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Jaakko Särelä and Harri Valpola Denoising source separation for feature extraction



Outline
Background and motivation

DSS in feature extraction

Features from natural images

Hierarchical feature extraction
Invariances
Nonlinear feature expansion
Expectation-driven learning

DSS and neuroscience
Neocortical structure
Role of attention in goal-directed learning

Conclusion
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Outline
Background and motivation

Selection of information

I In many real-world problems there are plenty of data with a
lot of structure.

I Usually only part of the structure is interesting.

I Which part is interesting depends on the goals.

I Source separation and feature extraction are similar selection
processes when data dimensionality is high.
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local information only.
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Outline
Background and motivation

Local learning

I Fast learning rules are often local: weight modification needs
local information only.

I Hebbian and anti-Hebbian learning are prime examples of
local learning rules: weight change is proportional to pre- and
post-synaptic activation.
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DSS in source separation

I Situation: interesting and uninteresting components are
observed in mixtures (linear or nonlinear).
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Whitening
Denoising

DSS in real-world problems

Part I

DSS in source separation

I Situation: interesting and uninteresting components are
observed in mixtures (linear or nonlinear).

I Task: separate the interesting sources.
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Denoising

DSS in real-world problems

Example

Let’s consider a simple source separation task: a source should be
recovered from two linear mixtures of two sources.
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DSS in real-world problems

Example

Let’s consider a simple source separation task: a source should be
recovered from two linear mixtures of two sources.

I Source 1 (target) changes
slower in time than the
other interfering source.

s 1
s 2
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DSS in real-world problems

Example

Let’s consider a simple source separation task: a source should be
recovered from two linear mixtures of two sources.

I Source 1 (target) changes
slower in time than the
other interfering source.

I Both sources are observed
on two channels, but source
1 is relatively stronger on
channel 2 and vice versa.
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DSS in real-world problems

Problem: how to avoid interference

I The contribution of one source to the channels is called the
mixing vector a. The mixing vectors of different sources form
the mixing matrix A

x =
∑

i

ai si = As
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Problem: how to avoid interference

I The contribution of one source to the channels is called the
mixing vector a. The mixing vectors of different sources form
the mixing matrix A

x =
∑

i

ai si = As

I Knowing the mixing vector ai is not enough for recovering the
source si .

I Inverse A−1 (so-called unmixing vectors) is required and its
computation requires all ai .
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DSS in real-world problems

Problem: how to avoid interference

I The contribution of one source to the channels is called the
mixing vector a. The mixing vectors of different sources form
the mixing matrix A

x =
∑

i

ai si = As

I Knowing the mixing vector ai is not enough for recovering the
source si .

I Inverse A−1 (so-called unmixing vectors) is required and its
computation requires all ai .

I Hebbian learning can in general only recover ai , not A−1.
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DSS in real-world problems
Neuroscience

Comparing apples and oranges

I Often it is difficult to see some target pattern in the data
because it is masked by interference from some other,
stronger patterns.
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Comparing apples and oranges

I Often it is difficult to see some target pattern in the data
because it is masked by interference from some other,
stronger patterns.

I In such cases it is particularly difficult to use simple
Hebbian-type algorithms for finding the target patterns.

I Related problem: how to decide if something is large from
visual image if the distance to different objects can vary?
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DSS in real-world problems
Neuroscience

Comparing apples and oranges

I Often it is difficult to see some target pattern in the data
because it is masked by interference from some other,
stronger patterns.

I In such cases it is particularly difficult to use simple
Hebbian-type algorithms for finding the target patterns.

I Related problem: how to decide if something is large from
visual image if the distance to different objects can vary?

I Solution: normalise (distance in the size example, variance in
Hebbian learning).
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DSS in real-world problems
Neuroscience

Whitening: removing correlation structure

I Whitening (a.k.a. sphering) normalises the variance structure
(data will be decorrelated and variance is isotropic = the same
in every direction).
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(data will be decorrelated and variance is isotropic = the same
in every direction).
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Neuroscience

Whitening: removing correlation structure

I Whitening (a.k.a. sphering) normalises the variance structure
(data will be decorrelated and variance is isotropic = the same
in every direction).

I Can be implemented by PCA + normalisation of variances.

