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1. INTRODUCTION

The traditional principal component analysis (PCA) has of-
ten been suggested for data analysis and feature extraction.
PCA can be realised by simple Hebbian learning, e.g., by
Oja’s rule [5]. PCA explains the largest amount of variance
of the data in each of its components. For this reason it
tends to extract global features and is not very suitable for
representing structures in the data. The structures would be
better represented by sparse features (see, e.g., [7] for sparse
coding of natural images).

Independent component analysis (ICA) [2] provides a
better tool for feature extraction. While in PCA, only uncor-
relation is guaranteed between the sources, ICA renders the
sources completely independent. The features provided by
ICA tend to be sparse. ICA has been frequently applied to
computational neuroscience and modelling simple and com-
plex cells in human primary visual cortex (V1) [4].

Many algorithms have proposed for ICA. For our pur-
pose the most interesting one stem from the idea of nonlin-
ear PCA [6]: combination of a batch version of the nonlin-
ear PCA and presphering of the data, lead to a very fast ICA
algorithm, FastICA [3]. However, not much has been said
about how to choose the nonlinearity.

In this presentation, we discuss a new interpretation to
the nonlinearity as denoising. We call this new framework
denoising source separation (DSS) [8]. Prior knowledge can
be easily incorporated in this denoising.

Denoising corresponds to procedural knowledge while
in most approaches to source separation, the algorithms are
derived from explicit objective functions or generative mod-
els. This corresponds to declarative knowledge. Algorithms
are procedural, however. Thus declarative knowledge has
to be translated into procedural form, which may result in
complex and computationally demanding algorithms. Fur-
thermore, we argue that it is easier to suggest biologically
plausible procedural algorithms than to suggest such objec-
tive functions or generative models. Some interesting ex-
tensions that make DSS more relevant models of human in-
formation processing are discussed in the end.

2. DENOISING SOURCE SEPARATION

Assume the data X presphered. Then the DSS algorithm is
as follows:

s = w
T
X (1)

s
+ = f(s) (2)

w
+ = Xs

+T (3)

wnew =
w

+

||w+||
. (4)

The first step (1) calculates the current estimate of one source.
The second step (2) is the denoising step and it should re-
flect the structure of a source. The step (3) re-estimates the
mixing vector to fit the denoised source estimate. Finally,
normalisation (4) stabilises the norm of the mixing vector.

We have shown that with linear denoising, i.e., matrix
multiplication s

+ = f(s) = sD, DSS is equivalent to the
classical power method that is performed for a denoised
(presphered) data Z = XD

∗ where D = D
∗
D

∗T .
Consider such a separation scheme using linear denois-

ing through an example: two sources, shown in Fig. 1a,
are mixed together (scatter-plot shown in Fig. 1b, and pre-
sphered data in Fig. 1c). Note that though the presphering
renders the orthogonal projections uncorrelated, it does not
identify the sources, but some mixing still exists.

The first source seem to vary more slowly than the other
one. Hence, a reasonable denoising scheme would be to
low-pass filter the data. The result is shown in Fig. 1d.
The maximal variance direction now identifies the slower
source. Actually, any denoising would have sufficed that
makes the eigenvalues of the two sources different.

In the following table, we list some used denoising func-
tions and the function of the corresponding DSS algorithm.
More denoising functions and methods for speeding up the
convergence can be found in the DSS papers [8, 10].

f(s) algorithm
LTI-filtering temporal ICA
s3 kurtosis-based ICA
s − tanh(s) robust ICA

3. BIOLOGICALLY PLAUSIBLE DSS

The DSS algorithm given above is a batch algorithm. Sim-
ply, by changing the denoising scheme to be real-time, DSS
becomes an online feature extractor. This is useful in adap-
tation to changing environments.
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Fig. 1. (a) Original source. (b) Scatter-plot of the mixtures.
(c) Sphered data. (d) Data denoised using lp-filtering Z =
XD

∗. The dashed lines depict the mixing vectors and the
solid lines the largest eigenvector. The curves denote the
standard deviation of the projection of the data.

In this abstract, we only considered orthogonal projec-
tions from the data. However, nonorthogonal projections
resulting from over-complete representations provide some
clear advantages, especially in sparse codes [1], and may be
found useful in the DSS framework as well.

Linear features provide only a limited representation of
data. Even building of hierarchies becomes futile, because
hierarchies of linear models stay linear. In DSS, nonlin-
ear hierarchical networks may be achieved by outputting the
denoised source estimate (2) to the next level of hierarchy,
instead of the linear source estimate (1).

Many neuroscientists have proposed that feedback con-
nections are crucial for contextual and attentive mechanisms.
In DSS such connections, temporal, top-down or lateral, can
be used for denoising and hence for feature extraction. For
instance, Valpola [9] extracted complex-cell-like features
from a static image using lateral context as the guiding prin-
ciple.

A synthesis of the above extensions leads to powerful hi-
erarchical nonlinear feature extractor (see Fig. 2). With tem-
poral context, such a network becomes similar to the slow
feature analysis (SFA) [11]. Each layer on the hierarchical
DSS would consist of two phases: 1) nonlinear feature ex-
pansion, realised for instance by over-complete DSS and 2)
context guided learning of features by lateral, top-down or
temporal feedback.

Fig. 2. Feature extraction using DSS and contextual denois-
ing.
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