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ABSTRACT

Biclustering is an active and promising research topic in un-

supervised learning. With the aim of uncovering condition-

specific similarities between objects, it may be applied in

areas such as collaborative filtering and bioinformatics. The

plaid model is amongst the most flexible biclustering mod-

els. However, its potential has not yet been fully explored.

In this paper we extend the plaid model with a Bayesian

framework and a collapsed Gibbs sampler. We show that

the new method is useful in a gene expression study both in

finding gene-specific associations between microarrays and

condition-specific associations between genes.

1. INTRODUCTION

We consider the common setup of when the input data set

has the form of a matrix Y , where entry Yij refers to an

observation of object i under condition j. Two common

examples of this type of data are user-movie ratings or gene

mRNA measurements under various clinical conditions.

Such data sets are called dyadic [1].

Classical clustering algorithms such as k-means or hi-

erarchical clustering (see [2]) attempt to find relations be-

tween objects that hold under all conditions. However, this

may sometimes be an overly restrictive constraint: For in-

stance, a set of users might have a similar opinion about

movies of a given type, but may disagree when it comes to

other types of movies; similarly, mRNA expression may be

homogeneous in a given set of genes, but only under par-

ticular biological conditions. The task of searching for as-

sociations between objects in subsets of the conditions is

most frequently known as biclustering. Two main areas of

application of biclustering algorithms have been collabora-

tive filtering and gene expression analysis. In this article we
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mostly discuss algorithms for the latter application.

Using DNAmicroarrays, it is possible to measure mRNA

expression levels for a large set of genes under different ex-

perimental conditions. Clustering of gene expression data

allows one to both confirm existing biological knowledge

and formulate new hypotheses on the functional role of un-

characterized genes (first studies in [3]). However, similar-

ity in expression between genes is not necessarily condition-

independent. It has been observed that co-expression of

genes is often the result of the activation of condition-specific

cellular processes [4, 5].

Many biclustering algorithms and models have already

been proposed (for a review and taxonomy see [6]). Among

them is the plaid model [7], which is arguably one of the

most flexible biclustering models up to now. Although it

has a high applicability potential, it has not yet been used to

a large extent. Its original authors provide a greedy, partly

heuristic inference algorithm [7], which leaves open the ques-

tion of whether a more principled probabilistic approach

would produce better results.

In this paper we provide a Bayesian framework for the

plaid model and introduce a collapsed Gibbs sampler for in-

ferring the posterior distribution of bicluster memberships,

more specifically the binary membership variables that in-

dicate which genes and which microarrays belong to each

bicluster. We run the new inference mechanism on a sub-

set of a human microarray data set [8] to show that the

method yields better associations between genes and condi-

tions than would be expected either by chance of by running

a hierarchical clustering algorithm. Finally, we also relate

the plaid model to two other models [9, 10].

The structure of this article is the following: In section

2 we describe the original formulation of the plaid model

and our new Bayesian extension. In section 3 we compare

the plaid model with two other models [9, 10]. In section 4

we conduct two tests on our method and show that it pro-

vides consistent results. Finally, in section 5 we conclude

on the value of the new formulation and provide directions

for future work.



2. THE PLAID MODEL

In this section we review the original formulation for the

plaid model and introduce a Bayesian extension for it.

2.1. Original Formulation

Consider a data matrixY of dimensionsN×M . Each entry

Yij refers to the observation of object i under condition j.

The plaid model consists of a bias plus a sum of K layers,

where each layer (or bicluster) is an ANOVA model [7],

Yij = µ0 +
K
∑

k=1

(µk + αik + βjk) ρik κjk. (1)

The authors implicitly assume that there is Gaussian noise,

as the parameter inference algorithm is based on the mini-

mization of a quadratic error function.

The variables are defined as follows:

• ρ and κ are matrices of size N × K andM × K , re-

spectively, containing binary membership variables.

Here ρik = 1 iff object i belongs to bicluster k, and
κjk = 1 iff condition j belongs to bicluster k.

• µ ∈ R
K , α ∈ R

N×K , and β ∈ R
M×K have the

same semantics as in standard ANOVA models. For

each bicluster k, α·k and β·k are defined as depar-

tures from the mean µk, so that

N
∑

i=1

αikρik = 0 (2)

and

M
∑

j=1

βjkκjk = 0. (3)

• The variable µ0 ∈ R indicates a bicluster to which all

the points belong.

Each bicluster k is specified by which of the variables

ρ·k and κ·k are equal to 1. It corresponds to a submatrix of

Y . The plaid model also allows each gene and condition to

belong to more than one bicluster.

The authors of the original plaid model devised a partly

heuristic, iterative algorithm that attempts to minimize the

quadratic error between the data matrix supplied as input

and the model given in (1) [7].

