
THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE
Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 03/12/2014 par :
Iulia DRAGOMIR

Conception et vérification d’exigences de sûreté temporisées à base de
contrats dans les modèles SysML

Contract-based Modeling and Verification of Timed Safety Requirements
for System Design in SysML

JURY
Béatrice BÉRARD Professeur,

Université Pierre et Marie Curie
Rapportrice

Jean-Paul BODEVEIX Professeur,
Université de Toulouse

Examinateur

Susanne GRAF Directeur de Recherche,
CNRS-VERIMAG

Examinatrice

Thomas LAMBOLAIS Maître assistant,
École des Mines d’Alès

Examinateur

Alexander KNAPP Professeur,
Universität Augsburg

Rapporteur

Iulian OBER Maître de conférences HDR,
Université de Toulouse

Directeur de thèse

Christian PERCEBOIS Professeur,
Université de Toulouse

Codirecteur de thèse

École doctorale et spécialité :
MITT : Domaine STIC : Sureté de logiciel et calcul de haute performance

Unité de Recherche :
Institut de Recherche en Informatique de Toulouse

Directeur(s) de Thèse :
Iulian OBER et Christian PERCEBOIS

Rapporteurs :
Béatrice BÉRARD et Alexander KNAPP

Abstract
Nowadays computer systems grow larger in size and more complex. Embedded in devices
from different domains like avionics, aeronautics, consumer electronics, etc., they are often
considered critical with respect to human life, costs and environment. A development
that results in safe and reliable critical real-time embedded systems is a challenging task,
considering that errors are accidentally inserted in the design. A way for system designers
to tackle this issue is to use a compositional design technique based on components and
driven by requirements: it allows to infer from global requirements, component properties
that must locally hold.

Contract-based reasoning allows to compositionally derive correct components from global
system requirements by interposing abstract and partial specifications for components.
Informally, a contract models the abstract behavior a component exhibits from the
point of view of the requirement to be satisfied (i.e. guarantee) in a given context (i.e.
assumption). Contracts can be used to decompose and trace requirements during iterative
design, but also to perform compositional verification of requirement satisfaction.

In this thesis, we present a methodology for reasoning with contracts during system design
and verification within SysML. Thus, we define the syntax for contracts in UML/SysML,
as well as a set of refinement relations between contracts and/or components in order to
prove the system’s correctness with respect to requirements. Next, we provide a formal
framework that models the semantics of a UML/SysML model extended with contracts as
a mapping of the language concepts to a variant of Timed Input/Output Automata. The
refinement relations are formalized based on the trace inclusion relation and compositional
properties are proved to hold which ensures the soundness of the methodology. The
approach is instantiated for the OMEGA Profile and IFx2 toolset with partial automatic
generation of proof obligations. Finally, the approach is applied on several case studies,
including an industry-grade system model, which show its efficiency by comparative
verification results.

Keywords: contract-based reasoning, real-time systems, safety requirements, component-
based design, UML/SysML, compositional verification, Timed Input/Output Automata,
model-checking

iii

Résumé
De nos jours, les systèmes informatiques croissent en taille et en complexité. Intégrés dans
des dispositifs de différents domaines tels que l’avionique, l’aéronautique, l’électronique
grand public, etc., ils sont souvent considérés comme critiques à l’égard de la vie humaine,
des coûts et de l’environnement. Concevoir des systèmes embarqués temps-réel critiques
sûrs et fiables est une tâche difficile, étant donné que leurs modèles sont souvent source
d’erreurs. Une façon pour les concepteurs de contourner cette difficulté consiste à s’appuyer
sur la modélisation compositionnelle de composants logiciels pilotée par les exigences.

Le raisonnement à base de contrats permet de construire des composants sûrs à partir des
exigences globales du système en interposant des spécifications abstraites et partielles entre
les besoins du système et les composants eux-mêmes. Informellement, un contrat modélise
le comportement abstrait d’un composant du point de vue de l’exigence à satisfaire (c.a.d
garantie) dans un contexte donné (c.a.d. hypothèse). Les contrats peuvent être exploités
pour décomposer et tracer les exigences au cours d’un développement itératif, mais aussi
pour effectuer une vérification compositionnelle de la satisfaction des exigences.

Dans cette thèse, nous présentons une méthodologie de raisonnement à base de contrats
pour la conception et la vérification de systèmes sûrs développés en SysML. Ainsi, nous
définissons en UML/SysML la syntaxe des contrats et des relations de raffinement entre
contrats et/ou composants qui sont utilisées pour prouver la correction du système par
rapport aux exigences. Ensuite, nous proposons un cadre formel qui modélise la sémantique
d’un modèle UML/SysML étendu par des contrats selon une variante d’automates
temporisés entrée/sortie et nous définissons la correspondance entre ces concepts. Nous
formalisons les relations de raffinement par la relation d’inclusion de traces et nous
prouvons leurs propriétés compositionnelles ce qui assure la correction de la méthodologie.
L’approche est instanciée pour le profil OMEGA et la boîte à outils IFx2 qui génère
partiellement les obligations de preuve. Finalement, plusieurs études de cas dont une
issue de l’industrie complètent la théorie pour évaluer l’approche à base de contrats et ses
résultats et les comparer aux méthodes classiques de model-checking.

Mots-clés : raisonnement à base de contrats, systèmes temps-réel, exigences de sûreté,
conception à base de composants, UML/SysML, vérification compositionnelle, automate
temporisé entrée/sortie, model-checking

v

Acknowledgements
Doing a PhD was a long-date dream and it would not have been possible without
the support and help of a long list of special persons.

Foremost, I would like to thank my two advisers, Iulian Ober and Christian
Percebois, for all they taught me during this time. My collaboration with Iulian
started 5 and a half years ago, during the internships of my master and crowned
by this thesis. It was an honor for me to work with him for such a long time.
Words cannot express how grateful I am for all the opportunities he gave me, in
the everyday life of research, teaching and administration duties. I thank him for
his guidance whenever I diverged from “right” path, for his patience in teaching
me – only he knows how difficult that must had been –, spontaneous answers to
my numerous questions, availability and all the qualities that are too plentiful to
enumerate here and which make of him a great mentor. Most importantly, I am
grateful for the trust he showed me. I will always be in debt to you!

I am very grateful to Christian for embarking in this adventure and bringing a
fresh perspective on our work, and not only. I appreciate his dedication, gentleness,
pedagogy, honesty, criticism and pertinent remarks. Working with Christian was
a great and enriching human experience that I will never forget. Thank you for
being a role model for me!

I would like to thank Béatrice Bérard, Jean-Paul Bodeveix, Susanne Graf, Alexander
Knapp and Thomas Lambolais for making me the honor and accepting to be on
my defense committee. I thank Jean-Paul for presiding this committee and for his
gentleness and support. I apologize to my two reviewers, Béatrice and Alexander,
for making them suffer with such a long thesis. I appreciate your hard work and
the effort you put into improving this manuscript. I thank Susanne and Thomas
for their interest in this thesis and all the relevant comments in improving our
work and perspectives. A special thought goes to Susanne, whom I know since my
master internship and who took the time to discuss this research and offer valuable
advice each time we met.

This research idea originated in the “Full Model Driven Development for On-Board
Software” project. I am obliged to all my colleagues, Éric Conquet, David Lesens,

vii

Acknowledgements

François-Xavier Dormoy, Marius Bozga, Susanne Graf, and those who I forgot
to mention here, for their direct and indirect contribution to this thesis. Special
thanks to David for being the promoter of this research, our rich discussions and
his aid.
This work would have not existed without the endorsement of my previous teachers,
Crina Grosan and Dan Chiorean from the “Babes-Bolyai” University, Faculty of
Mathematics and Computer Science. I wish to thank Crina for rooting the idea of
making a PhD and believing that I have what it takes to do research. I thank Dan
for his encouragements, his genuine trust in my abilities and teaching me how to
be critical with my work and always ask for more.
The period spent as a doctoral student had also its fun moments. I am grateful
to the MACAO members, Ileana, Hervé, Jean-Michel, Hanh Nhi, Sophie, Thierry,
Bernard, Brahim, for making a place for me in their group, their concern about
my well being and the good moments we spent together at lunches, coffee breaks,
seminars, etc. A special mention for Hervé who mentored my teaching and for Ileana
who involuntary upheld the role of a mom while I was away from home. I thank the
ACADIE members, Mamoun, Jean-Paul, Ralph, Erik, Jean-Baptiste, Martin, Jan,
for considering me one of their own, our discussions more or less research-related
and their recommendations. I thank my colleagues from the Computer Science
department of IUT A and Faculté des sciences et d’ingénierie for welcoming me in
their structures and allowing to flourish as a teacher.
Finally, I thank my fellows, Nadia, Elie, Wilmer, Selma, Bertrand, Manzoor, Jacob,
El Arbi, Adel, Rahma, Hajer, Faten, ..., for the moments spent together and their
friendship. I also thank to my old and new friends, Monica, Ancuta, Samira,
Madalina, Dana, Valentin, Ana-Maria, Adrian, Tomasz, Christophe, Alexandra, ...,
for their continuous encouragements. Sorry for those that I forgot to mention here.
Things would have not been the same without you.
Last but not least I am grateful to my family for their faith in me, even though it
was not always clear why and what I kept studying. My achievement is mainly due
to my parents and their lessons to stay strong, believe in yourself and pursue the
dream no matter what. I am happy and honored to be their daughter and I hope
that I will continue making them proud of me. I am thankful to Rémy for putting
up with me day by day, providing helpful advices and believing in me maybe more
than I do in myself. I am lucky for you to be a part of my life.

Toulouse, December 9, 2014 Iulia Dragomir

viii

Contents
Abstract iii

Acknowledgements vii

List of figures xiii

List of tables xv

Résumé étendu 1
1 Introduction . 1
2 Raisonnement à base de contrats pour les systèmes hiérarchiques à

base de composants . 7
2.1 Une méta-théorie pour le raisonnement à base de contrats . 8
2.2 Travaux connexes . 10

3 Modélisation de contrats comportementaux hypothèse/garantie en
SysML . 13
3.1 Le contexte de modélisation SysML 13
3.2 Un méta-modèle pour les contrats comportementaux 15
3.3 Instanciation du méta-modèle par un profil 18
3.4 Travaux connexes . 18

4 Un modèle formel pour la sémantique de modèles SysML 19
4.1 Une variante des automates temporisés entrée/sortie pour

les modèles SysML . 19
4.2 Transformation des modèles SysML en modèles TIOA 23
4.3 Implémentation avec IFx2 26

5 Raisonnement formel avec contrats 26
5.1 Théorie à base de contrats pour les TIOA 26
5.2 Expressivité des contrats . 29
5.3 Vérification automatique des obligations de preuve 30
5.4 Diagnostic avec les contrats 33
5.5 Travaux connexes . 34

ix

Contents

6 Une étude de cas issue de l’industrie : le Solar Generation System
de l’ATV . 35
6.1 Spécification du système . 36
6.2 Application de la théorie à base de contrats 38

7 Conclusion et perspectives . 40

Introduction 49

I State of the Art 59

1 Formal Modeling and Verification of Real-Time Embedded Sys-
tems: Current Approaches 61
1.1 Formal Models for Reactive Systems 62

1.1.1 Modeling Semantics: Transition Systems 63
1.1.2 Timed (Input/Output) Automata 68
1.1.3 Interface Theories . 75
1.1.4 Summary . 76

1.2 Verification Techniques for Formal Models 77
1.2.1 Overview on System Requirements 78
1.2.2 Model-Checking . 79
1.2.3 Summary . 81

1.3 Conclusion . 83

2 High-Level Modeling Languages and Associated Environments for
Real-Time Embedded Systems 85
2.1 UML/SysML and Related Profiles for Real-Time Systems 86
2.2 Verification Tools for System Designs 88
2.3 Conclusion . 90

3 Contract-based Reasoning for Hierarchical Systems of Compo-
nents 93
3.1 Contract-based Meta-Theories and their Implementations 94

3.1.1 A Meta-theory for Contract-based Reasoning 94
3.1.2 Related Contract-based Approaches 98

3.2 Contracts in High-Level Modeling Languages 101
3.3 Conclusion . 103

x

Contents

II Modeling and Reasoning with Contracts in SysML 105

4 The SysML Context 107
4.1 A SysML Subset for Modeling Asynchronous Component-based

Systems . 107
4.2 Real-Time and Requirement Formalization: the OMEGA Profile . . 110
4.3 The sATM Running Example . 113
4.4 Conclusion . 114

5 Modeling Behavioral Assume/Guarantee Contracts in SysML 117
5.1 A Meta-Model for Behavioral Contracts 117
5.2 From Domain Meta-Model to Profile 131
5.3 Modeling Contracts for the sATM 132
5.4 Conclusion . 134

6 Formal Reasoning with Contracts 137
6.1 A Flavor of Timed Input/Output Automata for SysML Semantics . 138
6.2 Contract Theory for TIOA . 143
6.3 Application of the Contract Framework on the sATM 155
6.4 Contract Expressiveness for SysML Models 159
6.5 Automatic Verification of Generated Proof Obligations 162
6.6 Comparison with Related Approaches 166
6.7 Conclusion . 167

7 Implementation in the IFx2 Toolset 169
7.1 Compiling OMEGA Designs with Contracts to TIOA 169

7.1.1 Mapping Components into TIOA 170
7.1.2 Generating Proof Obligations 173

7.2 Tool Architecture and Functionalities 175
7.3 Error Diagnosis for Contract-Based Reasoning 178
7.4 Conclusion . 180

III Experimental Results 181

8 A Parametric Case Study for Comparing Verification Results 183
8.1 System Description and Contracts 183
8.2 Contract-based Verification Results 188
8.3 Conclusion . 192

xi

Contents

9 A Real-Life Case Study: The Automated Transfer Vehicle 193
9.1 System Description and Architecture 193
9.2 Preliminary Verification Results without Contracts 196
9.3 Applying the Contract-based Verification Technique 198
9.4 Conclusion . 202

Conclusion and Perspectives 205

Bibliography 213

Appendices 233

A OCL Formalization of the Well-Formedness Set of Rules for Con-
tracts in UML/SysML 235
A.1 Rules Defined on the Meta-Model of Contracts 235
A.2 Rules Defined on the OMEGA Contracts Profile for Enforcing the

Meta-Model . 244

B Proofs of the Required Compositionality Results 251
B.1 Proof of Theorem 6.1 . 251
B.2 Proof of Proposition 6.1 . 254
B.3 Proof of Theorem 6.3 . 259

xii

List of Figures
1.1 LTS examples. 64
1.2 An LTS S3 having infinite paths. 65

3.1 Contract-based reasoning for a three-component subsystem ([142]). 95

4.1 Running example: the architecture of the simplified Automated
Teller Machine (sATM). 114

4.2 State machines modeling the behavior of the three main blocks of
the sATM. 115

4.3 SysML formalization with an observer of the Requirement 4.1: the
amount released by the sATM is equal to the amount demanded. . . 116

5.1 An extension of the UML meta-model for contract-based reasoning. 118
5.2 Configuration which shows the necessity for ContractUse relation to

point to the refined contract. 126
5.3 A stereotype implementation of the extended UML meta-model for

contract-based reasoning. 131
5.4 The sATM system model extended with contracts. 132
5.5 Architecture of the C_Controller contract used by the controller

component. 133
5.6 Architecture of the C_CardUnit contract used by the cardUnit

component. 134
5.7 Architecture of the C_sATM contract used by the atm component. 134
5.8 Evaluation of the OCL well-formedness set of rules on the sATM

system model. 135

6.1 Contract modeling for the controller component. 156
6.2 Contract modeling for the cardUnit component. 157
6.3 Contract modeling for the atm component. 158
6.4 Time-bounded behaviors for sATM example guarantees. 161

7.1 An example for signal renaming in the SysML to TIOA transformation.172

xiii

List of Figures

7.2 uml2if package diagrams, with the classes each package defines. . . 176
7.3 Some calculated metrics on the Java code of the uml2if compiler. . 176
7.4 The IFx2 Toolbox. 177
7.5 IFx2 workflow for verifying and diagnosing a system design. 179

8.1 A nominal scenario for the parametric case study. 184
8.2 Architecture of the parametric example K and its contract extension.185
8.3 Behavior of the components involved in the parametric example. . . 186
8.4 Formalization of Requirement 8.1 by the observer Property. 186
8.5 Contract for the component k1. 187
8.6 Contract for the component k2. 188
8.7 Top contract for the component k. 188
8.8 Timed property automaton obtained from the component gK1 rep-

resented using an OMEGA observer. 189

9.1 An overview of the SGS model in Rhapsody SysML. 194
9.2 Observer formalizing Requirement 9.1: all four wings are deployed. 196
9.3 System’s communication graph displaying the components — rep-

resented as nodes — and their unidirectional communication —
represented as arrows. 197

9.4 The SGS model extended with contracts for verifying Requirement 9.1.199
9.5 The contract C_W1 for WING1 in SysML. 200
9.6 The modeled behavior for all G_Wi and G — parameter j ranges

through 1 to 4. 200

xiv

List of Tables
1.1 Comparison of TIOA representations. 77

2.1 Comparison of UML/SysML and related profiles for modeling RTES. 91

8.1 Verification results for without/with the contract-based methodology
on the parametric case study. 191

9.1 Average verification time for each contract C_Wi per induced failure
group. 202

xv

Résumé étendu

1 Introduction

La conception de systèmes critiques sûrs et fiables est difficile, comme plusieurs
catastrophes récentes le montrent. Par example, le vol 501 d’Ariane 5 a explosé
37 secondes après le lancement en raison d’une conversion de données incorrecte
causant la perte de plus de 370 millions de dollars, le système anti-balistique
MIM-104 Patriot n’a pas réussi à intercepter un missile causant la mort de 28
soldats en raison d’une dérive de l’horloge interne qui s’est soldée par un mauvais
calcul pour la recherche et le suivi du projectile, et la machine à rayonnement
Cobalt-60 produite par Multidata Systems a mis en danger plusieurs dizaines de
patients en 2000 à cause de mauvais calculs dépendant de la séquence d’entrée des
données. Ces erreurs (ou bugs) sont responsables de dommages importants relatifs
à la sécurité, à l’environnement et même à la perte de vies humaines. Assurer la
sûreté et la correction du comportement de ces systèmes critiques est essentiel.
Un cas particulier est représenté par les systèmes temps réel pour qui, en plus de
l’ordre d’actions ou de valeurs, la correction repose également sur le moment où
une action doit être effectuée.

Le développement de systèmes embarqués temps-réel critiques est une tâche difficile.
Il y a deux principaux facteurs qui doivent être pris en compte lors du développement
: (1) quelle est la meilleure méthode pour concevoir le système avec des efforts et
coûts minimes et (2) comment peut-on s’assurer que le système conçu est correct
par rapport aux exigences requises. En effet, les systèmes croissent en taille et en
complexité, ainsi que le nombre d’erreurs qu’ils contiennent et qui deviennent plus
difficiles à identifier et corriger, alors que leur impact sur le produit final peut avoir
des conséquences catastrophiques.

Afin de maîtriser la taille du système, les ingénieurs ont adopté une méthode de
conception compositionnelle basée sur les composants et qui permet de décomposer
de manière récursive le problème à résoudre, généralement une exigence, jusqu’à ce

1

Résumé étendu

que le niveau de granularité souhaité soit atteint. En conséquence, les concepteurs
vont travailler sur de plus petites spécifications qui sont plus faciles à développer,
appelées composants atomiques, ou sur l’assemblage de composants par composition
qui se traduit par un composant hiérarchique. Cette méthode de conception
présente plusieurs avantages : séparation des préoccupations dans la décomposition
du système, développement incrémental par raffinements successifs, implémentation
de composants par plusieurs et différentes équipes d’ingénieurs et réutilisation de
composants.

Cependant, avoir plusieurs fournisseurs développant des systèmes intégrés fondés
sur des exigences communes entraîne un risque d’erreur en raison de la difficulté
à décomposer les exigences globaux sur des composants, mais aussi la mauvaise
interprétation des exigences du système allouées au logiciel. Par conséquent, la
limite de cette méthode réside dans l’aspect compositionnel inhérent : il est difficile
de concevoir un réseau de composants qui satisfont par leur interaction une exigence
globale, alors que les composants sont généralement impliqués dans la satisfaction
de plusieurs besoins.

En ce qui concerne la deuxième question exprimée plus haut, nous devons prendre
en compte le fait que les premiers modèles sont souvent réalisés en utilisant des
langages semi-formels tels que UML [91], SysML [90] ou AADL [148], qui manquent
de mécanismes pour formaliser des exigences et prouver leur satisfaction. Les
erreurs potentiellement introduites au cours du développement sont généralement
découvertes tardivement et par des processus très couteux. Par conséquent, les
dernières décennies ont vu une utilisation accélérée des techniques de vérification
et validation dès les premières phases de développement afin de garantir le plus
rapidement possible la correction de la conception, et ainsi réduire les coûts de
production et augmenter la qualité des systèmes. D’un modèle système correct via
des relations de raffinement prouvées, nous pouvons obtenir une implémentation
correcte du système qui peut être déployée immédiatement. Ceci implique que
les méthodes formelles peuvent être utilisées pour obtenir des implémentations
correctes par construction à partir de spécifications de haut niveau si elles sont
intégrées dans un processus de développement itératif.

Les modèles ainsi conçus sont validés à l’aide d’un assortiment de techniques, y
compris les revues de conception [132], les tests, la simulation interactive et le
model-checking [141, 49, 52]. Les trois premières méthodes permettent de détecter
des erreurs de façon légère car elles explorent seulement un sous-ensemble des
comportements du système et, en conséquence, elles ne garantissent pas la correc-
tion du système par rapport aux exigences. Le model-checking est une technique

2

1. Introduction

entièrement automatisée qui explore de façon exhaustive les comportements du
système représentés par un modèle d’espace d’états. L’espace d’états est générale-
ment un graphe fini. Cependant, pour de très grands systèmes, l’espace d’états ne
peut pas être complètement calculé, ce qui rend le model-checking limité par le
problème d’explosion de l’espace d’états : le système devient vite inextricable si les
composants s’exécutent en parallèle, car le nombre d’états croît de façon exponen-
tielle directement lié au nombre de composants. Par conséquent, un verdict pour
la satisfaction des besoins ne peut pas être fourni. Plusieurs exemples [71, 40, 21]
montrent que les techniques de vérification actuelles sont impuissantes face à la
complexité des systèmes industriels.

Trois types d’optimisation ont été étudiées dans la littérature :

1. réduire l’espace d’états en modifiant la représentation mathématique,
2. modéliser des abstractions pour les composants du système et vérifier que

l’exigence est satisfaite par le modèle abstrait, et
3. décomposer l’exigence globale en plusieurs besoins qui doivent être satisfaits

localement par les composants, ce qui correspond à une approche composi-
tionnelle.

Nous considérons que la première optimisation est partielle, si elle ne peut pas
suffisamment réduire la complexité des modèles système afin de les rendre vérifiables.
Les deux autres approches sont duales, car la spécification joue le rôle d’une
abstraction du comportement du composant pour la deuxième, et une contrainte
sur le comportement du composant pour la troisième. Cependant, leur principale
limite réside dans le fait qu’elles ne peuvent pas prendre en compte le comportement
de l’environnement et, par conséquent, le composant doit correctement raffiner son
abstraction/exigences indépendamment, c.à.d dans tous les environnements. Cela
peut être difficile à prouver car entre un composant et son environnement il y a
généralement des dépendances mutuelles sur lesquelles se fonde leur correction. En
conséquence, l’environnement, qui peut être une source pour l’explosion de l’espace
d’états, doit être pris en compte par le raffinement.

Dans cette thèse nous proposons de combiner les techniques d’abstraction et de
composition et de définir une spécification unique pour un composant qui soit à
la fois abstraite et partielle. L’environnement doit également être contraint par
une telle spécification. En conséquence, nous utilisons la notion de contrat pour
un composant, défini par une paire (hypothèse, garantie) où l’hypothèse est une
abstraction du comportement de l’environnement et la garantie est une abstraction
du comportement du composant par rapport à l’exigence à satisfaire, étant donné
que l’environnement se comporte comme l’hypothèse. L’hypothèse est correcte

3

Résumé étendu

si l’environnement la raffine dans le contexte abstrait de la garantie. Ce type de
raisonnement est circulaire car la correction du composant et de l’environnement
tient compte du comportement abstrait de l’autre, et peut être prouvé correct dans
certains cas.

Informellement, un contrat modélise le point de vue d’un composant et sa contri-
bution dans la satisfaction d’une exigence. En conséquence, un composant peut
implémenter plusieurs contrats, un pour chaque exigence à satisfaire. L’ensemble
des contrats correspondant au réseau de composants doit s’assembler correctement
et satisfaire l’exigence. Le nombre de relations à vérifier pour que le raisonnement
à base de contrats soit correct est linéaire au nombre de composants modélisés et
nous pouvons supposer que les compositions concernées sont en général réduites et
peuvent être traitées par des outils de vérification automatiques.

Les contrats représentent un atout précieux dans la conception correcte par con-
struction de modèles à base de composants, car ils peuvent être utilisés pour
:

1. contraindre le comportement d’un composant par rapport à une exigence, alors
que plusieurs contrats peuvent être intégrés dans la même implémentation,

2. substituer et réutiliser des composants, éventuellement conçus auparavant,
qui satisfont le contrat donné,

3. implémenter indépendamment des composants en se basant sur le contrat
donné sans contester la satisfaction des besoins, et

4. concevoir de façon itérative des systèmes en utilisant des relations de raffine-
ment prouvées.

Ces propriétés sont prises en charge par les trois relation de raffinement dont un
contrat peut faire l’objet : la conformité vérifie si un contrat satisfait une exigence,
la dominance vérifie le raffinement entre contrats et l’implémentation vérifie si un
composant satisfait son contrat. En outre, le raisonnement à base de contrats offre
diverses possibilités : le mapping et le suivi des exigences vers des composants,
l’évolution des besoins au cours du développement, l’aide à des revues de modèles,
l’intégration virtuelle de composants et, surtout, la vérification compositionnelle.

Les notions liées aux contrats décrites ci-dessus ont été définies dans [143, 144, 142]
sous la forme d’une méta-théorie. Par méta-théorie, nous désignons un cadre
générique de contrats qui décrit comment le raisonnement peut être appliqué pour
la conception de systèmes et leur vérification compositionnelle, sans pour autant
fournir une définition précise de ces concepts. Afin d’obtenir un cadre de travail
pour un modèle de composants spécifique, il faut formaliser le cadre des composants

4

1. Introduction

— définir au moins les concepts de composant, composition et raffinement — et le
cadre des contrats — définir la conformité, la dominance et l’implémentation. En
plus, un ensemble de propriétés compositionnelles doit être prouvé dans le cours de
cette instanciation afin de garantir la correction du raisonnement.

Contribution

Malgré les avantages évidents, l’ingénierie système n’utilise pas le raisonnement à
base de contrats comme méthode de développement de modèles système décrits avec
par langages semi-formels (e.g. UML, SysML, etc.) en raison de l’absence d’une
définition d’un cadre correct et complet axé sur les contrats directement applicable
à de telles conceptions. L’objectif de cette thèse est de greffer le raisonnement
à base de contrats dans le processus de conception à base de composants et de
vérification des exigences pour des systèmes embarqués temps-réel critiques décrits
en SysML. A notre connaissance, cette étude est la première à relier les langages
de modélisation de haut niveau et les contrats comportementaux formels.

Notre contribution est multiple. Afin d’utiliser les contrats comme des éléments de
première classe en SysML, nous définissons la syntaxe des notions liées aux contrats
par un méta-modèle basé sur UML. Un ensemble de règles de bonne formation est
défini sur le méta-modèle afin d’assurer sa conformité à la méthode de raisonnement
à base de contrats décrite dans [143, 144, 142]. Par exemple, ces règles couvrent
les actions qu’un contrat/composant peut exécuter et leur raffinement en intégrant
plusieurs contraintes dans le même composant. Nous instancions le méta-modèle
dans le contexte du profil OMEGA de manière à pouvoir l’utiliser dans des éditeurs
de modèles. OMEGA [87] est un profil UML/SysML, qui permet de développer
de manière rigoureuse des systèmes temps-réel en offrant une liaison à la boîte à
outils de vérification et validation IFx [34].

Deuxièmement, nous formalisons la sémantique du langage à base de composants
SysML étendu avec des contrats par une variante des automates temporisés entrée/-
sortie (TIOA). Cette transformation rend les relations de raffinement modélisées
entre les contrats et/ou composants vérifiables, tandis que leur satisfaction implique
la satisfaction de l’exigence globale. Par conséquent, nous définissons la correspon-
dance de concepts de SysML à TIOA et nous esquissons la façon d’explorer un
modèle afin de générer les obligations de preuve qui correspondent aux relations
de raffinement modélisées. Nous implémentons partiellement cette transformation
dans la boîte à outils IFx2 par un compilateur, qui prend en entrée un modèle
système OMEGA dans le format XMI 2.0 et qui produit le réseau de TIOA sur
lequel la vérification sera effectuée. La version actuelle du compilateur étend les

5

Résumé étendu

fonctionnalités de IFx2, c.a.d simulation et model-checking de systèmes temps-réel,
à des modèles système compatibles avec UML 2.3 / SysML 1.1.

Nous construisons sur le cadre formel de composants la théorie à base de contrats en
définissant une obligation de preuve pour chaque type de relation de raffinement. Le
framework à base de contrats obtenu est une instanciation de la méta-théorie définie
dans [143, 144, 142], dont les composants sont représentés par des TIOA et les
obligations de preuve par une relation d’inclusion de traces temporisées qui prend
en compte l’environnement et qui est nomée ci-après raffinement dans un contexte.
Nous prouvons que le raffinement dans un contexte est préservé par la composition
et garantit la correction du raisonnement circulaire, deux résultats importants qui
constituent une condition préalable de la méta-théorie pour assurer la correction
de la méthode. Comme l’inclusion de traces temporisées n’est pas décidable ce qui
implique qu’elle ne peut pas être vérifiee automatiquement, nous proposons d’utiliser
le model-checking sur chaque obligation de preuve en transformant l’exigence locale
en une exigence de sûreté temporisée et déterministe formelle. Informellement, une
exigence de sûreté modélise que quelque chose de mauvais (c.à.d inattendu) n’arrive
jamais pendant l’exécution du système. Nous prouvons que cette transformation
et l’application de l’analyse d’accessibilité sont suffisantes pour garantir l’inclusion
de traces temporisées. Le cadre formel et la méthode de vérification imposent
certaines restrictions à l’égard de l’expressivité des contrats : nous discutons leur
impact sur le langage de composants utilisé dans la modélisation de contrats et
nous définissons une sémantique temporisée particulière qui satisfait par défaut
les restrictions nécessaires, qui imposent qu’une garantie doit être une exigence de
sûreté temporisée déterministe.

Enfin, nous évaluons l’approche sur deux études de cas dont une est issue de
l’industrie, le Solar Generation Wing System (SGS) de l’Automated Transfer
Vehicle (ATV), pour lesquelles nous vérifions la satisfaction d’une exigence de sûreté
globale. Les résultats obtenus sont encourageants : pour l’étude de cas portant
sur le SGS, l’approche à base de contrats a nécessité l’effort de 5 personnes*jours
pour modéliser les contrats et effectuer la vérification, tandis que le model-checking
monolithique, même en conjonction avec des techniques de réduction, ne fournit
pas de résultat.

