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Source separation is often used in signal processing but it can be exploited in feature extraction as well.

Denoising is frequently used for enhancing signal characteristics.
We show that denoising combined with sphering produces effective source separation algorithms.

Original sources Observed signals Scatterplot Denoising
independent linear mixtures shows the correlation structure enhances the desired signals

1st signal Gaussian with time structure
2nd signal Gaussian i.i.d noise
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The aim is to use Hebbian learning (PCA, correlation based) to identify the sources: biologically plausible, fast algorithms exist,
online versions possible. Denoising enhances the desired signals, but the original variance structure dominates if the denoising is
not very precise. Sphering removes the variance structure. −→ Even slight denoising renders the correct direction identifiable with
Hebbian learning. Denoising can exploit for instance the time structure or the non-Gaussianity of the sources (which leads to ICA).

Time-structure source separation Independent component analysis
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Scatterplot
shows the correlation structure
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↓ Sphering ↓
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Scatterplot of the sphered signals
removes the correlation structure
implementation: Y = Λ−1/2ETX
Λ = eigenvalues, E = eigenvectors
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Characteristics

Spectra
low-pass filtering as denoising

Distributions
shrinkage function as denoising

Gaussian distribution
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↓ Denoising ↓
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Denoised signals
Linear denoising

Z = YD, D = VΓVT

V = DCT, Γ = filter amplitude response
denoising D applies separately to the signals yi

Nonlinear denoising
projection variance nonlinearly dependent on denoising
−→ denoising f(s) is embedded in source estimation

by power method
s+ = f(wTY), f(s) = s− tanh s
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↓ PCA ↓ ↓ power method ↓
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Extracted sources
Spectra

1st signal Gaussian with time structure
2nd signal Gaussian i.i.d noise

Distributions
Laplace-distributed signals
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