

ADWIN[12] is a change detector and estimator that solves in a well-specified way
the problem of tracking the average of a stream of bits or real-valued numbers.
ADWIN keeps a variable-length window of recently seen items, with the prop-
erty that the window has the maximal length statistically consistent with the
hypothesis “there has been no change in the average value inside the window”.

More precisely, an older fragment of the window is dropped if and only if
there is enough evidence that its average value differs from that of the rest of
the window. This has two consequences: one, that change can reliably be declared
whenever the window shrinks; and two, that at any time the average over the
existing window can be reliably taken as an estimate of the current average in the
stream (barring a very small or very recent change that is still not statistically
visible). These two points appears in [12] in a formal theorem.

ADWIN is data parameter- and assumption-free in the sense that it automat-
ically detects and adapts to the current rate of change. Its only parameter is a
confidence bound δ, indicating how confident we want to be in the algorithm’s
output, inherent to all algorithms dealing with random processes.

Table 1. Evaluation results for an experiment simulating the error of a classifier,
that after tc instances with a probability of having an error of 0.2, this probability is
increased linearly by a value of α = 0.0001 for each instance

Method Measure No Change tc = 1, 000 tc = 10, 000 tc = 100, 000 tc = 1, 000, 000

ADWIN 1-MDR 0.13 1.00 1.00 1.00
MTD 111.26 1,062.54 1,044.96 1,044.96
MTFA 5,315,789
MTR 6,150 5,003 5,087 5,087

CUSUM(h=50) 1-MDR 0.41 1.00 1.00 1.00
MTD 344.50 902.04 915.71 917.34
MTFA 59,133
MTR 70 66 65 64

DDM 1-MDR 0.44 1.00 1.00 1.00
MTD 297.60 2,557.43 7,124.65 42,150.39
MTFA 1,905,660
MTR 2,790 745 267 45

Page-Hinckley(h=50) 1-MDR 0.17 1.00 1.00 1.00
MTD 137.10 1,320.46 1,403.49 1,431.88
MTFA 3,884,615
MTR 4,769 2,942 2,768 2,713

EDDM 1-MDR 0.95 1.00 1.00 1.00
MTD 216.95 1,317.68 6,964.75 43,409.92
MTFA 37,146
MTR 163 28 5 1

EWMA Chart 1-MDR 1.00 1.00 1.00 1.00
MTD 226.82 225.51 210.29 216.70
MTFA 375
MTR 2 2 2 2



100 A. Bifet et al.

Table 2. Evaluation results for an experiment simulating the error of a classifier, that
after tc = 10, 000 instances with a probability of having an error of 0.2, this probability
is increased linearly by a value of α for each instance

Method Measure No Change α = 0.00001 α = 0.0001 α = 0.001

ADWIN 1-MDR 1.00 1.00 1.00
MTD 4,919.34 1,062.54 261.59
MTFA 5,315,789.47
MTR 1,080.59 5,002.89 20,320.76

CUSUM 1-MDR 1.00 1.00 1.00
MTD 3,018.62 902.04 277.76
MTFA 59,133.49
MTR 19.59 65.56 212.89

DDM 1-MDR 0.55 1.00 1.00
MTD 3,055.48 2,557.43 779.20
MTFA 1,905,660.38
MTR 345.81 745.15 2,445.67

Page-Hinckley 1-MDR 1.00 1.00 1.00
MTD 4,659.20 1,320.46 405.50
MTFA 3,884,615.38
MTR 833.75 2,941.88 9,579.70

EDDM 1-MDR 0.99 1.00 1.00
MTD 4,608.01 1,317.68 472.47
MTFA 37,146.01
MTR 7.98 28.19 78.62

EWMA Chart 1-MDR 1.00 1.00 1.00
MTD 297.03 225.51 105.57
MTFA 374.70
MTR 1.26 1.66 3.55

ADWIN does not maintain the window explicitly, but compresses it using a
variant of the exponential histogram technique storing a window of length W
using only O(logW ) memory and O(logW ) processing time per item.

3 Comparative Experimental Evaluation

We performed a comparison using the following methods: DDM, ADWIN, EWMA
Chart for Drift Detection, EDDM, Page-Hinckley Test, and CUSUM Test. The
two last methods were used with υ = 0.005 and h = 50 by default.

The experiments were performed simulating the error of a classifier system
with a binary output 0 or 1. The probability of having an error is maintained as
0.2 during the first tc instances, and then it changes gradually, linearly increasing
by a value of α for each instance. The results were averaged over 100 runs.

Tables 1 and 2 show the results. Every single row represents an experiment
where four different drifts occur at different times in Table 1, and four different
drifts with different incremental values in Table 2. Note that MTFA values come



CD-MOA: Change Detection Framework for Massive Online Analysis 101

Table 3. Evaluation results of a prequential evaluation using an adaptive Naive
Bayes classifier on Electricity and Forest Covertype datasets: accuracy, κ, and number
of changes detected

Forest Covertype Electricity
Change Detector Warning Accuracy κ Changes Accuracy κ Changes

ADWIN No 83.24 73.25 1,151 81.03 60.79 88
CUSUM No 81.55 70.66 286 79.21 56.83 28
DDM Yes 88.03 80.78 4,634 81.18 61.14 143
Page-Hinckley No 80.06 68.40 117 78.04 54.43 10

EDDM Yes 86.08 77.67 2,416 84.83 68.96 203
EWMA Chart Yes 90.16 84.20 6,435 86.76 72.93 426

from the no-change scenario. We observe the tradeoff between faster detection
and smaller number of false alarms. Page Hinckley with h = 50 and ADWIN are
the methods with fewer false positives, however CUSUM is faster at detecting
change for some change values. Using the new measure MTR, ADWIN seems to
be the algorithm with the best results.