Organisation

Cette thèse est structurée en trois parties. La première met l’accent sur la motivation
et le contexte de notre travail en décrivant les limites des techniques actuelles de
conception et vérification. La deuxième partie présente la contribution théorique

6

2. Raisonnement à base de contrats pour les systèmes hiérarchiques à
base de composants

de notre travail, l’instanciation et la mise en œuvre de la méta-théorie à base de
contrats sélectionnée pour des systèmes en SysML. La dernière partie décrit la
contribution pratique et évalue les résultats de vérification de notre méthode par
rapport au model-checking monolithique.

2 Raisonnement à base de contrats pour les sys-
tèmes hiérarchiques à base de composants

La conception à base de contrats est un paradigme de développement émergeant
de la conception et de la vérification modulaire et compositionnelle des systèmes,
qui a ses racines dans la représentation axiomatique des programmes [104, 2].

Le principe est de définir une spécification partielle et abstraite sous la forme d’un
contrat que chaque composant doit mettre en œuvre. La spécification est partielle
car elle n’est définie que par rapport à une exigence et abstraite car elle ne fournit
pas de détails d’implémentation des exigences. En conséquence, une spécification
représente la projection d’une exigence sur le composant qui doit la satisfaire. En
ce qui concerne la conception du système, les contrats sont un atout précieux car ils
permettent : la substitution des composants et leur réutilisation, le développement
incrémental et l’implémentation indépendante des composants. Complété par une
approche formelle, le processus de conception peut entraîner des implémentations
correctes par construction. Outre la conception, les contrats peuvent être utilisés
pour la décomposition et le suivi des exigences sur les composants, l’intégration
virtuelle des composants [60] et, surtout, la vérification compositionnelle.

Des travaux récents ont exploré la notion de contrat en vue de définir une démarche
pour le développement de systèmes en termes de méta-théories, mais aussi de
fournir directement des théories et des outils pour formalismes à base de composants
spécifiques. Rappelons que par méta-théorie nous entendons un cadre générique,
indépendant d’un formalisme de spécification particulier des composants. Pour
obtenir une théorie concrète, nous devons formaliser ces composants et contrats et
leurs relations de raffinement, tout en prouvant des résultats de compositionalité.
Dans ce qui suit, nous décrivons les (méta)-théories à base de contrats définies
dans la littérature, pour lesquelles nous passons en revue les notions de base.

7

Résumé étendu

2.1 Une méta-théorie pour le raisonnement à base de con-
trats

Dans la suite, nous présentons la méta-théorie proposée dans [143, 144, 142]
qui constitue la base de notre travail. Nous décrivons les concepts clés et les
propriétés qui permettent de raisonner avec des contrats de façon compositionnelle
pour les systèmes hiérarchiques. Un atout important de cette méta-théorie est
la méthodologie qu’elle définit, illustrée par la figure 3.1, et qui est expliquée
ci-dessous.

Supposons, à n’importe quel niveau de la décomposition hiérarchique d’un sys-
tème, un sous-système S obtenu par la composition de plusieurs composants
K1, K2, . . . , Kn sur lequel nous voulons prouver la satisfaction d’une exigence ϕ.
Cette méta-théorie laisse libre le choix de l’opérateur de composition à utiliser.
Afin de simplifier la présentation, nous supposons l’existence de la notion de com-
patibilité entre les composants et l’existence d’un opérateur de composition pour
chaque paire de composants compatibles, noté ‖, qui est unique et associatif. En
conséquence, S est donné par la composition K1 ‖ K2 ‖ . . . ‖ Kn.

Afin d’utiliser la méthodologie, nous commençons par modéliser un contrat pour
chaque composant que le sous-système contient.

Définition 1 (Contrat). Un contrat C est une paire de composants compatibles
(A, G) dont le composant A est appelé hypothèse et le composant G est appelé
garantie.

Un contrat Ci = (Ai, Gi) pour le composantKi est un modèle abstrait de l’implication
du composant dans la satisfaction de l’exigence ϕ. L’hypothèse modélise le com-
portement de l’environnement de Ki et la garantie modélise le comportement
attendu pour Ki si l’environnement se comporte tel que l’hypothèse. Plusieurs
contrats peuvent être spécifiés pour le même composant, surtout lorsque la satis-
faction de plusieurs propriétés du système S doit être prouvée. L’exemple de la
figure 3.1 présente un sous-système S formé de trois composants K1, K2 et K3 et
de l’environnement E avec lequel S communique. Pour chacun de ces composants,
un contrat Ci est modélisé.

Afin de prouver la satisfaction de ϕ, le raisonnement se poursuit en vérifiant que
chaque composant satisfait son contrat, noté Ki |= Ci. Pour définir la satisfaction
d’un contrat, la méta-théorie se base sur l’existence d’un opérateur de raffinement
dans un contexte. Cet opérateur entre deux composants Ki et Kj dans un environ-
nement E, noté Ki vE Kj , modélise informellement que le composant Ki composé

8

2. Raisonnement à base de contrats pour les systèmes hiérarchiques à
base de composants

avec E se comporte de façon similaire à Kj composé avec E. Même si le raffinement
dans un contexte n’est pas précisément défini, la méta-théorie requiert que cette
relation soit compositionnelle et qu’elle garantit la correction du raisonnement
circulaire ; ces propriétés sont nécessaires pour prouver le théorème 1 ci-dessous.

Basée sur le raffinement dans un contexte, la relation de satisfaction d’un contrat
est définie comme suit :

Définition 2 (Satisfaction d’un contrat). Soit C = (A,G) un contrat pour
le composant K. Alors K satisfait le contrat C, noté K |= C, si et seulement si
K vA G.

Nous remarquons que la méta-théorie n’impose aucune contrainte par rapport
à la signature des composants K, A et G. Par exemple, dans notre instance
de la méta-théorie, nous définissons A et G sur un sous-ensemble — signature et
comportement — de K. Ceci nous permet de conserver la spécification d’un contrat
abstraite, où seule l’information essentielle concernant l’exigence à satisfaire est
considérée.

La deuxième étape du raisonnement illustré à la figure 3.1 consiste à définir un
contrat C = (A,G) pour le sous-système S et prouver que l’ensemble des contrats
{Ci}i=1,n domine le contrat C.

Définition 3 (Dominance). Un ensemble de contrats {Ci}i=1,n domine un contrat
C si et seulement si pour tout ensemble de composants {Ki}i=1,n les conditions
suivantes sont satisfaites: Ki |= Ci, i = 1, n =⇒ K1 ‖ K2 ‖ . . . ‖ Kn |= C.

La relation de dominance ainsi définie utilise la composition de composants afin
d’éviter la définition d’un opérateur de composition de contrats. Pourtant, lors
de l’utilisation du raisonnement à base de contrats pour la vérification, nous ne
sommes pas intéressés à manipuler des implémentations qui sont la principale
cause de l’explosion de l’espace d’états dans les grands systèmes afin d’établir
la dominance. Cette méta-théorie fournit un résultat alternatif pour prouver la
dominance qui revient à vérifier un ensemble de relations de satisfaction de contrats,
à condition que le raffinement dans un contexte soit compositionnel et garantisse
la correction du raisonnement circulaire.

Théorème 1 (Condition suffisante pour la dominance). Si le raffinement
dans un contexte est compositionnel et garantit la correction du raisonnement
circulaire, alors pour prouver que {Ci}i=1,n domine C, il est suffisant de prouver que

9

Résumé étendu

{
G1 ‖ ... ‖ Gn |= C, and
A ‖ G1 ‖ ... ‖ Gi−1 ‖ Gi+1 ‖ ... ‖ Gn |= C−1

i , ∀i ∈ 1, n

où C−1
i = (Gi, Ai) dénote le contrat inverse de Ci.

La première condition modélise le raffinement d’une garantie plus abstraite par
un ensemble de garanties plus concrètes. La deuxième condition exprime que
les hypothèses individuelles doivent être raffinées par les garanties des autres
composants avec l’hypothèse globale sur l’environnement.

Comme les systèmes réels se traduisent souvent par une architecture en plusieurs
couches, l’étape de dominance peut être itérée jusqu’à atteindre le contrat du
composant pour lequel la propriété d’intérêt ϕ est définie. Pour simplifier la
présentation, la figure 3.1 montre une seule étape de dominance.

Afin de prouver la satisfaction d’une exigence ϕ, nous devons nous assurer que
l’hypothèse A modélisée pour l’environnement E dans le contrat global C est
correcte. La troisième étape de la méthodologie consiste à vérifier la satisfaction du
contrat inverse C−1. Nous notons que cette étape est nécessaire quand le système à
vérifier S est un système ouvert, c.à.d lorsqu’il interagit avec un environnement. Si
l’exigence ϕ est exprimée sur un système fermé, alors l’hypothèse globale n’est pas
à modéliser et cette étape peut être ignorée.

La dernière étape du raisonnement consiste à prouver que le contrat global est
conforme à l’exigence ϕ. La relation à vérifier à ce stade est A ‖ G � ϕ, où �
désigne un opérateur de conformité laissé ouvert dans la méta-théorie [143, 144, 142].
Pour simplifier les choses, notre instance utilise le même formalisme pour spécifier
les exigences et les composants et la relation de raffinement (dans un contexte vide
car A ‖ G est un système fermé) comme relation de conformité.

La stratégie détaillée ci-dessus est présentée de manière ascendante et suppose que
le système a déjà été conçu ; donc le concepteur utilise les contrats pour prouver la
satisfaction d’une exigence. Cette méthode peut également être appliquée d’une
manière descendante afin de concevoir des systèmes corrects vis-à-vis des exigences
à satisfaire.

2.2 Travaux connexes

Des méta-théories à base de contrats ont été développées également pour les
théories de spécifications. Une théorie de spécifications est une algèbre complète
qui, outre les opérateurs de composition et de raffinement, définit un opérateur

10

2. Raisonnement à base de contrats pour les systèmes hiérarchiques à
base de composants

de conjonction logique qui permet de dériver un composant satisfaisant deux spé-
cifications différentes et un opérateur de quotient qui permet de calculer à partir
d’une spécification du système partiellement implémentée la spécification la plus
grossière de la partie restante (non implémentée). Par conséquent, le but d’une
théorie de spécifications est de fournir des résultats de substitution permettant une
conception compositionelle, alors que son utilisation dans la vérification composi-
tionelle n’a pas reçu autant d’attention. En revanche, la méta-théorie que nous
utilisons fournit l’ensemble minimal d’opérateurs nécessaires pour la conception et
la vérification, même si elle pourrait subir un surcoût important, en particulier lors
de la conception. La conjonction logique et le quotient peuvent être formalisés et
ajoutés à notre théorie ; leur utilisation doit être indépendante du raisonnement
décrit ci-dessus suffisant pour la vérification.

La méta-théorie de [17] est construite sur une théorie de spécifications et est similaire
à [143, 144, 142]. Les différences principales portent sur (1) la spécification des
contrats et (2) la méthode de raisonnement avec les contrats. En ce qui concerne le
premier point, la théorie de [17] ne prend pas en charge le raffinement de signature,
à savoir la capacité d’un contrat de se concentrer seulement sur quelques-unes
des entrées/sorties d’un composant en faisant abstraction des autres, ce qui est
explicitement traité par notre théorie. Une solution partielle est présentée dans
[18] où les contrats sont définis sur un sous-ensemble de la signature du composant.
Cependant, [18] ne permet pas de raisonner séparément avec les contrats : à chaque
étape de la conception, une spécification consiste en un composant et un ensemble
de contrats sur les ports tel que l’union de leurs signatures soit égale à la signature
du composant. En outre, le raffinement de signature entre les spécifications est
interdit car les définitions des relations de raffinement entre composants et contrats
demandent que les membres des spécifications aient la même signature.

En ce qui concerne la méthode de raisonnement avec les contrats, les méta-théories
de [17, 18] souscrivent au raisonnement hypothèse/garantie, c.à.d le raffinement
de l’environnement doit être correct dans n’importe quel contexte, formellement
écrit E v A. Pour prouver la dominance, la méta-théorie de [17] fait usage d’un
opérateur de composition de contrats, qui peut être utilisé pour calculer le contrat
le plus “fort” C1 � C2 satisfait par la composition de deux composants qui satisfont
C1 et C2. L’étape de dominance est réduite à l’obligation de preuve suivante:
C1 � C2 � . . .� Cn � C, où C est le contrat dominé. Toutefois, la composition de
contrats est partielle ; elle ne peut pas être définie pour certaines paires de contrats,
car elle est basée sur le quotient qui est lui-même partiel. La méta-théorie de [18]
utilise également un opérateur de composition des spécifications qui dans ce cas
compose les contrats sur les ports et les composants contenus. Ainsi, l’utilisation

11

Résumé étendu

de ces opérateurs peut se révéler difficile pour les systèmes vastes et complexes. En
outre, dans les deux méta-théories, l’échec à prouver la dominance n’est pas traité et
on ignore dès lors si l’utilisateur pourrait en extraire un contre-exemple, en identifier
la cause et la corriger. En revanche, la méta-théorie de [143, 144, 142] permet de
déduire, à partir des obligations de preuve qui constituent les conditions suffisantes
pour la dominance, quel contrat est incorrect. Dans le cas de notre instance avec
des automates temporisés entrée/sortie, il est possible de dériver un contre-exemple
en cas d’insatisfaction d’une exigence. Sur une note plus générale, les méta-théories
de [17] et [18] ne décrivent pas explicitement comment une exigence du système doit
être formalisée et comment sa satisfaction peut être prouvée avec des contrats. Nous
considérons que la méthodologie de raisonnement présentée dans [143, 144, 142] et
décrite précédemment est un atout important dans l’application de la méta-théorie
à des domaines concrets.

Le raisonnement hypothèse/garantie est une ligne de recherche de longue date,
bien que les approches classiques considèrent les spécifications logiques [53, 95, 2].
L’approche la plus récente [42, 43] représente ces spécifications sous la forme
d’ensembles de traces entrées/sorties et gère le raffinement de la signature dans la
satisfaction d’un contrat mais seulement pour des spécifications non-temporisées.
Travailler directement sur les traces sans une spécification opérationnelle intermédi-
aire est délicat car les équipes d’ingénieurs ne sont pas nécessairement sensibilisées
à la formalisation du comportement. En outre, l’approche de raisonnement est
similaire à celle proposée dans [17], en particulier en ce qui concerne la composition
des contrats. En tant que tel, les remarques formulées ci-dessus par rapport à la
méthodologie de raisonnement restent valables pour [42].

Les théories d’interfaces [65, 66, 67, 117, 39, 44] sont également liés aux contrats
car elles peuvent être utilisées pour exprimer les hypothèses et les garanties d’un
composant, mais ils le font dans la même spécification. Une interface englobe
l’hypothèse représentée par ses entrées et la garantie représentée par ses sorties,
et décrit comment un composant et son environnement interagissent. En général,
la notion de contrat qui fusionne l’hypothèse et la garantie est bien adaptée
pour obtenir des environnements compatibles dans lesquels les composants peuvent
travailler conjointement. En fait, une interface joue le même rôle que la composition
entre une hypothèse et une garantie tels qu’elles sont précédemment présentées et
qui doit être manuellement calculée par le concepteur. Garder l’hypothèse et la
garantie séparées permet : (1) de modéliser les propriétés des composants par des
automates indépendants et (2) d’effectuer et vérifier le raffinement de l’hypothèse
ou de la garantie, ainsi que du composant, indépendamment.

12

3. Modélisation de contrats comportementaux hypothèse/garantie en
SysML

3 Modélisation de contrats comportementaux
hypothèse/garantie en SysML

Afin d’exploiter le raisonnement à base de contrats dans une approche de développe-
ment guidé par le modèle, nous proposons ici une extension des langages de modéli-
sation en introduisant la notion de contrat et les relations de vérification nécessaires.
Dans la suite, nous décrivons les notions liées aux contrats présentées dans la sec-
tion 2.1 par un méta-modèle. Un ensemble de règles de bonne formation est défini
et formalisé sur ces concepts afin d’assurer la conformité d’un modèle étendu par
des contrats à la méta-théorie. Cette présentation est faite pour UML ; l’extension
à SysML étant directe en utilisant les méta-classes correspondantes du paquetage
UML4SysML [90].

3.1 Le contexte de modélisation SysML

Un système à base de composants, tel que présenté à la figure 3.1, est modélisé du
point de vue architectural en UML4SysML par deux notions: la classe qui permet
de définir des types à utiliser dans le modèle et la structure composite qui permet de
faire face à la complexité croissante des systèmes en décrivant les instances de classes
et la façon dont elles sont composées et reliées dans une structure hiérarchique.

Dans la suite, nous supposons que le lecteur est familier avec les notions de classe,
de structure composite et tous les autres éléments de modélisation pertinents de
UML et SysML. Ces notions sont décrites plus en détail dans la section 4.1. Nous
imposons certaines contraintes quant à la façon dont ces éléments de modélisation
doivent être utilisés, afin d’éviter toute ambiguïté dans les modèles, mais aussi afin
d’assurer un typage statique rigoureux des structures composites et leur définir
une sémantique opérationnelle précise. Nous résumons ici ces contraintes, elles
sont décrites en détail et justifiées dans la section 4.1. Les composants peuvent
communiquer seulement par des signaux asynchrones, envoyés et reçus via des
ports. Le type d’un port consiste en une interface qui ne définit que les réceptions
de signaux capables à traverser les ports. Un port peut être un point d’entrée pour
un composant si l’interface est fournie ou un point de sortie si l’interface est requise.
La signature d’un composant est donnée par l’ensemble des réceptions des signaux
définies pour tous les ports d’un composant. Dans une structure composite, les
ports de différents composants qui doivent communiquer sont connectés par des
connecteurs. Un connecteur peut être modélisé entre deux ports seulement s’ils
ont le même type. De plus, un connecteur est correctement modélisé entre deux

13

Résumé étendu

composants au même niveau hiérarchique si les ports ont des directions disjointes et
entre un composant et la structure composite qui le contient si les ports ont la même
direction. Les connecteurs qui simulent une communication de type multicast (c.à.d
un port de sortie est connecté à deux ports entrants différents) sont interdits car
ils peuvent induire un surcout important dans la sémantique sous-jacente et, plus
encore, sont rarement utilisés dans la conception de systèmes critiques. Cependant,
ce type de communication peut être réalisé par une modélisation explicite de
signaux distincts envoyés par des ports différents à leurs cibles initiales.

Le comportement d’un composant atomique est modélisé par une machine à
états. Pour décrire des actions (c.à.d l’effet des transitions), nous utilisons un
sous-ensemble du langage d’actions formalisé par fUML [130] constitué de l’envoi
d’un signal, de l’affectation des attributs et de l’évaluation des expressions. Le
comportement d’un composant composé est donné par l’exécution parallèle de ses
sous-composants.

Puisque nous cherchons à modéliser des systèmes temps-réel, nous devons étendre
l’ensemble des notions utilisées pour décrire le comportement des composants avec
des concepts temporisés. Pour cela, nous choisissons d’utiliser le profil OMEGA
UML/SysML [87] dédié à la conception formelle et la vérification de systèmes
embarqués temps-réel grâce à la boîte à outils IFx [34]. Ce profil, qui représente
notre cadre de travail, garantit les contraintes précédemment présentées en terme de
règles de bonne formation et en conséquence définit une sémantique opérationnelle
précise et cohérente adaptée aux techniques formelles de vérification.

Concernant le comportement temporisé, OMEGA offre une extension inspirée
par les automates temporisés avec urgence [31] : le profil contient la notion de
Timer (horloge) et des stéréotypes correspondant aux urgences sur les transitions
sortantes qui permettent de contrôler l’écoulement du temps dans un état. Le
Timer permet de mesurer la durée et peut être réglé et remis à zero par deux
fonctions : set() et reset(). Ces horloges peuvent être facilement utilisées pour
décrire des gardes temporisées. Concernant les stéréotypes, nous utilisons par
la suite «eager» qui modélise le fait que la transition doit être exécutée dès son
activation (c.à.d l’écoulement du temps est désactivé) et «lazy» qui modélise le
fait que la transition peut être exécutée à tout moment après son activation (c.à.d
l’écoulement du temps est activé et non-borné).

Le profil OMEGA contient aussi un mécanisme d’observateurs qui formalise les
exigences de sûreté temporisées. Un observateur est un objet special qui permet
de surveiller les actions exécutées par le système et fournit un verdict concernant

14

3. Modélisation de contrats comportementaux hypothèse/garantie en
SysML

la (non-)satisfaction de l’exigence qu’il formalise. Il est modélisé par une classe
stéréotypée «observer» qui a des attributs locaux et une machine à états afin de
décrire l’exigence. La divergence de comportement du scénario nominal est marquée
par le stéréotype «error» sur les états ; une exécution qui atteint un tel état viole
la satisfaction de l’exigence. Afin de surveiller le système, un ensemble de sondes
d’événements a été défini dont send qui surveille l’envoi d’un signal et acceptsignal
qui agit de même pour traiter un signal. Le déclenchement d’une transition est
défini par une clause match qui précise le type d’événement, le nom du signal
qualifié et les attributs de l’observateur qui reçoivent des informations connexes.
Sa sémantique est de se synchroniser avec l’exécution du signal mentionné dans la
clause.

3.2 Un méta-modèle pour les contrats comportementaux

Pour commenter le méta-modèle de la figure 5.1, nous commençons par présenter les
méta-classes qui sont réutilisées en tant que telles de UML4SysML. La méta-classe
Property désigne la notion de composant dans le standard. La méta-classe Class
indique le type des composants. Les exigences qui sont informellement utilisées
en SysML sont représentées par la méta-classe SafetyProperty afin de pouvoir
appliquer la théorie à base de contrats à des formalismes différents.

Nous avons identifié deux catégories de notions définies dans la méta-théorie
précédemment décrite : (1) celles qui définissent comment modéliser un contrat et
qui sont représentées dans la partie supérieure du méta-modèle et (2) celles qui
définissent les relations de vérification à utiliser entre composants/contrats et qui
sont représentées dans la partie inférieure de la figure 5.1.

Afin d’introduire les contrats, nous définissons tout d’abord l’hypothèse et la
garantie qui sont respectivement représentées par les méta-classes Assumption et
Guarantee. Les deux notions sont de type Class. L’intuition pour ce choix de
modélisation est simple : dans la méta-théorie, une hypothèse/garantie est un type
particulier de composant, il est donc naturel de le modéliser comme une classe
avec un comportement décrit par une machine à états. Ainsi, nous utilisons le
même langage pour les composants et les hypothèses/garanties. Cependant, dès
lors que les hypothèses/garanties sont utilisées dans des relations de raffinement
vérifiables dans un cadre formel, nous devons restreindre leur syntaxe par rapport
aux relations dans lesquelles elles peuvent être impliquées : toutes les relations
sont interdites sauf les réalisations d’interfaces nécessaires pour typer les ports.

Un contrat est représenté par la méta-classe Contract de type Class comme une

15

Résumé étendu

structure composite contenant exactement une hypothèse et une garantie, tous
les autres attributs étant interdits. De plus, un contrat n’a pas de comportement.
Cette modélisation permet la réutilisation : un contrat est défini par des instances
de types, tandis que les types (c.a.d hypothèse/garantie) peuvent être utilisés dans
d’autres contrats.

La méta-théorie exige qu’un contrat soit un système fermé. Les actions UML
étant des entrées et des sorties, cela signifie que la cible de toutes les sorties de
l’hypothèse/garantie est la garantie/hypothèse et que toutes les entrées sont dé-
clenchées par les actions réciproques. Comme dans nos systèmes la communication
est réalisée par les ports et les connecteurs, cette contrainte peut être facilement
exprimée sur les ports de chaque composant d’un contrat qui doivent correspondre
par type et direction inverse.

De plus, le but d’un contrat est de modéliser un comportement partiel, par rapport
à une seule exigence. Ce dispositif est mis en œuvre par la possibilité que la
garantie modélise seulement un sous-ensemble de la signature du composant qui
doit satisfaire le contrat. Nous notons la satisfaction d’un contrat par la méta-classe
Implementation et nous expliquons dans la suite la sémantique de ce concept. Cette
contrainte sur la signature d’une garantie est formalisée par rapport à l’ensemble
des ports définis : le port d’une garantie doit avoir les mêmes nom, type et direction
qu’un port du type du composant. La nécessité de cette contrainte est motivée par
une conception dirigée par les exigences : les spécifications sont raffinées à partir
d’une exigence vers des implémentations ; l’intégration de plusieurs exigences dans
la même spécification entraîne une signature plus riche pour le composant.

Comme nous l’avons mentionné, la relation de satisfaction d’un contrat par un
composant est représentée par la méta-classe Implementation au niveau des types.
Cette relation de type Dependency est définie entre une Classe et un Contract
et exprime que la classe satisfait le contrat. Un contrat peut être implémenté
par plusieurs classes et une classe peut implémenter plusieurs contrats. Dans
ce dernier cas, le concepteur doit spécifier pour chaque composant quel contrat
doit être utilisé lors de la vérification d’une exigence. Pour cela, nous définissons
une deuxième relation de type Dependency, nommé ContractUse, qui modélise la
satisfaction d’un contrat au niveau des composants. Puisqu’un modèle système
doit satisfaire plusieurs exigences, le concepteur doit spécifier pour chaque contrat
utilisé quelle est l’exigence à satisfaire. Cette condition est modélisée à la figure 5.1
par l’association entre ContractUse et SafetyProperty. Afin d’assurer la cohérence
d’un modèle, une relation ContractUse peut être modélisée entre une Property
et un Contract si et seulement si le type du composant implémente le contrat.

16

3. Modélisation de contrats comportementaux hypothèse/garantie en
SysML

Compte tenu de ces définitions, les relations Implementation peuvent être dérivées
à partir des relations ContractUse modélisées.

La deuxième étape de la méthodologie consiste à modéliser la dominance entre un
contrat plus général et un ensemble de contrats plus spécifiques. Cette relation
n’est pas explicitement modélisée à la figure 5.1 car elle peut se déduire des
relations ContractUse définies. En effet, pour que la méta-théorie soit correctement
appliquée, chaque composant du système — atomique ou composé — impliqué
dans la satisfaction d’une exigence doit faire partie d’une relation ContractUse. Le
raisonnement se poursuit comme suit : à partir du contrat global et l’exigence à
satisfaire, le composant qui l’implémente est obtenu. Pour chaque sous-composant,
en se basant toujours sur les relations ContractUse qui pointent l’exigence cible,
l’ensemble des contrats dominants est calculé. Afin que le calcul soit sans ambiguïté
et qu’un seul ensemble de contrats dominants soit obtenu dans le contexte considéré,
chaque relation ContractUse doit spécifier, en plus de l’exigence à satisfaire, quel
est le contrat à raffiner. Ceci est représenté à la figure 5.1 par l’association refTarget
entre ContractUse et Contract. Par conséquence, la dominance est une relation
quadruple entièrement déterminée par ContractUse, Contract et SafetyProperty.

Le même raisonnement concernant le raffinement de la signature d’un contrat peut
s’appliquer à la relation de dominance : la signature de la garantie globale peut
être un sous-ensemble ou égale à l’union des signatures des garanties dominantes.
Nous exprimons cette règle également sur les ports : chaque port modélisé pour la
garantie globale doit être identique (par type et direction) à un port modélisé pour
une des garanties dominantes.

La dernière étape du raisonnement consiste à modéliser la relation de conformité
représentée par la méta-classe Conformance de type Dependency entre un Contrat
et une SafetyProperty. Nous notons que plusieurs exigences peuvent être vérifiées
par le même contrat.

Notre but est d’utiliser la méta-théorie décrite précédemment pour vérifier les mod-
èles système ; dans ce cas nous devons garantir que chaque étape du raisonnement
est correctement modélisée — complète et unique — par rapport à chaque exigence.
Les conditions suivantes doivent être satisfaites par les modèles étendu par des
contrats :

• il existe une unique relation ContractUse entre un Property, un Contract, un
SafetyProperty — reqTarget — et un Contract — refTarget —, et
• dans un modèle, pour chaque SafetyProperty, il existe un contrat qui lui est

conforme.

17

Résumé étendu

Cet ensemble de règles est formalisé en OCL [92] et détaillé en annexe A.1 afin
d’assurer la correction statique d’un modèle avec des contrats et ensuite générer
un ensemble d’obligations de preuve dont leur satisfaction garantit la satisfaction
de l’exigence.

3.3 Instanciation du méta-modèle par un profil

L’utilisation des contrats dans un modèle UML/SysML standard implique l’instanciation
du méta-modèle précédemment défini. Notre choix est d’utiliser le mécanisme des
stéréotypes sur les méta-classes et de définir un profil. Ainsi, les stéréotypes appli-
cables sur la méta-classe Class sont «assumption», «guarantee», «contract» et «ob-
server». Nous rappelons que le stéréotype «observer» correspond à l’instantiation
de la méta-classe SafetyProperty en OMEGA par un observateur. Pour la méta-
classe Dependency, nous définissons les stéréotypes «contractConformance», «con-
tractImplementation» et «contractUse», où ce dernier a deux attributs (ou valeurs
étiquetées) reqTarget et refTarget qui font référence à l’exigence à satisfaire et le
contrat à raffiner. Ces notions sont illustrées à la figure 5.3. De plus, afin de garantir
l’instantiation correcte du méta-modèle avec des stéréotypes, nous proposons un
deuxième ensemble de règles de bonne formation décrites en annexe A.2.

3.4 Travaux connexes

Les contrats en génie logiciel sont classés dans [28] en 4 catégories: syntaxiques qui
décrivent les types qu’un composant peut gérer, comportementaux qui ajoutent
des contraintes sur l’utilisation d’un composant, de synchronisation qui spécifient
le comportement global et l’interaction des composants et de qualité de service
qui peuvent quantifier le comportement attendu des composants. Nos contrats,
même si nous les qualifions de comportementaux dû au fait qu’ils modélisent un
comportement, font partie de la catégorie des contrats de synchronisation car
ils décrivent explicitement l’ordre d’appel des requêtes et leur synchronisation.
Cependant, nous estimons qu’ils peuvent également être utilisés comme syntaxiques
et comportementaux : la signature du contrat précise également la signature du
composant et l’hypothèse/garantie peut être considérée comme une spécification
générique des pré/post-conditions pour l’utilisation du composant.

La plupart de travaux mettent l’accent sur les contrats syntaxiques et comporte-
mentaux afin de fournir un mécanisme pour le problème de composabilité. Dans
[156], les auteurs font la distinction entre un contrat offert et un contrat requis par
le composant. Ces contrats décrivent les types gérés par le composant durant les

18

4. Un modèle formel pour la sémantique de modèles SysML

phases de développement. Dans [114] les contrats sont définis comme des pré/post-
conditions OCL pour les opérations, qui sont ensuite validées par simulation. Dans
[36, 35], le même type de contrat est utilisé pour tous les éléments de modélisation
UML afin de décrire la transformation de modèles et leur sémantique d’exécution.

