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This thesis concentrates on specifying dynamic probabilistic models and their

application in the field of discrete time series analysis. At first, the basics of

discrete probabilistic models and traditional clique tree propagation inference

is summarized to name the concepts used further in this work.

Then, the idea of using a stream of small Bayesian networks for dynamic time

series modeling is presented. Previous work on dynamic bayesian networks,

like model representation and the interface algorithm used for inference, are

discussed. Their implications are subsequently taken into account in the appli-

cation presented in this work. A way to specify DBNs in practice is introduced

and algorithmic use of the models is studied.

An EM algorithm is developed for estimating the quantitative parameters of

a specified model when partial data is given. Properties of the learning algo-

rithm are also studied.

In the experimental part of this thesis, two different settings are demonstrated.

First, an idealized and controlled laboratory setting is considered by generat-

ing artificial data and using it for demonstrating the discussed methods. The

another case is a brief study of modeling human DNA copy number amplifi-

cations in a real world setting.
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Tämä diplomityö keskittyy dynaamisten probabilististen mallien määrittelyyn

ja käyttöön diskreettien aikasarjojen analyysissä. Diskreettien probabilististen

mallien ja perinteisen klikkipuun avulla tapahtuvan päättelyn perusteet ker-

rataan ensin lyhyesti, määritellen samalla myöhemmin käytettävät käsitteet.

Seuraavaksi esitetään idea siitä, kuinka pienistä Bayes-verkoista koostuvaa

virtaa voidaan käyttää aikasarjamallinnukseen. Aiempaa dynaamisiin Bayes-

verkkoihin liittyvää työtä, kuten mallien esitystapa ja eräs päättelyalgoritmi,

käsitellään. Näiden seuraukset otetaan sittemmin huomioon tässä työssä

esiteltävässä sovelluksessa. Käytännön tapa määritellä dynaamisia Bayes-

verkkoja ja mallien käyttöä algoritmeissa tutkitaan.

EM-algoritmin toteutus kehitetään mallien kvantitatiivisten parametrien

määrittämiseksi annetun datan perusteella. Myös kyseisen oppimisalgoritmin

ominaisuuksia tutkitaan.

Työn kokeellisessa osuudessa esitetään kaksi esimerkkitilannetta. En-

simmäisenä on ideaalisessa ja kontrolloidussa ympäristössä tehty koe, jossa

näytteistetään keinotekoista dataa ja käytetään sitä esitettyjen menetelmien ha-

vainnollistamiseen. Toinen havaintoesimerkki on koe, jossa yritetään mallintaa

kopiolukumuutoksia ihmisen perimässä kuvaavaa dataa.

Avainsanat: dynaamiset Bayes-verkot, Bayes-verkot, aikasarja-analyysi, tilas-
tolliseen malliin perustuva päättely, piilomuuttujat, puuttuva data
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Chapter 1

Introduction

During the past couple of decades, the advance in computer technology has

lead to collection of massive datasets. First of all, the storage capacity has

grown considerably and people are able to store hundreds of gigabytes of

data on their desktop computers today. Also, the sheer speed of access and

manipulation of data has grown with the development of communication

networks and modern computer architectures. Thus accessing and storing

data is made easy in the community of the day.

While most of the gathered data shows us explicit and evident informa-

tion, some interesting facts may easily be missed. For example, some pat-

terns or rules that govern processes behind datasets are usually not feasible

to find by just looking at billions of numbers. There can also be datasets

that were collected for another specific purpose, but possibly contain more

useful information than apparent at first sight. Data might also miss some

values or be statistically skewed by inappropriate sampling.

Consequently, a myriad of data mining methods have been advised in

order to take full advantage of the collected data [11]. Some of the most

characteristic missions that data mining includes are the following:

• dealing with potentially huge size of data sets,

• coping with partially observed data,

• finding relationships between variables or events, and

• providing understandable summaries of data.

1



2 CHAPTER 1. INTRODUCTION

Algorithmic methods belonging to the categories of clustering, classifica-

tion, regression, and pattern discovery, have been developed to achieve

these goals [9, 11].

Among the techniques, probabilistic inference deals with statistical de-

pendencies between quantities of interest and can handle missing data. This

is particularly suited for data mining applications since usually the data,

which more traditional methods fail to explore, is incomplete or fails to ex-

plicitly measure the appropriate quantities in other ways. Reasons for miss-

ing values are inability to measure some aspects of the system under study

or perhaps the lack of planning before performing the measurements.

Probabilistic analysis is also conveniently fostered by the amount of avail-

able data, although the quality of data can be a problem. More impor-

tantly, probabilistic approach is a well established way of representing un-

certainties that result from incomplete prior knowledge or missing observa-

tions [31, 10]. Shortly put, probabilistic inference is based on the Bayes rule

familiar from statistics and pattern recognition:

P(V |E) =
P(E|V) ∗ P(V)

P(E)
(1.1)

The rule tells us how to make conclusions about the state of variables V by

taking into account the prior knowledge P(V) and the model P(E|V) that

is supposedly behind the evidence E. This is straightforward when only

single variables V and E are considered.

Things get more complicated when dependencies between larger sets of

(discrete) variables V and E are modeled. The fact, that P(E|V) is essentially

a multidimensional probability table with exponential amount of elements,

makes the computation infeasible unless the number of variables can be

somehow restricted.

When some independencies between the variables are assumed, the prob-

lem can be specified in terms of smaller dependency structures and proba-

bilistic inference is divided into simpler parts. Bayesian networks1 provide

the way to represent dependency structures as graphs and makes the com-

putation more local and even feasible [31, 24, 16].

1a.k.a. belief networks, probabilistic independence networks
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This master’s thesis presents methods for using Bayesian networks in

time series analysis2. For example, Hidden Markov Models (HMM) are one

type of BNs and are widely used for modeling time series [26, 32, 18, 34, 25].

Besides modeling the dependencies between hidden and observed variables

(say, V and E respectively), HMMs take also the dependency between con-

secutive time steps (Vt and Vt+1) into account.

Thus, HMM can be seen as a Bayesian network consisting of dynamically

created similar pieces of tiny networks. A natural step towards a more gen-

eral framework is made by allowing arbitrary networks as modules of the

repetitive structure. This idea is better known as Dynamic Bayesian Net-

work (DBN), dynamic time-sliced Bayesian network or dynamic probabilis-

tic network [6, 20, 29, 36].

Whereas DBNs in principle allow the dependency structure of time slices

vary through time, this work concentrates on time series analysis using

modules with static structure. Having constant dependencies between vari-

ables and time steps is considered to be a reasonable assumption for many

processes behind time series data. Moreover, this restriction makes it pos-

sible to precompute some aspects of the model before making probabilistic

inference.

In this thesis, the method called Clique Tree Propagation3 [14, 17, 24, 37]

is used as the basis for inference procedures in contrast to the Variable Elim-

ination algorithm seen in more general DBNs [7, 21]. The overall result is

a way to specify a dynamic Bayesian network as a series of similar mod-

ules. Such a time slice is further transformed into a clique tree forming an

inference engine capable of computation localized both in time and space.

The rest of this thesis is organized into following kinds of chapters. Chap-

ter 2 introduces basics behind the Clique Tree Propagation algorithm and

explains how to make statistical sampling according to a BN. The chapter

presents also the known ideas behind dynamic Bayesian networks [28]. Fi-

nally, Chapter 2 explains how dynamic Bayesian networks (with static time

slice structure) can be specified modularly. It is also studied how these strips

2note that the actual quantifier can be other than time
3a.k.a. Probability Propagation in Trees of Clusters, Join Tree Clustering, JLO algorithm

etc.



4 CHAPTER 1. INTRODUCTION

of networks can be transformed into a suitable inference engine using clique

tree propagation.

Chapter 3 deals with maximum likelihood parameter estimation with the

Expectation Maximization (EM) algorithm [8]. Structures of the belief net-

works are assumed to be fixed and known: structural learning is beyond

the scope of this work.

Chapter 4 presents the experiments done with modularly specified and

computed DBNs and the software library implemented for the experiments.

First, artificial data was used for testing and getting familiar with the prop-

erties of the algorithms. After that, the chapter concentrates on the investi-

gations with real world data consisting of DNA copy number amplification

sites in different types of human neoplasias [30].

The final chapter presents a summary of the work and conclusions drawn

from the experiments. Additionally, some practical examples of modular

model definitions can be found in the appendix.



Chapter 2

Probabilistic modeling with

Bayesian networks

2.1 Background

This chapter concentrates on probabilistic models with discrete variables

and certain well-known algorithms for using them. The idea of a proba-

bilistic model is to define statistical dependencies among a set of variables.

This enables such interesting tasks as probabilistic inference, statistical sam-

pling of a known process, and learning quantitative dependencies.

The methods discussed in this work allow the modeled variables to be

nominal (categorical). This means that the values of a variable may be sep-

arate labels without a specific order or magnitude. As a consequence, such

concepts as mean and variance are mostly useless in describing a probabil-

ity distribution. Thus, the focus is on multinomial distributions, i.e., having

a separate probability for each value of a variable.

Perhaps the most fundamental task in this framework is probabilistic in-

ference. In essence, this means entering available observations into a model

and computing the posterior probabilities of hidden variables or other miss-

ing data. The traditional clique tree propagation1 (CTP) algorithm [31, 17,

24, 14], handles the case of exact inference in a statically defined discrete

Bayesian network. The goal is to eventually use similar method of inference

1a.k.a. clique tree inference, join tree clustering, JLO algorithm etc.

5



6 CHAPTER 2. PROBABILISTIC MODELING WITH BN

in a dynamic manner throughout a repetitive BN, which is useful especially

in time series analysis.

There would also be an alternative inference procedure, called variable

elimination (VE) [36], also known as bucket elimination algorithm [7]. It

can be used with modular networks, such as the object-oriented Bayesian

networks (OOBN) [22] or dynamic time-sliced Bayesian networks [21]. But

in this work, the belief networks are assumed to have constant repetitive

structure which facilitates reuse of data structures when clique tree algo-

rithm is used. Besides, the clique tree inference algorithm has the same time

and space complexity as variable elimination [7] in the context of static be-

lief networks and can be more efficient in the case when posteriors for all

variables are computed [36] (Sec. 14.4). Therefore it is reasonable to expect

only benefits in using CTP instead of VE algorithm in this work.

In the case of time series analysis, probabilistic models tend to have repet-

itive structure and it would be better if the inference algorithm could con-

centrate on localized computations in a relatively small time slice at a time.

This leads to the idea of dynamic Bayesian networks [6, 36], which extend

themselves according to the length of time series.

Some inference procedures for dynamic Bayesian networks have already

been invented. For example, one using a dynamic time window with vari-

able elimination approach is presented in [21] and the interface algorithm is

introduced in [28]. The latter one uses clique tree propagation as the basis

for inference.

Probabilistic models can also be used for simulating the behavior of a

known process. This is done by exploiting the causal structure implied by

the representation as a directed graph. The idea is to simply draw samples

for parent variables, to establish cause, and then for the children (i.e., the

consequences).
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2.2 Probabilistic models with discrete variables

2.2.1 Discrete variables and likelihood

The foundation of the computational methods presented here is the ability

to describe dependencies between random variables. This is achieved by

graphs, potentials, and cliques presented in the following sections. Shortly,

random variables are said to be children depending on values of their par-

ent variables. A variable V and its parents ΠV form a set of variables FV

naturally called the family of V [14]. The ways to represent relationships

quantitatively are discussed in the following sections.

V V

F
V

A B

C

Child V

A B

ParentsΠ
V

The family of V

Figure 2.1: Roles of variables in a BN

In this work, each of the variables are assumed to be discrete and have a

certain finite number of states: cV = |V| which is also known as the cardi-

nality of the variable V. Thus the probability distribution, i.e., likelihood λV

of a variable V can be represented as a table of values [14, 37] and the size of

the table is cV . To represent a probability distribution, the sum of the values

in the table equals one:
cV

∑
v=1

λV [v] = 1. (2.1)

2.2.2 Dependencies quantitatively as potentials

As probability distributions of single variables are implemented as tables,

probability distributions related to multiple discrete variables can be rep-

resented as multidimensional tables. For example, if a variable X depends

on a set of other variables Y = {Y1, . . . , YN−1}, the dependency can be de-

scribed quantitatively by the conditional probability distribution P(X|Y).
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Another example could be a joint distribution P(Z) of the variables Z =

{A, B, C}.

These kind of distributions can be seen as functions from the N-dimensio-

nal space formed by the variables (e.g. {X} ∪ Y , or Z) to a positive real

number p ∈ [0, 1] . Since the variables have a discrete and finite set of states,

the function can be represented as an N-dimensional table φV , called poten-

tial [24] and containing the real numbers corresponding to the probabilities.

As an example, the value p(A = a1, B = b3, C = c5) is found in a multidi-

mensional table φZ as φz=1,3,5 or as P[0][2][4] in a computer program.

There are two kinds of operations on potentials: marginalization and mul-

tiplication [17]. Marginalization is basically for reducing the number of di-

mensions of a potential by calculating sums over the unnecessary variables.

For example, if A ⊆ Z, P(A) can be calculated from P(Z) by summing over

Z \ A and denoted as

φA = ∑
Z\A

φZ

= φZ ↓ A.

(2.2)

This means that if the set of variables Z = {A, B, C}, then

φA = ∑
B,C

φZ

⇔ φA[i] =
cB

∑
j=1

cC

∑
k=1

φZ[i][j][k], ∀i ∈ [1, cA]
(2.3)

The multiplication operation has a same kind of idea: a potential can be

weighted with another one by multiplying suitable elements one by one

(i.e., pointwise product). Again, if the set A ⊆ Z, multiplication would

assign

φZ ← φA ∗ φZ. (2.4)

As an example, when Z = {A, B, C}, the assignment

φZ[i][j][k] ← φZ[i][j][k] ∗ φA[i] (2.5)
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is done for all combinations of (i, j, k) ∈ [1, cA]× [1, cB]× [1, cC].

These two operations on potentials are the core of inference, because they

enable such calculations as

P(A) = ∑
B

P(A, B)

=
1

S ∑
B

P(A|B) ∗ P(B),
(2.6)

when probabilities are represented as potential tables.

From the implementation point of view, one of the most important no-

tions is that an element in a multidimensional table can be referenced by a

“flat index” also. For example, if the first index of an array is assumed to be

the least significant one and Z = {A, B}, then

• φZ[1] , φZ[1][1],

• φZ[i] , φZ[i][1], if i ≤ cA,

• φZ[i] , φZ[i− cA][2], if cA < i ≤ 2cA etc.,

• φZ[cA + 1] , φZ[1][2], and

• φZ[cA ∗ cB] , φZ[cA][cB], which is the last element.