We use the EWMA Chart for Drift Detection with Lt values computed for
a MTFA of 400. However it seems that this is a very low value compared with
other change detectors. EDDM has a high number of false positives, and performs
worse than DDM using the new measure MTR.

This type of test, has the property that by increasing h we can reduce the
number of false positives, at the expense of increasing the detection delay.

Finally, we use the change detector algorithms inside the MOA Framework
in a real data classification task. The methodology is similar to the one in [1]:
a classifier is built with a change detector monitoring its error. If this change
detector detects a warning, the classifier begins to store instances. After the
change detector detects change, the classifier is replaced with a new classifier
built with the instances stored. Note that this classifier is in fact similar to a
data stream classification algorithm that exploits a window model. The size of
this window model is not fixed and depends on the change detection mechanism.
We test the change detectors with a Naive Bayes classifier, and the following
datasets:

Forest Covertype Contains the forest cover type for 30 x 30 meter cells ob-
tained from US Forest Service (USFS) Region 2 Resource Information Sys-
tem (RIS) data. It contains 581, 012 instances and 54 attributes. It has been
used before, for example in [13,14].

Electricity Contains 45, 312 instances describing electricity demand. A class
label identifies the change of the price relative to a moving average of the
last 24 hours. It was described by [3] and analysed also in [1].

The accuracy and κ statistic results using prequential evaluation are shown
in Table 3. The classifier that uses the EWMA Chart detection method is the
method with the best performance on the two datasets. It seems that having



102 A. Bifet et al.

a large amount of false positives, detecting more changes, and rebuilding the
classifier more often with more recent data helps to improve accuracy for these
datasets. For the classification setting, the fact that the detector has a warning
signal detection helps to improve results. Also, the success of EWMA Chart may
be due to the fact that Naive Bayes is a high-bias algorithm, which can attain
good performance from smaller batches of data.

However, as we have seen, the fact that a change detection algorithm produces
high accuracy figures in a classification setting does not necessarily imply a low
false alarm rate or a high MTR value for that algorithm. It should be possible,
for example, to tune all the detectors in the framework to produce better clas-
sification results by deliberately raising their false positive rates. Additionally,
it should be possible to demonstrate that under normal circumstances, low-bias
algorithms suffer high false positive rates.

4 Conclusions

Change detection is an important component of systems that need to adapt to
changes in their input data. We have presented a new framework for evaluation
of change detection methods, and a new quality measure for change detection.
Using this new experimental framework we demonstrated that classification per-
formance is a poor proxy for change detection performance and provide further
evidence that if high classification performance is a requirement then using a
change detector that produces a high false positive rate can be beneficial for
some datasets. We hope that the new framework presented here will help the
research community and industry data analysts to experimentally compare and
benchmark change detection techniques.

Acknowledgements. I. Žliobaitė’s research has been supported by the
Academy of Finland grant 118653 (ALGODAN).

References

1. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection.
In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp.
286–295. Springer, Heidelberg (2004)

2. Ross, G.J., Adams, N.M., Tasoulis, D.K., Hand, D.J.: Exponentially weighted mov-
ing average charts for detecting concept drift. Pattern Recognition Letters 33(2),
191–198 (2012)

3. Harries, M.: Splice-2 comparative evaluation: Electricity pricing. Technical report,
The University of South Wales (1999)

4. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive online analysis.
Journal of Machine Learning Research 11, 1601–1604 (2010)

5. Gustafsson, F.: Adaptive Filtering and Change Detection. Wiley (2000)
6. Basseville, M., Nikiforov, I.V.: Detection of abrupt changes: theory and application.

Prentice-Hall, Inc., Upper Saddle River (1993)



CD-MOA: Change Detection Framework for Massive Online Analysis 103

7. Kobayashi, H., Mark, B.L., Turin, W.: Probability, Random Processes, and Statis-
tical Analysis. Cambridge University Press (2011)

8. Takeuchi, J., Yamanishi, K.: A unifying framework for detecting outliers and
change points from time series. IEEE Transactions on Knowledge and Data Engi-
neering 18(4), 482–492 (2006)

9. Bifet, A., Gavaldà, R.: Adaptive learning from evolving data streams. In: Adams,
N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772,
pp. 249–260. Springer, Heidelberg (2009)

10. Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954)
11. Baena-Garćıa, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavaldá, R.,

Morales-Bueno, R.: Early drift detection method. In: Fourth International Work-
shop on Knowledge Discovery from Data Streams (2006)

12. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing.
In: SIAM International Conference on Data Mining (2007)

13. Gama, J., Rocha, R., Medas, P.: Accurate decision trees for mining high-speed data
streams. In: ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 523–528 (2003)

14. Oza, N.C., Russell, S.J.: Experimental comparisons of online and batch versions of
bagging and boosting. In: ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 359–364 (2001)


	CD-MOA: Change Detection Framework for Massive Online Analysis
	1 Introduction
	2 Experimental Framework
	Massive Online Analysis
	2.1 Evaluation of Change Detection
	2.2 Change Detectors
	2.3 Statistical Tests with Stopping Rules
	2.4 Drift Detection Method
	2.5 EWMA Drift Detection Method

	3 Comparative Experimental Evaluation
	4 Conclusions
	References