Le modèle de composants Kmelia [120, 11] fournit un moyen de vérifier la correction
fonctionnelle des contrats de synchronisation pour les services Web, ainsi que
la compatibilité entre les composants. Les contrats de synchronisation ont été
considérés dans [136] entre les ports de deux composants, c.à.d définis pour un
connecteur, pour vérifier leur compatibilité.

Les contrats ont également été utilisés pour les architectures synchrones modélisées
en SysML et AADL dans [157, 55, 78], en proposant un raisonnement similaire à
celui décrit dans la section 2.1 et dont le contrat est défini par une paire pré/post-
condition en Logique Temporelle Linéaire (LTL) pour un composant. Cependant,
cette théorie né définit pas une syntaxe pour les contrats en SysML ou AADL.

Pour conclure, notre théorie à base de contrats est complémentaire aux précédentes
approches présentées pour SysML, car cela concerne le comportement temporisé
de modèles système et la satisfaction des exigences.

4 Un modèle formel pour la sémantique de mod-
èles SysML

Afin d’appliquer les techniques de vérification et de validation sur les modèles
système, nous devons fournir un modèle formel qui décrit leur sémantique. Nous
avons choisi de construire notre cadre sur une variante des automates temporisés
entrée/sortie (TIOA) tel que défini dans [108], car il convient d’exprimer la séman-
tique des composants réactifs temporisés de SysML. En outre, il est bien défini et
fournit des résultats compositionnels prêts à l’emploi qui sont demandés par la
méta-théorie que nous instancions.

4.1 Une variante des automates temporisés entrée/sortie
pour les modèles SysML

La sémantique d’un composant SysML est représentée par un automate temporisé
entrée/sortie :

Définition 4 (Automate temporisé entrée/sortie). Un automate temporisé

19

Résumé étendu

entrée/sortie (TIOA) A est une structure (X, Clk, Q, θ, I, O, V , H, D, T) où :

• X est un ensemble fini de variables discrètes et Clk est un ensemble fini
d’horloges. Nous notons par Y = X ∪ Clk l’ensemble des variables internes.
• Q ⊆ val(Y) est un ensemble d’états dont val(Y) est l’ensemble des fonctions
d’évaluation pour Y . Une fonction d’évaluation est définie sur Y et elle
associe à chaque variable une valeur de son domaine.
• θ ∈ Q est l’état initial.
• I est un ensemble d’entrées, O un ensemble de sorties et V un ensemble
d’actions visibles. Nous notons par E = I ∪ O ∪ V l’ensemble des actions
externes que nous appelons dans la suite signature de l’automate.
• H est l’ensemble des actions internes. Nous notons par A = E∪H l’ensemble

des actions exécutables.
• I, O, V et H sont des ensembles disjoints.
• D ⊆ Q× A×Q est un ensemble de transitions discrètes.
• T est l’ensemble des trajectoires. Chaque trajectoire est une fonction τ :

Jτ → Q, où Jτ est un intervalle réel de type [0, d] ou [0,∞) avec d ∈ R+, tel
que ∀t ∈ Jτ :
– τ(t)(x) = τ(0)(x), ∀x ∈ X, et
– τ(t)(clk) = τ(0)(clk) + t, ∀clk ∈ Clk.

Notons qu’il existe deux différences entre la définition précédente et celle présentée
dans [108]. La première traite l’extension de TIOA avec des actions visibles, en
plus des entrées, sorties et actions internes. Ces actions trouvent leur justification
dans la composition entrée-sortie des composants. Lors d’une composition, l’envoi
et la réception d’un signal (action) n’a besoin que de laisser une trace visible
dans la sémantique SysML, alors que dans [108] il devient une sortie permettant
ainsi le multicast qui est incompatible avec la sémantique SysML. La nécessité
d’actions visibles est motivée par les exigences du système qui sont souvent décrites
par rapport à des systèmes fermés et qui généralement mettent en œuvre la
synchronisation des entrées-sorties.

La seconde différence réside dans la restriction des trajectoires à des fonctions
constantes pour les variables discrètes et à des fonctions linéaires avec la dérivée
égale à 1 pour les horloges. Cette restriction rend l’expressivité de notre modèle
temporisée équivalente à celle des automates temporisés Alur-Dill [7], alors que la
définition de [108] couvre les systèmes hybrides. Cette restriction ouvre la possibilité
d’exécuter l’analyse d’accessibilité ou de vérifier des relations de simulation, qui
sont indécidable pour les TIOA de [108]. Cependant, les résultats compositionnels
exigés par la méta-théorie sont indépendants de cette restriction, car ils peuvent

20

4. Un modèle formel pour la sémantique de modèles SysML

être prouvés également pour les systèmes hybrides comme décrit par [108].

Tout transition (x, a, x′) ∈ DA est noté par x
a−→ x′. Pour une trajectoire

τ , nous notons τ(0) par τ.fval et τ.ltime le supremum de son domaine. Alors
τ.lval = τ(τ.ltime). La même notation que pour les transitions est utilisée pour les
trajectoires, x

τ−→ x′ où x = τ.fval et x′ = τ.lval . Une trajectoire τ est fermée si
son domaine est un intervalle fermé.

Le comportement d’un automate temporisé entrée/sortie est donné par un ensemble
d’exécutions.

Définition 5 (Exécution). Une exécution d’un automate temporisé entrée/sortie
A est une séquence éventuellement infinie α = τ0a1τ1a2τ2 . . . où

• ∀i, ai ∈ A and τi ∈ T ,
• τ0.fval = θ,
• si τi n’est pas la dernière trajectoire dans α, alors τi est fermée et τi.lval

ai+1−→
τi+1.fval ,
• si τi est la dernière trajectoire, elle peut être ouverte ou fermée, et
• si α est une séquence finie alors elle se termine par une trajectoire.

Nous notons par reach(α) l’ensemble des états atteints par l’exécution α.

Une exécution contient toutes les informations. Cependant, certains éléments ne
présentent pas beaucoup d’intérêt lors du raffinement de comportement, comme
l’évolution des variables internes au cours de l’écoulement du temps ou l’exécution
des actions internes. Nous utilisons la notion de trace introduite dans [108] comme
projection d’une exécution sur les actions externes et sur les intervalles de temps
écoulés.

Définition 6 (Trace). Soit α une exécution. La trace de α est la restriction de α
à (EA, ∅), notée trace(α) = αd(EA, ∅), où :

• chaque ai ∈ trace(α) est une action de EA, à savoir les actions de HA sont
supprimées de α, et
• chaque τi : Jτi → ∅, Jτi ⊆ R+, n’enregistre que la durée de l’écoulement du

temps et ignore l’évolution des variables.

Si la trace obtenue après la projection contient des trajectoires adjacentes, l’opérateur
de concaténation est appliqué afin d’obtenir une seule trajectoire. Nous notons
avec tracesA l’ensemble de traces du TIOA A et par tracefragsA(q) l’ensemble de
fragments de traces qui débutent en q — à la place de l’état initial θ. L’ensemble

21

Résumé étendu

des traces d’un automate peut présenter deux propriétés : fermeture sous limites et
fermeture sous l’extension du temps. La fermeture sous limites modélise informelle-
ment le fait que toute séquence infinie dont les préfixes sont des traces est aussi
une trace. La fermeture sous l’extension du temps indique que toute trace peut
être étendue par une trajectoire ayant comme domaine un intervalle ouvert qui
permet la progression du temps à l’infini sans qu’aucune autre action visible ne se
produise. Les définitions formelles de ces deux notions sont celles présentées dans
[108].

Nous définissons un opérateur de composition parallèle pour permettre aux auto-
mates de communiquer et de s’exécuter en parallèle. La définition suivante présente
les conditions qui doivent être satisfaites pour composer deux automates.

Définition 7 (Composants compatibles). Deux automates temporisés entrée/-
sortie A1 et A2 sont compatibles si YA1 ∩ YA2 = HA1 ∩ AA2 = HA2 ∩ AA1 =

VA1 ∩ AA2 = VA2 ∩ AA1 = OA1 ∩OA1 = IA1 ∩ IA2 = ∅.

Syntaxiquement, l’opérateur de composition parallèle modélise la synchronisation
entre une entrée et une sortie et l’entrelacement de toutes les autres actions. La
communication asynchrone est réalisée en faisant la différence entre une transition
discrète avec une entrée qui stocke le message dans une file d’attente prédéfinie et
une transition avec une action interne qui modélise la consommation du message
de la file d’attente.

Définition 8 (Composition parallèle). Si A1 et A2 sont deux automates tem-
porisés entrée/sortie compatibles, alors leur composition A1 ‖ A2 est définie comme
étant le tuple (X,Clk,Q, θ, I, O, V,H,D, T) où :

• X = X1 ∪X2 and Clk = Clk1 ∪ Clk2.
• Q = {x1 ∪ x2|x1 ∈ Q1, x2 ∈ Q2}.
• θ = θ1 ∪ θ2.
• I = (I1 \O2) ∪ (I2 \O1).
• O = (O1 \ I2) ∪ (O2 \ I1).
• V = V1 ∪ V2 ∪ (I1 ∩O2) ∪ (I2 ∩O1).
• H = H1 ∪H2.
• D est l’ensemble des transitions discrètes donné par les règles suivantes :

pour chaque x = x1 ∪ x2, x′ = x′1 ∪ x′2 ∈ Q et pour chaque a ∈ A, x
a−→ x′ si

et seulement si ∀i ∈ {1, 2}
1. a ∈ Ai and xi

a−→i x′i où
2. a 6∈ Ai and xi = x′i.

• τ ∈ T ⇔ τdXi ∈ Ti, i ∈ {1, 2}.

22

4. Un modèle formel pour la sémantique de modèles SysML

La seule différence entre cette définition et celle présentée dans [108] est liée à la
signature de l’automate temporisé entrée/sortie composite : les ensembles d’actions
d’entrée et de sortie consistent en ceux qui ne sont pas appariées, tandis que les
entrées-sorties appariées deviennent des actions visibles. Par différence, dans [108]
les entrées-sorties appariées deviennent sorties, ce qui signifie que les sorties sont
traitées comme des émissions multiples, ce qui n’est pas conforme à la sémantique
SysML.

Théorème 2. (A, ‖) est un monoïde commutatif.

Comme dans [108], nous utilisons l’inclusion de l’ensemble des traces comme relation
de raffinement entre automates.

Définition 9 (Composants comparables). Deux automates temporisés entrée/-
sortie A1 et A2 sont comparables s’ils ont la même signature, c.à.d EA1 = EA2 .

Définition 10 (Conformité). Soient A1 et A2 deux automates temporisés en-
trée/sortie comparables. A1 raffine (est conforme à) A2, noté A1 � A2, si
tracesA1 ⊆ tracesA2 .

Notons que nous utilisons la relation de raffinement entre les composants pour
vérifier la conformité dans la quatrième étape de la méthodologie entre un contrat
et l’exigence à satisfaire. Cela génère l’obligation de preuve suivante : A ‖ G � ϕ.
Dans ce qui suit, nous allons utiliser le terme est conforme à pour désigner le
raffinement des composants. Les théorèmes 3 et 4 (ce dernier correspondant au
théorème de composabilité 8.5 de [108]) qui sont requis par la méta-théorie peuvent
être facilement étendus à notre variante de TIOA.

Théorème 3. La relation de conformité est une relation de préordre sur l’ensemble
des composants comparables.

Théorème 4 (Composabilité). Soient A1 et A2 deux automates temporisés en-
trée/sortie comparables tels que A1 � A2, et E un automate temporisé entrée/sortie
compatible avec A1 et A2. Alors A1 ‖ E � A2 ‖ E.

4.2 Transformation des modèles SysML en modèles TIOA

La transformation d’un système à base de composants modélisé avec les notions
SysML mentionnées dans la section 3.1 dans un réseau d’automates temporisés
entrée/sortie est relativement simple. Nos règles de transformation suivent la même

23

Résumé étendu

stratégie qui a été décrite dans des travaux antérieurs comme [122, 109] ou récents
[87].

Pour chaque composant SysML K, un automate temporisé entrée/sortie AK est
généré. La raison de transformer directement un composant résulte du manque
de mécanismes dans le formalisme TIOA présenté à définir des types structurés
et des opérations d’instanciation. L’ensemble des horloges ClkAK contient tous
les attributs définis par le composant de type Timer, tandis que tous les autres
attributs modélisés forment l’ensemble des variables discrètes XAK . Il est supposé
que chaque automate AK contient deux variables discrètes implicites : la file
d’attente queue qui stocke toutes les entrées et les expédie pour être traitées, et
l’état de contrôle actuel location de la machine à états. Au niveau du type du
composant, on peut modéliser des relations : les associations sont gérées en fonction
de leurs extrémités qui représentent des attributs dans les classes correspondantes,
tandis que la généralisation entre les classes est aplatie et tous les attributs hérités
sont dupliqués dans l’automate correspondant au composant fils.

L’ensemble des états de l’automate AK est donné par l’évaluation de toutes les
variables, où l’état initial θK soit contient une valeur définie par l’utilisateur lors
de son initialisation ou une valeur prédéfinie comme 0 pour les horloges ou ∅ pour
la file d’attente.

Le comportement du composant est modélisé par la machine à états de son type
qui décrit les transitions et les trajectoires de l’automate. Une transitions d’une
machine à états est définie entre un état de contrôle source s et un état de contrôle
cible s′ sur laquelle nous pouvons évaluer une garde et exécuter plusieurs effets. Une
transition est activée par un délai de temps ou un déclenchement d’action. Ainsi,
pour chaque transition de la machine à états un ensemble de transitions TIOA
est généré entre deux états q et q′ où q.location = s et q′.location = s′. La garde
modélise les conditions pour lesquelles la transition existe étant donné qu’elles sont
satisfaites dans l’état de départ q, sinon aucune transition n’est générée. Dans
chaque état de l’automate, une transition prédéfinie pour chaque entrée a existe.
Son effet est d’ajouter le signal à la file d’attente, c.à.d q′.queue = [q.queue; a].
Ensuite, un déclencheur m se transforme en une transition exécutant une action
interne ↓ m qui consomme le message m, ainsi s.queue = [m, a] et s′.queue = a.
L’ensemble des effets définis sur une transition peut consister en plusieurs sorties
et affectations. Pour chaque effet une transition TIOA indépendante est générée.
L’envoi (ou sendAction) devient une transition avec une sortie tel que soit l’état
cible est l’état de contrôle cible s’il y a seulement cet effet modélisé ou un état
intermédiaire est généré si l’effet est structuré. Cette transition se synchronisera à

24

4. Un modèle formel pour la sémantique de modèles SysML

la composition avec la transition modélisant l’entrée et modifiera la valeur de la file
d’attente. L’affectation pour les variables discrètes et les horloges est transformée
en une transition TIOA qui existe si et seulement si q′ peut être obtenu à partir de
q en appliquant la modification.

Par défaut, le temps écoulé dans chaque état de l’automate est donné par l’ensemble
des trajectoires possibles définies sur {[0, t]|t ∈ R+} ∪ {[0,∞)}. Cet ensemble de
trajectoires peut être contrôlé par les étiquettes d’urgence des transitions sortantes
de s = q.location dans la machine à états comme suit:

• lazy n’ajoute pas de restrictions,
• eager sans garde d’horloge restreint l’ensemble des trajectoires à la trajectoire

point,
• eager avec une garde d’horloge restreint l’ensemble des trajectoires afin qu’ils

finissent dans le plus petit t où la garde est évaluée à vrai.

L’ensemble des signaux qui peuvent être manipulés par l’automate sont définis
par les types des ports, alors que leur direction est donnée par la direction du
port. Donc, toutes les réceptions de signaux modélisées dans les interfaces fournies
définissent l’ensemble des entrées que l’automate peut manipuler et toutes les
réceptions de signaux modélisées dans les interfaces requises définissent l’ensemble
des sorties que l’automate peut exécuter. L’ensemble des actions visibles pour un
automate qui correspond à un composant atomique est l’ensemble vide, VAK = ∅.
Les actions internes HAK sont définies pour chaque transition définissant soit une
garde, un déclencheur ou une affectation. Une attention particulière doit être portée
aux noms des signaux car un modèle contient généralement plusieurs composants du
même type et ils réagissent aux mêmes stimuli, en contradiction avec la condition
de compatibilité. Notre solution est de renommer les signaux contradictoires
dans les automates émetteur/récepteur en ajoutant leur nom qualifié et les ports
traversés, qui peuvent être calculés statiquement via les connecteurs. Ensuite, si
l’automate récepteur traite un signal ayant plusieurs expéditeurs, la transition qui
traite le signal est dupliquée pour chaque expéditeur où le déclenchement contient
les nouveaux noms définis du signal. Comme l’envoi multiple est explicitement
modélisé dans une conception SysML par différents signaux, le seul changement à
effectuer est de renommer éventuellement les signaux sortants.

Enfin, un automate composite se traduit par un automate obtenu en appliquant
l’opérateur de composition parallèle sur ses composants TIOA. Un observateur se
traduit par un automate temporisé entrée/sortie n’ayant que des actions visibles.

25

Résumé étendu

4.3 Implémentation avec IFx2

La transformation présentée précédemment est mise en œuvre dans la boîte à
outils IFx2 pour les modèles OMEGA, en mettant à jour le compilateur uml2if
compatible uniquement aux modèles UML 1.3. Deux tâches devaient être effectuées:
(1) ajouter tous les éléments de modélisation UML 2.x spécifiques (par exemple
les ports, les connecteurs, les structures composites) et s’assurer que les règles de
typage fort sont satisfaites et (2) mettre en œuvre la transformation vers TIOA. En
outre, le simulateur interactif de modèles OMEGA a été mis à jour pour prendre
en compte les nouveaux éléments de modélisation.

En ce qui concerne les choix technologiques, uml2if est un outil propriétaire
développé en Java, Eclipse UML 2.x et Eclipse EMF. Le compilateur prend en
entrée un modèle au format XMI 2.0 et produit la représentation textuelle IF du
réseau TIOA. Le compilateur implémente la transformation décrite précédemment
pour les modèles système étendus par des contrats. La génération des obligations de
preuve est actuellement en cours de développement dans IFx2. Nous mentionnons
que cet outil a été évalué sur des modèles de systèmes de qualité industrielle.

5 Raisonnement formel avec contrats

Jusqu’à présent, nous avons complètement défini — syntaxe et sémantique —
l’environnement à base de composants pour lequel nous voulons utiliser le raison-
nement à base de contrats. Dans cette section, nous déclinons celui des contrats
pour la théorie de ces composants et montrons que cette instanciation de la méta-
théorie décrite dans la section 2.1 peut être appliquée à des modèles système en
prouvant la satisfaction des résultats de compositionnalité nécessaires.

5.1 Théorie à base de contrats pour les TIOA

Les contrats ont été introduits dans SysML dans la section 3.2 où nous avons
défini leur syntaxe. Afin de les utiliser pour la vérification de la satisfaction d’une
exigence, nous devons définir leur sémantique.

Définition 11 (Environnement). Un environnement Env pour un composant
K est un automate temporisé entrée/sortie compatible avec K pour lequel les
conditions suivantes sont satisfaites : IEnv ⊆ OK et OEnv ⊆ IK .

Définition 12 (Composant fermé/ouvert). Un composant K est fermé si
IK = OK = ∅. Un composant est ouvert s’il n’est pas fermé.

26

5. Raisonnement formel avec contrats

Les composants fermés résultent de la composition de composants ayant des in-
terfaces complémentaires, comme c’est souvent le cas entre un composant et son
environnement. Cependant, dans la définition 11 nous modélisons des environ-
nements partiels. Ce choix est motivé par l’architecture multi-couche des systèmes.

Définition 13 (Contrat). Un contrat pour un composant K est une paire (A,G)

d’automates temporisés entrée/sortie tels que:

• leur composition donne un système fermé, c.a.d IA = OG et IG = OA, et
• la signature du composant G est un sous-ensemble de la signature du com-

posant K, c.a.d IG ⊆ IK , OG ⊆ OK et VG ⊆ VK .

On note par la signature d’un contrat la signature de sa garantie.

La satisfaction d’un contrat a été introduite dans la définition 2 en se basant sur la
relation de raffinement dans un contexte. Dans notre approche, le raffinement dans
un contexte repose à son tour sur la relation de conformité (voir définition 10).
Puisque nous autorisons qu’un composant concret Ki puisse avoir une signature
plus grande que l’abstrait Kj et que la conformité peut être définie seulement entre
composants comparables, nous devons composer chacun des membres de la relation
de conformité obtenue avec des automates temporisés entrée/sortie supplémentaires
de sorte que la condition de compatibilité soit vérifiée.

Définition 14 (Raffinement dans un contexte). Soient K1 and K2 deux
composants tels que IK2 ⊆ IK1 ∪VK1 , OK2 ⊆ OK1 ∪VK1 et VK2 ⊆ VK1 . Soit Env un
environnement pour K1 compatible avec K1 et K2. K1 raffine K2 dans le contexte
Env, noté K1 vEnv K2, si

K1 ‖ Env ‖ Env′ � K2 ‖ Env ‖ K ′ ‖ Env′
où K ′ et Env′ sont définis tels que les deux membres de la relation de conformité
sont fermés et comparables :

• K ′ = (∅, ∅, {φ}, φ, ((IK1\IK2)∪(VK1∩OK2)), ((OK1\OK2)∪(VK1∩IK2)), (VK1\
EK2), ∅,DK′ , 2[R0

+]) où φ est la fonction ∅ → ∅, DK′ = {(φ, a, φ)|∀a ∈ EK′} et
2[R0

+] = {[0, t]|t ∈ R+} ∪ {[0,∞)}.
• Env′ = (∅, ∅, {φ}, φ, (OK1 \ IEnv), (IK1 \ OEnv), ∅, ∅,DEnv′ , 2[R0

+]) où φ est la
fonction ∅ → ∅ et DEnv′ = {(φ, a, φ)|∀a ∈ EEnv′}.

Informellement, Env′ est un environnement partiel ayant comme signature les
actions de K1 qui ne sont pas présentes parmi les actions de Env de telle sorte
que K1 ‖ Env ‖ Env′ soit un composant fermé. K ′ est un composant qui réagit
aux actions définies comme la différence entre les signatures de K1 et K2 tel que

27

Résumé étendu

K1 et K2 ‖ K ′ sont comparables. En outre, ces définitions satisfont les conditions
suivantes : K1 ‖ Env ‖ Env′ et K2 ‖ K ′ ‖ Env ‖ Env′ sont fermés et comparables.
Leur comportement est le plus simple : toutes les actions sont actives à tout
moment et le temps peut s’écouler à l’infini.

Les relations d’inclusion particulières entre les signatures de K1 et K2 dans la
définition sont dues au fait que K1 et K2 peuvent être des composants composés
: K1 = K ′1 ‖ K3 et K2 = K ′2 ‖ K3, où IK′

2
⊆ IK′

1
, OK′

2
⊆ OK′

1
et VK′

2
⊆ VK′

1
.

Cela se produit en particulier lorsque K ′2 est une garantie pour K ′1. Puis, par la
composition, les actions de K3 peuvent correspondre aux actions de K ′1 sans avoir
de correspondants dans K ′2. Ce cas impose également le terme VK1 ∩OK2 pour les
entrées de K ′, car les sorties supplémentaires de K2 peuvent correspondre à un
autre composant, et le terme VK1 ∩ IK2 pour les sorties de K ′.

Cette définition du raffinement dans un contexte satisfait les conditions décrites
dans la section 2.1 et requises par la méta-théorie comme suit.

Théorème 5. Étant donnés un ensemble K de composants comparables et un
environnement Env pour les composants appartenant à K, le raffinement dans le
contexte Env est une relation de préordre.

Proposition 1. Soient K1, K2, K3 trois composants pas nécessairement com-
parables et Env un environnement tel que K1 vEnv K2 et K2 vEnv K3. Alors
K1 vEnv K3.

Théorème 6 (Compositionnalité). Soient K1 et K2 deux composants et Env
un environnement compatible avec K1 et K2 tel que Env = Env1 ‖ Env2. Alors
K1 vEnv1‖Env2 K2 ⇔ K1 ‖ Env1 vEnv2 K2 ‖ Env1.

Théorème 7 (Raisonnement circulaire). Soient K un composant, Env son
environnement et C = (A,G) un contrat pour K tel que K et G sont compatibles
avec Env et A. Si

1. tracesG est fermé sous limites,
2. tracesG est fermé sous l’extension du temps,
3. K vA G et
4. Env vG A

alors K vEnv G.

La correction du raisonnement circulaire est le résultat principal qui garantit la
correction du raisonnement à base de contrats que nous utilisons.

28

5. Raisonnement formel avec contrats

La deuxième étape du raisonnement à base de contrats consiste à prouver la
relation de raffinement entre contrats afin d’écarter les composants à partir de
cette étape. Comme notre théorie satisfait les résultats de compositionnalité
requis par la méta-théorie, nous pouvons utiliser la condition suffisante pour la
dominance écrite ci-dessous en utilisant notre notation. La dominance consiste
alors à vérifier plusieurs relations de satisfaction sur des automates temporisés
entrée/sortie abstraits qui sont plus faciles à manipuler.

Théorème 8. {Ci}ni=1 domine C si, pour tout i, tracesGi et tracesG sont fermés
sous limites et sous l’extension du temps et

{
G1 ‖ ... ‖ Gn vA G
A ‖ G1 ‖ ... ‖ Gi−1 ‖ Gi+1 ‖ ... ‖ Gn vGi Ai, ∀i

5.2 Expressivité des contrats

Cette théorie peut s’appliquer à des modèles systèmes étendus par des contrats si
le composant jouant le rôle de la garantie satisfait deux conditions importantes :
fermeture sous limite et fermeture sous l’extension du temps. Nous discutons ici
des restrictions qui sont imposées par ces contraintes sur le langage de modélisation
des contrats.

La fermeture sous limites modélise que toute trace peut être prolongée indéfiniment
par des fragments de traces, faisant en sorte que le résultat soit aussi une trace.
Cette contrainte est garantie par défaut par une catégorie d’automates temporisés
entrée/sortie : lemme 4.20 de [108] prouve qu’un automate avec non-déterminisme
interne fini a son ensemble de traces fermé sous limites.

Définition 15 (Non-déterminisme interne fini). Un automate présente du
non-déterminisme interne fini si :

1. L’ensemble de ses états initiaux θ est fini, et
2. ∀x ∈ Q, ∀β ∈ tracefrags(x), l’ensemble {α.lval |α ∈ frags(x), α a une trajec-

toire finale finie et trace(α) = β} est fini.

La première condition est satisfaite par défaut par nos automates temporisés
entrée/sortie qui définissent un seul état initial correspondant à l’état initial de
la machine à états qu’ils représentent. La seconde condition implique que, pour
toute trace, il n’existe pas un ensemble infini de fragments d’exécution. Pour que
cette condition soit satisfaite, des cycles de transitions silencieuses ne peuvent pas

29

Résumé étendu

être modélisés dans la machine à états. Par transition silencieuse nous entendons
une transition définie pour une action interne, sauf le traitement du signal. Un
cycle de transitions silencieuses peut modifier les valeurs des variables conduisant
ainsi à un ensemble infini d’états finaux. Deuxièmement, la sémantique temporisée
pour toutes les transitions internes est eager. En effet, une sémantique lazy génère
un non-déterminisme infini, car la transition peut être exécutée à tout moment
pendant l’écoulement du temps et ainsi changer infiniment l’état du système. La
définition d’une transition avec des actions internes comme eager et interdisant
la modélisation des cycles de transitions silencieuses assure que l’automate est
non-Zeno, c.a.d n’exécute pas une infinité d’actions internes en un temps fini. Ces
conditions sont suffisantes pour assurer le non-déterminisme interne fini pour un
automate.

La fermeture sous l’extension du temps permet l’écoulement du temps en tout
état de l’automate. Un moyen facile de modéliser le progrès du temps dans tous
les états d’une machine à états est de stéréotyper les transitions sortantes comme
lazy. Toutefois, ce n’est pas nécessaire pour tous les types de transitions, et il est
effectivement suffisant que les transitions qui exécutent des sorties soient lazy. Cela
permet aux garanties de spécifier des contraintes de progrès de temps plus précises,
par exemple en spécifiant les transitions consistant uniquement en actions internes
(c.à.d calculs internes, mais aussi l’action interne de consommation de requête ↓)
comme eager. En effet, ces paramètres d’urgence sont suffisants pour assurer la
fermeture sous l’extension du temps, étant donné que les machines à états sont
non-Zeno.

Nous remarquons que cette restriction ne nous permet pas de préciser dans une
garantie une limite supérieure quand une sortie/action visible doit se produire, mais
seulement des conditions plus faibles de type t ≥ deadline, où t est une horloge.
C’est une limitation de l’expressivité des garanties dans notre théorie.

5.3 Vérification automatique des obligations de preuve

La théorie à base de contrats que nous avons définie est basée sur la relation
d’inclusion des traces. Cependant cette relation est indécidable dans le cas général
et ne peut pas être automatiquement vérifiée par des outils à l’exception de
certaines catégories d’automates temporisés [131, 155]. Dans ce qui suit, nous
décrivons notre technique pour la vérification automatique basée sur l’analyse
d’accessibilité d’automates de propriété, qui s’appuie sur le fait que le composant
abstrait représente une propriété de sûreté déterministe. Cette méthode est mise en

30

5. Raisonnement formel avec contrats

œuvre dans la boîte à outils IFx [34] qui permet de vérifier et simuler des automates
temporisés communicants asynchrones.

Notre méthode utilise la notion d’automate de propriété. Un automate de propriété
est la définition complète d’une exigence de sûreté : il définit un état d’erreur π vers
lequel les comportements incorrects mèneront et se synchronise avec le composant
étudié C sur les actions communes. Le raisonnement de la satisfaction d’un contrat
est le suivant : (1) transformer la garantie en un automate de propriété, (2) exécuter
en parallèle le composant C et l’automate de propriété et (3) explorer l’espace
d’états pour vérifier si l’état d’erreur π peut être atteint. Atteindre l’état d’erreur
π signifie la violation de la satisfaction d’un contrat.

Nous commençons par définir le processus de transformation d’une propriété de
sûreté déterministe en un automate de propriété. Le mécanisme est similaire
à celui défini dans [41] et plus tard utilisé pour automatiser le raisonnement
hypothèse-garantie dans l’outil LTSA [84, 30].

Définition 16 (Automate temporisé de propriété). Soit un automate tem-
porisé entrée/sortie déterministe A = (XA, ClkA, QA, θA, IA, OA, VA, HA,DA, TA).
L’automate temporisé de propriété correspondant à A est défini par l’automate
temporisé entrée/sortie suivant OA = (XA, ClkA, Q, θA, ∅, ∅, V,HA,D, TA) où:

• Q = QA ∪ {π}, où π est un état d’erreur additionnel,
• V = IA ∪OA ∪ VA,
• D = DA ∪ {(x, a, π)|x ∈ QA, a ∈ V tel que (��∃ x′.(x, a, x′) ∈ DA) ∧ (��∃ ε ∈
HA ∧ x′ ∈ QA.(x, ε, x′) ∈ DA)}.