2.2.3 Bayesian networks for model representation

Probabilistic models, and especially the dependencies between variables,

are represented visually as directed acyclic graphs (DAG). Each of the nodes

in a DAG corresponds to a random variable in the model. The directed

edges denote parent-child relations between variables, thus encoding all

the probabilistic dependencies. Actually the DAG representation defines all

known conditional independencies, since missing edges2 assert that a vari-

able is independent from other variables given its parents (as explained in

[31, 37]).

For example, if a model does not have an edge (A → B), then B ⊥ A|ΠB.

In other words, this means that knowing value of A does not provide more

2Missing, as compared to a fully connected graph
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information about the value of B, if the values of the parents of B are known.

This is the property known as d-separation [31].

After all the conditional independencies between variables are known,

the joint probabilities can be expressed as products of conditional and prior

probabilities, but the actual values of these factors are needed. This leads

to the fact, that quantitative parameters of the models are represented as

conditional probability tables for each child variable and prior probability

tables for each variable without parents. This kind of factorization is also

the most compact way to specify such a probabilistic model.

2.3 Clique tree propagation

2.3.1 Clique trees for computation

A good introduction to inference in belief networks can be found in [14, 37,

5]. Unlike the plain belief network, a secondary structure called clique tree

provides a prearranged coherent structure for inference procedures. Shortly,

the graphs described previously in this document are transformed into a set

of groups of variables called cliques. The cliques are connected to each other

by separator sets to form a structure called clique tree3.

To create a clique tree according to a belief network, the DAG is

“moralized”, i.e., parents of each child variable are connected to each other

by undirected edges. After that, the original directed edges are replaced

by undirected ones. The resulting graph will therefore have all the families

(FV ) fully connected and ensure that the clique tree will have at least one

clique for each family. An example is shown in Fig. 2.2, where {V, A, B}

and {B, C} are the cliques for FV and FC correspondingly and the separator

set between them contains B.

The inference also requires that clique trees have a so called running in-

tersection property4: if any two cliques in a tree contain the variable V, then

every clique on the unique path between the two cliques will contain V also.

This property is achieved by triangulation of the graph. Thus, the moralized

3Also known as join tree, junction tree, or cluster tree
4a.k.a. join tree property
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Figure 2.2: Transformation from a graph into a clique tree

graph is supplemented by additional edges that eliminate all chordless cy-

cles in it: every cycle will consist of at most three nodes or have shortcuts

due to additional edges.

All the graphs that need the additional edges, can be triangulated in many

ways. In order to minimize the computational requirements, number of

added edges and sizes of resulting cliques should be minimized. In this

work, triangulation is done with heuristic methods [37], because exact min-

imization is an NP-hard problem [38, 3] and at least some level of scalability

is needed.

Traditionally the word clique means a complete subgraph of some graph

or just the set of nodes in such a subgraph. In this context, the word clique

refers to a structure which contains the variables of a maximal fully con-

nected subgraph of the final modified graph. The cliques5 have also po-

tential tables for describing the dependencies between its variables. Finally,

cliques are connected together to form a clique tree (as in Fig. 3.1 for exam-

ple).

Cliques are connected together by separator sets, or just shortly sepsets.

A sepset contains the intersection of the two neighboring cliques, that is, the

5also the name belief universe has been used [17, 21] for differentiating it from the graph
theoretical counterpart
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variables common to both cliques. In the inference engine, a sepset between

cliques X and Y contains also two potential tables φS and φold
S for message

passing in addition to the variables S = X ∩ Y [14].

2.3.2 Properties of clique trees

The key idea of an inference engine is to keep the clique tree in a consistent

state. As the clique and sepset potentials encode dependencies between

variables, there has to be so-called local consistency, i.e., for each clique C

and adjacent sepset S:

∑
C\S

φC = φS, (2.7)

which simply means that a sepset potential must describe the same kind

of dependency between its variables than the neighboring clique poten-

tial. The clique just has some extra variables which the sepset does not care

about.

The intention of the clique tree potentials is to encode the joint probability

distribution of all the variables in the original belief network. This property

is called the global consistency:

P(U) =
∏i φCi

∏j φSj

, (2.8)

meaning that the secondary structure expresses all the quantitative infor-

mation about the belief network.

As stated in [14] (and [17] before that), these consistency requirements

guarantee following properties:

φC ∝ P(C) (2.9)

and especially for a single variable V,

P(V) ∝ ∑
C\{V}

φC. (2.10)

As a conclusion, one can compute the probability distribution of any vari-
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able or joint probability distribution of its family by marginalizing a suitable

clique potential and normalizing the result. The inference is only a matter of

inserting evidence into the clique tree and making the potentials consistent.

One of the most important features of a the secondary structure is the join

tree property: if two cliques have a common variable, every clique and sepset on

the path between the two cliques have the variable also. The importance becomes

clear in the message passing scheme, presented below, where information

about evidence is propagated across the clique tree.

Another important property is that a family of a variable can be found in

a single clique: this is due to the moralization of the original network and

ensures that conditional probabilities P(V|ΠV) can be multiplied into clique

potentials.

2.3.3 Initialization of a clique tree

In order to encode the quantitative dependencies of the original belief net-

work, the clique tree must be initialized with the belief potentials [14, 37]. At

first, all the potentials are uniform, i.e., φX = 1, for all cliques and sepsets X.

The initialization is achieved by multiplying the conditional probability dis-

tributions (belief potentials P(V|ΠV)) and priors (where ΠV = ∅) into cer-

tain clique potentials. The clique C to be initialized has to contain the cor-

responding variable V and its parents ΠV : if the family of the variable is

FV = V ∪ΠV then FV ⊆ C.

φC ← φC ∗ P(V|ΠV), (2.11)

as defined previously in Eq. 2.5

2.3.4 Evidence

Available data is usually certain (V = vi), so called hard evidence, which

means that the likelihood of an observed variable equals one for the ob-

served value and zero for the other values: p(V = vi) = 1, and p(V 6= vi) =

0. On the other hand, uncertainties about data need to be expressed also.

As an example, this is the case if one value is observed to be impossible,
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p(V = v1) = 0, but all other values are equally probable: p(V = vi) = 1
cV−1 ,

∀i ∈ [2, cV ].

To include observations in the inference, the data is represented as prob-

ability distributions for each of the observed variables. This method facil-

itates both the common hard evidence and any kind of uncertain observa-

tions. After all, hard evidence is a special case of the more general notion of

soft evidence, where probability may be distributed across different possible

values of the variable. The likelihood table of each observed variable V is

denoted as λV .

After the data is encoded as likelihood tables, the inference procedure

can be continued by entering the likelihoods into the clique tree. A suitable

clique potential φC, containing the variable, i.e., V ∈ C, is multiplied by the

new likelihood [14].

From the implementation point of view, we can reuse the clique tree if we

keep record of the entered likelihoods. In the case of dynamic observations,

the possible old likelihood of the variable has to be canceled away from the

clique potential. If λold
V 6= 0 or λV = 0, it can be done with an element-wise

division:

φC ← φC ∗
λV

λold
V

. (2.12)

Otherwise the clique tree can be re-initialized. The previous likelihood of

the variable, denoted by λold
V , is updated after the observation entry:

λold
V ← λV . (2.13)

2.3.5 Propagation

The initialization and observations will make the clique tree inconsistent.

After all, the parameters and data were multiplied into single cliques, so

the evidence has to be distributed throughout the tree. One could think that

most of the inference will happen during the third phase where the tree is

made consistent.

Consistency is achieved with a two-phase procedure, where the effects of

evidence are first propagated away from an arbitrary root clique and then

towards the same clique in depth first order [17, 14]. The key property of this
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message-passing procedure is that each clique passes a message to a neigh-

boring clique after if has received messages from all of its other neighbors

(see [14] for examples).

A single message from clique C1 to its neighbor C2 is passed as follows:

1. Save the old potential of sepset S1,2 between the cliques:

φold
S ← φS (2.14)

2. Compute the new sepset potential by marginalizing from clique C1.

This is so-called projection:

φS ← ∑
C1\S

φC1
(2.15)

3. Update the potential in clique C2 by multiplying with the new sepset

potential. Old information is canceled by dividing with the old sepset

potential. This is also known as absorption:

φC2
← φC2

∗
φS

φold
S

(2.16)

Due to the running intersection property, the projection phase will conserve

all information about changes needed further down the clique tree.

After the evidence is entered and the clique tree is made consistent, prob-

ability distribution of a single variable V can be computed by marginalizing

from a suitable clique C (so that V ∈ C):

φV = ∑
C\V

φC. (2.17)

Finally, the resulting 1-variable potential may need some normalization to

be interpreted as a probability distribution:

P(V = vi) =
φV [i]

∑j φV [j]
. (2.18)
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2.4 Dynamic Bayesian networks

2.4.1 Introduction

Time series analysis requires models for describing how quantities of in-

terest develop through time. In the case of Bayesian networks this suggests

that in addition to describing dependencies between different variables, also

the dependencies between time steps should be included.

Perhaps the most simple example of this type of a temporal model is the

Hidden Markov Model (HMM) [33, 37, 36]. They can be seen as streams of

tiny Bayesian networks where dependency between the observed and hid-

den variable is modeled as the emission probability distribution. Similarly,

the transition probabilities describe how the hidden state changes and the

modeled process evolves through time.

The idea can be extended by allowing the time slices to be arbitrary be-

lief networks instead of just two variables. Also additional edges between

adjacent time slices can be useful, but because of the causal interpretation

of the directed edges, it is considered reasonable to restrict the direction to

point only forward in time (i.e., At1 → Bt2 , where t2 > t1). The result is a

repetitive structure which suggests using only one instance of the repeating

elements at a time during the inference procedure.

This has two obvious advantages over a statically defined network: the

parameters can be specified in a more compact way and a considerable

amount of memory is saved during the inference procedure. As a difference

to dynamic Bayesian networks, a statically defined network could have ar-

bitrary variations in its parameters through time and it would be able to

model non-stationary processes. This would require defining separate pa-

rameters for each time step, and add the linear factor T to memory con-

sumption, as compared to a DBN. Additionally, parameter estimation by

learning algorithms would either be cumbersome if some of the parame-

ters were shared or constrained, or need massive amounts of training data

and most likely result in overfitting. Yet another issue is, that a dynamic

Bayesian network scales automatically according to the length of time se-

ries.
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In addition to saving parameter space relative to time dimension, belief

networks lend themselves to saving space inside a single time slice. It may

be hard to create models that are not trivially equivalent to some kind of an

HMM, because in most cases the hidden variables can be combined into one

giant variable representing the Cartesian product of original variables (as

noted in [29] for instance). This explains the fact why the worst case space

requirement for a model may be exponential. On the other hand, separate

variables with less cardinality allow models to be explained in smaller parts

and more independencies included between them. The less dependencies

there are, the less computational complexity it has.

Compared to an HMM, having a more elaborate dependency structure of

latent variables may make the model more understandable or make it pos-

sible to insert some occasionally observed partial data about the variables.

In fact, a more general inference engine at the core makes the associated

algorithms elegant in the sense that missing or partial data is handled auto-

matically.

It has to be noted, however, that many DBN models don’t have sparse

enough dependencies to be factorized into smaller parts within one time

slice. One example of this is are various factorial HMMs [29] where the ob-

served variable depends on several separate hidden Markov chains as in

Fig. 2.3. When the number of hidden chains increases, the family composed

of the entire time slice grows and memory requirements increase exponen-

tially with it.

2 3

32

32B1

Hidden Markov chains

A

V

1

1

Observed sequence Vt

Figure 2.3: A factorial HMM
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2.4.2 Alternative inference algorithms

It would be simple to just define a piece of Bayesian network (a time slice)

and repeat its structure for T times. Resulting static belief network could

then be used for inference with traditional algorithms like the variable elim-

ination or clique tree propagation. Despite being simple, this kind of ar-

rangement would waste computer memory in vain. Since graphical models

are used for factoring the inference problem so that more local computations

can be used [24, 17], it is more space efficient to provide sufficient context

for only one time step at a time.

Various time slice inference schemes have been proposed. One of them

uses a dynamic time window [21], another one is called the frontier algo-

rithm [40] and the one used in this work is called the interface algorithm [28,

29].

Shortly, the dynamic time window approach is based on the idea of ex-

panding the current piece of a model into the direction of inference and

reducing away the old parts. The fundamental point is to maintain the

Markov property: the future time slices are conditionally independent of

the past time slices given the current time window. Dynamic expansion

and reduction of the window is achieved by adding time slices to the graph,

constructing a new clique tree and disposing the cliques corresponding to

old time slices [21]. Although this scheme allows dynamic changes in the

time slice structure, it is considered too complex and inefficient approach in

the scope of this work. Since the graph structure is assumed to repeat itself,

it would be better to create the clique tree once and reuse it for all time slices.

The frontier algorithm would be more suitable for forward inference

(a.k.a. filtering) [28]. Frontier is a set of variables Zt whose posterior,

P(Zt|y1:t), summarizes all the evidence y up to a certain point of time: fron-

tier d-separates past from future. The algorithm advances forward in time

by adding variables to the frontier in topological order. A variable can be re-

moved from the frontier when all its children have been included. Although

an intuitive idea, the frontier algorithm is left aside in this work since the in-

terface algorithm is considered more efficient [29] and uses clique tree prop-

agation framework.
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2.4.3 Model representation

Some concepts need to be defined more carefully to explain how the in-

terface algorithm works. The repeating part of the belief network is repre-

sented in a certain way to compose a suitable clique tree for inference.

Time slice is defined as a belief network including nodes (variables V t)

at a certain moment in time and the dependencies between them (edges

Vt
i → Vt

j ). The point here is that a time slice contains all the variables of the

repeating model exactly once. Thus, time slice is primarily a visual concept

related to the graph representation.

To construct a DBN, the dependencies between consecutive time slices

have to be defined also. In the graph representation this is done by so called

temporal arcs Etmp which extend from a node in a time slice to another node

in the next time slice (Vt
i → Vt+1

j ). It is assumed that all the temporal arcs

point forward in time: this is reasonable from the causality point of view.

Temporal arc between nodes of the same variable (Vt
i → Vt+1

i ) is called

persistence arc [29].

It would be simple to incorporate temporal arcs in a partial belief network

by including two time slices and all the arcs between them. Such a model is

called two-slice temporal Bayes net (2TBN) [28]. In this case, it is assumed

that the model is first-order Markov: all the temporal arcs are between adja-

cent time slices. Higher-order models can be defined by adding time slices

to the graph but inference engines derived from n-slice TBNs have certain

drawbacks with sampling algorithms as noted in Section 2.6.

It is shown in [28] that a graph with (usually) less nodes than 2TBN is

more suitable for defining a DBN and deriving a clique tree from it. The

latter time slice (time t) is left intact but unnecessary nodes from the first

time slice (t− 1) are stripped off. The resulting graph is called 1.5DBN [29]

because of the incomplete earlier time slice. An example of this is shown in

Fig. 2.4.