2.2. Bayesian Extension

We first specify probability distributions for the model vari-

ables in a standard way. We then describe a compact way

to represent the relationship between Y and the remaining

variables.

Each point Yij , conditioned on the parameters µ0, αi·,

βj·, ρi·, κj·, and σ2, is assumed to follow a Gaussian dis-

tribution,

Yij ∼ N

(

µ0 +

K
∑

k=1

(αik + βjk) ρik κjk, σ2

)

(4)

(for succinctness, conditioning on the relevant parameters

is omitted from the above formula). We have adapted the

model for gene expression in a bicluster from (1). We re-

moved the variable µk and relaxed the constraints (2) and

(3), as it allows for a simpler andmore direct handling of the

model, without losing generality; notice that there is uniden-

tifiability in the original model. It is assumed, as normally

in modelling, that the data points in Y , given the relevant

parameters, are uncorrelated and share the same scalar vari-

ance parameter σ2.

As for the parameters µ0, α, and β, we also assign

Gaussian distributions to them,

µ0 ∼ N(0, σ2
µσ2), (5)

αik ∼ N(0, σ2
ασ2), (6)

βjk ∼ N(0, σ2
βσ2), (7)

where σ2
µ, σ

2
α, and σ2

β are scalar hyper-parameters specified

by the user. In the remaining text we will refer to µ0,α, and

β collectively asΘ,

Θ = [µ0 α·1 β·1 . . . α·K β·K ]
T

.

Thus,Θ follows a Gaussian distribution,

Θ|σ2, σ2
µ, σ2

α, σ2
β ∼ N(0, D), (8)

whereD is a diagonal covariance matrix.

The relation between Θ and the data matrix Y can be

expressed compactly. Consider a vectorized representation

of Y , obtained by vertically juxtaposing all of its columns

(column-major order). We can express (4) as

Y |Θ, ρ, κ, σ2 ∼ N(AΘ, σ2I), (9)



where the matrixA = [A0A1 . . . AK ] is defined as

A0 = 1NM×1, (10)

Ak≥1 = [Ak1Ak2], (11)
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Structures of the same sort as in A are common in the

context of ANOVA models [11].

For a fully Bayesian approachwe assign probability dis-

tributions to the binary membership variables ρ and κ. For

each bicluster k,

ρ·k|πk ∼ Binomial(N, πk), (14)

κ·k|λk ∼ Binomial(M, λk). (15)

The parameters πk and λk are respectively the probabil-

ity of a gene belonging to a bicluster k and the probability

of a condition belonging to bicluster k. The variables ρ and

κ are assumed to be independent.

As is standard in Bayesian models, we also assign a

prior to πk and λk. We consider each of them to follow

a Beta distribution, which is the conjugate prior of the Bi-

nomial distribution,

πk ∼ Beta(δ(k)
ρ , γ(k)

ρ ), (16)

λk ∼ Beta(δ(k)
κ , γ(k)

κ ). (17)

Given the above specification, we can calculate the prob-

ability distribution of ρ·k and κ·k after integrating out πk

and λk,

P (ρ·,k) =
B(n1 + δ

(k)
ρ , N − n1 + γ

(k)
ρ )

B(δ
(k)
ρ , γ

(k)
ρ )

, (18)

P (κ·,k) =
B(m1 + δ

(k)
κ , M − m1 + γ

(k)
κ )

B(δ
(k)
κ , γ

(k)
κ )

, (19)

where n1 andm1 are respectively the number of objects and

conditions in bicluster k, and B(x, y) is the beta function,

B(x, y) =

∫ 1

0

tx−1(1 − t)y−1dt. (20)

The probability distributions of ρ andκ are in turn given

by

P (ρ) =

K
∏

k=1

P (ρ·,k), (21)

P (κ) =

K
∏

k=1

P (κ·,k). (22)

Finally, we assume σ2 to follow a scaled inverse-chi-

square distribution,

σ2 ∼ Inv−χ2(υ, σ2
0). (23)

2.3. Collapsed Gibbs Sampler

We are interested in sampling from the posterior distribution

of the membership variables ρ and κ. Applying Bayes’ law,

we obtain

P (ρ, κ|Y ) =
P (ρ, κ)P (Y |ρ, κ)

P (Y )
, (24)

where P (Y ) is a normalizing factor that depends neither on
ρ nor on κ, and P (Y |ρ, κ) is the conditional probability
density function of Y after integratingΘ and σ2 out. That

integral is given by

P (Y |ρ, κ) =

∫

P (Y |ρ, κ,Θ, σ2)P (Θ)P (σ2)dΘdσ2.

Solving the integral, one obtains a multivariate Student-t

distribution,

Y |ρ, κ ∼ tυ

(

0,

(

I − AQAT

σ2
0

)−1
)

, (25)

where Q = (D−1 + AT A)−1 [12].

