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Hierarchical nonlinear models

Slow feature analysis (SFA,[9]) provides an
example of how hierarchical nonlinear models
can be learned using local criteria. Each unit
integrates inputs coming from a set of lower-level
units and extracts features which are increasingly
invariant.

In SFA, one unit has two parts: nonlinear feature
expansion and dimension reduction guided by
slowness.  The upper part is equivalent to

denoising source separation (DSS, [6]) where low-
pass filtering is used in denoising. Thus, SFA can
be described as follows:

SFA = nonlinear feature expansion + DSS.

From images, it learns features baring similarity to
those found at the early stages of visual system.

Figure shows the structure of SFA. On the left:
one unit; on the right: hierarchy on units.
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Context can guide feature extraction
generally than slowness.
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In the figure below, the visual stimuli from '12
13" is exactly the same as the visual stimuli
'RB’. Depending on the context, the percept
is completely different. This contextual effect
can be interpreted as denoising which can guide
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A special case of context is temporal context
which is closely related to slowness-principle in
SFA. More generally, context-guided denoising
(CGD) can also include lateral and top-down
connections. CGD can be implemented by
augmenting the sphered bottom-up inputs by the
context.

In the figure, the contextual input (top-down,
lateral and temporal) is shown in dashed arrow-
lines.
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Feature expansion and sphering

Here we show that spacial context alone is sufficient for developing
invariant features (in SFA and related models temporal context has been

used). In this experiment, we used 9 units laterally connected on one E ' D
layer. 10% share of weights was assigned to the lateral contextual inputs.

Top row from the left: the edge-enhanced natural image and three 7 x 7 j i;} : _ ;T R A _
sample patches from it. There were a total of 5,220 patches in the data o - : 4 ; S :
set. ’

Second row: activations of four out of 100 nonlinear features at the
feature expansion level of one unit when scanning over the entire image.
Third row: corresponding 7 X 7 receptive fields.

Last row: activations of a feature developed on the output layer under _
spatial contextual guidance. The strongest bottom-up connections were /
made to the four features shown on the previous rows. This feature is
more invariant than any of the more elementary features.

Relation to attention

Contextual, predominantly top-down, biasing of
local lateral competition has been proposed as
a model of covert attention in humans [3]. In
simulations, such models have replicated many
of the phenomena found in neurophysiological

experiments (see, e.g., [1,2,4,5,7]). Attention can
thus be seen as a dynamic process emerging from
an interplay between long-range excitatory and
local inhibitory connections. Different strengths
of excitation and inhibition have been shown to

give rise to several distinct functional regimes,
covert attention being one of them [9]. We
propose that sphering-like normalisation allows
weaker top-down modulation to give rise to
attention.
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