From the interface algorithm point of view, the first time slice needs only

the nodes that d-separate past from future and thus relay enough informa-

tion from a time step to the next one during inference procedure. Nodes

in the first time slice of a 1.5DBN graph comprises a set called outgoing in-
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Figure 2.4: A 2TBN and corresponding 1.5DBN

terface [29]. Outgoing interface I→t−1 is composed of all the nodes that have

children in the next time slice

I→t−1
def
= {A ∈ V t−1|(A, B) ∈ Etmp, B ∈ V t} (2.19)

When constructing a clique tree according to a 1.5DBN model, one of the

cliques has to be identified as the outgoing clique φout [29] and it should con-

tain the variables of outgoing interface I→t . To ensure the existence of such

a clique, additional undirected edges between the interface nodes may have

to be inserted before triangulation of the graph (I→t has to be fully con-

nected). Incoming clique φin is defined in similar manner: it contains the

interface nodes I→t−1 of the earlier time slice, i.e., all the nodes Vt−1 included

in 1.5DBN.

2.4.4 The interface algorithm

After defining the interface and creating a suitable clique tree, the inference

procedures are relatively straightforward as shown in [28]. Taking one in-

ference step forward in time is explained in Algorithm 1. The clique tree is

first initialized with the model parameters and evidence corresponding to

the current time step. If there was a previous time slice (t > 1), the mes-

sage αt−1 is passed to the current time slice in order to take the history into

account.

After making the clique tree consistent, individual posterior probability
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distributions P(Vt|y1:t) can be marginalized (and normalized) each from a

clique containing the corresponding variable V. Finally, the new message αt

is computed by marginalizing non-interface variables away from the outgo-

ing clique φout.

Algorithm 1 FORWARD-STEP (yt, αt−1, DBN)

Input: evidence vector yt, message αt−1, and the model DBN
Output: P(Vt|y1:t), ∀V, and αt

initialize clique tree (erase old results)
insert evidence yt (for the latter time slice)
if t > 1 then

φin ← φin ∗ αt−1

end if
make clique tree consistent
for each V do

# optional loop for forward-only inference
marginalize φV from a suitable clique
normalize P(Vt|y1:t) from φV

end for
αt ← φout ↓ I→t

Forward inference6 is achieved by applying the FORWARD-STEP algo-

rithm repeatedly for each time step as in Algorithm 2. Note that the first

time step (t = 1) does not have a message α0 to receive and priors included

in the model parameters are used instead. Forward inference needs to store

only one instance of αt message potential for relaying the information from

time slice to the next one. Therefore, online inference requires essentially

one time slice worth of space O(s), and has linear time complexity O(sT).

Algorithm 2 FORWARD-INFERENCE(y1:T, DBN)

Input: evidence y1:T and the model DBN
Output: P(Vt|y1:t), ∀V and ∀t ∈ [1, T]

FORWARD-STEP (y1, null, DBN)
for t← 2 to T do

FORWARD-STEP (yt, αt−1, DBN)
end for

6a.k.a. filtering, or online inference
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When running the inference offline, there is opportunity to take the whole

time series y1:T into account at each time step. This naturally leads to more

accurate results because of the additional data. As a matter of fact, valuable

conclusions are achieved only by hindsight in some cases [36]. After com-

puting the forward message potentials αt for each time step, the effects of

later evidence can be propagated back in time by the procedure described

in Algorithm 3 (equivalent to the BACK-functions in [29]).

Algorithm 3 BACKWARD-STEP(yt, γt, αt, DBN)

Input: evidence vector yt, messages γt and αt, and the model DBN
Output: P(Vt|y1:T), ∀V, and γt−1

initialize clique tree (wipe old results)
insert evidence yt

φout ← φout ∗
γt

αt

make clique tree consistent
for each V do

marginalize φV from a suitable clique
normalize P(Vt|y1:T) from φV

end for
if t > 1 then

γt−1 ← φin ↓ I→t−1
end if

BACKWARD-STEP starts with a clean clique tree by initializing original

model parameters. Then, outgoing clique φout is updated according to the

old forward message αt and the new knowledge γt from future. This is

analogous to the message passing scheme described in Section 2.3.5. Finally,

the clique tree is made consistent, posteriors P(Vt|y1:T) can be computed,

and a new backward message γt−1 is marginalized.

Full forward-backward inference algorithm starts with forward inference

and saving the intermediate forward messages αt as shown in Algorithm 4.

(The bother of marginalizing P(Vt|y1:t) can be omitted, though.) At the end

of the time series (t = T), the backward message γT becomes equal with

forward message αT because all of the data is taken into account already:

results for both the forward and forward-backward inference are the same

for the last time step.

The implementation used in this work makes the inference for each time
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Algorithm 4 FORWARD-BACKWARD-INFERENCE(y1:T, DBN)

Input: evidence y1:T and the model DBN
Output: P(Vt|y1:T), ∀V and ∀t ∈ [1, T]

FORWARD-STEP (y1, null, DBN)
for t← 2 to T do

FORWARD-STEP (yt, αt−1, DBN)
end for
γT ← αT

for t← T to 1 do
BACKWARD-STEP(yt, γt, αt, DBN)

end for

step again from scratch by initializing cliques with the original model pa-

rameters in the beginning of each step. Only the forward-phase results αt

between time steps are stored (and later replaced by γt) which helps in re-

ducing the time complexity from O(sT2) to O(sT) ([36] Sec. 15.2) by trade

off: memory requirements rise from constant space7 O(s) to linear space

O(sT). There could also be a constant space smoothing algorithm without

the trade off by running the forward inference for each time step separately.

Still, one has to remember the fact that the “constant” O(s) is exponential

in the number of interface variables [36], i.e., size of the forward message

O(d|I
→
t |), even if the structure of a single time slice is sparse.

2.5 Modular specification of DBNs

2.5.1 Networks with repetitive structure

In this work, belief networks were chosen to be defined using Hugin Net

language developed by Hugin Expert A/S [15]. Other description formats

do exist, such as the one using Extensible Markup Language (XML) [27], but

Hugin Net language has some major advantages: better human readability

due to minimal redundancy, wide support among other BN software, and

adequate extensibility needed for specifying DBN models.

7Note: the space required by the 1.5DBN clique tree is assumed constant s (regarding
time dimension)
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Hugin Net language is a simple format for describing belief networks

and influence diagrams [15]. For the purposes of this work, the language

offers two elements for defining BNs: node and potential descriptions. The

main functionality of a (discrete) node description is to declare the name

of a random variable and enumerate its possible values. Additionally, it

may have a label for a verbal description of the random variable, position

coordinates for user interfaces displaying the BN, and optional application

specific fields.

As a fictional example, if there was data from an opinion poll about fa-

vorite fruits, the probabilistic model could contain a variable F, defined in

the following manner:

node F

{

label = "Favorite fruit";

position = (225 75);

states = ("apple" "banana" "orange" "pear" "lemon");

MY_field = "42";

}

The purpose of a potential description is to define the parents and the

table of conditional probabilities for a child variable. As a special case, it

describes prior probabilities for a variable without parents. This way, po-

tential descriptions define both the structure and quantitative parameters

of a BN without redundancy. All the the graphs are assumed to be directed,

i.e., chain graphs which may have undirected edges are beyond this the-

sis. Consequently, all potentials are either prior probability distributions

or conditional probability distributions for a single child variable given the

parents.

To continue the example, variable F depends on age A and sex S, which

are declared respectively as shown in Appendix A.1. Potential descriptions

use the notation familiar from mathematics: the child variable is separated

from the list of parents with a vertical bar. In addition to defining the order

of accompanying data, the list of variables define the structure of the BN
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implicitely to avoid redundancy. Finally, the actual data field contains a list8

of probabilities. As shown below, the child variable F is used as the least

significant index in ordering the data9. Parents are in significance order: the

first parent variable S is used as the most significant index.

potential (F | S A)

{

% F = apple banana orange pear lemon

data = ((( 0.2 0.3 0.1 0.3 0.1 ) % S=male A=child

( 0.3 0.3 0.1 0.2 0.1 ) % S=male A=teen

( 0.3 0.2 0.2 0.2 0.1 )) % S=male A=adult

(( 0.1 0.4 0.1 0.3 0.1 ) % S=female A=child

( 0.2 0.3 0.2 0.2 0.1 ) % S=female A=teen

( 0.2 0.2 0.2 0.2 0.2 ))); % S=female A=adult

}

Only one additional application specific field is needed to define a repet-

itive structure, such as the DBNs discussed in this work. To honor the

principle of minimal redundancy, the model description consists of 1.5DBN,

where the outgoing interface variables of the earlier time step have an addi-

tional field for naming the corresponding variable in the next time step. In

other words, models have ordinary node descriptions Vt for one time slice

(“1.0DBN”) and all the nodes Vt−1 ∈ I→t−1 included from the previous time

slice must name the variable Vt ∈ I→t they substitute during the current

time step. This causes a natural constraint between the two nodes: they

must have the same states enumerated in the node description. To simplify

the implementation, the state labels also need to be in the same order.

The conventions of Hugin Net language were followed by naming the

additional field as NIP_next. For instance, the fruit poll example can be ex-

tended into a DBN by forming a Markov chain out of the age variable A as

shown in Fig. 2.5. To achieve this, the model needs to be supplemented by

one additional node At−1, and instead of specifying a prior for At, there has

to be a prior for At−1 and potential P(At|At−1) defining the transition prob-

8The list can also be unstructured, that is, without inner parentheses.
9percent symbol % is the comment delimiter
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abilities. Potential description doesn’t have anything out of the ordinary,

but the node At−1 is described as follows:

node A0

{

label = "Previous age";

position = (50 75);

states = ("child" "teen" "adult");

NIP_next = "A";

}

A0 A1

F1 2F

A2

S1 S2

Markov chain of A

1.5DBN

Figure 2.5: Possible DBN for fruit poll example

Second-order Markov models, such as an HMM where the hidden vari-

able depends on two previous time steps, can be defined respectively by in-

cluding the outgoing interface variables Vt−2 ∈ I→t−2 to the model descrip-

tion. If the model is such that Vt−1 6∈ I→t−1 and Vt−1 is therefore missing

from the 1.5DBN, the division into time slices has to be redefined so that the

successor can be named.

2.5.2 Inference engine

The process of transforming a static BN into a clique tree was dealt with in

Section 2.3.1 and the way of specifying a dynamic BN in terms of one time

slice was discussed above. To achieve a working inference engine, one more

step needs to be taken as visualised in Fig. 2.6.

In principle, one could first create a clique tree according to a static BN

and then somehow invent how the tree should be modified to achieve an



2.5. MODULAR SPECIFICATION OF DBNS 27

re
pr

es
en

ta
tio

n
G

ra
ph

C
liq

ue
 tr

ee
re

pr
es

en
ta

tio
n

Static structure Dynamic Structure

?

t

t

?
?

Figure 2.6: The problem with defining a partial clique tree

inference engine for a given DBN. After all, it could be argued that repet-

itive structure in graph domain implies repetitive structure in clique tree

representation. Moreover, there can be only one sepset between two repeat-

ing parts of the tree: otherwise there would be a loop. This sepset between

repeating elements could pass the message (similar to αt) from time step to

another during inference with a partial clique tree.

In general, the relationship between graph and clique tree representations

can be confusing and ambiguous due to the possibility of multiple choices

in graph triangulation. Clearly, it is easier to first define how a DBN repeats

itself than try to automatically recognize repeating structure in a clique tree

when given some strip of static BN. Therefore, the method presented in [28]

was chosen to be applied in this work. First the user has the simple task

of defining a 1.5DBN and then the software ensures that the corresponding

clique tree can make the stepwise inference in a valid way.

The special case of a static network is also included. A model without

NIP_next variables will perform the ordinary clique tree inference on a sin-

gle static BN. If the evidence has more time steps than one, the inference is
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performed independently for each time step as if the model didn’t have any

temporal edges.

2.6 Stochastic sampling

2.6.1 Drawing samples for a variable

Belief networks can be seen as models on how causes (parent variables)

generate effects (child variables): generative models. Thus, the models dis-

cussed in this work can be used for creating time series samples which serve

as synthetic data or part of numerical approximations.

In order to generate data according to discrete belief networks, samples

need to be drawn from single-variable multinomial probability distribu-

tions. Luckily, this is as easy as dividing the unit interval into smaller buck-

ets according to the individual probabilities and sampling a uniform prob-

ability distribution within the unit interval. The result is determined by the

bucket where the random number generator happened to drop its sample.

More formally expressed, samples from the uniform probability density

function (provided by common software libraries)

u(x) =






1, if 0 ≤ x ≤ 1

0, else

(2.20)

are transformed into samples from multinomial set of probabilities by the

obvious fact that

p(V = vi)
def
= pi =

∫

pi

u(x)dx

=
∫ ps+pi

ps

1dx, ∀i
(2.21)

where ps = ∑
i−1
j=1 pj counts for the probability mass allocated for values be-

fore vi (here the values have some constant order).
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2.6.2 Sampling according to a dependency network

The causal process defined by a Bayesian network can be simulated by so

called forward sampling. Such a task would require prohibitive amount of

memory or processor time in a general large scale and dense BN [2]. In this

work though, the models are assumed to consist of small networks loosely

chained together10 to enable exact (forward) inference. Consequently, for-

ward sampling is guaranteed to be possible.

Another aspect is that only sampling as predictive inference is consid-

ered. This means that the entire BN is to be sampled without any prior

observed evidence (like direct sampling in [36]) and e.g. diagnostic reason-

ing by sampling methods is beyond the scope of this work. Concentrating

on sampling without prior data avoids the possible pitfalls associated with

unlikely observations [2] as in rejection sampling.

First task in the sampling process is to order the variables topologically,

i.e., parent variables before children. This ensures that parents of each fam-

ily of variables are sampled before the child variable.

According to the decided topological order, sampling starts from a vari-

able without any parents. Samples for such variables come from the prior

probability distributions P(V) defined among the model parameters. Child

variables get their samples according to the conditional probabilities

P(V|ΠV) by first selecting the vector P(V|ΠV = πV) corresponding to the

previously drawn samples πV of parent variables.

In an inference engine running dynamic Bayesian networks, the sam-

pling process is accomplished naturally by selecting a variable according

to a topological order, sampling according to the current likelihood of the

variable, setting the sample as hard evidence and making the clique tree

consistent to start with the next variable. After all the variables in a time

slice get sampled, the gained evidence is transferred to the next time slice as

a starting point for the next iteration.

The direct sampling algorithm (Prior-Sample) presented in [36] (Sec. 14.5)

can be used with inference engine of a DBN as shown in Algorithm 5.

