

Novelty Detection in Projected Spaces for Structural Health Monitoring

Janne Toivola, Miguel A. Prada, and Jaakko Hollmén

1

 Department of Information and Computer Science, Aalto University School of Science and Technology, Finland

Outline

Introduction to SHM

-Transmissibility features

Dimensionality reduction

-Random projections, Principal Component Analysis, Curvilinear Component Analysis

Novelty Detection

-k-NN, Gaussian, Mixture of Gaussians, Parzen

Experiments and Results

Novelty Detection in Projected Spaces for Structural Health Monitoring

Introduction to Structural Health Monitoring

Motivation and Scope

Challenges

The scope of our project

Structural Health Monitoring

- -monitor the condition of structures, like buildings, bridges, cranes, etc.
- -detect damages before they become apparent faults

Aalto University

Multidisciplinary research project: ISMO

-Intelligent Structural Health Monitoring System

Two major problems:

- -no practical sensors to indicate damage
- -large structures require wireless sensors

Novelty Detection in Projected Spaces for Structural Health Monitoring

Vibration-based SHM

Structures vibrate due to input excitation from the environment

for example, traffic and wind cause bridges to shake
properties of the structure affect the response

Accelerometers for measuring the vibration output from the structure

Major problem: input signal from the environment remains unknown!

-environmental variability vs. state of the structure?

Aalto University

Novelty Detection in Projected Spaces for Structural Health Monitoring

Modeling disciplines

Physics-based models

-complex and detailed numerical models of structures
-require lots of prior information: "blueprints"
-enable more elaborate damage assessment etc.

Data-based models

- -simple and generic models
- -rely more on machine learning and acquired data

Aalto University

-useful mainly for detecting damages

Transmissibility features

Ratio of vibration amplitudes

-one sensor location s_1 compared to another s_2 -specific to a given frequency f

$$T(s_1, s_2, f) = \left| \frac{X_{s_1}(f)}{X_{s_2}(f)} \right|$$

Attempts to measure how well energy propagates between two points

-eliminates environmental variability (overall amplitude)

Aalto University

-combinations of sensor pairs and monitoring frequencies lead to a *large feature space*

7

Dimensionality Reduction

Random Projections

Principal Component Analysis

Curvilinear Component Analysis

Background

Previous results reported in [IDA2009]

- -randomly selected feature sets of different sizes
- -supervised damage classification
- -result: damage detection possible with few transmissibility features (32 out of 6300)

However: supervised learning not realistic

- -data from damaged structures not available IRL
- -novelty detection instead of pattern classification
- -feature selection not possible in advance, but how about projections to lower dimensions?

Aalto University

Novelty Detection in Projected Spaces for Structural Health Monitoring

Random Projections

- Select a random projection matrix $R_{k \times d}$ according to $\begin{cases} P(r_{ij} = -\sqrt{3}) = 1/6 \\ P(r_{ij} = 0) = 2/3 \\ P(r_{ij} = \sqrt{3}) = 1/6 \end{cases}$
- Project data from d to k dimensions by

$$\mathbf{y} = R\mathbf{x}$$

Motivated by Johnson-Lindenstrauss lemma

Aalto University

Computationally inexpensive

10

Principal Component Analysis

- Classical signal decomposition method used in pattern recognition
- Selects a new orthogonal basis for the data points according to eigenvectors
- By selecting k leading eigenvalues and corresponding eigenvectors, most of the variance represented in the new basis

Aalto University

Linear projection...

Novelty Detection in Projected Spaces for Structural Health Monitoring

Curvilinear Component An.

Nonlinear projection method

Based on a neural network

-an intermediate layer of model vectors

Cost function to minimize

-considers inter-point distances in both input and output space $E = \sum_{ij} \begin{cases} (D_{ij} - Y_{ij})^2 F_{\lambda}(Y_{ij}) & \text{if } Y_{ij} > D_{ij} \\ (D_{ij}^2 - Y_{ij}^2)^2 F_{\lambda}(Y_{ij})/4D_{ij}^2 & \text{if } Y_{ij} <= D_{ij} \end{cases}$

Interpolation and extrapolation provided for projecting new data

Aalto University

Novelty Detection in Projected Spaces for Structural Health Monitoring

Novelty Detection Methods

k-Nearest Neighbor

Gaussian

Mixture of Gaussians

Parzen density estimation

Nearest Neighbor method

Memorize all projected training data points

Compute distance between the new point x and its (kth) nearest neighbor NN(x)