I The data can also be rotated “back to the original” after
normalisation.
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DSS in real-world problems
Neuroscience

Whitening
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Result: PCA doesn’t see any structure in the data but the mixing
vectors become (more) orthogonal.
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Whitening in the brain

I Interestingly, decorrelation and normalisation are ubiquitous in
the brain: many systems have lateral inhibition and “gain
control”.
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Whitening in the brain

I Interestingly, decorrelation and normalisation are ubiquitous in
the brain: many systems have lateral inhibition and “gain
control”.

I For instance, retinal on-center-off-surround cells and thalamic
“relay cells”.
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Neuroscience

Whitening in the brain

I Interestingly, decorrelation and normalisation are ubiquitous in
the brain: many systems have lateral inhibition and “gain
control”.

I For instance, retinal on-center-off-surround cells and thalamic
“relay cells”.

I Symmetric whitening computed from natural images:
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DSS in real-world problems
Procedural formulation of prior information

Making things different again

After whitening PCA doesn’t see any structure, but what if we
“disturb” the data a bit.
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Making things different again

After whitening PCA doesn’t see any structure, but what if we
“disturb” the data a bit.

I Remember that our target
source changed slowly.
What if we low-pass filter
the data.
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Making things different again

After whitening PCA doesn’t see any structure, but what if we
“disturb” the data a bit.

I Remember that our target
source changed slowly.
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the data.
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Making things different again

After whitening PCA doesn’t see any structure, but what if we
“disturb” the data a bit.

I Remember that our target
source changed slowly.
What if we low-pass filter
the data.

I Whitening was important...
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Making things different again

After whitening PCA doesn’t see any structure, but what if we
“disturb” the data a bit.

I Remember that our target
source changed slowly.
What if we low-pass filter
the data.

I Whitening was important...
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DSS in real-world problems
Procedural formulation of prior information

Theoretical justification

I Denoising can be viewed as prior information in procedural
form.
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Theoretical justification

I Denoising can be viewed as prior information in procedural
form.

I DSS can be justified as an EM-algorithm for source
separation: E-step = denoising using prior information,
M-step = estimation of a new mixing vector.
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Theoretical justification

I Denoising can be viewed as prior information in procedural
form.

I DSS can be justified as an EM-algorithm for source
separation: E-step = denoising using prior information,
M-step = estimation of a new mixing vector.

I Denoising can thus (but does need to) be derived from prior
information p(s).
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DSS in real-world problems
Procedural formulation of prior information

Theoretical justification

I Denoising can be viewed as prior information in procedural
form.

I DSS can be justified as an EM-algorithm for source
separation: E-step = denoising using prior information,
M-step = estimation of a new mixing vector.

I Denoising can thus (but does need to) be derived from prior
information p(s).

I Whitening means that mixing vector = unmixing vector;
sources can be extracted one by one.
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Procedural formulation of prior information

Nonlinear denoising

I In our example the denoising was applied to the data. This is
possible only with linear denoising.
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Nonlinear denoising

I In our example the denoising was applied to the data. This is
possible only with linear denoising.

I EM-connection suggests that the source estimates should be
denoised. Like power method with denoising embedded in the
iterations or neural PCA with denoising as the “activation
function” of the neurons.
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Nonlinear denoising

I In our example the denoising was applied to the data. This is
possible only with linear denoising.

I EM-connection suggests that the source estimates should be
denoised. Like power method with denoising embedded in the
iterations or neural PCA with denoising as the “activation
function” of the neurons.

I With simple nonlinearities DSS realises independent
component analysis (ICA).
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Fast algorithms
DSS in Climate research

Standard methods work

I Regular PCA works for linear denoising.
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DSS in Climate research

Standard methods work

I Regular PCA works for linear denoising.

I Power method required with nonlinear denoising.

I Just as PCA, DSS can be applied for very large datasets.

I Either deflation (one-by-one extraction) or symmetric
separation can be used.
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Fast algorithms
DSS in Climate research

Standard methods work

I Regular PCA works for linear denoising.

I Power method required with nonlinear denoising.

I Just as PCA, DSS can be applied for very large datasets.

I Either deflation (one-by-one extraction) or symmetric
separation can be used.