Traversing the model piece by piece does not interfere with the topological

10i.e., networks with special topology as referred in [2]
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Algorithm 5 DBN-PRIOR-SAMPLE(T, DBN)

Input: T > 0, and DBN (defines probability distributions and topology)
Output: consistent samples vt, ∀V and ∀t ∈ [1, T]

Sort variables topologically
for t← 1 to T do

if t > 1 then
φin ← φin ∗ αt−1

end if
for each V in topological order do

infer P(V) (given πV)
vt ← a random sample from P(V)
enter vt as new evidence
make join tree consistent

end for
αt ← φout ↓ I→t

end for

order because temporal arcs are assumed pointing forward in time. Thus,

current time slice does not have any children of the next time slice.

Since interface variables d-separate the earlier half from the latter half

of the time slice model, sampling is independent on each side. As a con-

sequence, unnecessary child variables in the earlier (t − 1) half should be

omitted from the model (1.5DBN) or else they are likely to generate sam-

ples that are inconsistent with the ones generated by the latter half.



Chapter 3

Parameter estimation

3.1 Likelihood of evidence

3.1.1 JPD of arbitrary variables

Equation 2.8 tells how to compute the joint probability distribution of all

variables using the tables stored in a clique tree. In practice, computing such

a distribution would be pointless, since the primary motivation for using

a clique tree in the first place is to save memory by avoiding huge tables

required by probability distributions of many variables. However, some

algorithms (e.g. the EM algorithm [8, 23]) need to know the likelihood of the

data and therefore at least single elements of a joint probability distribution

of arbitrary variables need to be computed.

In case it is needed, joint probability distribution of arbitrary variables

P(V) can be computed by traversing the (consistent) clique tree in depth-

first order and multiplying clique and sepset potentials as shown in Eq. 2.8.

Since the variables of interest (set V) do not usually include all the variables

(i.e., V ⊂ U), some marginalization is needed:

P(V) = ∑
U\V

P(U). (3.1)

Computing the entire joint probability distribution P(U) first would ei-

ther use too much memory (O(d|U|)) or at least make the use of a clique tree

31
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meaningless. In order to avoid pointless memory consumption, some of the

marginalizations can be done between the multiplications as in the variable

elimination algorithm.

An example: the variables are U = {A, B, C, D, E, F, G, H} and the cliques

are C1 = {A, B, C}, C2 = {A, B, D}, C3 = {A, E}, C4 = {B, F}, C5 =

{C, G}, and C6 = {G, H}. The joint probability distribution of variables

V = {C, G, F} can be calculated in the following way:

P(V) = ∑
A,B

φABC ∗

[

∑
D

(
φABD

φAB
∗ (∑

∅

φBF

φB
) ∗ (∑

E

φAE

φA
)

)]

∗

[

∑
∅

(
φCG

φC
∗ (∑

H

φGH

φG
)

)]

.

(3.2)

φABC

ABφ

φABD

φC

φCG

φG

φGH

φA

φAE φBF

φB

Figure 3.1: An example of a clique tree

As the example shows, the clique tree is traversed in depth-first postorder

marginalizing away all the variables which are not included in V or the cur-

rent parent clique in the tree (see Fig. 3.1). Again, the running intersection
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property determines the opportunities for marginalizations in a recursive

algorithm as seen in Algorithm 6. A variable Z can be marginalized away

from the current result φU if it either won’t be included in the final result

(Z 6∈ V) or it doesn’t appear in the parent clique (Z 6∈ I). The recursion

is started by calling JOINT-DISTRIBUTION(V , ∅, φX) for an arbitrary root

clique X.

Algorithm 6 JOINT-DISTRIBUTION(V , I, φRoot)

Input: desired set of variables V ,
intersection I of φRoot and its parent,
and the clique φRoot (root of the subtree)

Output: P(V ∪ I)

mark Root clique
U = V ∪ Root
φU ← 1 ∗ φRoot

for each unmarked neighbor clique φC do
sepset S = C ∩ Root

φU ←
φU

φS

I2 = S \ V
φU ← φU∗ JOINT-DISTRIBUTION(V , I2, φC))

end for
P(V ∪ I) ∝ φU ↓ (V ∪ I)

Still, this is waste of resources from learning point of view, since the inter-

mediate results (like φU) use possibly more memory than the clique tree and

only the single value of evidence likelihood is needed. Besides, the above

method is not applicable to soft evidence. Following subsection describes a

better solution.

3.1.2 Ratio of probability masses

The method described above is naive in the sense that it may waste huge

amounts of memory and processor time while computing intermediate re-

sults. Since only the likelihood of given data is needed in the EM algorithm,

there exists a much easier way [17, 23, 37] which facilitates likelihood com-

putations as a by-product of forward inference.

The idea is to compute the probability mass contained by the potential
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tables before and after entering the evidence. For a clique tree of a static BN,

the mass is defined as the sum of clique weights minus the sum of sepset

weights (Eq. 3.3).

M = ∑
i

∑
c

φCi
[c]−∑

j
∑

s

φSj
[s], (3.3)

There are a couple of aspects to note in order to explain how the above

expression ends up being proportional to the likelihood of evidence. First

of all, it is assumed that the evidence distributions, which are multiplied

into clique potentials, are normalized (i.e., the sum of elements equals one).

The elementary case is that all the variables belong to single clique and

the evidence is hard. When the evidence is entered into the clique, all the

elements corresponding to the observation become multiplied by one and

all the other elements in the clique potential become zero. Consequently,

adding up over the entire clique is equivalent to selecting the elements cor-

responding to the observation and summing their weight (as done in [23,

37]). Finally, the sum needs to be normalized by dividing with the original

probability mass because potential tables generally don’t sum up to one.

When using only hard evidence, most of the terms in Eq. 3.3 become zero

and summing over the potential tables is partly redundant, but the case is

different when the evidence is soft. The procedure applies also when the

clique potential becomes “reweighted” by any normalized evidence distri-

bution. As a second example, suppose the single clique C, containing the

binary variables {X, Y, Z}, receives evidence P(X) = [0.1, 0.9]. Potential

elements corresponding to P(X = x1, Y, Z) become multiplied by 0.1 and

P(X = x2, Y, Z) is multiplied by 0.9. Now the clique weight is

M|x = ∑
C

φC

∝ ∑
Y,Z

(0.1 · P(X = x1, Y, Z) + 0.9 · P(X = x2, Y, Z))

= 0.1 · P(X = x1) + 0.9 · P(X = x2),

(3.4)

which is the evidence likelihood since φC ∝ P(X, Y, Z).

In a more general setting, there are more cliques and the sum of separator

set weights is subtracted to eliminate the probability mass included twice in
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neighboring cliques. After entering the evidence and making the clique tree

consistent, likelihood of given evidence (according to the model) is com-

puted as the probability mass left in the clique tree (M|y) normalized with

the mass (M0) that existed before entering the evidence (y).

L(y) =
M|y

M0
(3.5)

Conditional likelihoods can be computed by choosing another point of

reference, as shown in Eq. 3.6. This is useful when calculating factors of

the likelihood of a time series by conditioning on the previous time step as

discussed in the next section.

L(y|x) =
L(y, x)

L(x)

=
M|y, x

M0
÷

M|x

M0

=
M|y, x

M|x

(3.6)

3.1.3 Logarithmic likelihood of time series

Dynamic Bayesian networks, such as the HMM, suffer from the fact that the

likelihood of a (long) time series is usually too small to be successfully com-

puted with a real world computer. Instead, the logarithm of the likelihood

behaves well from the numerical computation point of view. On average, it

decreases linearly as the length of time series grows and it can be expressed

as a sum of logarithmic quantities for each time step because of the well-

known fact that log(ab) = log(a) + log(b).

As a matter of fact, the inference procedure has the same problem: with-

out additional normalization, absolute weights of message-passing poten-

tials (αt and γt) approach zero as t increases. This results in considerable

numerical error with long time series, because of the limitations of conven-

tional computer arithmetics. Therefore, message-passing potentials need to

be normalized between time steps and it is assumed that a single time slice

is small enough to avoid excessive numerical errors.

In order to compute the logarithmic likelihood gradually as a sum of log-
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arithmic terms (i.e., in a numerically stable manner), the likelihood of time

series has to be represented as a product of factors: one for each time slice.

Fortunately, it was already noted that the interface variables d-separate past

time slice from future and temporal edges point forward in time. Thus like-

lihood can be factorized as follows:

L(y1:T) = P(y1) ∗
T

∏
t=2

P(yt|I→t−1)

⇒ log(L(y1:T)) = log(P(y1)) +
T

∑
t=2

log(P(yt |I→t−1))

(3.7)

Algorithm 7 shows how the original FORWARD-STEP procedure has to be

updated in order to compute likelihood of data as a by-product of forward

inference. To compute conditional likelihood of the new data, post-evidence

probability mass (M2) is compared with the one after passing message from

previous time slice (M1).

Algorithm 7 FORWARD-STEP-LL(yt, αt−1, DBN)

Input: evidence yt, message αt−1, and the model DBN
Output: P(Vt|y1:t), ∀V, αt, log(L(y1:t))

initialize clique tree (erase old results)
if t > 1 then

φin ← φin ∗ αt−1

end if
make clique tree consistent
M1 = ∑ φC −∑ φS

insert evidence yt (for the latter time slice)
make clique tree consistent
M2 = ∑ φC −∑ φS

log(L(yt)) = log(L(yt−1)) + (log(M2)− log(M1))
for each V do

# optional loop for forward-only inference
marginalize φV from a suitable clique
normalize P(Vt|y1:t) from φV

end for
αt ← φout ↓ I→t
normalize αt
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3.2 The EM algorithm

3.2.1 CPD estimation using inference engine

Since the main focus is on probabilistic models with hidden variables and

possibly other missing data, a natural choice for learning is the Expectation-

Maximization [8, 39, 35, 23, 1, 36] (EM) algorithm. The goal of this iterative

algorithm is to find a maximum likelihood estimate for the model param-

eters: conditional probability distributions (CPD) for child variables and

priors for variables without parents. Learning the structure of a BN [4, 36]

is beyond the scope of this work.

As noted for example in [29], the CPD of each variable can be estimated

independently because the graph is directed. Thus the algorithm is straight-

forward to build on top of the forward-backward inference. It provides

the posterior probability distributions of variable families at each time step

given an entire time series, P(Ft
Vi
|y1:T), as shown in Algorithm 8 which is

used instead of BACKWARD-STEP defined earlier.

Algorithm 8 BACKWARD-STEP-LL(yt, γt, αt, DBN)

Input: evidence vector yt, messages γt and αt, and the model DBN
Output: P(Ft

V |y
1:T), ∀V, γt−1

initialize clique tree (wipe old results)
insert evidence yt

φout ← φout ∗
γt

αt

make clique tree consistent
for each V do

marginalize φFV
from a suitable clique

normalize P(Ft
V |y

1:T) from φFV

if t = 1 ∨ V 6∈ I→t−1 then

N̂(FV)+ = P(Ft
V |y

1:T)
end if

end for
if t > 1 then

γt−1 ← φin ↓ I→t−1

normalize γt−1

end if

Algorithm 9 shows the necessary steps for computing expected counts
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N̂(FV) for each variable family during one time series. At first, forward in-

ference and likelihood calculations are taken care of by FORWARD-STEP-LL

procedure and finally the expected counts are accumulated by repeating

backward inference in BACKWARD-STEP-LL. Note that it accumulates ex-

pected counts, N̂(FV) = N̂(V), for V ∈ I→t−1 only for the first time step of a

time series. This is due to the fact that the priors of variables in the earlier

time slice (P(V), V ∈ I→t−1) account only for the beginning of a time series.

Algorithm 9 E-STEP(y1:T, DBN)

Input: evidence y1:T and the model DBN

Output: ∑t N̂(Ft
V |y

1:T), ∀V, and log(L(y1:T))

FORWARD-STEP-LL(y1, null, DBN)
for t← 2 to T do

FORWARD-STEP-LL(yt, αt−1, DBN)
end for
γT ← αT

for t← T to 1 do
BACKWARD-STEP-LL(yt, γt, αt, DBN)

end for

Similarly to the Bayes rule, update of the model parameters is given by

the normalized expected counts [23, 36]:

P(V|ΠV)new =
∑t N̂(FV)

∑t N̂(ΠV)
(3.8)

A pseudocode implementation of the above normalization and parame-

ter update is shown in Algorithm 10. If a potential table containing N̂(FV)

is arranged so that the child variable V behaves as the “least significant”

index, it is only a matter of normalizing each cV sized block of the table.

In other words, selecting any configuration of parent variable values will

result in a properly normalized table of probability values for the child vari-

able. The divisor, N̂(ΠV) = ∑V N̂(FV), is implicitly computed during the

aforementioned block-wise normalization to make the blocks sum to one.
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Algorithm 10 M-STEP(N̂(FV), DBN)

Input: sum of expected counts N̂(FV), ∀V, and the model DBN
Output: updated DBN with P(V|ΠV)new, ∀V

for each V do
φFV
← N̂(FV)

i ← 1
while i ≤ |φFV

| do
normalize block φFV

[i : (i + cV − 1)]
i ← i + cV

end while
update DBN with P(V|ΠV)new = φFV

end for

3.2.2 Stopping criterion

The learning process requires also a stopping rule before it deserves to be

called an algorithm. Most literature about EM algorithm, like [1, 36], seem

to concentrate on describing the parameter update rules but don’t elabo-

rate on how to determine when the estimated parameters are good enough.

In some cases, there can be an application-specific stopping criterion, like

cross-validation with another method or data set, but in this work it is con-

sidered important to use as generally applicable stopping rule as possible.

The two most popular choices seem to be monitoring the maximum abso-

lute change in parameters and monitoring the change in logarithmic likeli-

hood of training data (given the model). Although the parameter values are

shown to converge during EM training [39, 35], it is possible at least in prin-

ciple that the labels of hidden variables switch between iterations because

the labels don’t have fixed identity. Therefore, it may be difficult to com-

pare two sets of parameters for equality. On the other hand, the logarithmic

likelihood of evidence provides a single unambiguous monotonic value for

monitoring the progress, as was done e.g. in [23].

The procedure for computing the logarithmic likelihood of a single time

series, logL(y(k)), was described in Alg. 7, but the training data may contain

time series of different lengths: |y(k)| = Tk. Since each time step is taken into

account equally during the parameter estimation, also the likelihood values

should be treated accordingly. The method used in this work is to sum up
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the logarithmic likelihood of each time series and divide it with the total

number of time steps, as shown in Eq. 3.9.

logLave =
∑k logL(y(k))

∑k Tk
(3.9)

Considering the fact that each of the logarithmic likelihoods logL(y(k))

is a sum over Tk time steps, the result is one kind of average logarithmic

likelihood of one time step. It doesn’t take into account the situations where

missing data causes some time steps to have higher likelihood than those

with more observations. But on the other hand, logLave is still a consistent

value for monitoring convergence because the training data doesn’t come

up with new observations or missing values during EM algorithm.