 As a reference, compute the distance between the nearest neighbor NN(x) and its nearest neighbor NN(NN(x))

Ratio of these distances is a novelty score

-assumes the distances are suitable for the projected feature space

Aalto University

Novelty Detection in Projected Spaces for Structural Health Monitoring

Gaussian Densities

- Fit a single multivariate normal distribution to the training data
- Assign the area of low density, below some threshold, to outliers
 - -unimodal, symmetric ellipsoid as decision boundary

Rescales" the projected feature space according to the covariance matrix

Mixtures of Gaussians

Fit a sum of several multivariate normal distributions to the training data

- -achieved via Expectation Maximization algorithm
- -diagonal covariance matrices used

Assign the area of low density, below some threshold, to outliers

-several symmetric and axis-aligned ellipsoids as the decision boundary

Aalto University

Allows few (separate) clusters of data

16

Parzen Density Estimation

Sum of multivariate normal distributions at each training data point

-spherical covariance used and the width parameter determined by Maximum Likelihood solution

Assign the area of low density, below some threshold, to outliers

-superposition of many spheres as decision boundary

alto University

Combines aspects of k-NN and MoG

Experiments and Results

The Bridge

AUROC values for combinations of methods Examples of ROC curves

The Bridge

- Wooden model bridge used
- Shaker
- Wired sensors

13

12

11

15

10

shaker

14

Data and Preprocessing

15 wired accelerometers produced

- -2509 time series of 32 seconds each
- -sampling frequency of 256 Hz

attached various small weights as damages masses range from 23.5 g to 193 g

transmissibility features extracted

-for 19 pairs of adjacent sensors (not for all 105 pairs)

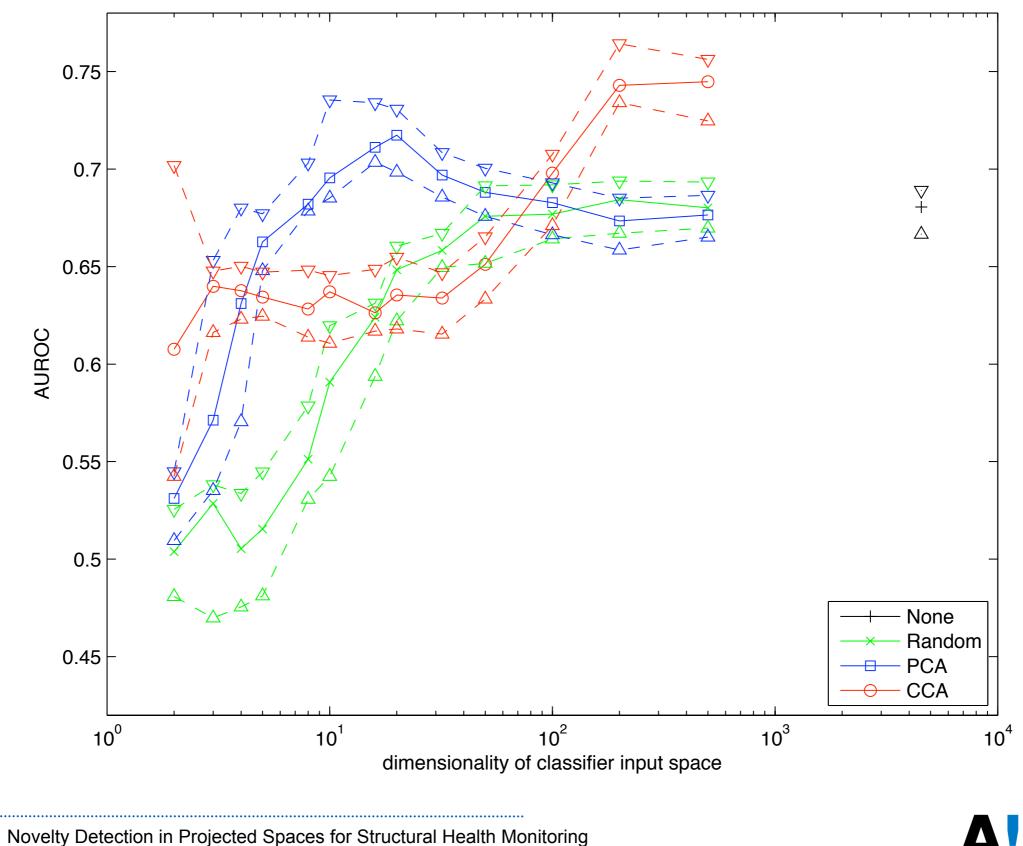
Aalto University

- -with 512-point FFT, averaging each 8 blocks (16 s)
- -resulting data stream: 4541 feature values / 16 s