L’idée de cette transformation est que les séquences d’actions qui ne sont pas
explicitement modélisées devraient être considérées comme des comportements
erronés. Comme un automate temporisé de propriété est utilisé pour surveiller un
composant fermé, nous considérons que sa signature ne contient que des actions
visibles, correspondant aux entrées, sorties et actions visibles de A. Puis, dans
chaque état de l’automate à partir duquel il n’y a pas de transition interne sortante,
nous complétons l’ensemble des transitions avec celles manquantes : pour chaque
action visible il doit y avoir une transition discrète soit conduisant à un état défini
en A ou à π. Ainsi, les actions menant à l’état d’erreur π ne sont pas autorisées à
se produire dans une séquence temporelle décrite par A.

Nous remarquons que la définition de l’automate temporisé de propriété est similaire
à la modélisation des exigences avec des observateurs dans OMEGA. En effet, un
observateur formalise une propriété de sûreté en modélisant l’état d’erreur π via

31

Résumé étendu

le stéréotype d’erreur et ne définit que l’ensemble d’actions visibles, c.à.d aucune
entrée ou sortie. Par conséquent, le même mécanisme de vérification peut être
appliqué pour vérifier la relation de conformité. Dans ce cas, π n’est pas ajouté à
Oϕ s’il a été modélisé par l’utilisateur.

Cependant, pour que cette méthode fonctionne, le composant A doit être une
propriété déterministe de sûreté à la fois pour les actions visibles et les actions
internes. Pour les actions internes, le déterminisme signifie qu’il y a au plus une
transition sortant d’un état. La garantie présente déjà du non-déterminisme interne
fini. Par conséquent, afin d’obtenir le déterminisme, nous limitons la deuxième
condition de la définition 15 de telle sorte que le cardinal de l’ensemble d’états finaux
soit égal à 2 : l’état final peut être soit l’état initial si aucune transition interne n’a
été tirée ou l’état obtenu par l’exécution de la transition. Nous remarquons que
ces conditions doivent tenir dans le cadre des automates temporisés entrée/sortie.
Cela implique que, dans une machine à états SysML, on peut modéliser plusieurs
transitions internes sortantes si elles ne sont pas actives en même temps, par
exemple deux transitions ayant des gardes disjointes.

La synchronisation à l’exécution entre C et l’automate de la propriété OA est définie
par l’opérateur de composition suivant, noté ./. Il est similaire à l’opérateur de
composition parallèle précédemment décrit à la définition 8 avec synchronisation
sur les actions visibles communes et entrelacement des autres actions. L’opérateur
peut s’appliquer sur deux automates temporisés entrée/sortie s’ils ne partagent
pas d’actions internes et s’ils ne définissent pas d’entrées/sorties. Cette dernière
condition est motivée par le fait que l’automate de propriété surveille généralement
un composant fermé.

Définition 17 (Composition synchrone). Soient A1 un composant fermé et A2

un automate temporisé de propriété tels que EA1 ⊆ EA2 . Alors A1 ./ A2 = A1 ‖ A2

où la condition de compatibilité est donnée par la contrainte HA1 ∩HA2 = ∅.

Le résultat suivant portant sur l’analyse d’accessibilité conclut le raisonnement.
Le fait de ne pas atteindre l’état d’erreur au cours de toutes les exécutions du
composant précédemment composé est suffisant pour satisfaire l’inclusion de traces.

Théorème 9. Si K2 est un automate temporisé de propriété déterministe et
reach((K1 ‖ Env ‖ Env′) ./ OK2) ∩ {π} = ∅ alors K1 vEnv K2.

Le fait que l’automate temporisé entrée/sortie jouant le rôle de la garantie doit
être déterministe est une limitation de cette méthode de vérification qui doit

32

5. Raisonnement formel avec contrats

être prise en compte dans la méthodologie. La limitation n’est généralement pas
problématique pour vérifier la satisfaction d’un contrat car les garanties doivent
être modélisées comme des automates temporisés entrée/sortie fermés sous limites
et sous l’extension du temps et ils peuvent souvent être rendus déterministes.
Toutefois, afin d’établir la dominance, il faut aussi vérifier la satisfaction du contrat
inverse, qui est plus problématique puisque nous n’exigeons pas la modélisation
des hypothèses comme des propriétés de sûreté. Dans ce cas il y a trois solutions
disponibles : (1) modéliser l’hypothèse comme une propriété de sûreté déterministe
et appliquer cette méthode, (2) utiliser la simulation temporisée à la place de
l’inclusion de traces ou (3) utiliser, si possible, l’environnement concret comme
hypothèse, de sorte que la satisfaction d’un contrat inverse devienne triviale.

5.4 Diagnostic avec les contrats

Dans les obligations de preuve générées, une ou même plusieurs preuves peuvent ne
pas être satisfaites. Dans ce cas, nous devons effectuer un diagnostic afin d’établir
si l’exigence n’est pas satisfaite ou si l’ensemble des contrats doit être raffiné afin de
prouver la satisfaction de l’exigence. Nous basons ce diagnostic sur la génération
d’un contre-exemple, qui pour la méthode précédente conduira à l’état d’erreur π,
et l’utilisation de l’approche CEGAR [50].

Nous pouvons distinguer deux cas pour lesquels la solution dépend de la manière
d’appliquer le raisonnement, pour la conception ou pour la vérification : (1) la
satisfaction d’un contrat ou un pas de dominance n’est pas satisfait ou (2) la
vérification de la conformité échoue. Pour le premier cas, si nous sommes dans
une approche de conception et si toutes les étapes précédentes ont été prouvées,
nous devons raffiner les composants/contrats sources tels que le contre-exemple soit
éliminé. Ceci garantit que les composants développés sont corrects par construction
à l’égard de l’exigence. Si nous sommes dans une approche de vérification avec un
système complètement modélisé, il faut raffiner le(s) contrat(s) cible car il est plus
fréquent que l’abstraction soit erronée.

Pour le dernier cas, nous devons d’abord vérifier sur le système si le contre-exemple
généré est incorrect à cause des abstractions définies ou valide, ce qui signifie que
le système ne satisfait pas l’exigence. Pour un contre-exemple faux, il faut raffiner
le contrat cible et vérifier au moins l’étape de dominance et la satisfaction du
contrat inverse. Des itérations de raffinement de contrats doivent être exécutées
jusqu’à ce que toutes les vérifications soient validées. Pour un contre-exemple
valide, l’utilisateur doit redéfinir les implémentations, à savoir les composants

33

Résumé étendu

atomiques pour lesquels la preuve a échoué. Pour cela, le raisonnement à base
de contrats peut être appliqué dans une approche de conception afin d’obtenir
les contrats corrects qui satisfont les obligations de preuve et les raffiner vers des
implémentations correctes.

Nous remarquons que, dans le cas de nos outils, le contre-exemple généré est exprimé
au niveau des automates temporisés entrée/sortie, tandis que le raffinement de
contrats/composants a lieu dans un langage de modélisation de haut niveau. Le
pont entre les deux formalismes est unidirectionnel : la transformation présentée
ci-dessus est donnée à partir de SysML vers des automates temporisés entrée/sortie.
Afin d’exploiter le scénario d’erreur, le concepteur doit appréhender en détail le
système et faire usage de son expérience pour effectuer ce raffinement. Ce point est
une question ouverte pour laquelle la recherche actuelle prévoit certaines options
[56, 3] ; il constitue une de nos perspectives de travail.

5.5 Travaux connexes

Comme décrit à la section 2.2, il existe plusieurs frameworks à base de con-
trats disponibles pour les systèmes temporisés qui sont basés sur le raisonnement
hypothèse-garantie. La méta-théorie de [142] est la seule qui propose un raison-
nement circulaire permettant de réduire la dominance à un ensemble de preuves
de satisfaction de contrat. A notre connaissance, cette étude est la première in-
stanciation de la méta-théorie définie dans [142] pour les systèmes temporisés avec
communication asynchrone.

Le framework à base de contrats proposé dans [63] pour les automates temporisés
entrée/sortie présenté dans [61, 62] définit la satisfaction d’un contrat comme la
simulation alternée temporisée sur le quotient. Formellement, la relation s’écritK ≤
(A ‖ G)\\A, où ≤ désigne la simulation et \\ l’opérateur de quotient. Cette théorie
ne prend pas en compte le raffinement de signature entre les spécifications. En
outre, l’opérateur de quotient est partiel : les conditions dans lesquelles l’opérateur
peut être appliqué et ce qu’il advient si le résultat ne peut pas être calculé ne sont
pas abordés. Comme cette théorie est une instanciation de la méta-théorie décrite
en [17], la dominance ne peut être établie que par la composition des contrats et la
vérification du raffinement entre la composition et le contrat abstrait. Enfin, ce
cadre ne précise pas clairement quel type d’exigence peut être vérifiée ni comment
une exigence doit être modélisée. En conséquence, l’étape de la conformité n’est
pas formalisée.

Dans [44], une théorie de spécifications est développée pour les automates temporisés

34

6. Une étude de cas issue de l’industrie : le Solar Generation System
de l’ATV

entrée/sortie de [7] qui sont étendus par la notion de coinvariant sur les états afin
d’exprimer des hypothèses de vivacité. Ce cadre est adapté afin de vérifier des
propriétés de sûreté et vivacité borné dans le temps. La relation de raffinement est
identique à la nôtre, c.à.d l’inclusion des traces temporisées, mais le raffinement
de signature n’est pas considéré ici alors qu’il est explicitement traité dans notre
cadre. Une deuxième différence consiste en la définition du contrat : le cadre de
[44] définit une théorie d’interfaces où une spécification englobe à la fois l’hypothèse
et la garantie. L’avantage d’avoir des hypothèses et des garanties disjointes est
discuté à la section 2.2.

La théorie de [43, 39, 42] couvre ces différences en proposant un framework de
raisonnement hypothèse-garantie mais seulement pour les systèmes non-temporisés.
Par conséquent, un contrat est donné par deux ensembles de traces — un pour
l’hypothèse et l’autre pour la garantie, alors qu’une relation d’inclusion de traces
covariante pour les entrées et contravariante pour les sorties est considérée pour la
satisfaction d’un contrat. Comme pour la méta-théorie de [17], vérifier la dominance
exige de composer les contrats et ensuite de vérifier le raffinement. En revanche,
notre condition suffisante pour la dominance permet d’effectuer une vérification
sur des composants plus abstraits. De plus en cas de violation, le contrat erroné
peut être plus facilement identifié.

6 Une étude de cas issue de l’industrie : le Solar
Generation System de l’ATV

Cette section présente le système Solar Wing Management (SGS) de l’Automated
Transfer Vehicle (ATV) et sa vérification selon la technique de raisonnement à
base de contrats. L’ATV, développé par Airbus Defence and Space1 (ADS) est un
cargo spatial mis en orbite par le lanceur européen Ariane 5 ayant comme objectif
le ravitaillement de la Station Spatiale Internationale. Le système SGS décrit ici
est responsable de la gestion des panneaux solaires qui fournissent au véhicule
l’énergie nécessaire pour remplir sa mission. Il contient les chaînes fonctionnelles
qui réalisent le déploiement et la rotation des panneaux solaires.

1http://www.astrium.eads.net/

35

http://www.astrium.eads.net/

Résumé étendu

6.1 Spécification du système

Le modèle représenté à la figure 9.1 a été obtenu par rétro-ingénierie du système
actuel par les ingénieurs d’ADS. Il est décrit en SysML avec l’outil IBM Rhapsody.
Le modèle possède une architecture en 4 couches structurée en un ensemble d’entités
matérielles et logicielles qui captent son comportement temporisé. La figure 9.1
présente une vue de haut niveau des principaux composants, sans les détails de
leur structure :

• le composant de mission et de gestion de véhicule (MVM) qui simule un
scénario de déploiement des panneaux solaires.
• le composant SOFTWARE qui se compose de trois sous-composants, chacun
ayant une fonction spécifique. Ils réagissent aux demandes provenant du
MVM et contrôlent le matériel en exécutant des procédures automatisées en
réponse aux demandes reçues.
• le composant HARDWARE qui contient les quatre panneaux solaires de

l’ATV. Ce composant a plus de 70 pièces d’équipement avec plusieurs niveaux
de redondance pour atteindre la fiabilité et la disponibilité en cas de défaillance.
Chaque aile est maintenue dans sa position initiale par quatre systèmes de
retenue et libération (HDRS). Pour que le déploiement se produise, chaque
HDRS doit être coupé. Ceci est réalisé par huit couteaux thermiques (TK)
pour chaque aile, deux pour chaque HDRS, un pour le cas nominal et
un redondant en cas d’anomalie. Chaque fois qu’un HDRS est coupé, le
mécanisme de verrouillage de l’aile évolue vers l’état déployé pour cette aile.
• le composant des unités de commande (CU) qui peut également être soumis

à l’échec. Il a de nombreuses interconnexions nominales et redondantes avec
les ailes, connexions qui sont abstraites à 4 dans la figure 9.1. Il contient 4
unités d’énergie (PCDU) et 4 unités de contrôle thermique (TCU) qui sont
responsables de l’activation/désactivation des couteaux thermiques, chacun
d’eux étant relié à deux ailes différentes. Deux unités de commande et
de surveillance (CMU) supervisent l’ensemble du système, c.à.d toutes les
demandes du logiciel transitent les CMU.

Le composant SGS décrit deux modes de fonctionnement : (1) le déploiement
des panneaux solaires et (2) leur rotation. Nous ne nous intéressons ici qu’au
premier mode. Au départ, les quatre panneaux solaires de l’ATV sont rangés. Leur
déploiement commence par enlever les barrières de sécurité des unités de contrôle
thermique. Les barrières de sécurité empêchent un déploiement non désiré des ailes
en bloquant l’activation des couteaux thermiques. Puis, les HDRS sont coupés
par au moins quatre des huit couteaux thermiques de chaque aile. Pour qu’un
HDRS soit coupé, le couteau doit être actif pendant 50 secondes consécutives. Le

36

6. Une étude de cas issue de l’industrie : le Solar Generation System
de l’ATV

déploiement de l’aile commence immédiatement après que le dernier HDRS soit
coupé. Une fois le déploiement terminé, les barrières de sécurité sont restaurées.

La redondance du système, si une anomalie se produit lors de l’exécution, est
explicitement modélisée pour les TK et HDRS de chaque aile, TCU et PCDU.
Il y a 56 échecs possibles et chacun peut se produire à un moment arbitraire
lors de l’exécution. L’hypothèse est que le système peut faire l’objet d’au plus
un échec. Afin de faciliter la génération des configurations de vérification, un
composant spécial SIMULATION est ajouté au modèle afin de commander de
façon non-déterministe la défaillance d’un équipement basée sur un paramètre qui
peut être fourni avant la session de vérification.

En termes de mesures, le modèle définit un total de 21 types de bloc (dont 7 sont
raffinés par le biais de 24 diagrammes internes) avec 348 types de port et 372 type
de connecteurs pour la communication. Au moment de l’exécution, le système
comptabilise 96 instances de blocs fonctionnant en parallèle avec un total de 651
ports et 504 connecteurs.

Nous sommes intéressés à prouver que le système est tolérant à une panne. Cela
signifie que pour une occurrence d’erreur, le logiciel est en mesure d’atteindre son
objectif et donc de garantir que le déploiement des ailes s’effectue. Ce comportement
se traduit par l’exigence suivante modélisée à la figure 9.2.

Exigence. A la fin de la séquence de déploiement, les quatre ailes sont déployées.

Nous formalisons cette exigence par un observateur. Nous ajoutons au modèle sys-
tème un bloc Property dont la machine à états décrit la propriété de sûreté à vérifier/
Initialement nous attendons dans l’état SYSTEM_IS_ON pour l’interrogation de
l’état de l’aile. Après la séquence de déploiement, un composant du logiciel vérifie
l’état de verrouillage des ailes. Lorsqu’on les sollicite, les ailes cibles indiquent
leur statut par un message SGS_DEPLOY_WING_STATUS. Lorsque l’action
est exécutée, l’automate passe dans l’état VERIFY_DEPLOYMENT où il véri-
fie le statut transmis. Si c’est LOCKED_DEPLOYED, alors il attend un autre
événement de l’interrogation pour une autre ou la même aile. Sinon, quelque chose
d’imprévu s’est produit lors du déploiement et l’observateur avance à l’état d’erreur
NO_DEPLOYMENT. Atteindre l’état d’erreur lors de la vérification signifie que
l’exigence n’est pas satisfaite.

37

Résumé étendu

6.2 Application de la théorie à base de contrats

Nous commençons par identifier les composants qui représentent le système à
étudier S et l’environnement E. Comme l’exigence est exprimée par rapport au
comportement des quatre ailes du composant HARDWARE, nous considérons que
le système S est défini par le composant HARDWARE et les Ki par les composants
WINGi, i = 1, 4. L’environnement du système est donné par les composants avec
lesquels il communique : la communication bidirectionnelle est établie entre CU et
HARDWARE, tandis que CU dépend du comportement de SOFTWARE et MVM.
Ainsi, l’environnement E de la figure 3.1 est représenté ici par la composition de
MVM, SOFTWARE et CU.

La première étape de la méthodologie consiste à définir un contrat Ci = (Ai, Gi)

pour chaque WINGi et à prouver que WINGi satisfait Ci, i = 1, 4. Nous avons
choisi pour WINGi d’utiliser comme hypothèse l’environnement concret du système
HARDWARE composé d’une abstraction WAj pour chaque WINGj avec j 6= i.
Nous proposons l’abstraction suivante WAj : l’aile consomme toutes les demandes
provenant de l’environnement et répond à toute demande d’état avec déployé. Puis
l’hypothèse Ai est donnée par la composition parallèle de MVM, SOFTWARE, CU
et WAj avec j 6= i. Cette abstraction de l’environnement est suffisante pour réduire
considérablement l’espace d’états du système, sachant que l’explosion exponentielle
dans le modèle original est principalement due au parallélisme des pièces du matériel
qui sont abstraites aux trois composants atomiques WAj. Nous voulons garantir
que même si WINGi présente une panne, il finit par être déployé.

Contrat Ci = (Ai, Gi) où

• Ai = MVM ‖ SOFTWARE ‖ CU ‖ (‖j 6=i WAj).
• Gi = WAi : l’aile répond aux demandes concernant son statut avec déployé

et ignore toutes les autres demandes

Le contrat est modélisé à la figure 9.5, tandis que la figure 9.6 présente le comporte-
ment de la garantie. Puisque nous utilisons comme hypothèse l’environnement
concret, la signature de la garantie est celle du composant. Pour cette raison,
nous devons ajouter des transitions de consommation dans chaque état et pour
toutes les entrées correspondant au processus de déploiement de l’aile. En outre,
nous remarquons que le même type est utilisé pour modéliser dans les 4 contrats
les garanties mais aussi les abstractions des ailes ; cela montre la propriété de
réutilisation de notre cadre de modélisation à base de contrats. Nous préférons
ne pas introduire une nouvelle notation et utiliser WAi pour désigner également

38

6. Une étude de cas issue de l’industrie : le Solar Generation System
de l’ATV

les garanties. En outre, on peut remarquer que la garantie est plus forte que
la projection de l’exigence sur WINGi : l’abstraction WAj peut être également
soumise à une panne puisque ce cas n’est pas exclu de son comportement ; donc,
la propriété de la tolérance aux pannes que nous vérifions via les contrats est plus
forte que celle qui était prévue. Nous garantissons que le système est tolérant aux
4 pannes, si les pannes se produisent dans des ailes séparées.

La deuxième étape de la méthode consiste à définir un contrat global C = (A,G)

pour HARDWARE et prouver que le contrat est dominé par {C1, C2, C3, C4}. Encore
une fois, nous utilisons comme hypothèse A l’environnement concret du HARD-
WARE. La garantie G est la composition des quatre WAi. Tous les WAi, i = 1, 4, et
G remplissent les conditions de fermeture nécessaires d’application du théorème 8.

Contrat C = (A, G) où

• A = MVM ‖ SOFTWARE ‖ CU
• G : pour chaque aile, la garantie répond aux demandes de statut avec déployé,

tandis que toutes les autres demandes sont ignorées.

La troisième étape du raisonnement consiste à prouver la satisfaction du contrat
inverse C−1. Cette vérification est triviale puisque l’environnement concret est
utilisé comme hypothèse et l’obligation de preuve s’écrit : MVM ‖ SOFTWARE ‖
CU vG MVM ‖ SOFTWARE ‖ CU.

La dernière étape consiste à vérifier que la composition A ‖ G est conforme à
l’exigence.

Les preuves de ces quatre étapes ont été automatiquement vérifiées avec la boîte à
outils OMEGA-IFx et la méthode décrite dans la section 5.3. Pour chaque étape
de la méthodologie nous avons modélisé manuellement les contrats : les hypothèses
en tant que blocs ont été connectées via les ports aux autres composants et les
garanties ont été considérées comme des composants indépendants. La première
étape a donné lieu à quatre configurations possibles avec une aile concrète et
trois abstraites qui ont été vérifiées chacune à l’égard des 14 pannes possibles. Le
temps moyen en secondes nécessaire à la vérification de la relation de satisfaction
pour chaque contrat et par rapport à chaque catégorie de panne est présenté à la
table 9.1. Même si le modèle système semble symétrique, les unités de commande
n’ont pas un comportement similaire et, en raison de leurs interconnexions avec
les ailes, l’espace d’états du système pour WING1 et WING3 est plus grand que
celui de WING2 et WING4 : le composant CMU1 est responsable de WING1

39

Résumé étendu

et WING3 pendant le déploiement de l’aile, mais transfère les requêtes vers les
quatre ailes pendant la préparation, alors que CMU2 ne gère que le déploiement
de WING2 et WING4 Pour la seconde étape, les obligations de preuve suivantes
doivent être vérifiées :

1. WA1 ‖ WA2 ‖ WA3 ‖ WA4 vMVM‖SOFTWARE‖CU G
2. MVM ‖ SOFTWARE ‖ CU ‖ WA2 ‖ WA3 ‖ WA4 vWA1 MVM ‖ SOFT-

WARE ‖ CU ‖ WA2 ‖ WA3 ‖ WA4
3. MVM ‖ SOFTWARE ‖ CU ‖ WA1 ‖ WA3 ‖ WA4 vWA2 MVM ‖ SOFT-

WARE ‖ CU ‖ WA1 ‖ WA3 ‖ WA4
4. MVM ‖ SOFTWARE ‖ CU ‖ WA1 ‖ WA2 ‖ WA4 vWA3 MVM ‖ SOFT-

WARE ‖ CU ‖ WA1 ‖ WA2 ‖ WA4
5. MVM ‖ SOFTWARE ‖ CU ‖ WA1 ‖ WA2 ‖ WA3 vWA4 MVM ‖ SOFT-

WARE ‖ CU ‖ WA1 ‖ WA2 ‖ WA3

Nous remarquons que les quatre dernières preuves sont triviales puisque le même
membre se trouve des deux côtés des relations. Seule la vérification du raffinement
du contrat global est nécessaire, ce qui a duré une seconde. Enfin, la vérification de
la conformité du contrat C est conforme à l’exigence a également pris une seconde.

Ce modèle système issu de l’industrie montre comment notre approche peut
s’appliquer. Il fournit également un bilan positif à l’égard des résultats de la
vérification. Nous pouvons affirmer que les modèles précédemment invérifiables
peuvent être maîtrisés par la méthode de conception et vérification à base de
contrats décrite dans cette thèse.

7 Conclusion et perspectives

Pour faire face à la complexité croissante des systèmes temps-réel critiques, nous
avons considéré dans cette thèse une méthode compositionnelle de développement à
base de composants dirigée par les exigences. Afin d’obtenir directement un modèle
correct du système à partir des exigences, nous avons défini un environnement
intermédiaire à base de contrats qui permet de spécifier, de façon abstraite, comment
une exigence peut se décomposer par rapport aux composants et comment les
composants contribuent à sa satisfaction. En conséquence, le contrat est défini par
une paire (hypothèse, garantie) ; il est impliqué dans trois relations de raffinement
qui permettent la conception itérative, à savoir : la conformité vérifie qu’un contrat
raffine une exigence globale du système, la dominance vérifie qu’un contrat plus
général est raffiné par un ensemble de contrats plus spécifiques et l’implémentation
vérifie qu’un composant raffine son contrat. Ces notions génériques sont structurées

40

7. Conclusion et perspectives

dans une méthodologie de raisonnement à base de contrats dans [143, 144, 142]
qui est instanciée tout au long de cette thèse.

Nous avons développé un framework à base de contrats comportementaux pour
des modèles système conçus avec SysML, qui peut également être utilisé dans la
vérification compositionnelle de la satisfaction des exigences de sûreté temporisées.
Notre contribution a deux dimensions : d’abord, nous avons introduit le framework
générique à base de contrats en SysML en définissant sa syntaxe et d’autre part, nous
avons défini sa sémantique par une variante des automates temporisés entrée/sortie
et nous avons introduit une méthode de vérification basée sur le model-checking
afin de prouver que les relations de raffinement modélisées sont satisfaites.

Dans l’ensemble, la théorie à base de contrats présentée vise à offrir les propriétés
suivantes :

• extensibilité : la méthode peut s’appliquer à des systèmes de grande taille et
produire une réponse concernant la satisfaction d’exigences globales,
• prévisibilité : les erreurs de conception peuvent être détectées dès les pre-
mières étapes de conception et la méthode peut s’appliquer à des modèles
architecturaux grossiers pour obtenir des modèles architecturaux plus fins, et
• réutilisabilité : à la fois en conception, par exemple lorsque les contrats sont
définis par des instances de type réutilisables, et en vérification, un couple
composant/contrat peut être remplacé par un autre tant que le raffinement
est satisfait localement.

En outre, cette méthode permet un développement itératif et incrémental des
modèles système.

Contrats en SysML

En premier lieu, étant donné que SysML est un langage de modélisation riche,
nous avons sélectionné un sous-ensemble de ses éléments de modélisation suffisant
pour décrire des systèmes hiérarchiques à base de composants. De plus, étant
un langage de modélisation semi-formel qui laisse ouverts plusieurs points de
variation sémantique nous nous sommes appuyés sur le profil OMEGA afin d’avoir
une démarche de modélisation système rigoureuse en imposant la satisfaction
d’un ensemble de règles de bonne formation concernant la sûreté du typage. Ce
langage de composants est étendu par du temps continu et la notion d’horloge,
et un mécanisme de formalisation et de vérification des exigences de sûreté avec
observateurs.

41

Résumé étendu

Ensuite, nous avons introduit les notions liées aux contrats en définissant un méta-
modèle enrichi par des règles de bonne formation afin de garantir qu’un modèle
étendu par des contrats est sans ambiguïté et fortement typé. Le méta-modèle est
décrit en utilisant UML et, par conséquence, l’extension proposée peut s’appliquer à
n’importe quel modèle UML/SysML. La définition syntaxique du framework à base
de contrats est suffisament générique pour être utilisée avec d’autres formalismes
sémantiques, à condition qu’ils expriment la sémantique d’un modèle SysML. Notre
définition de contrats gère explicitement un aspect important de la conception
dirigée par les exigences : les composants/contrats peuvent avoir une signature
plus riche que leur version abstraite, soit en incorporant plusieurs exigences dans
une implémentation soit en rendant plus explicite la contribution du composant
pour la satisfaction d’une exigence.

Nous avons instancié le méta-modèle pour le langage à composants OMEGA en
utilisant le mécanisme des stéréotypes afin de le rendre utilisable dans les éditeurs
de modèles et nous avons modélisé les règles de bonne formation définies en utilisant
OCL afin que les modèles système étendus par des contrats soient statiquement
vérifiables.

Afin de garder la description simple, nous avons supposé certaines restrictions sur
le modèle de composants qui n’ont pas d’impact sur l’expressivité d’un modèle
: toutes les communications transitent par les ports et un port peut être typé
seulement par une interface. Des travaux futurs peuvent explorer l’assouplissement
de ces conditions. Par exemple, permettre en SysML le typage des ports avec
plusieurs interfaces afin d’offrir plusieurs fonctionnalités pour plusieurs composants
au même point d’interaction. Le raffinement de la signature du contrat sera alors
transféré de la définition des ports à la définition du type des ports. En effet, il
est intéressant de permettre à l’utilisateur de redéfinir le type d’un port modélisé
pour la garantie en considérant seulement un sous-ensemble. Pourtant, une telle
modélisation transférerait la complexité du processus de conception des ports aux
types et pourrait surcharger la compilation d’une relation de dominance, car la
cible des signaux devrait être automatiquement calculée en prenant en compte les
ports et les connecteurs et pour laquelle des vérifications de typage s’imposent.

Théorie formelle à base de contrats pour les automates temporisés en-
trée/sortie

La nouveauté de cette notion de contrat est donnée par l’aspect comportamental de
l’hypothèse/garantie qui exprime des propriétés sur la dynamique d’un composant
via une machine à états. Par conséquent, vérifier les relations de raffinement

42

7. Conclusion et perspectives

(comportamental) dans lesquelles les contrats sont impliqués exige de formaliser la
sémantique du langage à composants. Le deuxième objectif de cette thèse consiste
à définir un cadre sémantique en terme d’automates temporisés entrée/sortie afin
d’incarner le langage à base de composants étendu par des contrats. Nous avons
défini un framework d’automates temporisés entrée/sortie en nous basant sur [108]
respectant la sémantique du modèle de composants et nous avons établi comme
relation de raffinement entre les composants l’inclusion des traces temporisées
préservée par la composition. Par la suite, nous avons présenté la correspondance
entre les éléments de modélisation SysML et les automates temporisés entrée/sortie
et nous avons esquissé un algorithme pour la génération des obligations de preuve.

A partir des composants représentés par des automates temporisés entrée/sortie,
nous avons construit le framework à base de contrats en définissant la sémantique
des obligations de preuve, c.à.d le raffinement dans un contexte sur lequel la
satisfaction d’un contrat et la dominance reposent. A son tour, le raffinement dans
un contexte repose sur la relation de conformité, qui est définie dans notre cas
comme l’inclusion des traces temporisées. Dans ce contexte à base de contrats, le
raisonnement pour les exigences de sûreté temporisées est à la fois bien défini et
correct, ce qui est établi par les propriétés compositionnelles que la théorie satisfait,
c.à.d le raffinement dans un contexte est préservé par la composition et garantit la
correction du raisonnement circulaire.

Parce que les obligations de preuve consistent à vérifier un ensemble de relations
d’inclusion dee traces temporisées et l’inclusion des traces est indécidable (sauf pour
certaines catégories d’automates temporisés), nous avons présenté une méthode
de vérification pour une sous-classe de propriétés de sûreté qui permet de décider
l’inclusion des traces par model-checking. Ainsi, une garantie est transformée en
un automate de propriété temporisé (un observateur) et nous prouvons que cette
transformation est suffisante pour vérifier l’inclusion de traces. Cependant, la
méthode de vérification est limitée aux propriétés de sûreté déterministes. Une
attention particulière doit être accordée aux hypothèses, qui, différemment des
garanties, ne sont pas tenues d’être modélisées par des propriétés de sûreté par
le framework formel. Rappelons que les hypothèses jouent le rôle d’exigences de
sûreté temporisées lorsqu’on prouve la dominance. Par conséquent, modéliser
les hypothèses comme des exigences de sûreté temporisées peut s’avérer difficile
surtout si le comportement de l’environnement qu’elles abstraient contient des
gardes temporisées strictes sur les actions.