Finally, the actual EM algorithm used in this work is shown in Alg. 11.

It repeats estimation process using Algorithms 9 and 10 defined earlier and

compares the change in average logarithmic likelihood to the minimum re-

quired change δ given as a parameter.

Algorithm 11 EM-LEARN(δ, y(1:K), DBN)

Input: threshold δ, set of time series data y(1:K), and the model DBN
Output: updated DBN with estimated parameters, and log-likelihood

score (logLave) from each iteration

set random parameters for DBN
Ttot = ∑k Tk

logLave ← −∞

repeat
s← 0
for each k do

E-STEP(y(k),DBN)

s← s + logL(y(k))
end for
∆← s

Ttot
− logLave

logLave ←
s

Ttot

M-STEP(N̂(FV), DBN)
until ∆ < δ
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3.2.3 Limitations of the algorithm

There are few shortcomings in using the EM algorithm described above and

in probabilistic modeling in general. The first problem is that the events

not presented in the training data are considered impossible. Due to the

way in which the likelihood is computed, it is obvious that EM algorithm

avoids models where probability mass is wasted on unseen combinations.

For example, an ordinary HMM will have zero emission probability for the

observed variable value Y = y3, if y3 never occurs in the training data. The

same situation applies also for a combination of variable values e.g. in an

HMM with two observed variables (two-dimensional observations).

This complication is a well-known trait of machine learning: models with

a lot of parameters will need a lot of training data or otherwise they will

experience overfitting. An extreme example of this would be a model whose

hidden variables are able to enumerate all the time steps in training data.

Such a model may just memorize the training samples, i.e., report a positive

likelihood when given a time series from training set but consider all other

observation sequences impossible.

Some probability distributions for continuous variables, like the Gaussian

distribution, don’t usually1 suffer from the problem of assigning zero prob-

abilities to unseen events, which corresponds to log-likelihood of −∞. On

the other hand, having separate probability values for discrete events sets

upper limits for the likelihood function. This ensures that likelihood doesn’t

increase without bound as it might do with Gaussian components assigned

to single samples [35] (again, with zero variance).

Another problem is that errors in training data are also included in the

estimated model. In particular, combinations of observations that should

be impossible cause positive likelihoods if included in training data. This

is a very common difficulty in machine learning domain since real world

data sets may have errors that are challenging to remove. For example, it

may be hard to assess what is an interesting unique finding and what is an

error in measurement when exploring a previously unknown data set, like

genetic data. Alternative option for screening errors from the training data

1except in the degenerate case of zero variance
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is to extend the probabilistic model to include the process responsible for

the errors. In any case, the learning algorithm fits the model “blindly” to

the training data and the only other source of assumptions is the structure

of the BN.

The third limitation is that the states of hidden variables are ambiguous.

This means that the same probabilistic model is equally good in explain-

ing the training data regardless of the names or order of values for hidden

variables. The consequence is that there are usually several maximum like-

lihood solutions due to the “label switching” difficulty [35]. Since the ma-

chine can’t miraculously invent correct labels, the hidden variables should

have some arbitrary names for their values before the EM algorithm. After-

wards, the labels can be changed to something more descriptive if they are

identified to correspond to real world events.

The last feature noted here is that the EM algorithm finds local maxima of

the likelihood function [35]. So, in addition to having several equally good

solutions, there may exist a better solution than the first one found by EM

algorithm. Therefore, it is worth trying EM algorithm several times with

randomized initial model parameters and see if some of the found parame-

ter sets gives higher likelihood for the data.



Chapter 4

Experiments and results

4.1 Software

Some software for belief network modeling exists already. Those include:

• Hugin by Hugin Expert A/S,

• BayesiaLab by Bayesia SA,

• Netica by Norsys Software Corp.,

• Bayesian Network tools in Java (BNJ) by Dr. William H. Hsu and his

team at Kansas State University,

• SamIam by the Automated Reasoning Group of Professor Adnan Dar-

wiche at UCLA,

• Bayes Net Toolbox for Matlab by Kevin Murphy and OS community,

• Open Bayes for Python by OS community,

and more, but a new software library was implemented for this thesis. The

choice of using C as the programming language made the task slightly te-

dious compared to using a higher level language or a platform such as Mat-

lab. Despite the effort invested in debugging the software memory man-

agement and re-inventing some technical details etc., the project was con-

sidered a very educational and an invaluable programming experience, and

more importantly, a software development experience.

43
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The software library consists of about 14000 lines of ANSI C [19] and uses

techniques described earlier in this work to implement the following fea-

tures. First of all, there is a parser for reading discrete time sliced DBNs

from Hugin Net language files. Also ordinary discrete static BNs can be

used as a special case. After reading a model, the software forms an infer-

ence engine by constructing a clique tree suitable for time sliced inference.

Respectively, there is a function for writing a DBN into a file in Hugin Net

format.

There are also methods for reading and writing time series data files. File

formats use simple comma-separated text fields and one line for each time

step (record). Hard evidence is stored in a file so that the first non-empty

line has the names of the variables corresponding to each of the comma-

separated columns. Subsequent non-empty lines contain the data and must

have equal number of fields: missing observations are denoted with the re-

served word null. Consequently, node declarations in the Net files should

avoid using null as a label – unless missing piece of data needs to be con-

sidered as an observation itself. On the other hand, empty lines are used for

separating time series so that several time series can be written into a single

file.

The file format for soft evidence is slightly different. Since the data re-

quires one dimension more, it was decided that a single file contains data

only for one variable V. Instead of naming different variables, the first non-

empty line names the values vi of the variable. Respectively, each subse-

quent record contains likelihoods λV [i] ∈ [0, 1] for each of the values.

Of course, the software is modular enough to be interfaced with any kind

of database with a proper programming library for the interaction. Once

the evidence is transformed into a suitable data structure used internally

by the software, the inference engine can be used for time sliced forward

or forward-backward inference. The software library has different layers of

abstraction, so that one can use a ready-made inference procedure which

transforms a set of time series data into a set of posterior probabilities, or

one can create custom inference steps.
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An inference engine can also be used for prior sampling as discussed in

Section 2.6: all one needs to specify is the time series length to the library

procedure. Also the likelihood computations and the EM learning algo-

rithm was implemented as described in Section 3.2. Additionally, there are

simple command line programs for actually using each of the library fea-

tures.

The software library was tested successfully against a test oracle (the

Hugin Lite by Hugin Expert A/S) with small static BNs during develop-

ment. For instance, a hierarchical regime-switching model [12] with four

time steps and randomly chosen parameters gave identical inference and

log-likelihood results regardless of using:

• a static network with Hugin Lite,

• the same static network, or

• an equivalent DBN with the software written for this work.

4.2 Artificial data

4.2.1 Original model and data

In the first experiment, the objective was to demonstrate the capabilities of

the presented methods and software and show use cases in the field of time

series analysis. Another goal was to test the sanity of software implementa-

tion by having an idealized setting where artificial data is sampled from a

known model.

Perhaps the main use of probabilistic graphical models is to represent

real world processes at some level of detail. Unfortunately, the phenom-

ena behind the data are seldom completely understood (quantitatively) or

become too complex to model precisely, providing the reason for using the

EM learning algorithm in the first place. Therefore, it was necessary to im-

itate a real world setting with a known model and complete data sampled

from it (as in Fig. 4.1) in order to test and demonstrate the learning algo-

rithm (Chapter 3).
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Random discard

Incomplete dataIncomplete data

The real world

Sampling

Original model

Complete data

Figure 4.1: Way to imitate real world data

To make the setting more interesting, the DBN used as an example should

not be trivially equivalent to a Hidden Markov Model (HMM). This is the

case especially when some factors of the hidden state are partially observed.

The first model, called “original model” below, is shown in Fig. 4.2 and it

was used for generating synthetic data. As can be seen from the specifi-

cation in Appendix A.2, variable A has three states, persistence variable C

has six states, and both B and D are binary. The conditional probabilities

P(Ct|Dt, Ct−1) show that the state of C usually stays constant and changes

to the next one every now and then, but the state change is forced when

Dt = 1.

2TBN

D

C

D

C

A BA B

1.5DBN

D

C C

A B

0 1

0 0

0 1

1 1

0

1

1

1 1

Figure 4.2: The original model for sampling
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Some of the reasons for choosing such a model are as follows:

• A and B are used for observed multivariate data

• some of the observations are made partially incomplete by omitting

values of B

• cardinalities of A and B are kept low for clarity and to limit the number

of parameters

• C summarizes the hidden state and provides persistence over time

• cardinality of C provides enough explanations for different combina-

tions of observed A and B

• D is a transient effect causing changes in the hidden state

• D can be occasionally observed to provide partial information about

the otherwise hidden process behind the (A, B) data

The model was sampled for 4000 time series with 80 time steps each and

it took about 2 minutes 20 seconds on an average PC workstation of the day.

After that, part of the produced complete data was randomly discarded and

values of C were completely omitted. 50% of B and 20% of D were left intact:

i.e. B is missing at random half of the time and D is missing at random

most of the time. Values of different variables and time steps are missing

independently of each other which ensures that nothing particular could be

inferred from lack of sample at certain point.

2000 time series of the resulting incomplete data was subsequently used

for EM learning and the other 2000 series for inference demonstrations. All

the original complete data was kept for testing. One of the complete time

series is shown in Fig. 4.3. Some of the properties of the model discussed

above can be seen in the figure: the event D = 1 forces a state change in

C, and different states of C cause different distributions in observations of

A× B. The state of C also tends to “rotate” as expected.



48 CHAPTER 4. EXPERIMENTS AND RESULTS

Samples of A
va

lu
e

Samples of B

va
lu

e

Samples of C

va
lu

e

Samples of D

va
lu

e

time
10 20 30 40 50 60 70 80

Figure 4.3: One of the complete artificial time series.

4.2.2 Alternative expert model

Usually, the processes behind new data are not well known. Therefore it

was considered interesting to create a second experimental setting where

the structure of the original model is considered unknown and another ex-

pert model1 is used for parameter estimation and analysis instead. The

alternative model (Fig. 4.4) was designed to be slightly different than the

original one. The model resembles the variation of HMM used in [13], but

instead of deriving and implementing custom inference rules, it is only re-

quired to specify a suitable DBN and use the framework described in this

work.

One of the most notable differences to the original model is that the vari-

able D is omitted. In a real life situation, this might be due to the fact that

D is rarely observed or it is considered irrelevant to the phenomenon under

study.

1The name expert model refers to the fact that specifying an independence structure
requires professional insight of a domain expert
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Figure 4.4: Alternative model for analysis

Another significant difference is that the hidden persistence variable C

has less states (cC = 5) than in the original model. This tries to demonstrate

how well a model with insufficient amount of hidden states can explain

the observed data. On the other hand, the alternative model makes one

independence assumption less by asserting that At depends directly on Bt.

4.2.3 Parameter estimation

As discussed in Section 3.2, the EM learning algorithm receives a known

model structure as input and uses incomplete data to produce estimated

model parameters and a learning curve as a result. Thus, the experimental

setting for demonstrating parameter learning is as shown in Fig. 4.5. Half of

the generated artificial data was used for learning with two different model

structures: the original and the alternative model. The final estimated mod-

els are found in Appendix A.3 and A.4 respectively.

Expert modelIncomplete data

EM learning

Estimated model

Learning curve

Figure 4.5: Common setting for EM learning

The learning curves in Fig. 4.6 show the average logarithmic likelihood

of evidence during parameter estimation, as defined in Section 3.1.3 and

in Eq. 3.9. The model with the original structure took about 3 hours 40
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minutes (220 iterations) to estimate while the threshold value was set to

1/1000000. The alternative model was estimated faster: it took 22 minutes

(48 iterations), but the threshold value was set to 1/100000.
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Figure 4.6: Average log-likelihood during EM algorithm

Each level of likelihood in the learning curve represents how well the

hidden states of a model can be utilized to explain the observed data at

each iteration of the learning procedure. In this case, and presumably in

many other cases as well, the learning curves look as if the likelihood was

“quantized” into steps. One reason for this could be the property, that the

HMM-like models used here act like one kind of “soft” and context sensitive

clustering: EM algorithm tries to assign a different distribution of observa-

tions for each of the hidden states while also considering that the hidden

state shouldn’t change arbitrarily between time steps.

What happens with the model when the likelihood suddenly jumps one

step higher in a few iterations? Probably two or more hidden states have

explained the same kind of data together at first but then the states become
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separated and specialize to explain “separate clusters”. Anyhow, it is not

certain whether there is an even better set of parameters at this point of the

experiment. It could be so that the threshold values were too large and there

could be one step more in the likelihood. On the other hand, limited amount

of data, numerical resolution, and execution time make it unreasonable to

set an arbitrarily small threshold value.

As can be seen in Fig. 4.6, the original model reached higher average log-

arithmic likelihood (−0.86128) than the alternative model (−0.89686). There

are several potential reasons for this. First, the structure of the alternative

model is different from the original and therefore may not be able to fit the

data as well. Secondly, the lack of hidden states provides weaker abilities to

explain the data. A third reason might be that the observations about vari-

able D aid the original model to adjust the parameters related to the hidden

state and its changes.

It should be noted, that the likelihood values may not be directly com-

parable between models of different structure. As an extreme example, if

all the data was made missing, computed likelihood would be one (and

log-likelihood zero). Now that the data about variable D was ignored in the

alternative model, it didn’t have to waste probability mass on wrong predic-

tions about its values, but then again, it missed the information contained

in the data.

4.2.4 Inference results

The other half of the generated data was used for inference demonstra-

tions to avoid misleading results due to possible overfitting. The forward-

backward procedure, described in Section 2.4, took about 54 seconds to

compute posterior probability distributions of all the variables in the orig-

inal model and for all 2000× 80 time steps in the data. The inference pro-

cedure was run with three models: the original model with the original

parameters, the original model with the estimated parameters, and the al-

ternative model with its estimated parameters. The original model, which

actually produced the data, was used for this “clean room” experiment to

see how the estimated models perform compared to the optimal one.
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The average logarithmic likelihood scores were computed as a useful

side-effect of the inference procedures. The original model with original

parameters (i.e. optimal model) scored −0.831959 which is clearly higher

than the score reached by the corresponding model during EM algorithm

(−0.86128). This reveals that the model estimated above could possibly

reach even better parameters if the threshold value was smaller, EM algo-

rithm had continued, and numerical precision had allowed. The learning

processes in Fig. 4.6 might have also encountered a local maximum which

is slightly less than the optimal.

The original model with the estimated parameters scored average loga-

rithmic likelihood of −0.854189 for the testing data set. This suggests that

the model was not overfitted, because the score is approximately the same

as the final score for training set (−0.86128). It seems that the numbers have

about one or two significant digits, due to the stochastic nature of models

and data sets, since the score for testing set is higher than for training set.