A collapsed Gibbs sampler over ρ and κ samples itera-

tively from the conditional probability distribution of each

variable ρik or κjk in turn, conditioned on all the other vari-

ables and Y . The difference to a standard Gibbs sampler

is that Θ has been integrated out. We refer to the condi-

tional probability distributions as P (ρi,k|ρ−(i,k), κ, Y ) and
P (κj,k|κ−(j,k), ρ, Y ), where ρ−(i,k) is obtained from ρ by

discarding ρik , andκ−(j,k) is obtained fromκ by discarding

κjk . The derivation of the sampler is similar for variables

in ρ and variables in κ. For succinctness, we provide the

derivation only for κ.

The conditional distribution of the (j, k)-th component
of κ is given by

P (κj,k|κ−(j,k), ρ, Y ) =
P (κj,k, κ−(j,k), ρ, Y )

P (κ−(j,k), ρ, Y )
. (26)



The above probability distribution can be more easily com-

puted by first calculating the odds, which after some simpli-

fications are expressible as

P (κj,k = 1|κ−(j,k), ρ, Y )

P (κj,k = 0|κ−(j,k), ρ, Y )
=

P (κj,k = 1, κ·,k)

P (κj,k = 0, κ·,k)

×
P (Y |ρ, κj,k = 1, κ−(j,k))

P (Y |ρ, κj,k = 0, κ−(j,k))
.

The first term is easily and efficiently computable. The sec-

ond term relies on obtaining the product AQAT , where the

matrixQ is obtained by inverting (D−1 + AT A) (see (25)).
Obtaining that inverse from scratch is very costly due to its

size. However, every time the value of a binary membership

variable is switched, the update to Q is of a low rank. This

allows us to make use of the Sherman-Morrison-Woodbury

(SMW) identity [13]. A particular case of the SMW iden-

tity states that, for a given invertible matrix M , its inverse

M−1, and an update UV , we have

(M + UV )−1 = M−1 −M−1U(I + V M−1U)−1V M−1.

The advantage of using the above formula is that when M

is n × n, and both U and V are of a low rank (that is, U is

n×m, V ism×n, andm ≪ n), it is significantly cheaper to

compute (I + V M−1U)−1 than to directly calculate (M +
UV )−1. We follow that approach for updatingQ (the actual

structure of U and V are omitted for brevity). Due to the

accumulation of numerical errors after each update,Qmust

effectively be computed from scratch after a few iterations.

3. RELATED WORK

Segal et al. have proposed a probabilistic model for decom-

posing gene expression into partially overlapping cellular

processes [9]. They define a set of genesN = {g1, . . . , gn},
a set of microarrays A = {a1, . . . , ak}, and a set of expres-
sion objects E = {e1,1, . . . , en,k}, which relate genes to
microarrays. Given the existence of j biological processes,

the binary attributes g.M1, . . . , g.Mj specify, for each gene

g, the processes to which it belongs. The continuous at-

tributes a.C1, . . . , a.Cj describe, for each microarray a, the

level of activation of each process. The expression level of

a gene g in a microarray a (represented as an attribute of the

corresponding expression object eg,a) follows a Gaussian

distribution,

eg,a.Level ∼ N

(

j
∑

p=1

g.Mp · a.Cp, σ
2
a

)

. (27)

Gene expression is thereforemodelled as an additive combi-

nation of cellular processes, where each process contributes

with a continuous value a.Cp, which varies from microar-

ray to microarray. Each gene has the option of belonging

to each bicluster or not, by use of the binary membership

attribute g.Mp.

By considering the following constraints in the Bayesian

plaid model, we can obtain Segal’s model (apart from the

variance parameters σ2
a):

µ0 = 0, α = 0, κ = 1. (28)

Both models are equivalent if we further restrict the vari-

ance parameters σ2
a to be the same. The attributes g.Mp

have the same semantics as the variables ρik in the Bayesian

plaid model, and the attributes a.Cp are equivalent to the

variables βjk . Notice that enforcing the constraints in (28)

(apart from κ = 1) amounts to forcing the parameters σ2
µ

and σ2
α to be zero.

Another model which is related to the plaid model is the

one by Meeds et al. [10]. The authors model a dyadic data

matrixX ∈ R
n×m as

X|U , V , W ∼ f(UWV T , Θ), (29)

whereU ∈ {0, 1}n×K and V ∈ {0, 1}m×K are binary ma-

trices, W ∈ R
K×K is a weight matrix, f is a probability

density function (we consider the case when f is a Gaus-

sian distribution), and Θ is a given parameterization. The
matrices U and V are equivalent to the matrices ρ and κ.