Les travaux futurs concernent le renforcement du type d’exigences qui peuvent
être vérifiées par l’approche à base de contrats. La motivation est exprimée par le

43

Résumé étendu

langage qui est utilisé afin de modéliser des exigences de sûreté et qui ne permet pas
de spécifier des gardes temporisées strictes. Une idée serait d’utiliser la simulation
temporisée comme relation de conformité et/ou raffinement dans un contexte,
celle-ci permettant d’exprimer des contraintes temporelles plus fortes afin de se
dispenser de la condition de fermeture sous l’extension du temps : le composant
abstrait observe au moins le même écoulement de temps que le composant concret
et les sorties/actions visibles ne seront plus typés lazy. De même, une relation de
simulation permettrait d’étendre le type d’exigences vérifiables avec, par exemple,
le progrès. Un exemple de relation de raffinement dans un contexte basée sur
la simulation qui vérifie des exigences de sûreté et de progrès et qui garantit la
correction du raisonnement circulaire est donné en [99, 98] pour le framework
BIP. Deux questions sont cependant soulevées par l’utilisation de la simulation
: (1) comment le raffinement de signature peut-il être pris en compte et quelle
sémantique est à utiliser pour les actions qui ne sont pas explicitement modélisées
dans la garantie et (2) comment peut-on automatiquement vérifier la simulation
? En ce qui concerne le premier point, nous avons considéré un raffinement de
signature covariant (c.à.d plus d’entrées et de sorties dans le composant), tandis
que les actions ne figurant pas dans la garantie sont ignorées. Cependant, d’autres
interprétations sont possibles : un raffinement de signature co- et contravariant
(c.à.d plus d’entrées, moins de sorties dans le composant) peut être envisagé, alors
que les actions qui ne sont pas explicitement modélisées dans la garantie peuvent
être assimilées à des erreurs. En ce qui concerne le deuxième point, intégrer plusieurs
types de besoins dans une relation de simulation nécessite de la personnaliser, ce
qui risque d’induire une complexité croissante de la vérification automatique si elle
n’est pas équipée d’un outil personnalisable.

Mise en œuvre et retour d’expériences

L’approche à base de contrats est partiellement mise en oeuvre dans la boîte à outils
IFx2. Le compilateur uml2if transforme automatiquement un modèle système
étendu par des contrats dans un réseau d’automates temporisés entrée/sortie, qui
peut être vérifié par model-checking et simulé avec les outils IFx2. Les relations de
raffinement modélisées, ainsi que les contrats, ne sont pas encore pris en charge pour
la génération des obligations de preuve, ces étapes restant manuelles. Pour nos ex-
périmentations, nous avons manuellement modélisé différentes variantes du système
qui correspondent aux membre gauches des relations de conformité obtenues, ainsi
que la formalisation d’une hypothèse/garantie modélisée comme un composant
dans une exigence de sûreté. Les travaux futurs concernent l’automatisation de
toutes les étapes intermédiaires décrites et l’ajout de la gestion des obligations de

44

7. Conclusion et perspectives

preuve.

Enfin, nous avons illustré notre méthode sur deux études de cas — un exemple
paramétrique et un autre extrait d’un modèle système d’échelle industrielle — et
nous avons montré comment notre approche peut atténuer le problème d’explosion
combinatoire de l’espace d’états pour la vérification de grands systèmes. Cette
affirmation est confirmée par les résultats positifs obtenus pendant la vérification.

Nous concluons que notre framework à base de contrats est approprié à la conception
et la vérification compositionnelle des systèmes critiques temps-réel de grande taille
décrits par plusieurs couches architecturales, qui doivent satisfaire des exigences de
sûreté temporisées et qui ne modélisent pas de contraintes temporelles fortes pour
les actions.

Génération automatique des contrats

Une question importante qui n’a pas été traitée dans cette thèse et qui constitue
des travaux futurs concerne le guide méthodologique pour modéliser des contrats.
L’absence d’une méthode bien définie qui décrit comment obtenir/modéliser les
contrats pour le système entier et les composants est une des raisons de la difficulté à
exploiter les contrats en génie logiciel. En particulier les langages de programmation
n’ont pas eu le succès escompté. Néanmoins, nous pensons que le cas des contrats
dans les premières phases de l’ingénierie système est différent et que la notion de
contrat est fortement nécessaire pour décomposer les systèmes et pour vérifier leur
correction avant l’implémentation. Nous plaidons pour l’application de techniques
de vérification, même si leur coût est assez important, peut être dans la plupart
des cas moindre qu’identifier des erreurs dans le système après implémentation et
déploiement. Par conséquent, fournir des méthodes ou des guides méthodologiques
pour dériver des contrats intermédiaires à partir des exigences qu’on veut prouver
est notre perspective à long terme.

Une idée serait de générer automatiquement les garanties à utiliser en se basant
sur les exigences locales. En effet, à partir d’une exigence globale nous pourrions
déterminer un premier contrat qui intègre dans sa signature des actions spécifiques
(visibles) qui peuvent être utilisées par la suite dans la décomposition du contrat.
En général, ce contrat devrait être spécifié par le concepteur. Ensuite, à partir
de la garantie nous pourrions projeter la garantie globale sur un ensemble de
sous-garanties en tenant compte de l’hypothèse globale et de la signature de
chaque sous-composant. La correction des garanties locales par rapport à la
garantie abstraite peut être assurée avec une approche CEGAR. Nous supposons

45

Résumé étendu

que cette étape peut être appliquée de façon itérative jusqu’à ce que le niveau
de granularité atteint corresponde à une implémentation du contrat. Une telle
approche a récemment été étudiée [96] pour des systèmes à transitions étiquetées
sous le concept de réalisabilité.

Ce raisonnement correspond à la technique que nous avons appliquée pour déter-
miner les contrats tout au long des études de cas de cette thèse. Pour chaque
exemple, nous avons commencé par identifier les actions que le composant exécute
et qui contribuent directement à la satisfaction du besoin, mais aussi celles dépen-
dantes de l’environnement. Les garanties modélisées sont les plus faibles composants
qui simulent simplement la structure de leurs implémentations correspondantes.
Pour l’étude de cas industrielle, la tâche a été simple et directe : la garantie
globale est presque identique à l’exigence, tandis que les garanties des composants
représentent la projection de la garantie globale sur les composants. Pourtant, cette
étape nécessite de spéculer sur une architecture à base de composants réalisable et
un ensemble d’actions possibles.

Dans la même ligne de pensée, nous nous intéressons à la génération automatique
des hypothèses sur l’environnement qui doivent être modélisées pour chaque contrat.
Le raisonnement est similaire à la génération de la plus faible pré-condition pour un
triplet de Hoare : la garantie Gi a été précédemment calculée, soit automatiquement,
soit par définition, et l’implémentation Ki est donnée ; alors un environnement Ai
tel que Ki vAi Gi peut être déterminé. Si Ai ne peut pas être calculé, cela signifie
que Ki n’est pas une implémentation correcte pour Gi. Nous pouvons aussi utiliser
les obligations de preuve que la relation de dominance génère, si l’implémentation
Ki n’est pas fournie : G, Gi et A sont connus ; nous devons alors déterminer le plus
faible (et simple) Ai tel que la relation de conformité écrite A ‖ (‖nj=1 Gj) � Ai ‖ Gi

soit satisfaite. Comment calculer Ai en se basant sur la satisfaction de contrat a
été étudié [84, 134, 83] pour les systèmes à transitions étiquetées avec CEGAR et
l’apprentissage automatique.

Ces résultats fournissent une technique entièrement automatisée pour concevoir
des modèles système corrects par construction, qui pourrait être intégrée dans un
processus itératif de développement à base de composants.

Diagnostic d’erreurs avec les contrats

A court terme, une seconde perspective consiste à explorer le diagnostic d’erreurs
pour le framework à base de contrats. En effet, transférer le contre-exemple obtenu
sur le modèle formel dans le modèle semi-formel permettra aux ingénieurs d’identifier

46

7. Conclusion et perspectives

plus facilement l’erreur et la corriger. Avoir une transformation bidirectionnelle
traçable entre les deux modèles représenterait un atout pour la modélisation des
abstractions — sous la forme d’hypothèses/garanties dans notre cas — et leur
correction, chaque fois que le raffinement n’est pas satisfait localement.

De plus, le diagnostic doit être effectué sur l’arbre de preuve en entier, et pas
seulement localement. Nous avons esquissé à la section 5.4 un ensemble d’indications
de ce qui est envisageable si l’on ne parvient pas à prouver la satisfaction, ce que
nous avons appliqué aux études de cas présentées pour définir les abstractions
correctes. Cependant, ces règles doivent être soigneusement étudiées et, finalement,
définies comme méthodologie de diagnostic, ce qui pourrait être intégré au processus
de développement actuel.

47

Introduction

Context and motivation

Error-free safety critical systems are hard to develop and several recent disasters2

support this statement. For example, the Ariane 5 flight 501 exploded at 37 seconds
after launch3 due to an incorrect data conversion causing the loss of more than
370 million dollars, the MIM-104 Patriot anti-ballistic missile4 failed to intercept a
missile, which killed 28 soldiers, due an internal clock drift that resulted in wrong
computations for projectile searching and tracking and the Multidata Systems’
Cobalt-60 radiation therapy machine5 overdosed several dozens of patients in 2000
due to incorrect calculations dependent on the data entry sequence. System errors
(or bugs) are responsible for important casualties going through security issues,
environmental disasters and even loss of human life. Ensuring the safety and
correctness of such critical systems’ behavior is essential. A particular case is
represented by real-time systems for which, besides the order of actions or their
carried values, the correctness relies also on their timing, i.e. when an action must
be performed.

The development of critical real-time embedded systems is a challenging task.
There are two key factors that need to be considered during development: (1) what
is the best method for designing large and complex systems with minimal effort
and costs and (2) how can it be ensured that the designed system is correct with
respect to its requirements. Indeed, as systems grow in size and complexity so is
the number of errors they contain and which become harder to identify and correct,
while their impact on the final product may have catastrophic consequences.

In order to master the system’s size, system engineers have adopted a compositional

2http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
3http://sspg1.bnsc.rl.ac.uk/Share/ISTP/ariane5r.htm
4http://archive.today/XbB5
5http://www.iaea.org/newscenter/features/radiotherapy/dissection109.pdf

49

http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://sspg1.bnsc.rl.ac.uk/Share/ISTP/ariane5r.htm
http://archive.today/XbB5
http://www.iaea.org/newscenter/features/radiotherapy/dissection109.pdf

Introduction

design method based on components which allows to recursively decompose the
problem to solve, typically a requirement, into smaller ones (a divide-and-conquer
approach), until the desired granularity level is achieved. In consequence, designers
will deal with small specifications which are easier to develop, called atomic
components, or with the assembling of components by composition which results in
a hierarchical component. This design method has several advantages: separation of
concerns from the system’s decomposition, incremental development by successive
refinements, independent implementation of components by different engineering
teams and reusability that is harder to achieve.

Yet, having multiple suppliers building integrated systems based on common
requirements entails a risk of errors during the development due to the difficulty of
decomposing global system requirements on components and the misinterpretation
of system requirements allocated to the software. Therefore, the limitation of
this method resides in the inherent compositional aspect: it is difficult to design
a network of components that satisfy by their interaction a global requirement,
while, furthermore, components are usually involved in the satisfaction of several
requirements.

With respect to the second expressed issue, we need to take into consideration the
fact that early designs are often realized using semi-formal languages like UML
[91], SysML [90] or AADL [148] which lack a proper mechanism for formalizing
requirements and proving their satisfaction. The errors potentially introduced
during development are then discovered late and by very costly processes. Therefore,
the last decades have seen an accelerating utilization of formal verification and
validation techniques in the early phases of the development process in order to
guarantee as soon as possible the correctness of the design, as well as reducing
production costs and increasing system quality. From a correct design model via
proven refinement relations we can obtain a correct system implementation which
can be immediately deployed. It implies that formal methods can be used to derive
correct-by-construction implementations from high-level specifications if integrated
in an iterative development process.

Design models are validated using an assortment of techniques, including design
review [132], testing, interactive simulation and model-checking [141, 49, 52]. The
first three methods allow to detect errors in a lightweight way since they explore
only a subset of the system’s behaviors and, in consequence, they do not guarantee
the correctness of the system with respect to requirements. Model-checking is a
fully automated technique that exhaustively explores system’s behaviors, which
are represented by a state space model. The state space is usually a finite graph.

50

Introduction

However, for very large systems the state graph cannot be completely computed,
which makes model-checking suffer from the state space explosion problem: the
system becomes soon intractable if components execute concurrently, because the
number of states grows exponentially in size with the number of components.
Therefore, a verdict about requirement satisfaction cannot be provided. Examples
[71, 40, 21] show that common verification techniques may find themselves powerless
in front of the complexity of industrial-grade systems.

Three types of improvements have been studied in the literature:

1. reducing the state space by modifying the mathematical representation,
2. modeling abstractions for system’s components and verifying the requirement

satisfaction on the abstract model, and
3. decomposing the global requirement to properties that need to locally hold

on components, i.e. compositional approach.

We consider that the first approach is only partial if it cannot sufficiently reduce
the complexity of system designs in order to make them tractable. The last two
approaches are dual, since the specification plays the role of the component’s
abstract behavior for the second, and a constraint over the component’s behavior
for the third. However, their main limitation is that they do not take into account
the behavior of the component’s environment and, therefore, the component needs
to correctly refine its abstraction/constraint independently. This can be hard to
achieve since between a component and its environment there are usually mutual
dependencies on which their correctness is based. In consequence, the environment,
which can suffer from the state space explosion problem on its own, needs to be
considered during refinement.

In this thesis we propose to combine the abstract and compositional techniques
and define a unique specification for a component that is both abstract and
partial. The environment should also be constrained by such a specification.
Therefore, we use the notion of contract for a component, defined as a pair
(assumption, guarantee) where the assumption is an abstraction of the environment’s
behavior and the guarantee is the component’s abstract behavior with respect to
the running requirement, given that the environment behaves like the assumption.
The assumption is correct if the environment refines it in the abstract context of
the guarantee. This type of reasoning with contracts is called circular.

Informally, a contract models the point of view of the component and its contribution
toward the satisfaction of one requirement. Then, one component may implement
several contracts, one for each requirement that has to be satisfied. The set of

51

Introduction

contracts corresponding to the network of components needs to correctly assemble
and satisfy the requirement. Hence, the number of relations to be verified in order
for contract-based reasoning to hold is linear in the number of designed components
and we can assume that the involved compositions are in general reduced and can
be handled by automatic verification tools.

Contracts are a valuable asset for correct-by-construction component-based design
since they can be used to:

1. constrain the component’s behavior with respect to one requirement, while
several contracts can be integrated in the same implementation,

2. substitute and reuse (off-the-shelf) components that satisfy the given contract,
3. independently implement components based on the given contract without

challenging the requirement satisfaction, and
4. iteratively design systems by proven refinement.

These features are supported by the three refinement relations a contract can
be subject to: conformance verifies that the contract satisfies a requirement,
dominance verifies refinement between contracts and implementation verifies that
a component satisfies its contract. Moreover, contract-based reasoning offers
diverse opportunities: mapping and tracing requirements to components, tracking
the evolution of requirements during development, aid in model reviews, virtual
integration of components and, most importantly, compositional verification.

The contract-related notions presented above have been defined in [143, 144, 142]
in the form of a meta-theory. By meta-theory we denote a generic contract-based
framework that describes how the reasoning can be applied in system design and
compositional verification, but without providing a precise definition for these
concepts. In order to obtain a working framework for a specific component model,
one has to formalize the component framework — define at least the notions of
component, composition and refinement — and the contract framework — define
conformance, dominance and satisfaction. Moreover, a set of compositionality
properties must be proved to hold in the instantiation in order to guarantee the
soundness of the reasoning.

Contribution

Despite the obvious benefits, systems engineering does not use contract-based
reasoning as development technique for system models described with semi-formal
languages (e.g. UML, SysML, etc.) due to the lack of definition of a sound and

52

Introduction

complete contract-based framework directly applicable to such designs. The aim
of this thesis is to graft contract-based reasoning in the model-driven design and
requirement verification process for critical real-time embedded systems described
with SysML. To the best of our knowledge, this study is the first to link high-level
modeling languages and formal behavioral contracts.

Our contribution is manifold. In order to use contracts as first-class elements in
SysML, we define the syntax of the contract-related notions via a UML-based
meta-model. A set of well-formedness rules accompanies the meta-model in order
to ensure its compliance with the sound contract-based methodology described in
[143, 144, 142]. For example, such rules cover the actions a contract/component may
perform and their refinement by integrating several constraints into a component.
We instantiate the meta-model in the context of the OMEGA profile such that it
can be used by model editors. OMEGA [87] is a UML/SysML specialization, which
allows for rigorous engineering of real-time systems by providing a connection with
the IFx verification and validation toolset [34].

Secondly, we formalize the semantics of the SysML component language extended
with contracts by a variant of Timed Input/Output Automata (TIOA). This
transformation opens up the possibility to formally verify that the refinement
relations modeled between contracts and/or components hold, which implies the
satisfaction of the global requirement. In consequence, we define the mapping of
concepts from SysML to TIOA and we sketch how to explore a model in order to
generate the proof obligations corresponding to the desired refinement relations.
We partially implement this transformation in the IFx2 toolset with a compiler,
which takes as input a system design modeled with OMEGA in the XMI 2.0 format
and produces the network of TIOA on which the verification will be performed.
The updated version of the compiler extends the IFx2 features, namely simulation
and model-checking of real-time systems, to system models compliant with UML
2.3/SysML 1.1.

Based on the formal component framework we build the contract-based theory
by defining a proof obligation for each type of refinement relation. The obtained
contract-based framework is an instantiation of the meta-theory defined in [143,
144, 142], where components are represented as TIOA and proof obligations are
defined by a timed trace inclusion relation that takes into account the environment
and is denoted hereafter refinement under context. We prove that refinement under
context is preserved by composition and ensures sound circular reasoning, two
important results which are a prerequisite of the meta-theory guaranteeing the
soundness of the method. Since timed trace inclusion is undecidable and therefore

53

Introduction

cannot be automatically verified, we propose to use model-checking on each proof
obligation where the local requirement is transformed in a formal timed safety
property. Informally, a safety property models that something bad (i.e. undesirable)
never happens during the system’s execution. We prove that this transformation
and the application of reachability analysis is sufficient to guarantee, in our case,
timed trace inclusion. Since the formal framework and the verification method
impose some restrictions with respect to the expressiveness of contracts, we discuss
their impact on the component language used for modeling contracts and we define
a particular timed semantics which satisfies by default the required restrictions, i.e.
the guarantee must be a (deterministic) timed safety property.

Finally, the approach has been evaluated on two case studies among which one
consists in an industrial-grade system design, the Solar Generation Wing System
(SGS) of the Automated Transfer Vehicle (ATV), for which we verify of a general
safety requirement. The obtained results are encouraging: for the SGS case study,
the contract-based approach required the effort of 5 person*days for contract
modeling and performing verification, while monolithic model-checking, even in
conjunction with reduction techniques, fails to provide a result.

The results obtained in this thesis have been published in the following list of
papers:

1. Iulia Dragomir, Iulian Ober, and Christian Percebois. Safety Contracts for Timed
Reactive Components in SysML. In 40th International Conference on Current Trends
in Theory and Practice of Computer Science (SOFSEM), 25/01/2014–30/01/2014,
Novy Smokovec, Slovakia, pages 211-–222. Springer, January 2014.

2. Iulia Dragomir, Iulian Ober, and Christian Percebois. Integrating Verifiable As-
sume/Guarantee Contracts in UML/SysML. In 6th International Workshop on
Model Based Architecting and Construction of Embedded Systems (ACES- MB),
Miami, USA, 29/09/13–29/09/13. CEUR Workshop Proceedings, November 2013.

3. Iulia Dragomir, Iulian Ober, and Christian Percebois. Safety contracts for reac-
tive timed systems (extended abstract). In Action AFSEC, Journées GDR GPL,
02/04/2013–05/04/2013, Nancy, France, pages 37–46, April 2013.

4. Iulia Dragomir, Iulian Ober, and David Lesens. A Case Study in Formal System
Engineering with SysML. In 17th International Conference on Engineering of
Complex Computer Systems (ICECCS), 18/07/2012–20/07/2012, Paris, France,
pages 189–198. IEEE, July 2012.

5. Eric Conquet, François-Xavier Dormoy, Iulia Dragomir, Susanne Graf, David
Lesens, Piotr Nienaltowski, and Iulian Ober. Formal Model Driven Engineering
for Space Onboard Software. In International Conference on Embedded Real Time

54

Introduction

Software and Systems (ERTS2), 01/02/2012–03/02/2012, Toulouse, France. SAE,
January 2012.

6. Ileana Ober, Iulian Ober, Iulia Dragomir, and El Arbi Aboussoror. UML/SysML
semantic tunings. Innovations in Systems and Software Engineering, 7(4):257–264,
2011.

7. Eric Conquet, François-Xavier Dormoy, Iulia Dragomir, Alain Le Guennec, David
Lesens, Piotr Nienaltowski, and Iulian Ober. Modèles système, modèles logiciel
et modèles de code dans les applications spatiales. Génie logiciel, 1(97):9–15, juin
2011.

8. Iulian Ober and Iulia Dragomir. Unambiguous UML composite structures: the
OMEGA2 experience. In 37th International Conference on Current Trends in
Theory and Practice of Computer Science (SOFSEM), 22/01/2011–28/01/2011,
Novy Smokovec, Slovaquie, pages 418–430. Springer, January 2011.

9. Iulia Dragomir and Iulian Ober. Well-formedness and typing rules for UML Com-
posite Structures. CoRR, abs/1010.6155, October 2010.

10. Iulian Ober and Iulia Dragomir. OMEGA2: A new version of the profile and the
tools. In UML&AADL’2010–15th IEEE International Conference on Engineering
of Complex Computer Systems (ICECCS), 24/03/2010–25/03/2010, Oxford, UK,
pages 373–378. IEEE, March 2010.

The contribution is also supported by two internal research reports:

11. Iulia Dragomir, Iulian Ober, and Christian Percebois. Integrating verifiable As-
sume/Guarantee contracts in UML/SysML. Technical Report IRIT/RT- 2013-14-
FR, IRIT, July 2013.

12. Iulia Dragomir, Iulian Ober, and Christian Percebois. Safety Contracts for Timed
Reactive Systems. Technical Report IRIT/RT-2013-11-FR, IRIT, June 2013.

Organization

This thesis is structured in three parts, as follows: Part I focuses on the motivation
and the context of our work by describing the limits of current design and verifi-
cation techniques, Part II presents the theoretical contribution of our work, the
instantiation and implementation of the selected contract-based meta-theory for
systems described with SysML, and Part III describes the practical contribution
and assesses the verification results of our method with respect to monolithic
model-checking.

The first part contains three chapters that tackle the state of the art for both

55

Introduction

formal and semi-formal system design and verification, respectively contract-based
reasoning:

− Chapter 1 presents a survey of the formal modeling languages, that can be
used to represent critical real-time systems, and of the verification techniques,
which can be used to guarantee their correctness. We present the basic notions
about Timed Input/Output Automata and Timed Transition Systems, which
are used throughout this thesis to describe the semantics of the developed
systems. With respect to the verification aspect, we focus on model-checking
as it is technique that we adopt for our contract-based framework.

− Chapter 2 presents a survey of high-level modeling languages and their
associated profiles used in academia and industry for designing real-time
embedded systems. We inventory a non-exhaustive list of the validation and
verification environments built for such semi-formal designs, where model-
checking tools play an important role.

− Chapter 3 describes the method of reasoning with contracts in the form of
the meta-theory which is instantiated in this thesis. The chapter covers the
related work with respect to other defined meta-theories and their instances,
as well as the notion of contract as it is used in high-level modeling languages.

The second part details our theoretical contribution. More specifically:

− Chapter 4 sets out the context of our contributions by presenting the set of
notions from UML/SysML which we use throughout this thesis for modeling
real-time systems. We introduce the OMEGA profile whose aim is to provide
a clear and coherent syntax and semantics for UML/SysML and which
constitutes our working context.

− Chapter 5 defines the syntax for the contract-related notions described by the
meta-theory in the form of a UML meta-model and the set of well-formedness
rules which ensures the compliance of any model extended with contracts to
the meta-theory. We instantiate the domain meta-model for the OMEGA
component language and we show how the contract methodology can be
applied on a precise system design.

− Chapter 6 defines our contract-based theory by formalizing the semantics of a
system design extended with contracts with Timed Input/Output Automata
and specifying the proof obligation generated by each refinement relation mod-
eled between contracts and/or components. We show that the reasoning with
contracts is sound by proving that the required compositionality results hold
in our framework. We present a model-checking based verification algorithm
which transforms a timed input/output automaton into a timed property
automaton that formalizes a safety property. We discuss the limitations that

56

Introduction

the formal framework imposes on the expressiveness of contracts in SysML.
− Chapter 7 presents the implementation of our framework in the IFx2 Toolset.

We sketch how the modeling concepts can be mapped between (OMEGA)
SysML to TIOA and we present a proof generation algorithm for the contract-
related refinement relations modeled in a design. We describe the functional-
ities of the toolset, e.g. how to use contracts to debug erroneous models.

The third part evaluates the advantages of the contract-based approach on two
case studies:

− Chapter 8 presents a parametric case study whose aim is to show that our
approach is beneficial even for small systems that generate a large state space.

− Chapter 9 describes a case study extracted from the ATV real-life system,
which shows how the contract-based framework can be used to alleviate the
state space explosion problem and provide a yes/no requirement satisfaction
result where monolithic model-checking fails.

57

Part IState of the Art

59

1 Formal Modeling and Verification
of Real-Time Embedded Systems:
Current Approaches
System modeling plays a key role in the development process since it allows to
represent an abstraction of the system by focusing only on the crucial aspects,
both functional and non-functional. Integrated in a model-driven development
approach, such a model can be repeatedly refined towards implementations, while
incorporating formal frameworks will guarantee the correctness of the obtained
system either by construction or by applying verification and validation techniques.
Therefore, errors potentially introduced during design are discovered in the early
phases of the development with less costs and reduced consequences.

This thesis is at the crosswalk between formal methods and model-driven systems
engineering in the context of critical real-time embedded systems (RTES). In this
chapter we focus on the formal aspect by presenting a survey of the modeling
frameworks, as well as of the verification techniques currently used at system
development.

Section 1.1 presents the state of the art in the formal modeling of timed reactive
systems with a particular interest for Timed Input/Output Automata and Timed
Transition Systems for which we recall some basic definitions. Timed Input/Output
Automata represent the formal base of our work, while the latter describe the
semantics of our models. In Section 1.2, we provide a discussion of the verification
methods that can be applied on (formal) models. The comparison of their advan-
tages and drawbacks shows the motivation to implement a verification technique
with contracts for system designs.

61

Chapter 1. Formal Modeling and Verification of Real-Time
Embedded Systems: Current Approaches

1.1 Formal Models for Reactive Systems

Our interest focuses on the correct development of RTES where the central role
is played by the system design and the requirements it must satisfy. Typically, a
development process (e.g. the V-process) starts with a coarse-grained architecture
derived directly from the system requirements, which is then subject to iterative
decomposition and stepwise refinement until the needed level of granularity is
reached. Then at each refinement step, the obtained design has to be correct with
respect to the specified requirements. In order to evaluate whether such constraint
is satisfied we make use of formal models, which allow us to precisely represent
the system model (including its behavior) and the requirements it must satisfy.
Verification techniques, described in Section 1.2, developed on top of formal models
can provide an answer with respect to the satisfaction of system requirements.

However choosing the appropriate formal model to represent system designs is not
an easy task. It depends on several parameters like the elements that need to be
modeled and the type of requirements the system has to satisfy. Some formalisms
are too rich in what they model, e.g. modeling languages used in industry do
not usually capture the probabilistic aspect of actions which is considered by the
probabilistic system framework. While other formalisms need to be extended in
order to cover all aspects of a system, e.g. the input/output directionality of RTES
actions is defined as an extension of classical formal models. In consequence, each
modeling framework is targeted for the verification of certain types of requirements.
We discuss in the following the formal models defined in the literature that can
be used to represent the syntax and semantics of high-level modeling languages,
while we limit our attention to general safety requirements, i.e. something bad
does not happen. These languages like UML [91] and lately SysML [90] are often
used in system engineering for system design since they provide an intuitive set of
concepts as modeling elements. Such designs describe mainly a reactive model of
computation, i.e. event-driven: an action executed by the system is the effect of a
previous event. Therefore, in the following, we will focus on models that exhibit
or can incorporate an asynchronous communicating semantics. We mention that
SysML introduces elements that have a time-triggered model of computation such
as synchronous architectures, yet this communication paradigm has been explored
elsewhere and is not of concern.

For each framework we consider the main features needed to represent system
designs from high-level modeling languages: non-deterministic and timed behavior,
composition operator for hierarchical design of systems and refinement mechanisms
between systems at different abstraction levels.

62

1.1. Formal Models for Reactive Systems

1.1.1 Modeling Semantics: Transition Systems

Transition systems are abstract machine models used to describe the behavior of
systems by means of states and transitions, while they are illustrated as a directed
graph. They are the basic notation to represent the semantics of any type of model.

The state of a system models its precise features at a particular instant during its
execution. The state changes by firing transitions which model how the system
evolves. Each transition has a source state and a target state. Transitions can be
labeled with the name of the action performed by the system. Such systems are
called labeled transition systems.

Definition 1.1 (Labeled transition system). A labeled transition system (LTS)
S is a 4-tuple (Q, θ, A, D) where:

• Q is a non-empty set of states.
• θ is an initial state.
• A is the set of labels. This set contains the name of the observable actions

and ε, an internal silent action.
• D ⊆ Q× A×Q is the transition relation.

Notation. We often denote the elements of an LTS S by QS , θS , etc. We omit
these subscripts where no confusions seems likely. For a set of systems Si we use as
subscript the index i. Any transition (q, a, q′) ∈ DS is denoted by q a−→S q′. Again
we drop the subscript when S is clear from the context, or we use the index i for
a set of systems. We call q the source or origin state of the transition and q′ the
target or destination state. If for a state q and an action a there is a state q′ such
that q a−→ q′ then we say that a is enabled in q.

Figure 1.1(a) represents the LTS S1 = (Q1, θ1, A1,D1), whereQ1 = {q0, q1, q2, q3, q4},
θ1 = q0, A1 = {a, b, c} and D1 = {q0

a−→1 q1, q0
a−→1 q2, q1

b−→1 q3, q2
c−→1 q4}.

States are denoted by circles that contain their name, while transitions are marked
by arrows. The action performed by a transition is written on the arrow. The
initial state is represented using an arrow with no origin state.

Definition 1.2 (Determinism). An LTS S is deterministic if for every state q
and every label a ∈ A \ {ε} there is at most one state q′ such that q ε∗−→S

a−→S q′.

An LTS that is not deterministic is called non-deterministic. The LTS S1 from
Figure 1.1(a) is non-deterministic since in the initial state q0 and for the label a
there are two outgoing transitions reaching different states, {q1, q2}. The LTS S2

63

Chapter 1. Formal Modeling and Verification of Real-Time
Embedded Systems: Current Approaches

q0

q1 q2

q4q3

a a

b c

(a) Non-deterministic LTS S1.

q0

q1

q2 q3

a

b c

(b) Deterministic LTS S2.