The estimated alternative model achieved log-likelihood score −0.890992

for the testing data and it is also very close to the level reached during EM

algorithm (−0.89686). In case of overfitting, the likelihood of test set would

usually turn out to be less than the likelihood of the data used for parameter

estimation.

Original samples of C (hidden)

va
lu

e

Results of inference using the original model & parameters

va
lu

e

Results of inference using the original model & estimated parameters

va
lu

e

time
10 20 30 40 50 60 70 80

Figure 4.7: Sample of inference results for Ct by the original model
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Figure 4.7 shows samples of hidden variable C from one of the time series

in the testing set. The figure also displays the inference results by the orig-

inal model with the original parameters (i.e. optimal inference results) and

inference results by the original model with estimated parameters.

The most prominent feature is that the states of the hidden variable have

switched due to the lack of identifiability discussed in Section 3.2.3. The

figure suggests that the labels have switched as follows: c1 → c2, c2 → c4,

c3 → c5, c4 → c6, c5 → c1, and c6 → c3. Otherwise the EM algorithm seems

to have found almost optimal parameters since there is only small amount

of additional uncertainty compared to the optimal results.

Figures 4.8 and 4.9 display similar set of inference results for variables B

and D respectively (during the same time series as in Fig.4.7). This time,

there is a reference image showing the partial data that survived the random

discard process and was seen by the inference procedure.
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Figure 4.8: Sample of inference results for Bt by the original model

The results for original and estimated model in Fig. 4.8 look very similar,

but the estimated model is very uncertain about the missing values of B dur-

ing the first half of the time series. It seems that the parameters P(Bt|Ct), for

some values of Ct, are the ones that could have been learned better during

the EM algorithm. After all, the state of C seemed to be accurately inferred

at the particular point of time.
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Figure 4.9: Sample of inference results for Dt by the original model

Figure 4.9 shows at least two things about inference results with vari-

able D. First of all, the highly asymmetric prior P(Dt) allows the model to

“guess” that the value is most likely zero and therefore make correct conclu-

sions about 97% of the time. On the other hand, even the optimal model is

able to “blame” the variable D for state changes of variable C whenever D

is unobserved. E.g. at time t = 15, both models come to conclusion, that the

event D15 = 1 might be the reason behind the inferred fact that C14 6= C15,

although it isn’t. At time t = 67, the models have only slight uncertainty to-

wards the fact that D67 = 1 and has caused a state change: possibly because

there’s also uncertainty about the exact time of the state change.

A sample of the inference results with the estimated alternative model

is shown in Figures 4.10 and 4.11. The first one shows conclusions drawn

about the state of variable C during the same time series as with the other

model above. At least two features of the model can be seen in the figure.

First, data from single hidden state (c3) of the original model is co-explained

by two hidden states (c2 and c3) in the alternative model during t ∈ [15, 36].

This phenomenon can be explained by the learning process being stopped

too early2. Probably, the two hidden states weren’t specialized enough to

explain two different distributions of A× B when the threshold value was

2and deliberately left as an example by not tightening the threshold value
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Figure 4.10: Sample of inference results for Ct by the alternative model

reached in EM algorithm.

Secondly, two hidden states of the original model (c5 and c6) have merged

into one state (c1) as can be seen during the interval t ∈ [37, 80]. This feature

could be explained by both interrupted learning process and the fact that

the alternative model has less hidden states than the original model. While

two hidden states were wasted on explaining one kind of data, one state

had to explain the data from two different distributions.

Due to the problems in modeling the hidden Markov chain, the estimated

alternative model is not particularly good at inferring the missing values of

variable B either. Figure 4.11 shows that the inference results have high

uncertainty about the missing values.
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Figure 4.11: Sample of inference results for Bt by the alternative model

Some error statistics need to be defined, to describe the results of infer-

ence quantitatively. One way to measure the errors made in inference is to
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compute average absolute error in posterior probability (compared to hard

evidence) over all values of a given variable and over each time step when

the variable is unobserved:

Eabs(V) =
1

∑t h(Vt) ∑
t

(

h(Vt)
cV

∑
i=1

|δ(Vt = vi)− p(Vt = vi|y
T
1 )|

)

, (4.1)

where h(Vt) = 1 when Vt is hidden (and zero otherwise), similarly δ(Vt =

vi) = 1 when the true value of Vt is vi, and p(Vt = vi|y
T
1 ) is the posterior

probability computed by the inference engine. Minimum Eabs is zero, which

would mean that the inference engine deduced the correct value always

without any uncertainty (i.e. model and data were deterministic). Maxi-

mum Eabs is two, which would mean that the inference engine was always

certain that Vt 6= vt.

Another way to measure the errors is to compute the root of the mean

square error in the inferred posterior probabilities. More formally:

ERMS(V) =

√√√√ 1

∑t h(Vt) ∑
t

(
h(Vt)

cV

∑
i=1

(δ(Vt = vi)− p(Vt = vi|y
T
1 ))2

)
,

(4.2)

using the same notation as in Eq. 4.1. The meaning of the error score is

similar to Eabs, but this one de-emphasizes small errors.

A more practical way of comparing errors is to count how many times the

Maximum A Posteriori (MAP) estimate was wrong (when the variable was

not observed). That is, if the inference engine assigned probability one for

the most probable value and zero for others, how often would the result be

wrong.

All the three error statistics were computed for all the three models. Ta-

ble 4.1 shows the error scores when considering the inference of variable B.

Note that variable B is binary and therefore a completely random guess

would achieve about 50% error rate.

Table 4.2 shows the similar error scores for inference of variable D, which

was not included in the alternative model. Note that the prior p(D = 0) =

0.97 and p(D = 1) = 0.03. Thus, a model that guesses always D = 0 will
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achieve about 3% error rate. Then again, such a model should somehow be

learned in the first place.

Model Eabs ERMS MAP error %

Optimal 0.5350 0.5163 17.7

Original 0.6273 0.5586 25.7

Alternative 0.7335 0.6040 30.8

Table 4.1: Error statistics for inference of Bt

Model Eabs ERMS MAP error %

Optimal 0.09235 0.2151 2.94

Original 0.09449 0.2191 2.99

Table 4.2: Error statistics for inference of Dt

4.3 DNA copy number amplification data

4.3.1 Data

Use of the methods and software was briefly studied with real world data.

The data set is the same as was used for amplification profiling of human

neoplasias in [30]. Shortly, duplicated strings of DNA cause higher expres-

sion level for some genes and is supposedly one factor inducing tumors

and even cancer. The expression level is measured using a method called

Comparative Genomic Hybridization (CGH) and the data is consequently

analyzed for purposes of medical therapy, diagnostics, and prognostics [30].

The original data was collected from 838 published CGH research articles

and preprocessed by the authors of [30]. The result is a binary data matrix of

DNA copy number amplification flags at chromosome sub-band resolution

(393 bands/genome) for 4590 cases. Additionally, the type of tumor was

known for each case. Figure 4.12 demonstrates 100 tumor cases from the

data matrix with chromosome regions on the horizontal axis: black denotes

amplification and chromosome labels point the corresponding centromeres.
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Figure 4.12: Some tumor cases with DNA copy number amplifications

As demonstrated in the figure, the copy number amplifications occur very

sparsely. It was also noted that none of the 73 different types of neoplasms

had even a single consistent band of amplification. An element-wise AND-

operation, over all cases of one type of tumor, results as a zero vector. This

shows that tasks like cancer classification and amplification profiling require

more sophisticated methods.

To limit the scope of this study, only the chromosome 8 was selected for

further investigations and the 73 different tumor labels were replaced by 13

category labels according to the tumor location in a human body. Chromo-

some 8 contains 18 bands. About 75% of the data (3442 cases) were ran-

domly selected for parameter estimation purposes and the rest (1148 cases)

were used for testing.

4.3.2 Model

Restricting the scope to a single chromosome is justified by the assump-

tion that there is no significant dependency between amplifications across a

chromosome boundary. The models considered in this work operate with

very limited context and assume dependency between two adjacent time

steps. Chromosomes, on the other hand, are physically separate entities

and therefore it was considered unreasonable to model dependencies be-

tween bands 1q44 and 2p25 etc.

Creating an intuitive DBN model for a chromosome was still regarded as

a difficult task, since the amplification measurements from a chromosome
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may not be a time series: merely a sequence. There was no prior knowl-

edge that any kind of Markov assumption holds nor that there would be

some causal relationship between adjacent chromosome bands. Addition-

ally, the type or category of tumor is a global property of a cell, i.e., it is not

something that varies across the DNA.

While specifying the model, one rule of thumb was to keep the number

of parameters small compared to the amount of data used for parameter

estimation in order to avoid overfitting. Using 13 tumor categories, instead

of 73 more specific tumor types, helped in reducing the number of model

parameters, as discussed below.

The chosen model is shown in Figure 4.13. The model has the three vari-

ables observed in the data: binary variable D for DNA copy number am-

plification, 13-state variable C for tumor category, and 18-state variable B

for chromosome band. There is also a hidden persistence variable, E, which

provides contextual dependency across chromosome bands.
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Figure 4.13: Model for amplification analysis

The model has several unusual properties. First of all, it could be inter-

preted so that a tumor is not directly caused by amplifications, but both

tumors and amplifications are effects of the latent variable E (as in environ-

ment). Note that there actually exists dependency between variables C and

D due to the fact that E is hidden: measured data and diagnosed tumor type

would be independent of each other only if the assumed “environment fac-

tor” could be accurately observed somehow.

Secondly, the behavior in different chromosome bands is modeled explic-

itly by including variable B as another parent of D. Most time series models

do not include time as one of the random variables, but in this case, differ-

ent parts of the genome are assumed to have unique effects on the organism.
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The model is able to assign band-specific amplification probabilities for each

of the hidden states.

The third feature is, that the tumor category C is not actually an observa-

tion sequence but a strip of copies of the case specific value. This may seem

like a misuse of a probabilistic model, but the objective was to take all the

given data into account and enforce a tumor specific clustering by utilizing

the latent variable E.

If the model had a (degenerate) Markov chain of C (i.e. temporal edge

Ct−1 → Ct), it could learn that the tumor type is a global value and doesn’t

change during the sequence. But the size of potential P(Ct|Et, Ct−1) would

be c2
C× cE and most of these parameters would be zero (Ct 6= Ct−1): a better

model for this would be a static BN where C is a common child of the 18 in-

stances of E. On the other hand, the static BN model would have a clique of

19 variables (C and Et, t ∈ [1, 18]) and require memory for cC× c18
E elements

(e.g. 1319 is unrealizable). Using a sequence Ct of copied tumor category

values is an experimental compromise made to force the data into a form

compatible with a DBN model.

The last chosen feature was the cardinality of E. In principle, cE could be

anything in the range [2, 73], because there are 73 different types of tumor

and having more explaining hidden states, than the maximum number of

expected “clusters”, would result in overfitting. Considering that cB = 18,

cC = 13, and cD = 2, the number of parameters in the model is

n = c2
E + cEcC + cEcDcB + cE + cB

= c2
E + 50cE + 18.

(4.3)

Finally, cE = 13 was chosen and it corresponds to n = 837. That was

thought reasonable compared to the amount of 18× 3442 amplification sam-

ples used for parameter estimation. Now, the model has one hidden state

for each tumor category, which in turn makes the method more like tumor

clustering than fully-fledged time series analysis.
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4.3.3 Parameter estimation

The EM algorithm was run with the 3442 tumor cases selected for parame-

ter estimation while the threshold parameter was set to 1/100000. The last

attempt took 2 hours of computing (41 iterations) and the learning curve

is shown in Fig. 4.14. The curve reaches average log-likelihood score of

−0.49582 and the final parameters are found in Appendix A.5.
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Figure 4.14: Learning curve for the amplification model

4.3.4 Results

Once estimated from the amplification data, the probabilistic model might

provide various opportunities for data analysis. If the inference engine is

given a sequence of observed DNA copy number amplifications, it may

work as a tumor classifier by computing posterior probabilities for tumor

categories.

To assess the estimated model, 1148 tumor cases (not included in the

training set) were used for testing. First, the inference procedure was run
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with the complete data including both tumor categories and amplifications.

The average log-likelihood score for the test set turned out to be −0.504938,

which is near the score achieved during the EM algorithm. This suggests

that the model did not experience much overfitting. At least none of the test

samples were found “impossible” by the model.

The second step was to run the inference procedure on the amplification

data without the tumor category information to see the performance as a

tumor classifier. In a real world situation, one might have measured new set

of amplification samples Dt and use the model estimated from prior data

to infer probabilities for tumor category of the new case. As an example,

figure 4.15 shows the sequence of amplification data from a digestive tract

tumor case in the testing data.
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Figure 4.15: Dt and inferred states of Et in one tumor case
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Figure 4.15 displays also the posterior probabilities of the latent variable E

during the sequence. It reveals how the estimated model is able to explain

both band-specific amplifications and constant tumor category labels. The

hidden state is likely to jump between two states (1 and 4 with 84% cer-

tainty), while there is a slight (10%) suspicion of staying in the state 8: note

that p(Et = 8|Et−1 = 8) = 1. The constant “component” probably models

the tumor category observations independently from D because of the in-

difference to the amplification at 8p21. Similarly, states D = 0 and D = 1

map3 to E = 6 and E = 3 correspondingly with a 2% constant probability

component.
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Figure 4.16: Inferred tumor category Ct in the tumor case

Figure 4.16 shows the inferred posterior probabilities of tumor categories

for the same tumor case. In this fortunate case, the maximum of about 84%

certainty falls to the correct category of digestive tract tumors. Also respi-

ratory tract tumor is suspected with 10% probability, but the value is band-

independent, and therefore, possibly due to beliefs about E = 8. A nervous

system tumor is suspected with less than 2% probability.

3 p(D = 0|B = 8p21; E = 6) = 1 and p(D = 1|B = 8p21; E = 3) = 1
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Despite the success in classifying one tumor case, the classification accu-

racy in general is not that impressive. Table 4.3 summarizes the same kind

of performace statistics as used earlier with artificial data. The maximum

probability is assigned to the correct tumor category in only about 19% of

the test cases. A random classifier would guess correctly in 1/13 ≈ 7.7%

of the cases on average. The weak performance is partly explained by the

fact that some tumors don’t have copy number amplifications in the chro-

mosome under study, i.e., the data is not even supposed to contain all the

relevant information.

Eabs ERMS MAP error %

1.730 0.9385 80.7

Table 4.3: Error statistics for inference of Ct

The other aspect for data analysis is DNA copy number amplification pro-

filing. This can be achieved by feeding the inference engine with one tumor

category value along with the deterministic sequence of band labels. The

result is a sequence of posterior probabilities for amplifications at different

chromosome bands as shown in Fig. 4.17.

In effect, the figure is a compact summary of the data in the training set:

what kind of amplifications are expected in each of the tumor types given

the model. The general light shade of the figure tells that there were no

definite amplification sites that would be both common to a tumor category

and separate it from other tumor categories.