Consider an object i under condition j, corresponding to the

data pointXij . According to the above model, its probabil-

ity density function is

Xij |U i, V j , W ∼ f(U iWV T
j , Θ), (30)

where U i is the i-th line of U and V j is the j-th line of

V . The quadratic form U iWV T
i can be also expressed

as
∑K

k1=1

∑K
k2=1 Wk1,k2

Uik1
Vjk2
. The case whenW is a

diagonal matrix is equivalent to a particular version of the

original plaid model, namely the one where α = 0 and

β = 0 [10].

4. EXPERIMENTS

We made a brief proof-of-concept study by applying the

Bayesian plaid model to 79 preprocessed microarrays por-

traying mRNA gene expression in several human tissues

[8]. We analyzed four gene ontology groups, one at at time,

to find out whether the biclustering finds subgroups of the

groups. The groups were rhythmic processes, regulation of

biosynthetic processes, growth regulation, and cell division;

expression within each group varies clearly throughout the

tissues.

An indirect indication of the meaningfulness of a biclus-

ter is that it finds a pattern over the conditions (here tissues).

That is, restricted to the genes belonging to the bicluster,

the arrays belonging to the bicluster should be more related

than by chance. In order to quantify how well the method



Gene Set Average Corr. Gain P-value

Regulation of Growth 0.1367 < 0.001

Biosynthetic process 0.2261 < 0.001

Cell cycle 0.1255 0.007

Rhythmic process 0.2396 0.004

Table 1. Average gain in correlation between pairs of mi-

croarrays in the same bicluster, when restricted to the subset

of genes in that bicluster.

performs that task, we computed the Pearson correlation co-

efficient between pairs of microarrays in the same bicluster,

restricted to the set of genes in that same bicluster. We then

computed the coefficient between the same pairs of microar-

rays, but this time using all genes. We measured the average

gain in correlation when going from the full set of genes to

the set of genes in the same bicluster, and calculated a p-

value obtained as the empirical probability of obtaining a

higher gain by selecting random sets of genes of the same

size as the set of genes in a bicluster. Table 1 shows the re-

sults for the above experiment. The Bayesian biclustering

method appears to consistently choose subsets of genes that

significantly increase the correlation between microarrays

associated with those subsets.

It is at least as important that the genes belonging to the

same bicluster are functionally related. We tested the “pu-

rity” of the found biclusters in terms of the Biological Pro-

cess ontology subclasses of the chosen “main” class (rhyth-

mic processes, regulation of biosynthetic processes, growth

regulation, or cell division). We assigned each bicluster to

one biological process with a majority voting system, where

each gene votes for the gene ontology terms it is associ-

ated with. When classifying a gene then, it is first removed

from its bicluster, the bicluster is assigned a biological pro-

cess without taking the gene into account, and the gene be-

comes classified correctly if its class equals the class of the

bicluster. We repeated the experiment for all genes (cross-

validation) and also did the same with a standard hierarchi-

cal clustering algorithm [3].

Figure 1 shows box plots of classification accuracy in

each of the four groups of genes. With the exception of the

rhythmic process-related genes, Bayesian biclustering con-

sistently finds sets of genes that are more functionally ho-

mogeneous than the ones found by hierarchical clustering.

In order to evaluate the significance of the improvements,

we applied McNemar’s test to each data set. The test takes

as input a 2 × 2 contingency table. In the current context,
we assign each gene to each cell in the table, depending

on whether it was correctly or incorrectly classified by one

method (line) and on whether it was correctly or incorrectly

classified by the other method (column). The null hypothe-

sis is that the marginal frequencies in the lines are the same

as the marginal frequencies in the columns. This is equiv-

(a) Regulation of growth (b) Biosynthetic process

(c) Cell cycle (d) Rhythmic process

Fig. 1. Box plots of classification accuracy in biclusters

found by the new method and in clusters found by a stan-

dard hierarchical clustering algorithm.

Gene Set P-value

Regulation of Growth 3 × 10−5

Biosynthetic process 3.1 × 10−4

Cell cycle 10−6

Rhythmic process 0.015

Table 2. Applying McNemar’s test to each set of genes.

alent to stating that both classification algorithms are per-

forming similarly. The p-values are shown in table 2. The

results confirm that the improvement over the hierarchical

clustering algorithm is significant in all data sets except the

one pertaining to rhythmic process genes.

5. DISCUSSION

We have introduced a Bayesian formulation for the well-

known plaid model [7]. We derived a collapsed Gibbs sam-

pler for inferring the posterior distribution of the (binary)

bicluster membership variables, and showed how to effi-

ciently obtain the samples. The model is intrinsically re-

lated to an earlier method that searches for overlapping bi-

ological processes as well as to a recent binary latent factor

model. By applying the resulting method to a gene expres-

sion data set, we have demonstrated that it finds both mean-

ingful sets of genes and gene-specific associations between

microarrays. The application was a very small-scale proof-

of-concept study which we will next extend to larger case



studies. The goal is to find which cellular processes and

parts of pathways are activated in each biological condition.
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