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® Bayesin kaavan hyodyntaminen
® BN-ohjelmistoja ollut ennenkin

® Tanskalaisten Hugin Expert

® Adnan Darwiche & co: SAMIAM

® FEi tarkoitettuja aikasarja-analyysiin




® Bayesilaisella paattelylla tehdaan optimaalisia
johtopaatoksia havaitsemattomista asioista

® Otetaan huomioon esim. aika, paikka,
positio kromosomissa tms. konteksti

® | uokittelu, segmentointi jne. piilomuuttujien
avulla

® Automaattinen puutteellisen datan kasittely




Pohjana muuttujien riippuvuudet ilmaiseva
suunnattu sykliton verkko DAG

Mallin parametrit muotoa p(c|pa(c))

C on riippumaton muista kuin
vanhemmistaan pa(C)

Muuttujia kuvaavien solmujen valilla kaaret
vanhemmista lapsiin




E.m. verkko soveltuu huonosti inferenssin
vaatimiin laskutoimituksiin

Taysi yhteis-tn-jakauma tuhlaa muistia

Kaytettava vaihtoehtoista esitystapaa
nimelta liittymapuu

Puun solmut tallentavat nk.“perheiden”
yhteistodennakoisyysjakaumia




Puuhun tallennetut jakaumat nimeltaan
potentiaaleja (mahd. normalisoimaton)

Minimaalinen tapa esittaa yhteis-tn-jakauma
pienempien tulona

vre. p(x,y,2) = p(x|y) * p(y|z) * p(z)

Myos ns. running intersection property




® Esimerkki graafista ja liittymapuusta
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® Paattely tapahtuu “levittamalla™
potentiaaleja painottavia jakaumia
naapurisolmuihin puussa

® Marginalisoimalla saadaan pienempi
projektio potentiaalista: p( A Z¢ (A, B)

® Kertolaskulla paivitetaan potentiaalia uuden
evidenssin mukaan: ¢(A,C) := ¢(A,C) * ¢(A)




® Kevin Murphy 2002

® Vaitoskirja: Dynamic Bayesian Networks:
Representation, Inference & Learning

® Esittaa |.5DBN kasitteen




® Aikasarjoja varten toistuvarakenteiset mallit
® Esim. HMM toistaa pienta “verkkoa”
® Esitetaan malli viipaleena, jota toistetaan

® Maaritettava toistuva osa liittymapuusta
laskutoimituksia varten

® Viipaleen kaytto paattelyssa “puoliaskelin”




® Esimerkki aikaviipaleesta: HMM

(Oge i Olpte o Olois il @ried )

staattinen BN | SDBN




® C-kielinen ohjelmakirjasto

® Huginin net-tiedostojen jasennys
® Muunnos graafeista liittymapuuksi
® Aikasarjan lukeminen tiedostosta

® Edella kuvattu inferenssi mahd. aikaviipalein

® EM-algoritmi parametrien oppimiseen




Malli luetaan Huginin asettaman
“standardin’” mukaisesta tiedostosta

node-maarittelyt kertovat muuttujat
Oma NIP_next kentta aikaviipalemalleille

potential-maarittelyt ehdollisille
todennakoisyysjakaumille

Graafin rakenne samassa implisiittisesti




® NP-kova osuus liittymapuun kaytossa

® Muunnos heti net-tiedoston jasennyksen
jalkeen

® malli = liittymapuu + muu kirjanpito

Nipfriedel= pdise model@GRimin e




® Tiedoston |.rivilla muuttujien nimet
® | oput rivit aikasarjan askelia
e Kullakin rivilla muuttujien arvojen nimet

® | uetaan data tiedostosta aikasarjaa
esittavaksi tietorakenteeksi

n = read_timeseries(model, “data.txt’, &n_timeseries);




® |nferenssialgoritmi antaa esim.“epavarman

aikasarjan”  JncertainSeries ucs =
forward_inference(ts, ts->hidden,
ts->num_of_hidden);
® Annettujen muuttujien kunkin arvon
todennakoisyys kullakin hetkella

® Esim. yhteistodennakoisyydetkin
mahdollisia, mutta implementoimatta




® Datan likelihoodin laskenta oli hankala

® Algoritmille annetaan opetettava malli,
aikasarjoittain dataa ja kynnysarvo
lopetusehtoa varten

® Aikasarja sisaltaa viittauksen malliin

Chsleammtmeseries, 0, threshold &learnineaetis e




Laboratoriotesti tunnetusta mallista
generoidulla datalla

- Havainnollistaa menetelmien toimintaa

Kopiolukumuutosten aiheuttamat
amplifikaatiot ihmisen perimassa

- Osasyyllisia kasvaimiin (l. syopaan)




® Alkuperainen ja vaihtoehtoinen malli




Log. likelihood / time step
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Tumor cases
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e Kasvaintyyppi ja amplifikaatiot riippuvat
piilomuuttujaketjusta
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Log. likelihood / time step
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. Amplification profiles
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® Myos ns.“pehmeaa evidenssia” voisi syottaa
havaintoina

® Jatkuvat muuttujat graafin lehtisolmuina?

® Paljon sovelluksia ja dataa!?