For comparison, Figure 4.18 shows normalized amplification averages.

Average amplification vector was computed for each known tumor category

over the training set, but the image had to be heavily normalized to make

it visible since the maximum value (black) is 0.0171. The latter image is

also a summary and resembles the figure achieved with the probabilistic

model, but shows only the most obvious facts about the data. Probabilistic

modeling provides systematic means for specifying additional assumptions

about the process behind the data, estimating quantitative parameters, and

inferring posterior beliefs about new data.
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Figure 4.17: Amplification profiles P(Dt|c, bt)
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Figure 4.18: Normalized amplification averages
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Chapter 5

Summary and conclusions

5.1 Methods and experiments

This thesis focused on modeling multidimensional time series of discrete

variables by using exact Bayesian inference. In Chapter 2, it was explained

how BNs model discrete valued phenomena, starting on how clique tree

propagation is traditionally used for inference in static BNs. Beliefs about

the state of the variables are encoded as probability tables and quantitative

dependencies between variables are represented as conditional probability

tables. Subsequently, a clique tree structure is formed and used as an infer-

ence engine.

Section 2.4 described the idea of using a stream of small, identical pieces

of networks as a time series model: a dynamic Bayesian network. It was

also elaborated how to extend the CTP inference for DBNs by utilizing the

interface algorithm. Based on that, Section 2.5 presented a way to specify

DBNs in a manner compatible to existing tools. The small addition to the BN

description language was taken into use in a software library implemented

for this work. Additionally, Section 2.6 dealt with the straightforward task

of using the new inference framework for prior sampling of DBNs.

Chapter 3 contained a method for computing arbitrary joint probability

distributions given a clique tree (Sec. 3.1.1). However, there exists a better

way to compute the likelihood of data, which was later needed to monitor

the learning algorithm. In addition to computing logarithmic likelihood

67
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of time series as a side-effect of forward inference, Section 3.1.3 presented

message normalization as a way to avoid excessive numerical problems.

Finally, the EM algorithm for parameter estimation was constructed on top

of forward-backward inference procedure as shown in Section 3.2.

Chapter 4 showed experiments made with the software library and the

discussed methods. First, Section 4.2 demonstrated time series modeling

with DBNs in an idealized laboratory setting. Artificial data was sampled

according to a known model. To mimic a real world situation, part of the

data was randomly discarded. The resulting partial observations were used

for learning and probabilistic inference.

The experiments with artificial data demonstrated various effects encoun-

tered in time series analysis using DBNs. Choosing a suitable threshold

value for EM learning was discovered to be a task that requires insight and

experimentation. Despite the lack of identifiability related to latent vari-

ables, the EM algorithm proved to be a useful method when the structure of

the model is known. Experiments with the alternative model structure were

less encouraging, but demonstrated the effects of specifying too few hidden

states to explain the data.

Brief experiments with DNA copy number amplification data were pre-

sented in Section 4.3. The scope of the experiments was limited to the 8th

chromosome and broad tumor category labels. Considering the lack of bet-

ter knowledge about the domain, a simple probabilistic model was specified

and its parameters were estimated with the EM algorithm.

Subsequently, the model was used as a tumor classifier and as an amplifi-

cation profiler. Only about 19% of the tumors were correctly classified, but

the results were clearly better than pure guessing. It was also noted, that

the data from a single chromosome does not contain enough information

for accurate classification. The amplification profiling, on the other hand,

proved to be an interesting method to be further investigated.

As a conclusion, it seems that DBNs are not suitable for exploratory data

mining without sufficient domain knowledge or an automated structural

learning method. There has to be a known reason for each missing edge in

the graph. Model specification requires solid arguments to achieve clear re-

sults: without the correct assumptions, accurate models can’t be estimated.
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5.2 Future work

There are many potential directions for additional development. The first

task might be to investigate more thoroughly the applicability of the meth-

ods in real data analysis projects. For example, the DNA copy number am-

plification profiling could be done for the whole genome to achieve more

accurate results. Another types of models could also be used for searching

new insights about the data – at least if more prior knowledge can be found

to support the specification process. It would be interesting to see whether

any Markov assumptions really hold for the data. Is a context sensitive

model really needed?

The second area for development could be structural learning [4] meth-

ods. These kind of methods would be necessary for more automated explo-

ration of the data.

Third aspect is to allow continuous variables in the models. This is not

straightforward, since the representation of state distributions becomes un-

wieldy in a general case, as noted in [36]. Some limitations, like having

continuous variables only as leaf nodes in the graph, might make the mod-

eling feasible. At least Kalman filters have proven to be useful in many

applications [36].
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Appendix A

Model specifications

Models were specified with the Hugin Net language. The documentation

about syntax was found at [15].

A.1 Example model

This one was used for demonstrating Net language.

net

{

node_size = (100 40);

}

node F

{

label = "Favorite fruit";

position = (225 75);

states = ("apple" "banana" "orange" "pear" "lemon");

MY_field = "42";

}

node A

{

label = "Age";

position = (225 175);

states = ("child" "teen" "adult");

}

node S

{

label = "Sex";

position = (300 125);

states = ("male" "female");

}

75
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potential (F | S A)

{

data = ((( 0.2 0.3 0.1 0.3 0.1 ) % S=male A=child

( 0.3 0.3 0.1 0.2 0.1 ) % S=male A=teen

( 0.3 0.2 0.2 0.2 0.1 )) % S=male A=adult

(( 0.1 0.4 0.1 0.3 0.1 ) % S=female A=child

( 0.2 0.3 0.2 0.2 0.1 ) % S=female A=teen

( 0.2 0.2 0.2 0.2 0.2 ))); % S=female A=adult

}

potential (A)

{

data = ( 0.2 0.2 0.6 );

}

potential (S)

{

data = ( 0.5 0.5 );

}
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A.2 Model for synthetic data

This one was used in the experiments for generating synthetic data.

net {

node_size = (80 40);

}

node A1 {

label = "A(t)";

position = (225 50);

states = ("0" "1" "2");

}

node B1 {

label = "B(t)";

position = (375 50);

states = ("0" "1");

}

node C0 {

label = "C(t-1)";

position = (50 175);

states = ("0" "1" "2" "3" "4" "5");

NIP_next = "C1";

}

node C1 {

label = "C(t)";

position = (300 175);

states = ("0" "1" "2" "3" "4" "5");

}

node D1 {

label = "D(t)";

position = (300 300);

states = ("0" "1");

}

potential (A1 | C1) {

% A=0 A=1 A=2

data = (( 0.95 0.04 0.01 ) % C=0

( 0.90 0.03 0.07 ) % C=1

( 0.01 0.95 0.04 ) % C=2

( 0.10 0.85 0.05 ) % C=3

( 0.01 0.04 0.95 ) % C=4

( 0.15 0.15 0.70 )); % C=5

} % 18 parameters

potential (B1 | C1) {

% B=0 B=1

data = (( 0.90 0.10 ) % C=0

( 0.03 0.97 ) % C=1

( 0.80 0.20 ) % C=2

( 0.15 0.85 ) % C=3

( 0.78 0.22 ) % C=4

( 0.05 0.95 )); % C=5

} % 12 parameters

potential (C0) {

% C0=0 C0=1 C0=2 C0=3 C0=4 C0=5

data = ( 0.8 0.1 0.05 0.02 0.02 0.01 );
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} % 6 parameters

potential (D1) {

% D1=0 D1=1

data = ( 0.97 0.03 );

} % 2 parameters

potential (C1 | D1 C0) {

% C1=0 C1=1 C1=2 C1=3 C1=4 C1=5

data = ((( 0.94 0.02 0.01 0.01 0.01 0.01 ) % D1=0 C0=0

( 0.01 0.94 0.02 0.01 0.01 0.01 ) % D1=0 C0=1

( 0.01 0.01 0.94 0.02 0.01 0.01 ) % D1=0 C0=2

( 0.01 0.01 0.01 0.94 0.02 0.01 ) % D1=0 C0=3

( 0.01 0.01 0.01 0.01 0.94 0.02 ) % D1=0 C0=4

( 0.02 0.01 0.01 0.01 0.01 0.94 )) % D1=0 C0=5

(( 0.05 0.91 0.01 0.01 0.01 0.01 ) % D1=1 C0=0

( 0.01 0.05 0.91 0.01 0.01 0.01 ) % D1=1 C0=1

( 0.01 0.01 0.05 0.91 0.01 0.01 ) % D1=1 C0=2

( 0.01 0.01 0.01 0.05 0.91 0.01 ) % D1=1 C0=3

( 0.01 0.01 0.01 0.01 0.05 0.91 ) % D1=1 C0=4

( 0.91 0.01 0.01 0.01 0.01 0.05 ))); % D1=1 C0=5

} % 60 parameters
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A.3 First model learned from synthetic data

These parameters were learned from the synthetic data when the original
graph structure was known.

net

{

node_size = (80 40);

}

node A1

{

label = "A(t)";

position = (225 50);

states = ( "0"

"1"

"2" );

}

node B1

{

label = "B(t)";

position = (375 50);

states = ( "0"

"1" );

}

node C0

{

label = "C(t-1)";

position = (50 175);

states = ( "0"

"1"

"2"

"3"

"4"

"5" );

NIP_next = "C1";

}

node C1

{

label = "C(t)";

position = (300 175);

states = ( "0"

"1"

"2"

"3"

"4"

"5" );

}

node D1

{

label = "D(t)";

position = (300 300);

states = ( "0"

"1" );

}

potential (C0)

{
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data = ( 0.003316 0.797307 0.000000 0.102955 0.071876 0.024545 );

}

potential (D1)

{

data = ( 0.970784 0.029216 );

}

potential (A1 | C1)

{

data = ( 0.010167 0.037458 0.952375

0.950211 0.040121 0.009667

0.152366 0.152904 0.694730

0.898616 0.030703 0.070681

0.051024 0.909064 0.039912

0.013436 0.049169 0.937395 );

}

potential (B1 | C1)

{

data = ( 0.778390 0.221610

0.894569 0.105431

0.044505 0.955495

0.030125 0.969875

0.493309 0.506691

0.760150 0.239850 );

}

potential (C1 | D1 C0)

{

data = ( 0.886708 0.012282 0.023045 0.012060 0.002094 0.063811

0.009702 0.940389 0.010011 0.021389 0.018491 0.000018

0.009464 0.018803 0.939347 0.010482 0.021889 0.000015

0.007867 0.008980 0.010530 0.939953 0.031901 0.000768

0.005507 0.008026 0.012155 0.010997 0.948680 0.014634

0.672799 0.000319 0.001820 0.000001 0.316485 0.008576

0.027282 0.002698 0.920666 0.014489 0.000013 0.034852

0.014311 0.070950 0.006280 0.878971 0.029476 0.000011

0.026457 0.941200 0.014947 0.003406 0.013989 0.000000

0.025622 0.000001 0.000000 0.025029 0.949140 0.000207

0.414970 0.028208 0.017170 0.018318 0.492325 0.029009

0.000203 0.001847 0.821060 0.014465 0.157692 0.004733 );

}



A.4. SECOND MODEL LEARNED FROM SYNTHETIC DATA 81

A.4 Second model learned from synthetic data

These parameters were estimated for the alternative expert model with a
different graph structure.

net

{

node_size = (80 40);

}

node A1

{

label = "A(t)";

position = (300 50);

states = ( "0"

"1"

"2" );

}

node B1

{

label = "B(t)";

position = (425 175);

states = ( "0"

"1" );

}

node C0

{

label = "C(t-1)";

position = (50 300);

states = ( "0"

"1"

"2"

"3"

"4" );

NIP_next = "C1";

}

node C1

{

label = "C(t)";

position = (300 300);

states = ( "0"

"1"

"2"

"3"

"4" );

}

potential (C0)

{

data = ( 0.027956 0.066295 0.011191 0.800037 0.094521 );

}

potential (A1 | B1 C1)

{

data = ( 0.019504 0.042015 0.938481

0.034264 0.895994 0.069741

0.020318 0.955017 0.024665

0.950555 0.040239 0.009206

0.906388 0.052674 0.040938
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0.109386 0.129077 0.761537

0.149455 0.809385 0.041160

0.040427 0.910194 0.049378

0.947281 0.041345 0.011374

0.890184 0.031312 0.078504 );

}

potential (B1 | C1)

{

data = ( 0.419387 0.580613

0.509740 0.490260

0.475351 0.524649

0.892583 0.107417

0.027865 0.972135 );

}

potential (C1 | C0)

{

data = ( 0.935220 0.009634 0.012956 0.028105 0.014085

0.032245 0.075552 0.851081 0.012760 0.028362

0.046526 0.488260 0.457297 0.007381 0.000536

0.018634 0.014178 0.005899 0.914444 0.046845

0.020139 0.029101 0.029608 0.010404 0.910749 );

}
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A.5 The model learned from DNA data

These parameters were estimated from the DNA copy number amplification
data.

net

{

node_size = (60 120);

}

node C

{

label = "Tumor category";

position = (200 100);

states = ( "0"

"Bone_and_soft_tissue"

"Breast"

"Digestive_tract"

"Endocrine_glands"

"Eye_tumor"

"Female_genital_organs"

"Hematologic_neoplasms"

"Male_genital_organs"

"Nervous_system"

"Respiratory_tract"

"Skin_tumor"

"Urinary_tract" );

}

node B

{

label = "Chromosome band";

position = (300 300);

states = ( "8p23" "8p22" "8p21" "8p12" "8p11.2" "8p11.1"

"8q11.1" "8q11.2" "8q12" "8q13" "8q21.1" "8q21.2"

"8q21.3" "8q22" "8q23" "8q24.1" "8q24.2" "8q24.3" );

}

node D

{

label = "DNA copy number amplification";

position = (250 200);

states = ( "0" "1" );

}

node E

{

label = "Environment(t)";

position = (200 400);

states = ( "0" "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" );

}

node E0

{

label = "Environment(t-1)";

position = (100 400);

states = ( "0" "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" );

NIP_next = "E";

}

potential (B)

{
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data = ( 0.055556 0.055556 0.055556 0.055556 0.055556 0.055556 0.055556

0.055556 0.055556 0.055556 0.055556 0.055556 0.055556 0.055556

0.055556 0.055556 0.055556 0.055556 );

}

potential (E0)

{

data = ( 0.000510 0.002380 0.001571 0.001935 0.202885 0.108077 0.181099

0.124986 0.173155 0.015537 0.157639 0.000000 0.030227 );

}

potential (C | E)

{

data = ( 0.000000 0.000000 0.000000 0.000000 0.298062 0.000000 0.000000

0.379413 0.322525 0.000000 0.000000 0.000000 0.000000 % E=0

0.000000 0.000000 0.000000 0.994389 0.000000 0.005611 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 % E=1