Figure 1.1 – LTS examples.

represented in Figure 1.1(b) is, on the other hand, deterministic. Furthermore, S2

can be obtained via the determinization process from S1.

Large systems can be obtained from individually developed LTS by applying the
parallel composition operator. Informally, two LTS when executed in parallel
synchronize on common labels, while distinct actions are interleaved.

Definition 1.3 (Parallel composition). Let S1= (Q1, θ1, A1, D1) and S2 =
(Q2, θ2, A2, D2) be two LTS. S1 ‖ S2 is the LTS (Q, θ, A, D) where:

• Q ⊆ Q1 ×Q2,
• θ = (θ1, θ2),
• A = A1 ∪ A2 and
• D ⊆ Q× A×Q is the transition relation generated by the following rules:

1. if q1
a−→ q′1 and a ∈ (A1 \ A2) ∪ {ε} then (q1, q2)

a−→ (q′1, q2),
2. if q2

a−→ q′2 and a ∈ (A2 \ A1) ∪ {ε} then (q1, q2)
a−→ (q1, q

′
2) and

3. if q1
a−→ q′1 and q2

a−→ q′2 and a ∈ (A1∩A2)\{ε} then (q1, q2)
a−→ (q′1, q

′
2).

For the example from Figure 1.1, S1 ‖ S2 builds an LTS having an identical
structure as S1.

An execution of an LTS, which is denoted path or run, records the actions that
the LTS has performed as well as state modifications. Informally, a path starts
from the initial state and contains a finite or infinite sequence of states that can
be reached via successive actions. Indeed, a reactive system can have an infinite
execution called ω-sequence.

Definition 1.4 (Path). A path (or run) π for an LTS S is a finite or infinite
sequence q0a1q1a2q2 . . . where ∀i, ai ∈ A, qi ∈ Q, q0 = θ and qi

ai+1−→ qi+1.

64

1.1. Formal Models for Reactive Systems

Figure 1.2 – An LTS S3 having infinite paths.

We can define path fragments from a given state q by requiring the sequence to
start from q, i.e. q0 = q. We denote the set of path fragments from a state q with
frags(q). For the LTS S1, a finite path corresponds to π = q0

a−→ q1
b−→ q3. An

LTS having an infinite path is represented in Figure 1.2. Such a path consists in
infinite sequences of a and b, where each b is preceded by at least one a.

A path records all executed actions and state changes. However, we may be
interested in keeping from a run only the observable information, e.g. abstracting
the execution of the silent action ε. We introduce the notion of trace as the
projection of a path on observable actions.

Definition 1.5 (Trace). Let π = q0a1q1a2q2a3 . . . be a path of an LTS S. trace(π),
called trace of S, consists of a finite or infinite sequence of labels aj of π, where all
labels ai = ε are removed.

We can obtain a trace fragment from a state q by requiring that the corresponding
path starts from q. We denote the set of traces of an LTS S by tracesS and the set
of traces starting in a state q by tracefragsS(q).

The states that are obtained during a run of the LTS are called reachable.

Definition 1.6 (Reachable state). A state q ∈ Q is reachable in S if there exists
a path π = q0a1q1a2q2 . . . such that qi = q for some i ≥ 0.

We denote by reach(S) ⊆ Q the set of states that can be reached via any run of the
LTS and by reach(S)(σ) the set of states reached after the executions corresponding
to the trace σ.

Based on the set of traces we introduce trace inclusion, a preorder relation which
can be used to define refinement of LTS.

Definition 1.7 (Trace inclusion). Let S1 and S2 be two LTS. S1 refines S2,
denoted S1 � S2, if tracesS1 ⊆ tracesS2 .

For the example from Figure 1.1 we have tracesS1 = {φ, a, ab, ac} and tracesS2 =

{φ, a, ab, ac}, where φ denotes the empty trace (i.e. observable actions have not
been executed). Thus, S1 � S2 and S2 � S1.

65

Chapter 1. Formal Modeling and Verification of Real-Time
Embedded Systems: Current Approaches

A second relation which allows to compare LTS by taking into consideration their
structure is simulation [123].

Definition 1.8 (Simulation). Let Sc and Sa be two LTS with Ac = Aa = A,
where Sc denotes a concrete system and Sa an abstract one. A relationR ⊆ Qc×Qa

is a simulation relation if and only if θcRθa and ∀qcRqa and ∀a ∈ A such that
qc

a−→ q′c then ∃q′a such that qa
a−→ q′a and q′cRq′a. We write Sc 6 Sa if there exists

such a relation R between the two LTS.

Informally, Sc 6 Sa if any reachable state qc ∈ Qc can be mapped to a state qa ∈ Qa

(reachable via the same set of labels) and all labels enabled in qc are also enabled
in qa. We remark that simulation is a reflexive relation, i.e. S 6 S.

For the example in Figure 1.1 we have that S1 6 S2, but S2 ��6 S1 since qS21 ��R qS11 :
the label c is not enabled in qS11 .

The simulation notion defined above corresponds to strong simulation. This relation
can be weakened by ignoring the silent action from the mapping and, so, replacing
one transition with a sequence as defined by q ε∗−→ a−→ q′ for both S1 and S2, where
a ∈ A \ {ε}.

Simulation is strictly stronger than inclusion of traces, as it is described by the
following result.

Proposition 1.1. Let S1 and S2 be two LTS. If S1 6 S2 then S1 � S2.

Proposition 1.1 presents a sufficient condition for deciding trace inclusion by
verifying if simulation holds between the concrete and the abstract systems. As
we will see, trace inclusion is undecidable for some categories of formal models.
Therefore, verifying instead simulation is a good solution. Yet this condition is not
necessary: in the example from Figure 1.1 we have that S2 � S1, but S2 ��6 S1.

Several extensions have been developed for transition systems in order to encompass
different features: alternating transition systems [9] for describing a k-player
game, modal transition systems [116, 118] for designing both an over and under-
approximation of a system by differentiating between must and may transitions,
and timed transition systems [101] in order to quantify time elapse, as well as
hybrid versions like [8, 38, 27, 26].

An alternating transition system (ATS) is a generalization of labeled transition
systems for which a concurrent game structure is considered: a number of distinct

66

1.1. Formal Models for Reactive Systems

agents is defined and, in each state and for each agent, a set of possible transitions is
described. At execution, agents are selected either by a scheduler or in a predefined
order to perform actions, thus playing a game between them. A particular case is
given by the 2-player instantiation corresponding to the system under study and
the environment. Then, the system and the environment evolve in parallel and are
independent in their choices of transitions (while trying to avoid eventual erroneous
behaviors). We consider that ATS are aimed to answer the following question:
can the system resolve its internal choices such that the required properties are
satisfied regardless of how the environment behaves? Therefore, alternating logic is
well suited to model open systems and make the distinction between components
and the environment. In a compositional reasoning approach that does not take
the environment’s behavior into consideration, ATS represent a good semantics for
components.

A modal transition system (MTS) makes the difference between transitions that
must be considered (required transitions) and transitions that may be considered
(allowed transitions) in a system’s implementation. Since these notions do not have
an explicit counterpart when modeling RTES with high-level languages such as
UML and SysML, we will not consider them in the following as a good candidate
to express the semantics of our target RTES.

An important category of transition systems that allow modeling timed behavior
are timed transition systems (TTS). Basically, a TTS is a labeled transition system
where the set of transitions is enriched with transitions labeled with time delay.

Definition 1.9 (Timed transition system). A timed transition system (TTS)
S is a 4-tuple (Q, θ, A, D) where:

• Q is a non-empty set of states.
• θ is an initial state.
• A is a set of labels including the silent action ε.
• D ⊆ Q× (A ∪ R+)×Q is the transition relation.

A TTS satisfies the following axioms, where δ, δ1, δ2 ∈ R+:

A0) (0-delay)
q

0−→ q′ if and only if q = q′.
A1) (Time additivity)

q
δ1−→ q′ ∧ q′ δ2−→ q′′ =⇒ q

δ1+δ2−→ q′′.
A2) (Time continuity)

q
δ1+δ2−→ q′′ =⇒ ∃q′.(q δ1−→ q′ ∧ q′ δ2−→ q′′).

67

Chapter 1. Formal Modeling and Verification of Real-Time
Embedded Systems: Current Approaches

A3) (Time-determinism)
q

δ−→ q′ ∧ q δ−→ q′′ =⇒ q′ = q′′.

The concepts defined for LTS can be easily extended to TTS: path and trace
contain also the time elapse as label, the simulation relation requires the same
amount of time to be observed by the two TTS and two TTS that are composed
need to strongly synchronize also on time elapse.

1.1.2 Timed (Input/Output) Automata

Describing complex RTES directly as transition systems is a cumbersome, and
somewhat unreasonable, task due to the large number of states and actions they
define. More compact notations are required to be used for modeling such systems.
Alur et al. have introduced in [7] the timed automata concept for modeling timed
systems which has now become the standard to describe RTES.

Definition 1.10 (Timed automaton). A timed automaton (TA) A is a 6-tuple
(L, L0, Clk, C, A, D) where:

• L is a finite set of locations.
• L0 is an initial location.
• Clk is a finite set of clocks.
• C : L → Φ(Clk) is a function that associates to each location some clock
constraint. Φ(Clk) consists in individual constraints of type x ≤ c, c ≤ x,
their negation or their conjunction, where x is a clock and c a constant in Q.
• A is a set of observable actions.
• D ⊆ L × A × Φ(Clk) × 2Clk × L is a set of transitions of type (s, a, φ, λ,
s′) where s and s′ are locations, a the action to be performed, φ is the clock
constraint which specifies when the transition is enabled (also called guard)
and λ the set of clocks to be reset.

Basically, a timed automaton is a finite automaton enriched with a set of real-valued
clocks that allow to measure time delays. In this computational model, time passes
at the same rate for all clocks. Each location modeled in the automaton is mapped
by a function C to a clock constraint that describes how much time can elapse
before a transition is executed. Once a transition is enabled, i.e. the corresponding
guard is satisfied by the current valuation of clocks, the discrete action may be
performed and a set of clocks may be reset to 0. At any instant when a clock is
read, it contains the amount of time elapsed since its last reset.

68

1.1. Formal Models for Reactive Systems

The semantics of a timed automaton is given by a timed transition system. A state
of the TA becomes a pair (s, v) ∈ L× RClk

+ that consists of a discrete location s
and the valuation of all clocks denoted by v. From a state (s, v) such that v � C(s)

where � denotes satisfaction, the TA can progress either by a discrete transition
(performing an action) or by letting time elapse. The transition relation −→ of the
corresponding TTS is the largest relation generated by the following rules:

1. for a ∈ A, (s, v)
a−→ (s′, v′) if ∃(s, a, φ, λ, s′) ∈ D such that v � φ, v′ = v[λ]

(i.e. clocks from λ are set to 0, while the others keep their values) and
v′ � C(s′).

2. for δ ∈ R+, (s, v)
δ−→ (s, v′) if v′ = v + δ (i.e. clock values are augmented

with δ) and v, v′ � C(s).

Then, the corresponding TTS is the 4-tuple (Q, θ, A, −→) where Q = L× RClk
+

and θ = (L0,0) where 0 denotes the valuation of all clocks to 0.

The same notions as for TTS are used to describe the behavior of a TA, i.e. path
and trace. Compound systems can be modeled as networks of timed automata
which are composed by a parallel composition operator. Similarly to TTS, the
composition operator requires the synchronization of common actions and time
elapse and interleaving of the other actions.

A different notation for timed automata has been proposed in [108] which we will
discuss later together with its input/output extension.

Due to their success for modeling real-time systems, several extended versions of
TA have been proposed in order to better describe different aspects of the target
systems. We may cite probabilistic TA [20], hybrid TA [100], TA with urgency
[31, 32, 14] and Timed Input/Output Automata [108, 62]. We discuss in the
following the latter two extensions which inspired our work.

Timed Automata with Urgency

In [32] is argued that modeling time progress conditions by clock constraints on
both states and transitions is somewhat inconvenient, especially when hard time
bounds with respect to performing actions have to be specified. Timed automata
with urgency propose to describe time elapse only on transitions by shifting the
clock constraints defined on states to the notion of deadline for transitions. A
transition of the TA with urgency has the structure (s, a, g, d, λ, s′) where g
and d are the guard, respectively the deadline, of the transition and consist in
individual constraints of type x#c, x− y#c, their negation or conjunction, where

69

Chapter 1. Formal Modeling and Verification of Real-Time
Embedded Systems: Current Approaches

c is a constant, x, y ∈ Clk and # ∈ {≤, <}. Transitions are correctly defined if
d =⇒ g.

From the relative position of the deadline d with respect to the guard g we
distinguish several urgency types for actions:

• eager when d = g. This condition specifies that time progress is disabled.
If the automaton is in a state and such type of transition is enabled, the
automaton cannot remain in the state and has to immediately execute one of
the enabled transitions. Remark that the executed transition may be different
from the transition that disabled time elapse.
• lazy when d = false. This condition specifies that time progress is enabled
and unbounded. If the automaton is in a state and a lazy transition is
enabled, the automaton may take the transition or may let time elapse. Time
can progress to infinity if there is no stronger condition defined on the other
outgoing transitions.
• delayable when d is the falling edge of a right-closed g. This condition specifies
that time progress is enabled and bounded by a limit. If the automaton is
in a state where a delayable transition is enabled, time can elapse up to the
limit, when the transition becomes eager. Then an enabled transition must
be immediately executed. A delayable transition cannot be disabled without
forcing its execution.

At the TTS level, time can elapse in a state as long as the time progress condition
cs =

∧
i∈I(¬di) holds, where I denotes the set of outgoing transitions from the

state.

Timed Input/Output Automata

A second extension for TA consists in partitioning the set of actions into inputs
and outputs, denoted timed input/output automata (TIOA). For an automaton,
input actions correspond to the actions performed by the environment and are
represented by the prefix ?, while output actions correspond to actions it executes
and are represented by the prefix !. Therefore, for the automaton under study,
inputs are uncontrollable and outputs are controllable.

In literature, several distinct notations have been defined for TIOA: [62, 61] build
their specification framework on top of the standard definition for TA for which
timed game semantics is considered during refinement, [108] defines a representation
similar to hybrid TTS that satisfies several interesting compositionality results
and [113] extends TA with urgency where refinement is given by a conformance

70

1.1. Formal Models for Reactive Systems

relation.

TIOA of David et al. [62, 61]. As mentioned, [62, 61] define a game-based spec-
ification theory for timed systems. By specification theory we mean that besides the
parallel composition and refinement operators, conjunction and quotient operators
are defined. The conjunction allows computing the largest specification that refines
two independent ones defined over the same language. The quotient operator
computes from a partially implemented specification, the coarsest specification
of the remaining (not implemented) part. Generally, the aim for a specification
theory is to provide substitutivity results allowing for compositional design.

The input/output extension is defined for the Alur-Dill TA [7], as follows.

Definition 1.11 (Timed Input/Output Automaton [62, 61]). A timed in-
put/output automaton A is a TA (L, L0, Clk, C, A, D) where A = I ∪ O, I
denoting the set of inputs and O the set of outputs.

The timed game semantics is expressed by the refinement relation, which in this
framework consists in alternating timed simulation at the TTS level.

Definition 1.12 (Alternating timed simulation). Let A1 and A2 be two
input/output TTS. A1 6 A2 if and only if ∃R ⊆ Q1 ×Q2 a binary relation such
that θ1Rθ2 and ∀q1Rq2:

• whenever q2
?a−→2 q

′
2 for some q′2 ∈ Q2 then ∃q′1 ∈ Q1 such that q1

?a−→1 q
′
1

and q′1Rq′2,
• whenever q1

!a−→1 q
′
1 for some q′1 ∈ Q1 then ∃q′2 ∈ Q2 such that q2

!a−→2 q
′
2

and q′1Rq′2,
• whenever q1

δ−→1 q
′
1 for some q′1 ∈ Q1 and δ ∈ R+ then ∃q′2 ∈ Q2 such that

q2
δ−→2 q

′
2 and q′1Rq′2.

This framework is implemented in the ECDAR toolkit [64, 63] which provides
means for compositional design of real-time systems.

A different specification theory for the same input model has been defined in [44],
where refinement is defined by a timed trace inclusion relation. This specification
framework is used for checking that safety and bounded liveness properties (see
Section 1.2) are preserved at component substitution.

TIOA of Krichen et al. [113]. In [113], the refinement relation is similar to
the trace inclusion relation. The timed input/output conformance relation (tioco)

71

Chapter 1. Formal Modeling and Verification of Real-Time
Embedded Systems: Current Approaches

states that a concrete TIOA with urgency A1 conforms to an abstract TIOA with
urgency A2 if and only if for any trace σ of A2, the set of enabled outputs and time
delays of A1 after any run matching σ is included in the set of enabled outputs and
time delays of A2. The main difference consists in the condition A2 ⊆ A1 over the
set of labels, while trace inclusion requires for both automata to share the same
set of labels. Therefore, A1 may accept more inputs than its abstraction and so
performing a refinement of signature.

TIOA of Kaynar et al. [108]. The definition of timed input/output automata
from [108] resembles the definition of TTS, but this framework is more general
by allowing to describe hybrid systems. By hybrid systems we mean that the
contained clocks may have multiple and therefore different rates.

A system is represented by a non-deterministic, possibly infinite-state, automaton.
An automaton can own local variables and a set of clocks. The state of the
automaton is given by the valuation of all its internal variables. The state of
an automaton can evolve either due to a discrete transition or over a dense time
interval by following a trajectory. Each discrete transition corresponds to an action.
The set of actions is partitioned into internal actions which are not observable by
the environment and external actions used to communicate with the environment
divided into inputs and outputs. A trajectory is an increasing function over the
time interval J , J ⊆ R+, with values in the set of states of the automaton. For
an internal variable v, the trajectory describes its evolution over time elapse. We
remark that the evolution of clocks is expressed by a differential equation in a
trajectory, one for each clock, and therefore they may have different time rates.

Definition 1.13 (Timed Input/Output Automaton [108]). A timed in-
put/output automaton A is a 9-tuple (X,Clk,Q, θ, I, O,H,D, T) where:

• X is a finite set of discrete variables and Clk is a finite set of clocks. We
denote by Y = X ∪ Clk the set of internal variables.
• Q ⊆ val(Y) is a set of states where val(Y) is the set of valuations for Y . A
valuation is a function defined on Y that associates to each variable a value
from its domain.
• θ ∈ Q is the start state.
• I is a set of input actions and O a set of output actions. We denote by
E = I ∪O the set of external actions.
• H is a set of internal actions. We denote by A = E ∪ H the set of all

executable actions.
• I, O and H are pairwise disjoint sets.
• D ⊆ Q× A×Q is a set of discrete transitions.

72

1.1. Formal Models for Reactive Systems

• T is the set of trajectories. Each trajectory is a function τ : Jτ → Q, where
Jτ is a real interval of type [0, t] or [0,∞) with t ∈ R+.

Notation. The same notation convention as for LTS holds here. For a trajectory
τ we denote by τ.fval = τ(0) and by τ.ltime the supremum of its domain. Then
τ.lval = τ(τ.ltime). The same annotation x

τ−→ x′ can be used where, ∀τ ∈ T ,
x = τ.fval and x′ = τ.lval .

A trajectory τ is closed if its domain is a closed interval. τ ′ = τd[0, t] with t ∈ Jτ
is called a prefix where d denotes the restriction operator. τ ′ is a suffix if ∃t ∈ Jτ
such that τ ′ : [0, τ.ltime − t]→ Q if τ is closed or τ ′ : [0,∞)→ Q if τ is open, and
τ ′(u) = τ(t+ u), i.e. τ ′ obtained by restricting τ to Jτ ∩ [t,∞) and left-shifting it
such that Jτ ′ starts in 0.

A timed input/output automaton has to satisfy the following axioms:

A0) (Existence of point trajectories)
∀x ∈ Q, γ(x) ∈ T where γ(x) : [0, 0]→ x maps 0 to x.

A1) (Prefix closure)
∀τ ∈ T , ∀τ ′ a prefix of τ , τ ′ ∈ T .

A2) (Suffix closure)
∀τ ∈ T , ∀τ ′ a suffix of τ , τ ′ ∈ T .

A3) (Concatenation closure)
Let τ0τ1τ2 · · · be a (finite or countably infinite) sequence of trajectories in T
such that, for each nonfinal index i, τi is closed and τi.lval = τi+1.fval . Then
τa0 τ

a
1 τ
a
2 · · · ∈ T , where a denotes the concatenation operator, i.e. the union

between a first closed trajectory and a second one right-shifted such that its
start time coincides to the limit of the first one.

A4) (Input actions enabling)
∀x ∈ Q,∀a ∈ I,∃x′ ∈ Q such that x

a−→ x′.
A5) (Time-passage enabling)

∀x ∈ Q,∃τ ∈ T such that τ(0) = x and either
1. τ.ltime =∞, or
2. τ is closed and some a ∈ H ∪O is enabled in τ.lval .

An important feature of this framework is its expressiveness. The urgency stereo-
types presented above can be easily described by the set of available trajectories in
a state, as it is showed in the following:

• eager will give place in a state only to the point trajectory;
• lazy is translated as the set of all possible trajectories. Let 2[R0

+] = {[0, t]|t ∈
R+} ∪ {[0,∞)}, i.e. the set of intervals defined in R+ having their left-limit

73

Chapter 1. Formal Modeling and Verification of Real-Time
Embedded Systems: Current Approaches

equal to 0. Then the set of trajectories available in a state is {τIτ |∀Iτ ∈
2[R0

+], τIτ : Iτ → Q}
• delayable until d gives the set of possible trajectories on the domain {[0, t)|t ≤
d, t ∈ R+}.

The behavior of the automaton is described by the same notions as for TTS, the
path (or execution) and the trace, while for the trace actions in H are abstracted.
The set of traces of the automaton tracesA can present two properties: closure
under limits and closure under time-extension. Closure under limits informally
means that any infinite sequence whose prefixes are traces is also a trace. Closure
under time-extension denotes that any trace can be extended with an open interval
trajectory. The formal definitions are presented in [108].

Two automata can be composed if they are compatible: they do not share any
variables or internal actions and outputs are disjoint. Syntactically, the parallel
composition operator models the input/output synchronization and interleaving of
all other unmatched actions, while matching actions become output actions.

Definition 1.14 (Parallel composition). If A1 and A2 are two compatible
TIOAs then their composition A1 ‖ A2 is defined to be the tuple (X, Clk, Q, θ, I,
O, H, D, T) where:

• X = X1 ∪X2 and Clk = Clk1 ∪ Clk2.
• Q = {x1 ∪ x2|x1 ∈ Q1, x2 ∈ Q2}. Note that x1 ∪ x2, which denotes the set

union of functions x1 and x2, is well defined since the domains of x1 and x2

are disjoint.
• θ = θ1 ∪ θ2.
• I = (I1 \O2) ∪ (I2 \O1).
• O = O1 ∪O2.
• H = H1 ∪H2.
• D is the set of discrete transitions where for each x = x1∪x2, x′ = x′1∪x′2 ∈ Q

and each a ∈ A, x
a−→ x′ if and only if for i ∈ {1, 2}, either

1. a ∈ Ai and xi
a−→i x′i, or

2. a 6∈ Ai and xi = x′i.
• τ ∈ T ⇔ τdXi ∈ Ti, i ∈ {1, 2}.

This theory defines several refinement relations: trace inclusion also named imple-
mentation, forward and backward simulation, history and prophecy relations. In
the following we consider trace inclusion to verify refinement between automata
and we present two compositionality results from [108] that are proved to hold and
which we will later exploit in our contribution.

74

1.1. Formal Models for Reactive Systems

Theorem 1.1. Let A1 and A2 be two TIOAs with the same external set of actions
such that A1 � A2 and E a TIOA compatible with both A1 and A2. Then A1 ‖
E � A2 ‖ E.

Theorem 1.2. Let K, E, G and A be TIOAs such that K and G, and E and A
have the same external set of actions and each of K and G are compatible with E
and A. If

• tracesA and tracesG are closed under limits and under time-extension,
• K ‖ A � G ‖ A
• G ‖ E � G ‖ A

then K ‖ E � G ‖ A.

Theorem 1.1 shows that trace inclusion is compositional, i.e. refinement is preserved
by composition. Theorem 1.2 is an assume-guarantee style of substitutivity result
which allows to replace abstract safety properties with implementations if the
refinement relation is satisfied in the abstract context of the other. The conditions
of closure under limits and time-extension model that both A and G are safety
properties with arbitrary time-passage. The safety aspect is given by the closure
under limits characterization of the set of traces: if all traces in a chain of successive
extensions “satisfy” a property, then so does its chain limit. And, if a trace “satisfies”
a property, then so do all its prefixes.

1.1.3 Interface Theories

Another compact notation used to model a system is the interface automaton.
Introduced in [65, 66, 117], it is defined as an automata-based language that
captures the order in which methods of a system are called (inputs) and the order
in which the system calls external methods (outputs). It proposes a fixed model of
computation by strongly synchronizing inputs and outputs at composition under an
optimistic approach: the order of methods called by the environment is correct. This
condition represents the main difference with respect to I/O automata: while an
I/O automaton has its inputs enabled in any state, the interface automaton enables
input reception in a precise order, i.e. interface automata model certain assumptions
about the environment in which they are used. The semantics of an interface
automaton is given by an ATS, the refinement relation being defined as alternating
simulation which is preserved under composition. The set of actions of two interface
automata involved in a refinement relation must satisfy a covariant relation on
inputs (i.e. more inputs enabled in the concrete automaton) and a contravariant
relation on outputs (i.e. less outputs enabled in the concrete automaton).

75

Chapter 1. Formal Modeling and Verification of Real-Time
Embedded Systems: Current Approaches

In consequence, interface automata are aimed to answer the following composability
question: is there an environment in which components can work together correctly?
More generally, a component from an interface theory can be used as a common
specification by different teams working concurrently on partial designs while
ensuring independent implementability.

Different versions of interface theories have been defined in the literature: timed in-
terfaces [67], modal interfaces [38, 27] or interfaces for synchronous communications
[153, 81].

Interface theories have also been subject to the definition of specification theories.
In [39], an interface automaton is extended with an explicit representation for
inconsistent states, while its semantics is given by an input/output labeled transition
system. The formalism defines parallel composition, refinement based on trace
inclusion, conjunction and quotient at the semantical level. Specification theories
have been considered also for modal interfaces in [26, 145, 27].

1.1.4 Summary

Our aim is to formally model reliable RTES designed with UML/SysML. Therefore,
the framework needs to explicitly describe the following features: time progress via
clocks, input/output distinction of the performed actions and input-enabledness
for modeling asynchronous communications. Based on this characterization, we
consider that the most appropriate semantical model to describe such system
designs is the input/output TTS, with an operational representation as TIOA.

There are two important mathematical representations for TIOA, which we com-
pare in Table 1.1 with respect to several key elements needed in UML/SysML
modeling like describing internal computation steps, providing means to incorporate
asynchronous communication and already available compositional reasoning results.

Describing the semantics of an RTES in the TIOA theory defined in [62, 61] suffers
from several limitations. First of all, internal complex computational steps can
not be described in this formalism since the silent action ε is not member of the
set of actions partitioned only into inputs and outputs. Moreover, extending the
notation to include silent actions is not a solution since the refinement relation
does not take into account such transitions. Actually, refinement is defined as
strong timed alternating simulation at the semantic level (game-based treatment)
and is compositional. The second limitation is related to the parallel composition
operator which defines a synchronous communication. Since the TIOA does not

76

1.2. Verification Techniques for Formal Models

TIOA of [62, 61] TIOA of [108]
Modeling internal computation % !

Asynchronous communication % !

Compositional refinement ! !

Specification algebra ! %

Table 1.1 – Comparison of TIOA representations.

define the silent action ε, the consumption of a received message, which is specific
to asynchronous communication, cannot be described. A more general remark is
that this framework defines a specification theory suited for compositional design
based on the added operators conjunction and quotient, where quotient is however
a partial specification, i.e. it cannot always be computed.

On the other hand, the theory from [108] presents several features that make it
more suitable to describe the semantics of RTES. The definition of a TIOA includes
a set of internal variables and actions besides clocks, which allow to model more
complex computations. The definition of trajectory allows the modeling of hybrid
systems and it includes the timed semantics of the TA from [7]. The equivalent
timed semantics can be obtained by restricting trajectories to constant values
for internal variables and the derivative describing clock rates to 1. Moreover,
trajectories can be easily used to describe the urgency notation of TA, which makes
the framework’s expressiveness richer.

The parallel composition operator also describes synchronous communications but
can be simply adapted to asynchronous one: a predefined variable queue can store
inputs — the automaton is input-enabled — which are handled later by internal
actions. Several refinement relations are available, from which the framework
proves two interesting compositional properties for trace inclusion: refinement is a
preorder (i.e. reflexive and transitive) compositional relation and can be used in an
assume/guarantee reasoning style.

Based on these features, we chose to represent the semantics of our RTES in the
framework of [108] since it is well defined and the compositionality results it proves
are a prerequisite of our contribution.

1.2 Verification Techniques for Formal Models

In order to certify that the system model is correct, we employ formal methods
for guaranteeing the satisfaction of system requirements. A particular type of

77

Chapter 1. Formal Modeling and Verification of Real-Time
Embedded Systems: Current Approaches

requirements is represented by timed properties: they describe the accepted actions
a system may perform and when they may occur, e.g. a response should be delivered
in x time units. In this thesis we concentrate on a non-exhaustive category of
requirements related to timed behavior, which are described in Section 1.2.1.

Several validation and verification techniques can be used during the development
phases to check if the system meets its specified requirements. Validation methods
are aimed to confirm if the right product has been designed, i.e. if the obtained
result is correct. For example, tests allow to find bugs in a system design either
during implementation or at component integration by specifying a set of inputs
and inspecting if the obtained result is the required one. Interactive simulation is
also a validation technique in which the execution of the system is supervised by
the user in order to detect possible requirement violations. Their main limitation is
that they are non-exhaustive, i.e. only a partial set of behaviors can be considered,
and, therefore, the absence of property violations does not imply the satisfaction
of the requirement.

In contrast, verification techniques cover all behaviors a system can exhibit for
verifying requirement satisfaction. By definition, they aim to inspect if the system
has been correctly developed. There are two main approaches to explore the
system’s entire behavior: theorem proving and model-checking. Theorem proving is
an automated method in which the system and the requirement are specified in
some mathematical formalism, while interactive mathematical proofs are realized
on the formalization using logic calculus. The main inconvenience is that they
necessitate the interaction with a user that will guide the proof. In consequence,
this technique is hard to master by non-experts. Instead, model-checking is an
automatic method directly applicable on the formal model of a system and which
hides the implementation/proof details from the user. Therefore, it has gained a
lot of popularity in both academical and industrial world. Yet, it suffers from some
limitations in the verification of very large systems or systems-of-systems. Under
these considerations, we chose to use in the following model-checking, described
in Section 1.2.2, for proving requirement satisfaction and for which we are led to
define an improvement for its limits.