I Note: linear denoising + symmetric separation can only
identify the signal subspace.
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Fast algorithms
DSS in Climate research

DSS applications

CDMA

neuro
informatics

climatology

speech
recognition representation

language

financial
informatics

applications
DSS
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DSS in Climate research

DSS in Climate research

Several global daily measurements during several tens of years:
surface temperature, sea level pressure, precipitation, etc.
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DSS in Climate research

Several global daily measurements during several tens of years:
surface temperature, sea level pressure, precipitation, etc.
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Part II

DSS in feature extraction

I Situation: A task, such as recognition or motor action should
be performed.
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Features from natural images
Hierarchical feature extraction

DSS and neuroscience
Conclusion

Part II

DSS in feature extraction

I Situation: A task, such as recognition or motor action should
be performed.

I Task: Find a feature representation for the situation that
facilitates the task.
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DSS and neuroscience
Conclusion

PCA and DSS features from natural images

Symmetric PCA gives
on-center/off-surround
features.

PCA feature activating pattern
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Features from natural images
Hierarchical feature extraction

DSS and neuroscience
Conclusion

PCA and DSS features from natural images

Symmetric PCA gives
on-center/off-surround
features.

ICA-DSS gives edge-
detectors resembling simle
cell outputs in V1.

PCA feature activating pattern

DSS feature activating pattern
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Features from natural images
Hierarchical feature extraction

DSS and neuroscience
Conclusion

Invariances
Nonlinear feature expansion
Expectation-driven learning

Learning invariant representations

I Invariance = being unsensitive to something:
I translation
I rotation
I scaling
I ...
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Features from natural images
Hierarchical feature extraction

DSS and neuroscience
Conclusion

Invariances
Nonlinear feature expansion
Expectation-driven learning

Learning invariant representations

I Invariance = being unsensitive to something:
I translation
I rotation
I scaling
I ...

I It is as important to lose most information as to remain
sensitive to the “essential features”.
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Features from natural images
Hierarchical feature extraction

DSS and neuroscience
Conclusion

Invariances
Nonlinear feature expansion
Expectation-driven learning

How: hierarchical grouping

I grouping of
individual features.

I hierarchy of
feature extraction
stages.

I the higher the
layer, the more
complex and
invariant the
features.
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Features from natural images
Hierarchical feature extraction

DSS and neuroscience
Conclusion

Invariances
Nonlinear feature expansion
Expectation-driven learning

Hierarchies in DSS

I Stacking DSS layers does not bring anything new.
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Features from natural images
Hierarchical feature extraction

DSS and neuroscience
Conclusion

Invariances
Nonlinear feature expansion
Expectation-driven learning

Hierarchies in DSS

I Stacking DSS layers does not bring anything new.

I Solution: make the layer nonlinear somehow.
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Features from natural images
Hierarchical feature extraction

DSS and neuroscience
Conclusion

Invariances
Nonlinear feature expansion
Expectation-driven learning

Nonlinear feature expansion

Linear regression can be made nonlinear by including as inputs
nonlinear functions of the inputs.
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Nonlinear feature expansion

Linear regression can be made nonlinear by including as inputs
nonlinear functions of the inputs.

Many alternatives:

I fixed nonlinearities
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Invariances
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Nonlinear feature expansion

Linear regression can be made nonlinear by including as inputs
nonlinear functions of the inputs.

Many alternatives:

I fixed nonlinearities

I competition and positivity
constraint POOL
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Features from natural images
Hierarchical feature extraction

DSS and neuroscience
Conclusion

Invariances
Nonlinear feature expansion
Expectation-driven learning

How to create expectations that drive the learning?

I The big question is: how to recognize that features belong to
the same object?
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Conclusion

Invariances
Nonlinear feature expansion
Expectation-driven learning

How to create expectations that drive the learning?

I The big question is: how to recognize that features belong to
the same object?

I Most common criterion is temporal proximity: features that
often appear roughly at the same times probably represent the
same object.
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Conclusion

Invariances
Nonlinear feature expansion
Expectation-driven learning

How to create expectations that drive the learning?

I The big question is: how to recognize that features belong to
the same object?

I Most common criterion is temporal proximity: features that
often appear roughly at the same times probably represent the
same object.

I Contextual proximity is a better criterion: features that appear
in the same context probably represent the same object.
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Features from natural images
Hierarchical feature extraction

DSS and neuroscience
Conclusion

Invariances
Nonlinear feature expansion
Expectation-driven learning

How to create expectations that drive the learning?

I The big question is: how to recognize that features belong to
the same object?

I Most common criterion is temporal proximity: features that
often appear roughly at the same times probably represent the
same object.