Novelty Detection in Projected Spaces for Structural Health Monitoring

AUROC for k-NN

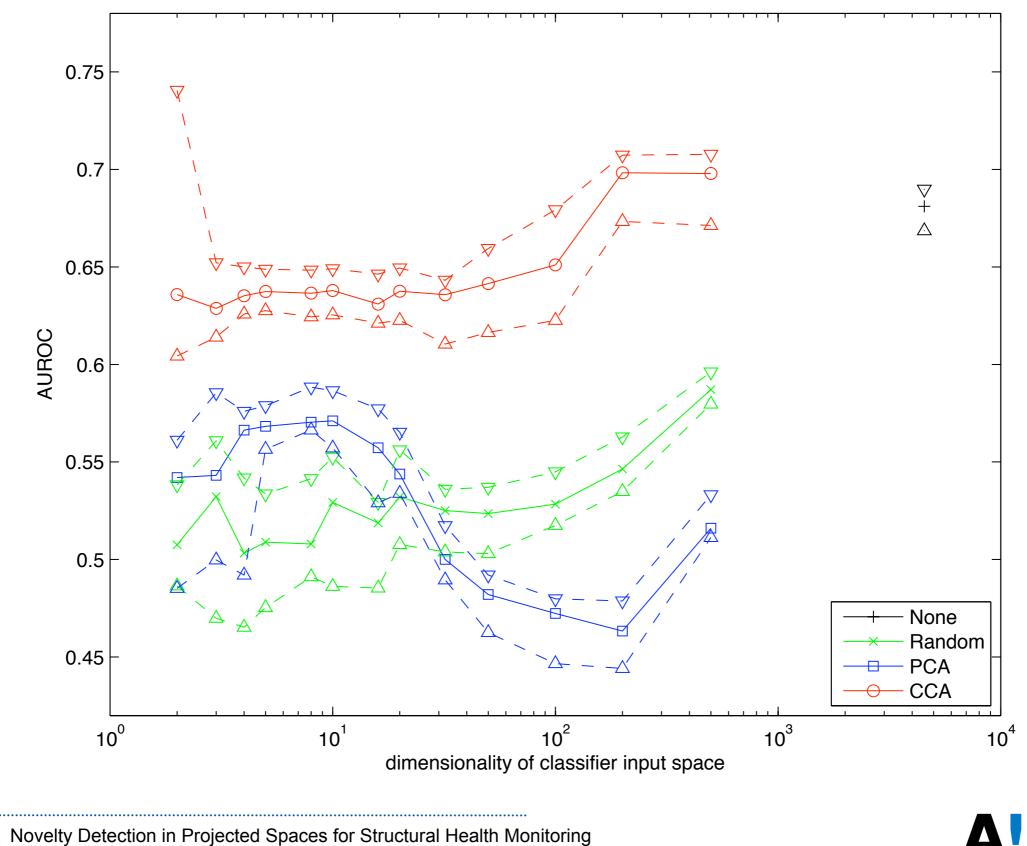
AUROC values with k-NN



Aalto University

AUROC for Gaussian

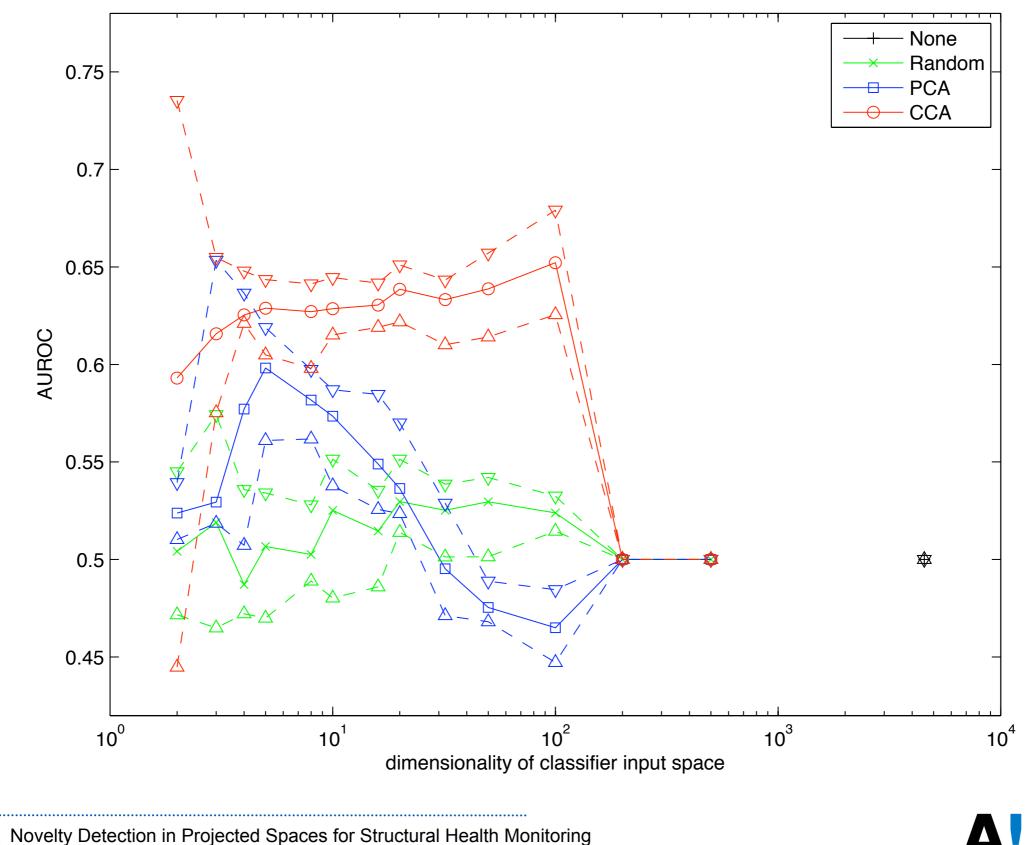
AUROC values with Gaussian



Aalto University

AUROC for MoG

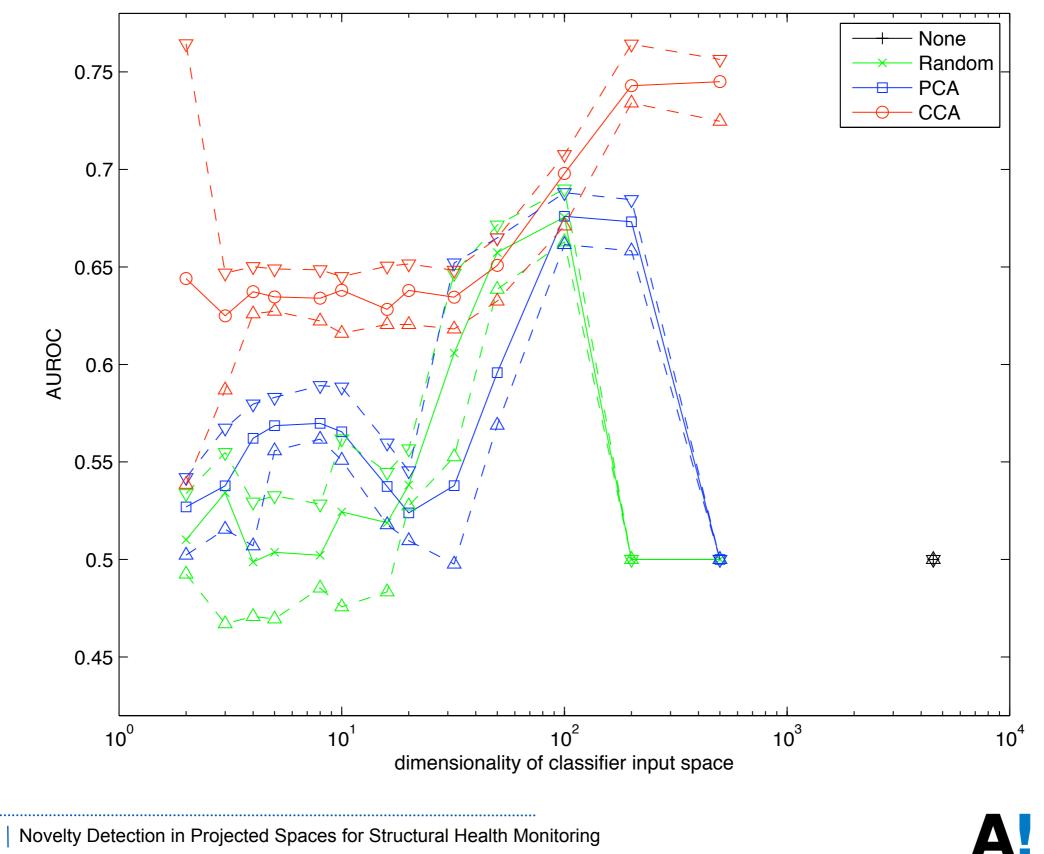
AUROC values with MoG



Aalto University

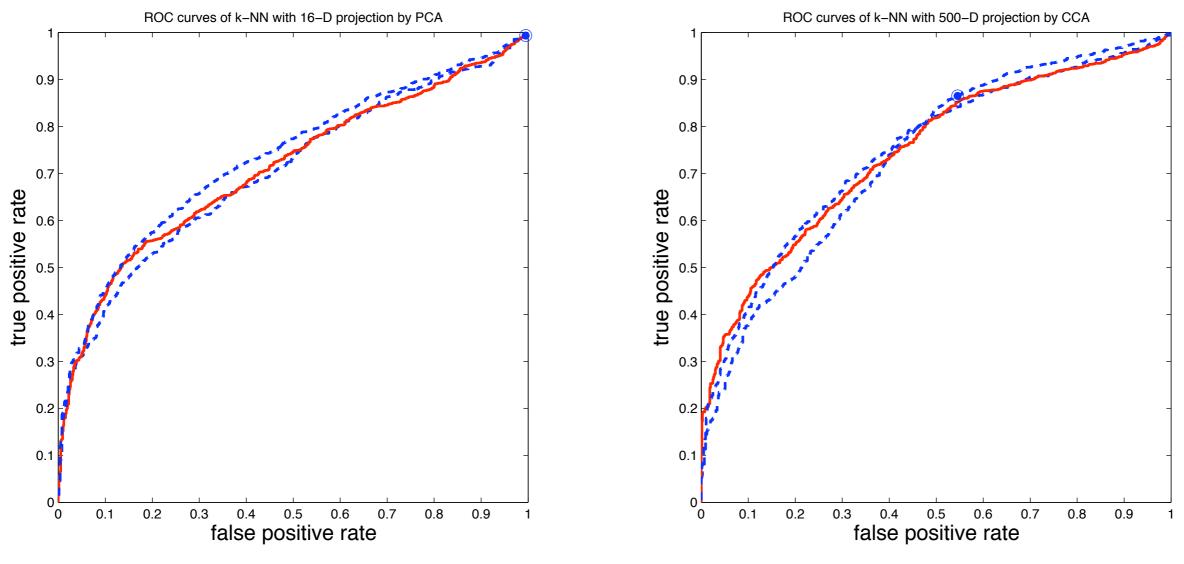
AUROC for Parzen Method

AUROC values with Parzen



Aalto University

Examples of ROC with k-NN



•16-dim. PCA versus 500-dim. CCA -median AUROC of 0.7112 and 0.7448

Novelty Detection in Projected Spaces for Structural Health Monitoring

Application domain considered

- -Need for dimensionality reduction
- -Need for novelty detection

General level solution as combination of projections and novelty detection methods

- -The problem of distributing the computation still not considered at this stage
- -Application requirements were open: Will a certain combination of methods work in SHM, or not?

Aalto University

Summary II

Several combinations of methods benchmarked with a real-world data set

- -Experience gained about the performance of several methods
- -Nonlinear projections reach better performance
- -k-NN and Parzen density estimates outperform simpler density-based novelty detection methods

Aalto University

More research still required

- -Applicability domain of transmissibility features?
- -More and better data sets and density models?

Novelty Detection in Projected Spaces for Structural Health Monitoring

Thanks for listening!

any questions or comments?

Aalto University

maanantaina 10. toukokuuta 2010