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Historiaa

• Bayesin kaavan hyödyntäminen

• BN-ohjelmistoja ollut ennenkin

• Tanskalaisten Hugin Expert

• Adnan Darwiche & co: SAMIAM

• Ei tarkoitettuja aikasarja-analyysiin



Mitä iloa päättelystä
• Bayesilaisella päättelyllä tehdään optimaalisia 

johtopäätöksiä havaitsemattomista asioista

• Otetaan huomioon esim. aika, paikka, 
positio kromosomissa tms. konteksti

• Luokittelu, segmentointi jne. piilomuuttujien 
avulla

• Automaattinen puutteellisen datan käsittely



BN: verkko
• Pohjana muuttujien riippuvuudet ilmaiseva 

suunnattu syklitön verkko DAG

• Mallin parametrit muotoa 

• C on riippumaton muista kuin 
vanhemmistaan pa(C)

• Muuttujia kuvaavien solmujen välillä kaaret 
vanhemmista lapsiin

p(c|pa(c))



BN: liittymäpuu
• E.m. verkko soveltuu huonosti inferenssin 

vaatimiin laskutoimituksiin

• Täysi yhteis-tn-jakauma tuhlaa muistia

• Käytettävä vaihtoehtoista esitystapaa 
nimeltä liittymäpuu

• Puun solmut tallentavat nk. “perheiden” 
yhteistodennäköisyysjakaumia



BN: liittymäpuu
• Puuhun tallennetut jakaumat nimeltään 

potentiaaleja (mahd. normalisoimaton)

• Minimaalinen tapa esittää yhteis-tn-jakauma 
pienempien tulona

• Vrt. 

• Myös ns. running intersection property

p(x, y, z) = p(x|y) ∗ p(y|z) ∗ p(z)



BN: liittymäpuu
• Esimerkki graafista ja liittymäpuusta
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BN: päättely
• Päättely tapahtuu “levittämällä” 

potentiaaleja painottavia jakaumia 
naapurisolmuihin puussa

• Marginalisoimalla saadaan pienempi 
projektio potentiaalista:

• Kertolaskulla päivitetään potentiaalia uuden 
evidenssin mukaan: 

φ(A) =
∑

B

φ(A, B)

φ(A, C) := φ(A, C) ∗ φ(A)



Lisää historiaa

• Kevin Murphy 2002

• Väitöskirja: Dynamic Bayesian Networks: 
Representation, Inference & Learning

• Esittää 1.5DBN käsitteen



DBN: aikaviipaleet
• Aikasarjoja varten toistuvarakenteiset mallit 

• Esim. HMM toistaa pientä “verkkoa”

• Esitetään malli viipaleena, jota toistetaan

• Määritettävä toistuva osa liittymäpuusta 
laskutoimituksia varten

• Viipaleen käyttö päättelyssä “puoliaskelin”



DBN: aikaviipaleet
• Esimerkki aikaviipaleesta: HMM
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Toteutus: yleistä
• C-kielinen ohjelmakirjasto

• Huginin net-tiedostojen jäsennys

• Muunnos graafeista liittymäpuuksi

• Aikasarjan lukeminen tiedostosta

• Edellä kuvattu inferenssi mahd. aikaviipalein

• EM-algoritmi parametrien oppimiseen



Hugin net-formaatti
• Malli luetaan Huginin asettaman 

“standardin” mukaisesta tiedostosta

• node-määrittelyt kertovat muuttujat

• Oma NIP_next kenttä aikaviipalemalleille

• potential-määrittelyt ehdollisille 
todennäköisyysjakaumille

• Graafin rakenne samassa implisiittisesti



Graafista liittymäpuuksi

• NP-kova osuus liittymäpuun käytössä

• Muunnos heti net-tiedoston jäsennyksen 
jälkeen

• malli = liittymäpuu + muu kirjanpito

Nip model = parse_model(“hmm.net”);



Datan luku tiedostosta

• Tiedoston 1. rivillä muuttujien nimet

• Loput rivit aikasarjan askelia

• Kullakin rivillä muuttujien arvojen nimet

• Luetaan data tiedostosta aikasarjaa 
esittäväksi tietorakenteeksi

n = read_timeseries(model, “data.txt”, &n_timeseries);



Päättely
• Inferenssialgoritmi antaa esim. “epävarman 

aikasarjan”

• Annettujen muuttujien kunkin arvon 
todennäköisyys kullakin hetkellä

• Esim. yhteistodennäköisyydetkin 
mahdollisia, mutta implementoimatta

UncertainSeries ucs = 
forward_inference(ts, ts->hidden, 
ts->num_of_hidden);



EM-algoritmi

• Datan likelihoodin laskenta oli hankala

• Algoritmille annetaan opetettava malli, 
aikasarjoittain dataa ja kynnysarvo 
lopetusehtoa varten

• Aikasarja sisältää viittauksen malliin

em_learn(n_timeseries, n, threshold, &learning_curve);



Käytännön kokeilut
• Laboratoriotesti tunnetusta mallista 

generoidulla datalla

• - Havainnollistaa menetelmien toimintaa

• Kopiolukumuutosten aiheuttamat 
amplifikaatiot ihmisen perimässä

• - Osasyyllisiä kasvaimiin (l. syöpään)



Keinodatan mallit
• Alkuperäinen ja vaihtoehtoinen malli
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Oppimiskäyrät
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Inferenssituloksia: C
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Inferenssituloksia: B
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Inferenssituloksia: C
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Inferenssituloksia: B
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Amplifikaatiodata
Samples from DNA copy number amplification data
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Amplifikaatiomalli
• Kasvaintyyppi ja amplifikaatiot riippuvat 

piilomuuttujaketjusta

Bt

Et−1

Dt

Et

C



Oppimiskäyrä
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Amplifikaatioprofiilit
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Vielä muuta?

• Myös ns. “pehmeää evidenssiä” voisi syöttää 
havaintoina

• Jatkuvat muuttujat graafin lehtisolmuina?

• Paljon sovelluksia ja dataa?