I Contextual proximity is a better criterion: features that appear
in the same context probably represent the same object.

I Temporal proximity is often a special case because contexts
tend to evolve slowly.
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Features from natural images
Hierarchical feature extraction

DSS and neuroscience
Conclusion

Invariances
Nonlinear feature expansion
Expectation-driven learning

Expectation-driven learning

I inputs drive outputs.

I expectations drive
learning (modulate only).

I without the nonlinear
feature expansion,
equivalent to canonical
correlation analysis.
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DSS and neuroscience
Conclusion

Invariances
Nonlinear feature expansion
Expectation-driven learning

Results
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Hierarchical architecture

I It makes sense to stack nonlinear feature extractors into a
hierarchy.
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Features from natural images
Hierarchical feature extraction

DSS and neuroscience
Conclusion

Invariances
Nonlinear feature expansion
Expectation-driven learning

Hierarchical architecture

I It makes sense to stack nonlinear feature extractors into a
hierarchy.

I Context derived from “all over the place” can guide learning.
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Features from natural images
Hierarchical feature extraction

DSS and neuroscience
Conclusion

Invariances
Nonlinear feature expansion
Expectation-driven learning

Hierarchical architecture

I It makes sense to stack nonlinear feature extractors into a
hierarchy.

I Context derived from “all over the place” can guide learning.

I Learning aims to find a “coherent representation of the
world”.
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Features from natural images
Hierarchical feature extraction

DSS and neuroscience
Conclusion

Invariances
Nonlinear feature expansion
Expectation-driven learning

Hierarchical architecture
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the neocortex:

I hierarchy of areas creating an increasingly abstract, invariant
representation

I excitatory-inhibitory interaction creating nonlinear “raw
material”

I grouping simple features to get complex ones
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Neocortical structure

The structure of the model discussed here is very much inspired by
the neocortex:

I hierarchy of areas creating an increasingly abstract, invariant
representation

I excitatory-inhibitory interaction creating nonlinear “raw
material”

I grouping simple features to get complex ones

I strong, decorrelated bottom-up stimuli

I competition modulated by context
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Neocortical structure
Role of attention in goal-directed learning

Attention

I Attentional filtering decides which information reaches global
context.

I Attention has a strong goal-directed component.

I Hypothesis: attention mediates goal information in perceptual
learning.
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Neocortical structure
Role of attention in goal-directed learning

Attention

A

B

C = A+B
A

B

C = A+B

A B
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Jaakko Särelä and Harri Valpola Denoising source separation for feature extraction



Features from natural images
Hierarchical feature extraction

DSS and neuroscience
Conclusion

Conclusion

I Basic idea in DSS: whitening or other normalisation makes
learning sensitive to denoising or other such operations (e.g.,
combination of several datasets).

I DSS is flexible, robust, fast and is suitable for analysing large
datasets.
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I Basic idea in DSS: whitening or other normalisation makes
learning sensitive to denoising or other such operations (e.g.,
combination of several datasets).

I DSS is flexible, robust, fast and is suitable for analysing large
datasets.

I With nonlinear feature expansion, DSS can be stacked in
layers to get a powerful nonlinear feature extractor.
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Conclusion

I Basic idea in DSS: whitening or other normalisation makes
learning sensitive to denoising or other such operations (e.g.,
combination of several datasets).

I DSS is flexible, robust, fast and is suitable for analysing large
datasets.

I With nonlinear feature expansion, DSS can be stacked in
layers to get a powerful nonlinear feature extractor.

I DSS combines attention and learning under the same
framework.
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More information in the Web:

I Denoising source separation. J. Särelä and H. Valpola.
Journal of Machine Learning Research, 6:233-272, 2005.
Available at
http://www.jmlr.org/papers/v6/sarela05a.html
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I Denoising source separation. J. Särelä and H. Valpola.
Journal of Machine Learning Research, 6:233-272, 2005.
Available at
http://www.jmlr.org/papers/v6/sarela05a.html

I Behaviourally meaningful representations from normalisation
and context-guided denoising. H. Valpola. Internal Technical

report, 2004. Available at
http://cogprints.ecs.soton.ac.uk/archive/00003633/

I Development of representations, categories and concepts—a
hypothesis. Accepted in CIRA 2005 special session on

ontogenetic robotics.

I DSS project pages http://www.cis.hut.fi/projects/dss.
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Thank you for your attention
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