1.2.1 Overview on System Requirements

We distinguish several types of requirements that a reactive system may have to
satisfy which are summarized hereafter.

Reachability. This property models that a certain state of the system can or

78

1.2. Verification Techniques for Formal Models

cannot be reached during execution. Reachability is often used to characterize
safety properties and bounded liveness ones.

Safety. Such a property verifies the absence of catastrophic consequences under
given conditions, i.e. something bad never happens, by describing the set of
acceptable behaviors for the system. Safety is usually formalized as a reachability
property where bad states must be avoided at execution. If a safety property is
not satisfied, a finite execution of the system is sufficient to find a counterexample.

Liveness. Informally, a liveness requirement states that something good eventually
happens. Therefore, liveness describes progress conditions about the system. There
are two possible causes for not achieving progress: (1) a deadlock situation in which
two components cannot execute discrete transitions since they wait for each other
to finish their computation and (2) a livelock situation in which two components
continuously change their state with regard to one another but without finishing
their computation. In order to detect inconsistent behaviors, infinite time is needed
for observing the system: the action eventually occurs sometime in the future. A
particular case is represented by the bounded liveness property which states that
the property must be satisfied in a maximal delay, i.e. an action occurs within
a given period. Bounded liveness requirements can be described by timed safety
properties.

Reliability. It describes the system’s ability to behave continuously correct.
Reliability is depicted by fault-tolerance properties which are relevant for safety-
critical systems, i.e. if certain faults are produced by the environment the system’s
behavior is consistent.

Performance. Such property characterizes the speed of operation/computation
for a system. An interesting sub-class is represented by the response time require-
ments which describe how fast an output is produced by the system based on the
received inputs. We consider that the timed behavior of a system requirement
can be interpreted in this manner, with a particular consideration when refining
requirements into components.

1.2.2 Model-Checking

Model-checking [141, 49, 52] is one of the most well-known fully automated verifi-
cation techniques that provides an answer to the requirement satisfaction problem.
It consists in exploring all the behaviors of a system and ascertaining that the
property holds for all states and all orders of events. A system is usually given

79

Chapter 1. Formal Modeling and Verification of Real-Time
Embedded Systems: Current Approaches

by its timed transition systems, while a property can be expressed by different
formalisms like Linear Temporal Logic [138], Timed Linear Temporal Logic [102],
Computational Tree Logic (CTL) [49], Timed CTL [6] or timed property automata
[4].

The latter consists in modeling the requirement that the system S must satisfy
with a timed automaton O such that AO ⊆ AS . Then the algorithm proceeds by
synchronizing S with O and the property checking sums up to some reachability
problem of a bad state (i.e. the system does not satisfy the property) or a good state
(i.e. the system satisfies the property) for S ‖ O, i.e. reachability analysis. Therefore,
model-checking is tailored for verifying (timed) safety and liveness properties.

Being an enumerative method of the state space, model-checking guarantees that
all behaviors of the system have been explored and therefore the obtained result is
correct. A second advantage of model-checking is that it can provide a counterex-
ample when the property is not satisfied. This counterexample corresponds to one
or more problematic behaviors that should be considered for correcting the model.

However, this characterization is also the cause of the main drawbacks for model-
checking. First of all, explicit-state model-checking can be considered only for
systems that have a finite number of states. Secondly, when verifying industrial-
grade models, the state space’s size quickly becomes combinatorial, which makes
practical model-checking impossible. This problem is commonly known in literature
as the state space explosion problem.

In order to overcome it, several optimization techniques have been proposed. The
main goal is to make model-checking scalable such that more complex systems can
be subject to formal verification.

Reduction techniques. The aim of these techniques is to reduce the state space
either by using a symbolic representation for states [103] or applying partial order
reduction [86]. A symbolic representation allows to have more compact and abstract
notations like zones or difference bound matrices to group time elapse or binary
decision diagrams to structure sets of states. Partial order allows to explore a
representative subset of system runs by keeping only one independent sequence
of actions and eliminating the others. Two actions a1 and a2 are independent if
in any state both sequences a1a2 and a2a1 are enabled and they reach the same
target state. Therefore, depending on the degree of independence, a large number
of transitions may be eliminated, but this still may not be sufficient to be able to
explore the rest of the state space.

80

1.2. Verification Techniques for Formal Models

Compositional model-checking. Since a system is usually built by assembling
several components, another approach is to exploit the architectural structure for
verifying requirement satisfaction, denoted compositional reasoning [68, 53, 94].
Given a system S = S1 ‖ S2 ‖ . . . ‖ Sn and ϕ the requirement to verify, the
basic idea is to decompose ϕ on components and to individually verify that each
component Si satisfies its corresponding ϕi. Since components are in general smaller,
the state space is reduced and therefore, the verification process becomes tractable.
Two remarks need to be made about this approach: (1) the decomposition of
requirements is a laborious task since there is no methodological guideline available
and (2) components can rarely satisfy a property on their own without taking into
consideration the behavior of the environment. Dependencies between components
and their environment need to be clearly identified and verified, exercise that is
sometimes tedious because such dependencies are frequently mutual.

Abstraction. This technique [51, 69] is somewhat the dual of compositional
model-checking by working on components rather than requirements. For each
component Si an abstraction S ′i is provided and the satisfaction of the requirement
ϕ must be proved on the composition S ′1 ‖ S ′2 ‖ . . . ‖ S ′n. The first remark we
make about this approach is that the abstraction has to be correct: Si refines S ′i
and S ′i preserves all the properties of Si needed for proving the satisfaction of the
global requirement. By applying model-checking for the satisfaction of the global
requirement on the abstract model, a counterexample is generated in case of an
error. Then, one needs to inspect the counterexample on the concrete system in
order to decide if it is valid, i.e. the concrete system contains an incorrect behavior,
or spurious, i.e. the error is introduced by the modeled abstraction and it does not
hold on the concrete system. In case of a spurious error the concerned S ′i must be
refined, while in case of a valid error the component Si, which violates ϕ, must be
refined. These steps are summarized by the counterexample guided abstraction
refinement (CEGAR) [50, 29, 1, 97] method, which may be applied on S ′i in order to
guarantee its correctness. Secondly, the same remark as for compositional reasoning
with respect to the dependency upon the environment holds here, since the used
refinement relation may not take into account the environment’s behavior.

1.2.3 Summary

Model-checking has gained real success in the verification of formal timed system
models. This can be claimed by the large number of available implementations like
UPPAAL [119] for the TIOA of [62, 61], CADP [79], nuSMV [45], Spin [105], IF
toolset [34] for TIOA with urgency and extended with data structures, etc.

81

Chapter 1. Formal Modeling and Verification of Real-Time
Embedded Systems: Current Approaches

The main drawback of model-checking is that it suffers from the combinatorial state
space explosion problem which makes it inappropriate for large system’s monolithic
verification. In order to alleviate this problem two interesting optimizations
have been developed which still present some limitations, i.e. abstraction and
compositional reasoning. Our contribution is situated in the field of compositional
reasoning and abstraction modeling and refinement by introducing an intermediate
level of contracts for specifying requirements. Therefore, a contract will model
with a guarantee an abstract behavior for a component given that the environment
behaves in a specified way while it will also play the role of a partial specification for
a requirement. The notion of guarantee represents at the same time for a component
an abstraction but also a constraint given by the requirement’s decomposition on
components.

In order to take into account the environment during refinement, the contract
defines an assumption over its behavior from the point of view of the component
to which it is related. In consequence, the guarantee is a correct abstraction
for the component in the context of the assumption, while the assumption is a
correct abstraction of the environment only in the context of guarantee. This type
of reasoning is called circular and is merely a particular case of the abstraction
optimization by restricting the refinement relation to an abstract context (instead
of all possible behaviors).

Then, instead of generating in one step the entire state space, model-checking will
be applied only locally on the system’s decomposition: each contract needs to
be satisfied either by the component to which is related or, if it is defined for a
composed component, by a set of contracts which refines it. Indeed, depending
on the hierarchical structure of the system, the approach can be iterated for a
composed component downwards to its sub-components, which can be either atomic
or composed depending on their complexity and the desired level of granularity.
We assume, at this level of detail, that the requirement is expressed as the starting
guarantee.

The number of refinement relations that need to be verified is linear in the number of
components the system models. We remark here that for two identical components
which satisfy the same contract, refinement verification needs to be performed only
once. This fact underlines the reusability feature of the method.

In consequence, this method which we call contract-based model-checking can
effectively tackle the state space explosion problem, provided that the defined
abstractions are small enough.

82

1.3. Conclusion

1.3 Conclusion

This chapter focuses on the correct development of RTES with respect to the
desired requirements, which requires the use of formal models and methods. In
consequence, we have outlined several modeling frameworks, both operational
and semantical, that could describe RTES modeled with UML/SysML. Since
UML/SysML designs allow to describe components having timed behaviors with
complex internal computational steps and a reactive model of computation, we
chose to formalize the system design with the Timed Input/Output Automata
of [108], while their semantical representation is given by timed input/output
transition systems and the refinement relation between components as timed trace
inclusion.

As verification technique, we focus on model-checking since it is a fully automated
method currently used in industrial practice that provides a yes/no answer to the
requirement satisfaction problem. Yet, model-checking suffers from the combinato-
rial state space explosion problem, which makes the method intractable for very
large systems or systems-of-systems. We have briefly introduced the context of our
work, denoted contract-based model-checking, which proposes an optimization to the
monolithic approach by applying model-checking only locally on components, i.e.
it combines the abstraction and compositional optimization approaches. Therefore,
the notion of contract is introduced in the system design in order to specify for
each component an abstract and partial behavior with respect to the running
requirement, as well as the abstract context in which this constraint needs to
hold. Hence, model-checking will be applied several times, linear in the number of
components, but we can assume that the abstractions are small enough in order to
efficiently alleviate the state space explosion problem.

83

2 High-Level Modeling Languages
and Associated Environments for
Real-Time Embedded Systems
Formal models allow to precisely specify the system to develop and its requirements
based on a clear and sound syntax and semantics. Furthermore, formal specifications
can provide a correct design and implementation of systems due to the verification
and validation techniques they are subject to. However, despite their strong
theoretical bases, employing formal languages during development is a difficult
task for non-experts and an important source of errors given the abstract nature
inherent to this type of language.

With the advent of object-oriented design and analysis, the Unified Modeling
Language (UML) [91] has been proposed and standardized as common means to
generally specify computer systems. UML and lately Systems Modeling Language
(SysML) [90], a UML extension specialized to systems and requirements engineering,
provide a standard graphical notation for the visualization of the system design
which is accompanied by a semi-formal specification. By semi-formal specification
we mean that UML/SysML define a well-formed syntax, while their semantics
is sometimes ambiguous or unspecified (i.e. open variation points). Therefore,
they define an intuitive set of concepts for modeling systems halfway between
natural language and formal models, but they cannot be exploited as defined for
the validation and verification of system designs. Several environments have been
developed in order to allow the verification of a system design by transforming it
into a formal specification, which constitutes the input of a model-checking tool.

A different notation than UML is the Architecture Analysis & Design Language
(AADL) [148], a standard specialized in the architectural modeling of embedded
systems. The aim of AADL is to provide means to model distributed fault-tolerant
architectures with support for the analysis and validation of system requirements.
Yet, it does not contain any mechanism for explicitly specifying timed behavior.

85

Chapter 2. High-Level Modeling Languages and Associated
Environments for Real-Time Embedded Systems

The Specification and Description Language (SDL) [106, 149] is a standard pro-
posed for the development of real-time event-driven asynchronously communicating
systems that involve parallel computations, primarily applied for telecommunication
systems. Different from UML/SysML, this notation presents mathematical rigor via
its clear and consistent formal semantics, which allows to generate implementation
code that can be further used for validation and verification, e.g. simulation. But
also, UML is more general than SDL which can be considered a domain specific
language due to its notions originating from programming languages: a UML profile
[107] has been designed to represent SDL notions and enable UML model editors
for SDL [112, 111].

In this chapter we present a non-exhaustive state of the art in modeling and verifying
system designs with UML/SysML. Section 2.1 generally presents UML/SysML and
their extensions, called profiles, that cover the real-time aspect. Section 2.2 lists a
set of verification and validation environments for semi-formal system designs.

2.1 UML/SysML and Related Profiles for Real-
Time Systems

Modeling in UML/SysML consists in designing different diagrams that cover
multiple views of a system, namely: requirements, architecture and behavior. The
requirement diagram, specific to SysML, describes the system’s properties and
the relations between them, where a property is expressed in natural language.
The architecture of the system is given in UML/SysML in class diagrams/block
definition diagrams by classes/blocks used to describe types and in composite
structures/internal block diagrams by objects/block instances that are assembled
together and communicate via interaction points and links. Finally, the behavior
of the system is expressed either by state machine diagrams, sequence diagrams or
activity diagrams. A state machine is a notation similar to finite-state automata
that can execute and invoke actions, as well as changing the state of the owning
component. A sequence diagram describes the collaboration between components
by modeling the execution order of events. An activity diagram describes the
workflow of a component with possible communication between components.

The real-time features of a system are partially covered in UML 2.x. In order
to fully describe RTES, the following aspects need to be offered by high-level
modeling languages: models for physical time, timing specifications and facilities,
and models for physical resources and concurrency. Yet, UML 2.x defines modeling

86

2.1. UML/SysML and Related Profiles for Real-Time Systems

elements for concurrency (e.g. active objects, composite states for an object) and
two time-related data types — Time and TimeExpression — that can be used to
express timing constraints in sequence/state/timing diagrams.

SysML partially inherits real-time notions from UML 2.x: the concurrency aspect
is present in SysML, yet the timed behavior of a component cannot be modeled.
Moreover, SysML includes notions that allow modeling synchronous distributed
fault-tolerant architectures (i.e. time-triggered).

Previous versions of UML, namely 1.x, did not cover any time-related aspect.
In consequence, the Schedulability, Performance and Time Specification (SPT)
[89] profile has been defined in order to enable the modeling of quality of service,
resource, time and concurrency, and performing predictive schedulability and
performance analysis. The profile owns several time-related stereotypes, e.g. Clock,
TimeValue and TimeInterval, which can be directly applied by the user on the
corresponding modeled concepts. In consequence, there is no formal semantics
specified for these stereotypes, which makes the verification and validation task
cumbersome.

The SPT profile, available only for UML 1.4, has been replaced in 2009 by the
Modeling and Analysis of Real-Time and Embedded Systems (MARTE) Profile
[129], compliant with UML 2.x. MARTE is a more generic profile, which provides
several computational paradigms (asynchronous, synchronous and time-triggered)
and facilitates model-specific analysis (e.g. performance, schedulability) by anno-
tating models with the essential information. Similar to SPT, MARTE defines a set
of time-related stereotypes for which it does not specify a clear formal semantics.

SPT has served as source for other profiles targeting real-time specifications. We
mention here the OMEGA Profile [87], which defines a clear and coherent formal
semantics for a subset of UML and two extensions: concepts for modeling timing
constraints and formalization of requirements with observers. OMEGA has a
proprietary tool that allows to perform formal validation and verification with the
IFx toolset1; prior to this thesis the toolset was compliant only to UML 1.3. We
have recently updated the profile to make it comply with UML 2.x and SysML
in [125, 126, 58, 57]: the architecture of a system is described by block definition
diagrams and internal block diagrams, while its behavior is given by state machine
diagrams. The new features are considered for implementation in the IFx2 Toolset2.

The Timed UML and RT-LOTOS Environment (TURTLE) [12] is a UML 1.5
1http://www-if.imag.fr/
2http://www.irit.fr/ifx/

87

http://www-if.imag.fr/
http://www.irit.fr/ifx/

Chapter 2. High-Level Modeling Languages and Associated
Environments for Real-Time Embedded Systems

Profile that defines notions for concurrency and timing constraints. It introduces
several composition operators, which have to be explicitly described, for modeling
concurrency: parallel composition, synchronization, sequence, invocation and
preemption. Temporal operators include deterministic and non-deterministic
delays. Timing constraints can be modeled in the activity diagram for each
object. TURTLE has also been updated recently, which led to the definition of
a SysML Profile extended with time named AVATAR [137]. The behavior of a
system is given in an AVATAR design mainly by state machines extended with
the temporal operators defined in TURTLE, namely delays of behavior suspension
and computation time for instructions. Requirements are formalized using the
Temporal Expression Property LanguagE (TEPE) [110], while both profiles are
supported by TTool3.

The MADES language [140] proposes to use a subset of SysML and MARTE to
describe RTES with a focus on the hardware specification and allocating resources
to hardware, while avoiding incompatibilities from the usage of both profiles. Clock
specifications are based on the MARTE’s Time Modeling concepts, therefore the
corresponding stereotypes are instantiated on each case study instead of defining
general applicable clock types. The Zot tool [15] enables the verification of MADES
designs via a transformation to temporal logic formulae.

Other approaches include the UML-RT profile [150] that allows modeling complex
event-driven and possibly distributed real-time systems. This profile defines con-
currency notions, yet it does not support time and timing constraints modeling.
A more detailed discussion about UML-related real-time profiles can be found in
[82, 115].

2.2 Verification Tools for System Designs

The verification and validation of a system design demands the transformation
of the semi-formal model into a formal model, as well as specifying requirements
with the aid of a formal language. Within the past years, several tools have been
developed to support essentially the model-checking of system designs modeled
with UML/SysML/MARTE, but also with other component languages derived
from UML. Such tools, based on already developed model-checkers, are either
directly integrated into modeling tools or they provide independent transformation
from the input model (usually expressed in an XMI [93] file) to the target language

3http://ttool.telecom-paristech.fr/

88

http://ttool.telecom-paristech.fr/

2.2. Verification Tools for System Designs

of the considered model-checker. For example, SysML Companion4 provides as
extensions model-checking in UPPAAL and Spin.

IBM Rhapsody5 includes validation by simulation in its toolbox. In [59], a system
model developed with Rhapsody where the behavior is expressed by state machines
is subject to model checking in UPPAAL. The system’s properties, even though
they are initially described in requirements diagrams, have to be expressed by the
user as CTL formulas on the obtained timed automata network model.

HUGO/RT6 translates a system model where the behavior is described by time
annotated state machines for the UPPAAL model checker [109]. The requirement
to verify is modeled by the user as a time annotated sequence diagram which is
transformed into a timed property automaton.

ARTISAN Real-Time Studio7 system designs are transformed in [5] into input
models for the nuSMV model-checker. The framework translates the behavior
described in sequence, activity and state machine diagrams into the Configuration
Transition Systems intermediate format which is model-checked with respect to
the automatically generated properties as well as manually specified ones as CTL
formulas.

The Topcased Environment8 provides connections with UPPAAL and CADP for
SysML models. The AGATE project [147] translates SysML activity diagrams into
timed automata in order to analyze the execution of the system on a mono platform
processor, where time descriptions are based on MARTE stereotypes. The FIACRE
language [25] is proposed as pivot representation in Topcased to connect AADL,
SDL, UML and SysML models to CADP or TINA9. TINA is a model-checker
for Timed Petri Nets [139], a formalism used for representing distributed timed
systems. However, the automated transformation from UML/SysML to FIACRE
is not yet available.

The academic toolbox TTool10 transforms AVATAR models [137] into UPPAAL.
Safety requirements are expressed using the Temporal Expression Property Lan-
guagE (TEPE) [110] that uses the parametric diagrams of SysML to express logical
and temporal relations between block attributes and signals. The system design

4http://www.realtimeatwork.com/software/sysml-companion/
5http://www-03.ibm.com/software/products/en/ratirhapfami
6http://www.pst.informatik.uni-muenchen.de/projekte/hugo/
7http://www.atego.com/products/atego-modeler/
8http://polarsys.org/
9http://projects.laas.fr/tina/

10http://ttool.telecom-paristech.fr/

89

http://www.realtimeatwork.com/software/sysml-companion/
http://www-03.ibm.com/software/products/en/ratirhapfami
http://www.pst.informatik.uni-muenchen.de/projekte/hugo/
http://www.atego.com/products/atego-modeler/
http://polarsys.org/
http://projects.laas.fr/tina/
http://ttool.telecom-paristech.fr/

Chapter 2. High-Level Modeling Languages and Associated
Environments for Real-Time Embedded Systems

is transformed into a network of timed automata, while the requirements become
timed property automata.

The IFx toolset11 transforms an OMEGA design (modeled with IBM Rhapsody
or Papyrus12) into asynchronously communicating timed automata with urgency.
Timed safety requirements are formalized by observers, a special type of objects
that monitor the executed events within the system, which are then translated into
timed property automata. The tools available in the IF Toolset13 can be applied
on the obtained formal specification: interactive simulation of the OMEGA model
and model-checking combined with reduction techniques.

Lately, MARTE designs have also been considered as inputs models for model-
checking. In [152] mode behaviors (i.e. a specialization of state machines) are
transformed in timed automata for the UPPAAL model-checker and a requirement
is expressed using the Clock Constraint Specification Language (CCSL) [10] which
allows to specify causality constraints, chronological and timed properties. In [80]
activity diagrams are transformed in Timed Petri Nets, the input model for TINA,
while several categories of requirements proposed by the framework are available for
verification, like best/worst-case response/execution/traversal time, schedulability
and synchronization-related properties.

2.3 Conclusion

Semi-formal modeling languages have been rapidly adopted by the industrial devel-
opment of RTES for the high-level specification of systems and their requirements
due to their graphical, compact and easy to use notation. For example, Airbus
Defence and Space (ADS)14 has deployed SysML for capturing the system require-
ments of the new version of Ariane-5 launcher. Yet, high-level models often contain
bugs mainly due to the ambiguous semantics these languages define which leads
to different interpretations of the design by system engineering teams, but also
due to the insufficient knowledge of the formalisms and jargon used by system and
software engineering teams during development. Ensuring that the system design
satisfies its requirements from the first development phases is a major concern since
it permits to implement safe systems having a greater quality and with reduced
production costs.

11http://www.irit.fr/ifx
12http://www.eclipse.org/papyrus/
13http://www-if.imag.fr/
14http://airbusdefenceandspace.com/

90

http://www.irit.fr/ifx
http://www.eclipse.org/papyrus/
http://www-if.imag.fr/
http://airbusdefenceandspace.com/

2.3. Conclusion

Time-related
concepts Formal semantics Tool

support

UML 2.x
! (concurrency and
timing constraints —

data types)
% !15

SysML ! (concurrency) % !

SPT/MARTE
! (timing constraints,

shedulability,
performance —
stereotypes)

! (Timed Automata,
Timed Petri Nets16) !

UML-RT % %
!

(Rational)

OMEGA
! (concurrency,
timing constraints,

performance)

! (Timed Automata
with urgency)

! (any
modeler and
IFx Toolset)

TURTLE/AVATAR ! (delays,
composition operator)

! (RT-LOTOS,
Timed Automata) ! (TTool)

Table 2.1 – Comparison of UML/SysML and related profiles for modeling RTES.

Therefore, the validation and verification of semi-formal system models has become
a crucial task at each design step. Model-checking is widely used via different tools
for guaranteeing the satisfaction of requirements. Yet, the limitations that were
expressed at the formal level hold also at the semi-formal level. In consequence,
the improvement we discussed in Section 1.3 should be transferred to high-level
system designs.

Table 2.1 presents a summary of the modeling frameworks previously described
and their associated validation and verification environments. We can remark that
the standards do not impose any constraint with respect to the formal semantics
of the concepts they define, and that a formal semantics is rather associated with
the toolset used for verification. The OMEGA and AVATAR approaches are
better candidates for rigorous system engineering due to their inherent formal
aspect, which is a great aid in modeling unambiguous components that serve
as common specifications for the different teams implementing the system. The
main inconvenience for AVATAR is that only TTool can be used to design such
systems, whereas OMEGA is compatible to any modeling tool offering the option
to add profiles to a model and to export the model in an XMI file, making it more
compelling.

15Several tools are available both for modeling such designs, as well as their verification.
16The formal semantics depends on the toolset used for validation and verification, since the

standards do not describe one.

91

3 Contract-based Reasoning for Hier-
archical Systems of Components

Contract-based design is an emerging development paradigm for the modular
and compositional design and verification of systems, which has its roots in the
axiomatic representation of programs [104, 2] and has been fruitfully applied in
object-oriented software engineering [121].

The principle is to define a partial and abstract specification in the form of a contract
that every component must implement. The specification is partial since it has to be
defined only with respect to the running requirement and abstract since it does not
provide implementation details of the requirements. In consequence, a specification
represents the projection of a requirement on the component that has to satisfy it.
With respect to the system design, contracts are a valuable asset since they allow
for: component substitutivity and reuse, incremental development and independent
implementability. Complemented with a formal approach, the design process can
result in correct-by-construction implementations. Besides design, contracts can be
used for: mapping and tracing requirement to components, tracking requirements
during their evolution, correct virtual integration of components [60] and, most
importantly, compositional verification.

Recent work has explored the notion of contract in order to define a recipe for
developing systems in the form of meta-theories, but also to directly provide theories
and tools for specific component formalisms. Recall that by meta-theory we mean
a generic framework, independent of a particular component specification: in order
to obtain a working theory, one has to formalize the component specification and
the refinement relations contract/components are subject to, while proving possibly
required compositionality results. However, the application of the contract-based
(meta-)theories in high-level modeling languages has been left aside. Until now the
concept of contract as it is used in systems engineering mainly refers to the couple

93

Chapter 3. Contract-based Reasoning for Hierarchical Systems of
Components

pre/post condition for operations or for model transformations.

In this chapter, we present an overview of the contract-based approaches as they
are defined and used in both fields. Section 3.1 describes the formal contract-based
reasoning (meta-)theories defined in the literature and their implementations, for
which we review the basic notions. Section 3.2 depicts the types of contracts that
were proposed for high-level modeling languages and their aim.

3.1 Contract-based Meta-Theories and their Im-
plementations

The interest for examining meta-theories comes from their formal generic aspect and
the sound reasoning method they define. The generic aspect allows to instantiate the
meta-theory for any component language and therefore obtain a working framework
that could immediately be applied for contract-based reasoning in a particular
context. A meta-theory’s reasoning is based on a set of compositional properties that
allow to correctly establish requirement satisfaction. In consequence, the instance
contract-based framework will also guarantee the soundness of its application,
provided that these properties are proved in the meta-theory’s instantiation.

3.1.1 A Meta-theory for Contract-based Reasoning

In the following we describe the meta-theory proposed in [143, 144, 142] which
constitutes the basis of our work. We provide the key notions and properties
that allow to compositionally reason with contracts for hierarchical systems. An
important asset of this meta-theory is the methodology with which it is equipped,
as illustrated in Figure 3.1, and which is explained below.

Assume, at any level of the hierarchical decomposition of a system, a subsystem
S obtained from the composition of several components K1, K2,. . ., Kn for which
we want to prove that it satisfies a requirement ϕ. This meta-theory leaves
open the choice of the composition operator in order to accommodate various
operators. In order to simplify the presentation, we will assume the existence of
a notion of component compatibility, to be defined in the instance of the meta-
theory, and the existence of a composition operator for every pair of compatible
components, denoted ‖, which is unique and associative. Thus, S is obtained from
the composition K1 ‖ K2 ‖ . . . ‖ Kn.

94

3.1. Contract-based Meta-Theories and their Implementations

A G

C A || G ⪯ φ

{C1, ..., Cn} dominates C

A1 G1

C1

A2 G2

C2

K1 K2

Ki ⊧ Ci , ∀i S

A3 G3

C3

K3

Step 1) Satisfaction :

Step 2) Dominance :

Step 4) Conformance :

satisfaction

bidirectional
communication

φ

⪯

E

Legend

Step 3) "Mirror" contract satisfaction

Figure 3.1 – Contract-based reasoning for a three-component subsystem ([142]).

In order to use the methodology, one starts by modeling a contract for each
component the subsystem contains.

Definition 3.1 (Contract). A contract C consists of a pair of compatible compo-
nents (A, G) where the component A is called the assumption and the component
G is called the guarantee.

The contract Ci = (Ai, Gi) for the component Ki is an abstract model of how the
component Ki contributes towards the satisfaction of the requirement ϕ. The
assumption models the behavior of the environment of Ki and the guarantee models
the expected behavior of Ki provided that the environment obeys the assumption.
Note that different contracts can be expressed for one component, in particular
when one wants to prove different properties on the subsystem S. The example in
Figure 3.1 presents a subsystem S formed by three components K1, K2 and K3

and its environment E with which it communicates. For each of these components
a contract Ci is modeled.

In order to prove the satisfaction of ϕ, the reasoning proceeds by first proving that
each component satisfies its contract, denoted Ki |= Ci. To define satisfaction,
the meta-theory relies upon the existence of a refinement under context relation.
This relation between two components Ki and Kj in an environment E, denoted
Ki vE Kj, informally means that the component Ki, when composed with the

95

Chapter 3. Contract-based Reasoning for Hierarchical Systems of
Components

environment E, “behaves like” Kj when composed with the same environment.
Although the choice of the refinement under context relation is left open, the
meta-theory requires the operator to satisfy certain important properties, such as
compositionality and correctness of circular reasoning; they are needed for proving
Theorem 3.1 below.

Based on refinement under context, contract satisfaction is defined as follows:

Definition 3.2 (Contract satisfaction). Let C = (A,G) be a contract for a
component K. Then K satisfies the contract C, denoted K |= C, if and only if
K vA G.

Note that the meta-theory does not impose any constraint with respect to the
signature of the components K, A and G. As we will later see, we allow A and
G to concentrate only on a subset of a component’s signature and on a part of
its behavior. This provides the ability to keep a contract abstract, with only the
essential information for the running requirement.

The second step of the reasoning shown in Figure 3.1 consists in defining a contract
C = (A,G) for the entire subsystem S and proving that the set of contracts {Ci}i=1,n

dominates the contract C.

Definition 3.3 (Contract dominance). A set of contracts {Ci}i=1,n dominates
a contract C if and only if for any set of components {Ki}i=1,n the following holds:
Ki |= Ci, i = 1, n =⇒ K1 ‖ K2 ‖ . . . ‖ Kn |= C

The dominance relation as defined in this meta-theory involves component compo-
sition while avoiding the definition of a contract composition operator. Still, when
using contract-based reasoning for verification we are not interested in manipulating
implementations in order to establish dominance which are the main cause for
combinatorial explosion in large systems. The meta-theory provides an alternative
result which boils dominance down to a set of satisfaction checks, provided that
two compositionality conditions hold in the framework’s instance:

1. Refinement under context is compositional: K1 vE1‖E2 K2 =⇒ K1 ‖
E1 vE2 K2 ‖ E1. This property allows for incremental design by successively
incorporating parts of the environment in the components under study, while
refinement under context holds.

2. Circular reasoning is sound: K vA G ∧ E vG A =⇒ K vE G. This
property allows for independent implementability by breaking down the
dependency between the components and their environment.

96

3.1. Contract-based Meta-Theories and their Implementations

These two compositionality results allow the meta-theory’s reasoning to be sound.

Theorem 3.1 (Sufficient condition for dominance). If compositionality and
circular reasoning are sound, then for establishing that {Ci}i=1,n dominates C it is
sufficient to prove that

{
G1 ‖ ... ‖ Gn |= C, and
A ‖ G1 ‖ ... ‖ Gi−1 ‖ Gi+1 ‖ ... ‖ Gn |= C−1

i , ∀i ∈ 1, n

where C−1
i = (Gi, Ai) denotes the “mirror” contract of Ci.