0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 % E=2

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.850186 0.000000 0.000000 0.149814 % E=3

0.000000 0.000000 0.000000 0.994316 0.000000 0.005684 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 % E=4

0.000000 0.000000 0.552788 0.000000 0.000000 0.000000 0.447212

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 % E=5

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.773475 0.000000 0.000000 0.226525 % E=6

0.000000 0.000000 0.000000 0.000000 0.339780 0.000000 0.000000

0.660220 0.000000 0.000000 0.000000 0.000000 0.000000 % E=7

0.021812 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.929530 0.048658 0.000000 % E=8

0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 % E=9

0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 % E=10

0.000000 0.000000 0.549411 0.000000 0.000000 0.000000 0.450589

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 % E=11

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 );

}

potential (D | B E)

{

data = ( 0.000000 1.000000 % B=8p23 E=0

0.996856 0.003144 % B=8p23 E=1

1.000000 0.000000 % B=8p23 E=2

0.000000 1.000000 % B=8p23 E=3

0.000000 1.000000 % B=8p23 E=4

0.002377 0.997623 % B=8p23 E=5

1.000000 0.000000 % B=8p23 E=6

0.997741 0.002259 % B=8p23 E=7

0.998322 0.001678 % B=8p23 E=8

1.000000 0.000000 % B=8p23 E=9

0.000000 1.000000 % B=8p23 E=10

1.000000 0.000000 % B=8p23 E=11

1.000000 0.000000 % B=8p23 E=12

0.000000 1.000000 % B=8p22 E=0

0.000000 1.000000 % B=8p22 E=1

0.000000 1.000000 % B=8p22 E=2

0.000000 1.000000 % B=8p22 E=3

0.996626 0.003374 % B=8p22 E=4

1.000000 0.000000 % B=8p22 E=5

1.000000 0.000000 % B=8p22 E=6

1.000000 0.000000 % B=8p22 E=7
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0.998322 0.001678 % B=8p22 E=8

1.000000 0.000000 % B=8p22 E=9

1.000000 0.000000 % B=8p22 E=10

0.321058 0.678942 % B=8p22 E=11

1.000000 0.000000 % B=8p22 E=12

0.000000 1.000000 % B=8p21 E=0

0.992685 0.007315 % B=8p21 E=1

1.000000 0.000000 % B=8p21 E=2

0.000000 1.000000 % B=8p21 E=3

0.081832 0.918168 % B=8p21 E=4

0.195414 0.804586 % B=8p21 E=5

1.000000 0.000000 % B=8p21 E=6

1.000000 0.000000 % B=8p21 E=7

0.998322 0.001678 % B=8p21 E=8

1.000000 0.000000 % B=8p21 E=9

0.160115 0.839885 % B=8p21 E=10

1.000000 0.000000 % B=8p21 E=11

1.000000 0.000000 % B=8p21 E=12

0.000000 1.000000 % B=8p12 E=0

0.436724 0.563276 % B=8p12 E=1

0.000000 1.000000 % B=8p12 E=2

0.000000 1.000000 % B=8p12 E=3

0.997224 0.002776 % B=8p12 E=4

1.000000 0.000000 % B=8p12 E=5

0.995309 0.004691 % B=8p12 E=6

0.997673 0.002327 % B=8p12 E=7

0.991611 0.008389 % B=8p12 E=8

1.000000 0.000000 % B=8p12 E=9

1.000000 0.000000 % B=8p12 E=10

0.000000 1.000000 % B=8p12 E=11

1.000000 0.000000 % B=8p12 E=12

0.000000 1.000000 % B=8p11.2 E=0

0.998650 0.001350 % B=8p11.2 E=1

0.998227 0.001773 % B=8p11.2 E=2

0.000000 1.000000 % B=8p11.2 E=3

0.483180 0.516820 % B=8p11.2 E=4

0.000000 1.000000 % B=8p11.2 E=5

1.000000 0.000000 % B=8p11.2 E=6

1.000000 0.000000 % B=8p11.2 E=7

0.991611 0.008389 % B=8p11.2 E=8

0.981481 0.018519 % B=8p11.2 E=9

0.000587 0.999413 % B=8p11.2 E=10

0.997407 0.002593 % B=8p11.2 E=11

1.000000 0.000000 % B=8p11.2 E=12

0.514251 0.485749 % B=8p11.1 E=0

0.786500 0.213500 % B=8p11.1 E=1

0.570901 0.429099 % B=8p11.1 E=2

0.002583 0.997417 % B=8p11.1 E=3

1.000000 0.000000 % B=8p11.1 E=4

1.000000 0.000000 % B=8p11.1 E=5

1.000000 0.000000 % B=8p11.1 E=6

1.000000 0.000000 % B=8p11.1 E=7

0.996644 0.003356 % B=8p11.1 E=8

1.000000 0.000000 % B=8p11.1 E=9

1.000000 0.000000 % B=8p11.1 E=10

0.468100 0.531900 % B=8p11.1 E=11

1.000000 0.000000 % B=8p11.1 E=12

0.000000 1.000000 % B=8q11.1 E=0

1.000000 0.000000 % B=8q11.1 E=1

1.000000 0.000000 % B=8q11.1 E=2

0.000000 1.000000 % B=8q11.1 E=3

0.067745 0.932255 % B=8q11.1 E=4

0.000009 0.999991 % B=8q11.1 E=5

1.000000 0.000000 % B=8q11.1 E=6
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1.000000 0.000000 % B=8q11.1 E=7

0.981544 0.018456 % B=8q11.1 E=8

0.851872 0.148128 % B=8q11.1 E=9

0.065241 0.934759 % B=8q11.1 E=10

1.000000 0.000000 % B=8q11.1 E=11

1.000000 0.000000 % B=8q11.1 E=12

0.000000 1.000000 % B=8q11.2 E=0

0.000000 1.000000 % B=8q11.2 E=1

0.000000 1.000000 % B=8q11.2 E=2

0.000000 1.000000 % B=8q11.2 E=3

1.000000 0.000000 % B=8q11.2 E=4

1.000000 0.000000 % B=8q11.2 E=5

1.000000 0.000000 % B=8q11.2 E=6

1.000000 0.000000 % B=8q11.2 E=7

0.973154 0.026846 % B=8q11.2 E=8

1.000000 0.000000 % B=8q11.2 E=9

0.998160 0.001840 % B=8q11.2 E=10

0.000000 1.000000 % B=8q11.2 E=11

1.000000 0.000000 % B=8q11.2 E=12

0.000000 1.000000 % B=8q12 E=0

1.000000 0.000000 % B=8q12 E=1

1.000000 0.000000 % B=8q12 E=2

0.000000 1.000000 % B=8q12 E=3

0.000000 1.000000 % B=8q12 E=4

0.000000 1.000000 % B=8q12 E=5

1.000000 0.000000 % B=8q12 E=6

0.997634 0.002366 % B=8q12 E=7

0.973154 0.026846 % B=8q12 E=8

1.000000 0.000000 % B=8q12 E=9

0.000000 1.000000 % B=8q12 E=10

1.000000 0.000000 % B=8q12 E=11

1.000000 0.000000 % B=8q12 E=12

0.000000 1.000000 % B=8q13 E=0

0.000000 1.000000 % B=8q13 E=1

0.000000 1.000000 % B=8q13 E=2

0.000000 1.000000 % B=8q13 E=3

1.000000 0.000000 % B=8q13 E=4

1.000000 0.000000 % B=8q13 E=5

0.998569 0.001431 % B=8q13 E=6

1.000000 0.000000 % B=8q13 E=7

0.971477 0.028523 % B=8q13 E=8

1.000000 0.000000 % B=8q13 E=9

0.998138 0.001862 % B=8q13 E=10

0.000053 0.999947 % B=8q13 E=11

1.000000 0.000000 % B=8q13 E=12

0.000000 1.000000 % B=8q21.1 E=0

0.998513 0.001487 % B=8q21.1 E=1

1.000000 0.000000 % B=8q21.1 E=2

0.000000 1.000000 % B=8q21.1 E=3

0.000000 1.000000 % B=8q21.1 E=4

0.000000 1.000000 % B=8q21.1 E=5

1.000000 0.000000 % B=8q21.1 E=6

1.000000 0.000000 % B=8q21.1 E=7

0.964765 0.035235 % B=8q21.1 E=8

1.000000 0.000000 % B=8q21.1 E=9

0.000000 1.000000 % B=8q21.1 E=10

1.000000 0.000000 % B=8q21.1 E=11

1.000000 0.000000 % B=8q21.1 E=12

0.000000 1.000000 % B=8q21.2 E=0

0.000000 1.000000 % B=8q21.2 E=1

0.036953 0.963047 % B=8q21.2 E=2

0.000000 1.000000 % B=8q21.2 E=3

1.000000 0.000000 % B=8q21.2 E=4

1.000000 0.000000 % B=8q21.2 E=5
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1.000000 0.000000 % B=8q21.2 E=6

1.000000 0.000000 % B=8q21.2 E=7

0.964765 0.035235 % B=8q21.2 E=8

1.000000 0.000000 % B=8q21.2 E=9

1.000000 0.000000 % B=8q21.2 E=10

0.000000 1.000000 % B=8q21.2 E=11

1.000000 0.000000 % B=8q21.2 E=12

0.000000 1.000000 % B=8q21.3 E=0

1.000000 0.000000 % B=8q21.3 E=1

1.000000 0.000000 % B=8q21.3 E=2

0.000000 1.000000 % B=8q21.3 E=3

0.000000 1.000000 % B=8q21.3 E=4

0.000000 1.000000 % B=8q21.3 E=5

0.998134 0.001866 % B=8q21.3 E=6

1.000000 0.000000 % B=8q21.3 E=7

0.964765 0.035235 % B=8q21.3 E=8

1.000000 0.000000 % B=8q21.3 E=9

0.000000 1.000000 % B=8q21.3 E=10

1.000000 0.000000 % B=8q21.3 E=11

1.000000 0.000000 % B=8q21.3 E=12

0.000000 1.000000 % B=8q22 E=0

0.000000 1.000000 % B=8q22 E=1

0.000000 1.000000 % B=8q22 E=2

0.000000 1.000000 % B=8q22 E=3

1.000000 0.000000 % B=8q22 E=4

0.988614 0.011386 % B=8q22 E=5

0.995833 0.004167 % B=8q22 E=6

1.000000 0.000000 % B=8q22 E=7

0.927852 0.072148 % B=8q22 E=8

1.000000 0.000000 % B=8q22 E=9

1.000000 0.000000 % B=8q22 E=10

0.000001 0.999999 % B=8q22 E=11

1.000000 0.000000 % B=8q22 E=12

0.000000 1.000000 % B=8q23 E=0

0.975776 0.024224 % B=8q23 E=1

0.997700 0.002300 % B=8q23 E=2

0.000000 1.000000 % B=8q23 E=3

0.000000 1.000000 % B=8q23 E=4

0.000000 1.000000 % B=8q23 E=5

0.996244 0.003756 % B=8q23 E=6

0.997532 0.002468 % B=8q23 E=7

0.917785 0.082215 % B=8q23 E=8

1.000000 0.000000 % B=8q23 E=9

0.000000 1.000000 % B=8q23 E=10

0.959699 0.040301 % B=8q23 E=11

1.000000 0.000000 % B=8q23 E=12

0.000000 1.000000 % B=8q24.1 E=0

0.000000 1.000000 % B=8q24.1 E=1

0.000000 1.000000 % B=8q24.1 E=2

0.000000 1.000000 % B=8q24.1 E=3

0.995159 0.004841 % B=8q24.1 E=4

0.981813 0.018187 % B=8q24.1 E=5

1.000000 0.000000 % B=8q24.1 E=6

1.000000 0.000000 % B=8q24.1 E=7

0.919463 0.080537 % B=8q24.1 E=8

0.741515 0.258485 % B=8q24.1 E=9

0.997769 0.002231 % B=8q24.1 E=10

0.000000 1.000000 % B=8q24.1 E=11

1.000000 0.000000 % B=8q24.1 E=12

0.000000 1.000000 % B=8q24.2 E=0

0.992865 0.007135 % B=8q24.2 E=1

1.000000 0.000000 % B=8q24.2 E=2

0.000000 1.000000 % B=8q24.2 E=3

0.000000 1.000000 % B=8q24.2 E=4
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0.000000 1.000000 % B=8q24.2 E=5

1.000000 0.000000 % B=8q24.2 E=6

1.000000 0.000000 % B=8q24.2 E=7

0.924497 0.075503 % B=8q24.2 E=8

0.741515 0.258485 % B=8q24.2 E=9

0.000000 1.000000 % B=8q24.2 E=10

1.000000 0.000000 % B=8q24.2 E=11

1.000000 0.000000 % B=8q24.2 E=12

0.000000 1.000000 % B=8q24.3 E=0

0.112860 0.887140 % B=8q24.3 E=1

0.000000 1.000000 % B=8q24.3 E=2

0.000090 0.999910 % B=8q24.3 E=3

1.000000 0.000000 % B=8q24.3 E=4

1.000000 0.000000 % B=8q24.3 E=5

1.000000 0.000000 % B=8q24.3 E=6

1.000000 0.000000 % B=8q24.3 E=7

0.924497 0.075503 % B=8q24.3 E=8

0.741494 0.258506 % B=8q24.3 E=9

1.000000 0.000000 % B=8q24.3 E=10

0.029102 0.970898 % B=8q24.3 E=11

1.000000 0.000000 );

}

potential (E | E0)

{

data = ( 0.980339 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.008555 0.000000 0.000000 0.000000 0.000000 0.011106 % E0=0

0.000000 0.010561 0.000000 0.000000 0.989439 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 % E0=1

0.000000 0.000000 0.008663 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.991337 0.000000 0.000000 % E0=2

0.000000 0.000000 0.000000 0.953516 0.000000 0.000000 0.046484

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 % E0=3

0.000000 0.990250 0.000000 0.000000 0.008187 0.000000 0.000000

0.000000 0.000000 0.001563 0.000000 0.000000 0.000000 % E0=4

0.000000 0.000000 0.000000 0.000000 0.000000 0.010004 0.000000

0.000000 0.000000 0.000000 0.000000 0.989996 0.000000 % E0=5

0.000000 0.000000 0.000000 0.004252 0.000000 0.000000 0.995748

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 % E0=6

0.005230 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.994770 0.000000 0.000000 0.000000 0.000000 0.000000 % E0=7

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 % E0=8

0.000000 0.010644 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.989356 0.000000 0.000000 0.000000 % E0=9

0.000000 0.000000 0.993290 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.006710 0.000000 0.000000 % E0=10

0.000000 0.000000 0.000000 0.000000 0.000000 0.978542 0.000000

0.000000 0.000000 0.000000 0.000000 0.021458 0.000000 % E0=11

0.010199 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.989801 );

}
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