The first relation requires the refinement of a more abstract guarantee by a set of
more specific guarantees, while the second expresses that individual assumptions
need to be refined by the other components’ guarantees together with the overall
assumption. Since real-life systems often exhibit a multi-layer architecture, the
dominance step can be iterated upwards until reaching the contract of the compo-
nent for which the property of interest ϕ is defined. To simplify the presentation,
Figure 3.1 only shows one step of dominance.

In order to prove the satisfaction of the requirement ϕ, we have to make sure
that the assumption A we made over the environment E and which is used in
the top-level contract C is correct. The third step of the methodology consists in
verifying the satisfaction of the “mirror” contract C−1. We note that this is necessary
when the system under study S is an open subsystem. Yet, if the requirement ϕ is
expressed on a closed system then there is no assumption to be defined and this
step may be skipped.

The last step of the reasoning consists in proving that the top contract conforms to
the requirement ϕ. The relation to be verified at this step is A ‖ G � ϕ, where �
denotes a property conformance operator, left open in the meta-theory of [142, 143].

The strategy detailed above is presented from a bottom-up point of view and
assumes that the system has already been conceived and thus the designer has
to deal with contracts for the satisfaction of the requirement. However, this
methodology can also be applied in a top-down manner for the correct design of
systems given the requirements it must satisfy. In a top-down approach, one starts
by modeling the requirement ϕ the system under study must verify. Next, a top
contract is defined that must conform to ϕ, where the guarantee is merely the
requirement modeled as a component that interacts with an abstract environment.
Next the contract is projected on a subset of contracts that must dominate it,

97

Chapter 3. Contract-based Reasoning for Hierarchical Systems of
Components

given that the corresponding subset of components has been envisioned. Again
this step can be iterated for a multi-layer architecture. For each contract, a
(weakest) component is derived that conforms to the guarantee in the context of
the assumption. A component can incorporate several contracts if the system needs
to satisfy several requirements. Finally, a correct implementation is designed for
the system’s under study environment E that has to satisfy the “mirror” global
contract, which can be realized independently of the component designs.

The reasoning can be easily applied to hierarchical systems with an arbitrary
number of components. A generalization to recursively defined finite systems is
provided in [142] by a grammar and a set of rewriting rules corresponding to the
methodology.

This meta-theory has already been instantiated for several formalisms: Labeled
Transition Systems with priorities [142] and data [99], Modal Transition Systems
[143], BIP components [16, 88] and Heterogeneous Rich Components [22, 23, 24].
Yet, to the best of our knowledge, there is no documented application for timed
systems with asynchronous communication.

Then, the following steps need to be taken in order to define a contract-based
framework for a concrete component model — system designs with SysML in our
case — by relying on this meta-theory:

1. Formally define the component framework — component, parallel composition
and possibly refinement if different from conformance —, the conformance
relation � and the refinement under context relation vE.

2. Prove that both conformance and refinement under context relations are
preorders.

3. Prove that, for closed systems, conformance can be deduced from refinement
under context, i.e. if K1 vE K2 then K1 ‖ E � K2 ‖ E.

4. Prove that refinement under context is compositional. Compositionality is a
prerequisite of Theorem 3.1.

5. Prove that circular reasoning is sound. This property is also a prerequisite
of Theorem 3.1.

3.1.2 Related Contract-based Approaches

There are two lines of reasoning with contracts defined in the literature: circular
reasoning which requires for both refinements in the hypothesis to hold in their ab-
stract corresponding context and assume/guarantee reasoning (AG) which consists

98

3.1. Contract-based Meta-Theories and their Implementations

in strengthening the hypothesis and requiring for the assumption of the contract to
be refined by the environment regardless of how the component behaves. Formally,
with the previous notation the rule is written: K vA G and E v A then K vE G.
In contrast, the second hypothesis is written E vG A for circular reasoning.

Most of the related work relies on AG reasoning. Yet, AG is harder to achieve
for systems like real-time embedded systems since they have mutual dependencies
between components: it demands to find a strategy for breaking the symmetry of
the dependency between a component and its environment by finding a component
which can guarantee its property independently of its environment, task that may
be very complex for our target systems. This equates to the same limitation of
the abstraction technique for model-checking. Therefore, we consider that sound
circular reasoning is more interesting and sufficient in a contract-based approach
to allow for independent implementability of components.

Related contract-based meta-theories have been mainly developed for specification
theories. We recall that by a specification theory we mean a complete algebra
that contains parallel composition, logical composition, quotient and refinement
operators. The aim for a specification theory is to provide substitutivity results
allowing for compositional design, while its usage in the compositional verification
of requirement satisfaction did not receive as much attention. In contrast, the
meta-theory described in Section 3.1.1 provides the minimal set of operators needed
for both design and verification, even though it may show up an overhead especially
during design: for example, it is up to the designer to model the weakest component
that must satisfy several contracts. Logical conjunction [19] and quotient can be
formalized and added to our framework, whereas their use should be independent
from the reasoning described above that is sufficient and sound for verification.

The meta-theory of [17] is built for a specification theory and is similar in many
points with [142]. The main differences concern (1) the specification of contracts
and (2) the method for reasoning with contracts. Regarding the first item, the
framework of [17] does not support signature refinement, i.e. the ability of a
contract to concentrate only on some of the inputs/outputs of the component while
abstracting away the others, which is allowed in [142] and, as we will later see,
explicitly used in our framework instance. A partial solution is presented in [18]
where contracts are defined on a subset of the component’s signature via ports.
However, [18] does not allow to reason individually on contracts: at each design
step, a specification consists in a component and the complete set of contracts
on ports such that the union of their signatures is equal to the signature of the
component. In consequence, composition and refinement of specifications involve all

99

Chapter 3. Contract-based Reasoning for Hierarchical Systems of
Components

the elements they define, i.e. components and ports. Moreover, signature refinement
between specifications is not allowed since the refinement operator requires for all
elements from specifications to have the same signature.

Regarding the method for reasoning with contracts, both meta-theories from [17, 18]
subscribe to the AG reasoning: they use the assume-guarantee rule that requires
to abstract the environment of a component regardless of how the component
abstractly behaves. For proving dominance, the meta-theory of [17] heavily relies
on a (derived) contract composition operator, which can be used to compute the
“strongest” contract C1 � C2 satisfied by the composition of two components that
respectively satisfy C1 and C2. The dominance step is reduced to the following proof
obligation: C1 � C2 � . . .� Cn � C, where C is the dominated contract. However,
contract composition is partial, i.e. it can be undefined for certain pairs of contracts,
since it is based on the quotient operator which is itself partial. The meta-theory
of [18] also uses a specification composition operator which in this case requires
for the contained components and port contracts to be pairwise composed. So,
the use of such operators may turn out difficult for large and complex systems.
Moreover, in both meta-theories, the failure of proving dominance is not explicitly
discussed and it is not clear how the user could identify the cause and mitigate it.
In contrast, the method from [142] allows to infer, based on the proof obligations
that constitute the sufficient conditions for dominance, which contract is faulty.
On a more general note, neither the meta-theory of [17] nor [18] explicitly describe
how a system requirement has to be formalized and how its satisfaction can be
achieved via contracts. We consider that the reasoning methodology, illustrated on
an example in Figure 3.1, of the meta-theory from [142] is an important asset in
its application to concrete domains.

The meta-theory of [17] has been applied in [63] for the TIOA specification theory
of [61, 62] and implemented in the ECDAR toolset [64], where the timed gamed
semantics of refinement can be verified [37, 33]. However, several aspects of this
theory make it impractical for representing the semantics of timed components
described in SysML or UML, as it is mentioned in Section 1.1.4. The same meta-
theory has been applied for communicating components modeled as a set of traces in
[47, 48] and is implemented in the OCRA tool [46]. In this instantiation, a contract
is given by a pair of hybrid LTL assertions on the set of traces and dominance is
verified with a sufficient condition similar to the one define in [142] even though
circular reasoning is not explicitly demanded.

Assume-guarantee reasoning is a long-standing line of research, although classical
approaches deal with logical specifications [53, 95, 2]. The more recent approach of

100

3.2. Contracts in High-Level Modeling Languages

[42, 43] deals with specifications in the form of sets of I/O traces for verifying both
safety and progress requirements characterized by finite traces and handles the
signature refinement in contract satisfaction although only for untimed specifica-
tions. Working directly on traces without an intermediate operational specification
is difficult due to the complexity of completely describing the set of traces a com-
ponent executes, separated into accepting ones and failing ones in order to model a
safe behavior. We mention that in this case input/output automata are considered
for graphical representation, but their formalization is not presented. Moreover,
the reasoning approach is similar with the one proposed in [17], in particular with
regard to contract composition. As such, the remarks made above with respect to
the reasoning methodology remain valid for [42].

Interface theories [65, 66, 67, 117, 39], formally described in Section 1.1.3, are also
related to contracts since they can be used to express assumptions and guarantees for
a component, albeit they do it in the same specification. An interface encompasses
the assumption represented by its inputs and the guarantee represented by its
outputs and describes how a component and its environment are expected to
interact. Some of the specification theories developed in this context are based on
variants of TIOA close to the one that we are using, like in the case of [44]. The
theory of [44] allows reasoning for both safety and bounded-liveness properties on
finite timed traces. Generally, the notion of a contract that merges the assumption
and the guarantee is well suited to derive compatible environments in which
components can work together since it models how a component should behave.
In fact, an interface plays the same role as the composition between individually
modeled assumption and guarantee, which has to be manually computed by the
designer. Keeping assumptions and guarantees separate has several advantages:
(1) it allows to model component properties as stand-alone automata and (2) it
allows for the refinement of the assumption or guarantee as well as the component
to be performed independently.

3.2 Contracts in High-Level Modeling Languages

As described in [28], software engineering distinguishes 4 classes of contracts:
syntactical ones that describe the types a component can handle, behavioral ones
that add constraints about the use of a component and which are inspired from the
Eiffel programming language [121], synchronization ones that specify the global
behavior and interaction of components and quality-of-service ones that can quantify
the expected behavior of components, e.g. response delay.

101

Chapter 3. Contract-based Reasoning for Hierarchical Systems of
Components

Plentiful work has focused on syntactic and behavioral contracts in order to provide
a mechanism for solving the composability problem. In [156], the authors make
the distinction between an output contract which is offered by the component and
an input contract on which the component relies, where a contract is a generic
view of an interface. Then contracts serve as type specifications for components
during the development phases of a system. In [114], contracts are defined as OCL
[92] pre/post conditions for operations, which are validated through simulation. In
[36, 35], the same type of OCL contracts are expressed for all modeling elements in
order to perform model transformations or to model the execution semantics of UML
notions, where the latter can be seen as a particular case of model transformation.

The Kmelia component model [120, 11] provides means to verify the functional
correctness of behavioral contracts for services, as well as compatibility issues
between components. The meta-model defines contracts for operations or interfaces
and models explicitly the verification results. With respect to behavioral contracts,
one is modeled for an operation as pre/post condition pair, while the behavior
of the operation is modeled as an extended Labeled Transition System. Formal
verification of contract satisfaction is realized by transformation of the component
language to formalisms such as CADP or AtelierB1.

Synchronization contracts have been considered in [136] where on each component
boundary an interface is defined with attributes, operations and a protocol state
machine that describes the response of the component to sequences of events
constraining their order. A contract is defined on connectors between two component
boundaries, where protocol state machines are used to verify the compatibility of
components. Despite the instantiation of these notions in SysML via the stereotype
mechanism, the theory is not supported by a formal framework which can provide
answers about the satisfaction of a contract.

In [13] the notion of contract is used as a mean to formalize requirements which are
verified on system-of-systems expressed as Stochastic State Transition Systems. A
contract is modeled by an OCL expression which may contain Contract Specification
Language patterns [151] that correspond to Bounded Linear Temporal Logic
operators. Then model-checking is directly applied in order to prove the satisfaction
of the requirement. The notion of contract merely equates to the formalization of
requirements for which a compositional reasoning approach — for the design of
systems and their verification — is not provided.

Contracts have also been considered for synchronous SysML and AADL architec-

1http://www.atelierb.eu/

102

http://www.atelierb.eu/

3.3. Conclusion

tures in [157, 55, 78], which propose a reasoning similar to the one presented in
Section 3.1.1. A contract is defined as a pre/post condition pair on components
with respect to their inputs/outputs, while each condition is modeled by a past-time
Linear Temporal Logic formula. Informally, contract satisfaction models that if the
assumption holds at any previous moments, then the guarantee will also hold at the
current moment. The theory provides a mechanism to verify dominance directly
on contracts similar to Theorem 3.1: iterative verification of the satisfaction of
individual assumptions by the other guarantees on which it depends and the global
assumption and verification of the global guarantee by the global assumption and
individual guarantees. However, circular reasoning is required to hold only locally
at one moment in time: components are allowed to refer to guarantees of the
others in earlier instants in time such that at one particular moment there is no
circularity in the model. This is supported by the synchronous communication
of components with one-step communication delay. Top-level requirements are
modeled in the Property Specification Language, but their satisfaction by a contract
is not formalized. Furthermore, this theory does not define a syntax for contracts
in SysML or AADL.

3.3 Conclusion

Despite the obvious advantages a contract-based development approach offers,
system engineering has not yet adopted it to design modular component-based
system models or to perform compositional verification of requirement satisfaction.
This is mainly due to the difficulty of designing correct contracts, as well as providing
the good compositionality results that ensure the correctness of the reasoning.
Indeed, designing contracts that can be refined towards correct implementations
is a source of overhead since methodological guidelines were not yet available.
However, by comparing it with the expense of developing systems on which model-
checking fails to provide a result and where errors are discovered late and by very
costly processes, we can assume that the entailed overhead is less important.

Our statement is based on the recent research that has focused on developing
recipes for correct contract-based reasoning, which we denoted by meta-theories.
Moreover, the meta-theory described in Section 3.1.1 is equipped with a rather
extended methodological guideline for applying contract-based reasoning, which
aims also to relieve the overhead for modeling contracts by providing some design
rules. Therefore, we consider that contract-based design is an interesting approach
for developing correct systems and also for alleviating the limits model-checking
presents.

103

Chapter 3. Contract-based Reasoning for Hierarchical Systems of
Components

Our contribution consists in grafting contract-based reasoning in the model-driven
design and requirement verification process for real-time embedded systems de-
scribed with SysML. Therefore, in this chapter we inspected the types of contracts
that were proposed for UML/SysML designs. A majority of contract modeling
concepts tackle the syntactical aspect — they describe the types (i.e. requests) a
component can handle — and the behavioral aspect — adding usage constraints on
types or components. These two categories of contracts merely enforce the statical
compatibility of components. The behavior of a component is considered by syn-
chronization contracts that describe the desired order of interaction. The definition
of contract given in the meta-theory from Section 3.1.1, falls under this category
since the assumption/guarantee explicitly describe (timed) ordered behavior for a
component and its environment. Synchronization contracts are used in the Kmelia
component language — a textual representation for web services — but only at the
component’s operations level, which are modeled with Labeled Transition Systems,
thus untimed specifications. In the framework of [136], synchronization contracts
are modeled on connectors for checking the compatibility of linked components,
but without providing a formal theory. In the following we provide a definition of
synchronization contracts in SysML that covers the whole dynamics of components,
which is to the best of our knowledge the first to address this aspect.

In order to support the correct reasoning with contracts, we have presented a set
of meta-theories, which need only to be instantiated in order to obtain a working
framework — in our case for the SysML component model extended with time.
We chose to instantiate the meta-theory of [143, 144, 142] due to its thoroughness
and soundness, compact and clear notation where a minimal number of operators
have to be defined in order to work and, finally, the application guidelines which
are a tremendous advantage for systems engineering development processes.

104

Part IIModeling and Reasoning with
Contracts in SysML

105

4 The SysML Context

SysML is a industrially used standard, extending a subset of UML, that allows
modeling the architecture of a system, its behavior and its requirements. Yet,
the standard is quite rich and defines different points of view of the system that
are not all needed for real-time embedded systems (RTES) design. Moreover,
our aim is to have a representation similar to the hierarchical component-based
system illustrated in Figure 3.1. Therefore, we identify a subset of SysML modeling
elements for designing RTES and which will constitute our component language.
Two extensions need to be considered for modeling such systems since SysML does
not offer the corresponding aspects: time and timing constraints modeling, and
formalization of requirements. Indeed, SysML is a semi-formal component language
in which requirements are expressed in natural language. Providing a clear and
coherent syntax and semantics for the considered modeling elements makes the
system design suitable for formal verification. We describe such rules with the
OMEGA Profile, which has been adapted to SysML and enforces rigorous system
engineering.

Section 4.1 presents the set of notions from UML/SysML we use for modeling RTES.
In Section 4.2 we introduce our working context, the OMEGA Profile. Finally,
Section 4.3 describes the running example, a simplified version of an Automated
Teller Machine, on which we will illustrate the notions defined in this thesis.

4.1 A SysML Subset for Modeling Asynchronous
Component-based Systems

Recall that modeling in UML/SysML consists in designing different diagrams that
cover multiple views of a system, namely: architecture, behavior and requirements,

107

Chapter 4. The SysML Context

where the latter are specific to SysML. In the following we present a subset of
the modeling elements we use for RTES as defined in UML in order to keep the
description simple. The application to SysML is straightforward by using the
counterpart concepts defined in the UML4SysML package of the standard [90].

Architectural modeling elements

A component-based system is structurally modeled in UML by two notions: the
class which allows to define types that are to be used in the model and the composite
structure that allows to cope with the growing complexity of large systems by
describing how class instances (generally called components) are composed and
interconnected in a hierarchical structure.

A class can model the following features: properties (attributes and parts) and
relations (associations, compositions and generalizations). Besides classes, a UML
model can contain other structured types, like signals and interfaces. Signals
represent the most important notion for communication between components. It
can own parameters, while their receptions are structured into interfaces. Interfaces
are especially used in our component model as typing mechanism for components
on interaction points.

Components are assembled together in composite structures that describe their
communication via interaction points and links: an interaction point is represented
by a port and the (sender, receiver) pair of components are hooked up by a
connector between corresponding ports. Therefore, components are deemed to
exchange asynchronous signals only via ports and connectors. As we will later see,
making components communicate only via ports help ensure the rigorous typing of
the model.

The requests which are offered/required by the component at its interaction points
are described within interfaces that are required to type ports. For the sake of
clarity, we demand ports to be typed with only one interface, which either describes
the allowed inbound requests if it is declared as provided or the allowed outbound
requests if it is defined as required. Yet, we remark that typing ports with only one
interface makes them unidirectional and therefore certain typing inconsistencies
that may appear when transforming the model into an implementation language
are avoided [126]. Moreover, we observe that the aim of such a port is to provide
interactions with respect to one functionality. We do not consider such modeling
cumbersome; indeed, industrial designs taught us that having a unique type for
ports is sufficient and that, sometimes, duplicating ports that originally were

108

4.1. A SysML Subset for Modeling Asynchronous Component-based
Systems

bidirectional brings more clarity to the model. The SysML standard introduces
flowports to model synchronous communications. However, since we focus on
asynchronous message passing, we forbid the modeling of flowports and we make
use only of standard ports.

The default behavior of a port is to transfer requests from one side to another
depending on its direction, inbound or outbound. Behavior ports are used to
specify that the requests arriving at the port are directed to or from the behavior
of the component owning the port.

Behavioral modeling elements

The behavior of a system is expressed in UML by several diagrams: state machines,
sequence diagrams or activity diagrams. We select in the following to use state
machine diagrams due to their notation similar to timed automata.

Therefore, the behavior of system components is expressed by state machines,
possibly involving detailed action descriptions which can be further structured into
operations. As previously mentioned, operations can be modeled by two signals:
one call signal from the source which will wait for the operation completion and
one return signal which models the end of the computation and which can have
return values if they are required.

To describe actions, we use a subset of the action language formalized by the fUML
standard [130]. This language covers the following notions: signal output, variable
assignment and expression valuation. Signal output which in SysML is also called
send action can be sent to a port if and only if the port type knows how to handle
it, i.e. a signal reception is defined within the port type.

The state machine of a class describes its behavior in terms of finite states and
transitions. The behavior moves from one state configuration to another by
transitions, which can define a guard, a trigger and a, possibly structured, effect.
The guard and the trigger model conditions that need to be evaluated to true
for the transition to be enabled. The effect describes the computations that the
component realizes. Again, for the sake of clarity, we consider that the transition’s
elements are evaluated in the order they are modeled: the guard, followed by the
trigger and next, each effect in the order they are modeled.

109

Chapter 4. The SysML Context

Requirements in SysML

The requirement diagram, which is specific to SysML, describes the system’s prop-
erties and the relations between them. The main inconvenience is that a property
is expressed in natural language, which makes it unsuitable for formal validation
and verification. Several formalisms are available to represent requirements, e.g.
temporal logics, automata-based languages, etc., and implemented in different tools.
In Section 4.2 we describe the instantiation with observers that is available in our
working context. However, since we are interested to define our contribution in the
general SysML context, we denote requirements in this thesis by the meta-class
SafetyProperty.

4.2 Real-Time and Requirement Formalization: the
OMEGA Profile1

OMEGA UML/SysML is an executable profile dedicated to the formal design and
validation of real-time embedded systems and integrated in the IFx Toolbox2 [34]
which provides means to simulate and model-check such models. The aim of the
profile is to define a precise and coherent operational semantics adapted to formal
timed analysis techniques by providing a set of well formedness rules on the UML
subset presented in Section 4.1 and two extensions for modeling timed behavior
and formalizing timed safety requirements. The OMEGA-IFx approach has been
applied on several industrial-grade case studies [127, 128] for which it proved its
efficiency, but, as we will later see for the case studies presented in this thesis, the
verification method is still not sufficiently robust.

The choice of OMEGA as working context is also motivated by the usage of the
OMEGA-IFx approach in industrial practice, as illustrated by the Full Model-
Driven Development for On-Board Software process [58, 57]. The interest of this
approach is highlighted in [58, 57], the criteria considering the smooth usage with
respect to both modeling elements and formal semantics and being more reliable
and less costly compared to a more traditional one relying on informal paper
documents and tests for discovering potential errors.

1This section is based on the following papers: [125], [70], [126], [124], [58], [57].
2http://www-if.imag.fr/

110

http://www-if.imag.fr/

4.2. Real-Time and Requirement Formalization: the OMEGA Profile

Well-formedness rules for strong typing

An important point left open by the UML standard is the correct definition of
connectors. We distinguish two types of connectors in UML: delegation connectors
from a component to its outward container and assembly connectors between
components at the same architectural level. In order for connectors to be correctly
used by traveling signals, OMEGA imposes the following limits with respect to the
ports they link and their direction: a delegation connector between two provided
ports is traveled from the environment to the inner component; a delegation
connector between two required ports is traveled from the inner component to the
environment and an assembly connector may be defined and traveled only from a
required port to a provided one.

Moreover, the two categories of connectors can be defined only if the ports types
coincide. This rule ensures that the receiving component knows how to handle
the requests traveling through the connector. In consequence, OMEGA defines a
dynamical typing of connectors based on the provided/required types at its ends via
the concept of transported interface(s). The set of signals that can travel through
a connector is given by the signal receptions defined within the ports type.

UML models a unicast communication: for each signal exchange there is one sender
and one receiver. Yet, if two connectors are originating in the same port (i.e. the port
is the source of the message), then one is chosen non-deterministically, which models
an ambiguous semantics. OMEGA forbids such situations by demanding that in
every port there is at most only one outgoing connector. Multicast communications
(i.e. one sender multiple receivers) have to be explicitly modeled, as demanded by
the UML standard.

This set of rules, as well as the typing restrictions we made over the concept of
ports in Section 4.1, are formalized with OCL [92] in [126, 70] and can be statically
evaluated on any system model using an OCL interpreter like Topcased. These
rules ensure rigorous system engineering.

Extensions: timed behavior and observers

Real-time systems can be designed in OMEGA based on an extension the profile
offers, inspired from Timed Automata with urgency [31]. One can cover prescriptive
time modeling via the predefined concept of Timer, but also via time stereotypes
on outgoing transitions that control how long time can elapse in a state.

111

Chapter 4. The SysML Context

The type Timer allows to measure durations and can be set to a relative deadline
and reset by the two defined functions set() and reset(). Then timers (or clocks) can
be easily used to describe timed transition guards. Upon deadline different actions
may be executed like signal output, variable assignment, etc. We remark that the
Timer can be also considered an instantiation of the clockType stereotype from
MARTE with a dense time base, which owns two operations getTime/setTime.

Within a state machine, the timed behavior can also be controlled by urgency
stereotypes on transitions such that one can specify more flexibly how logical time
progresses. OMEGA introduces three stereotypes corresponding to the ones defined
in Section 1.1.2:

• «eager» models that the transition has to be executed as soon as it is enabled,
i.e. time elapse is disabled,
• «delayable» models that the transition has to be executed before a deadline
d, i.e. time elapse is enabled and bounded, and
• «lazy» models that the transition can be executed at any moment in time or

never, i.e. time elapse is enabled and unbounded.

Note that the delayable stereotype is derived from eager and lazy as follows: a
timer is set with the deadline value before entering the state and there are two
outgoing transitions from the state, one being typed lazy, while the other is eager
and has a timeout guard for the deadline value. Therefore, in order to not overload
the component model, we prefer to use the explicit modeling in the following.

We remark that the urgency stereotypes lack in MARTE, while they allow for a
more compact modeling in OMEGA and prepare a formal timed semantics. In
contrast, OMEGA proposes only one computational model, whereas the generic
component modeling of MARTE is richer, but also generic with respect to the
underlying operational semantics. The properties of simplicity and well-defined
semantics are in our view complementary to what is aimed by MARTE.

The second extension of OMEGA concerns the formalization of dynamic safety
timed requirements with observers. An observer is a special object that monitors
the system events and gives a verdict about the (non-)satisfaction of the requirement
it formalizes. It is modeled by a class stereotyped «observer» which has a local
memory and a state machine to describe the requirement’s behavior. In order to
model the divergence from a nominal behavior scenario, observer states may be
marked with the «error» stereotype when the action sequence has to be considered
erroneous. Then at verification, an execution reaching the «error» state violates
the satisfaction of the requirement.

112

4.3. The sATM Running Example

In order to monitor the system, a set of probe events has been defined for observers.
We present only a subset of such transition triggers that are used within this thesis:

• send monitors the output of a signal, and
• acceptsignal monitors the handling of a signal by the target component.

The trigger of an observer transition is defined by a match clause specifying the type
of the event, the qualified signal name and the observer attributes that may receive
related information like the signal parameter values. The effect of a transition
solely relies on the attributes the observer defines, e.g. variable assignment.

4.3 The sATM Running Example

The following example will be used throughout this thesis in order to illustrate our
contract-based approach and notions for system designs. We model a simplified
Automated Teller Machine (sATM) for the withdrawal transaction only. The
architecture of the system is represented in Figure 4.1 and consists of the following
blocks: the sATM that contains the CardUnit responsible for the insertion and
removal actions of a card and the Controller responsible for the withdrawal trans-
action, and the User. The model has been realized with the IBM SysML Rhapsody
tool3. Note that the User models the environment of the sATM and, therefore,
is not part of the system under study. We consider here only one of the possible
behaviors a real customer can exhibit as it is described below.

The considered use case is the following: a customer is required to insert a card
into the card unit of an atm. Then the atm will verify the amount available on the
card and will propose several amounts within the accepted range to the user for
withdrawal. The atm interacts with the customer via a console and can handle
only one user at a time. The customer chooses an amount and waits for the atm
to execute the transaction. The atm will display a message and eject the card. If
the card is removed within 5 time units after being ejected, the amount will be
distributed and the total amount available on the card will be updated. Otherwise,
the card is retained and the atm becomes unavailable for further customers. The
behavior is modeled in Figure 4.2 by a state machine for each component, where
all transitions are eager.

We are interested in showing with the contract-based approach that the current
model satisfies the following requirement:

3http://www-03.ibm.com/software/products/en/ratirhapfami

113

http://www-03.ibm.com/software/products/en/ratirhapfami

Chapter 4. The SysML Context

atm:sATM1

cardUnit:CardUnit1

CardUnit2Ctr_Init
CardUnit2Ctr_Init

Ctr2CardUnit
Ctr4CardUnit CardUnit2Ctr_Eject

CardUnit2Ctr_Eject

CardUnit2User

CardUnit2User
User2CardUnit

User4CardUnit

controller:Controller1

CardUnit2Ctr_Init
CardUnit4Ctr_InitCtr2CardUnit

Ctr2CardUnit CardUnit2Ctr_Eject
CardUnit4Ctr_Eject

Dispenser2User

Dispenser2User

Display2User

Display2User

User2Console

User4Console

Display2User

Display2User

User2Console

User4Console

Dispenser2User

Dispenser2User

User2CardUnit

User4CardUnit

CardUnit2User

CardUnit2User

CardUnit2Ctr_Init
CardUnit2Ctr_Init

Ctr2CardUnit
Ctr4CardUnit

CardUnit2Ctr_Eject
CardUnit2Ctr_Eject

CardUnit2User

CardUnit2User

User4CardUnit

User2CardUnit

CardUnit4Ctr_Init
CardUnit2Ctr_InitCtr2CardUnit

Ctr2CardUnit CardUnit4Ctr_Eject
CardUnit2Ctr_Eject

Dispenser2User

Dispenser2User

Display2User

Display2User

User2Console

User4Console

Display2User

Display2User

User2Console

User4Console

Dispenser2User

Dispenser2User

User4CardUnit

User2CardUnit

CardUnit2User

CardUnit2User

user:User1

Dispenser2User

Dispenser4User

Display2User

Display4User

User2Console

User2Console

CardUnit2User

CardUnit4User

User2CardUnit

User2CardUnit

Dispenser4User

Dispenser2User

Display4User

Display2User

User2Console

User2Console

CardUnit2User

CardUnit4User

User2CardUnit

User2CardUnit

Architecture

Page 1 of 1

Figure 4.1 – Running example: the architecture of the simplified Automated Teller
Machine (sATM)4.

Requirement 4.1. If the card is removed within 5 seconds after being ejected, the
amount released by the sATM is the amount demanded by the customer.

This requirement is formalized with an observer in Figure 4.3 from the point of
view of the sATM. Initially, the observer waits in the state Idle for the customer
to insert a card and select an amount. Next, it expects for the customer to remove
the card from its slot once the latter is ejected by the machine: the retrieveCard
output signal followed by the cardRemoved input signal sequence. Then, the sATM
executes the releaseMoney operation. The values of the demanded and released
amounts are modeled by a parameter of their corresponding signals. If the values
coincide then the requirement is satisfied, otherwise the Error state is reached and
the property is violated.

4.4 Conclusion

In this chapter we have presented a sufficient subset of SysML for modeling
hierarchical component-based systems. To summarize, we have selected to represent

4Notation. The name of the ports starts with the name of the emitting component, followed
by “2” if the port is modeled for the sender or “4” if the port is modeled for the receiver, and the
name of the receiving component. The same convention is used for interface names containing
the name of the sender’s type, followed by “2” and the name of the receiver’s type.

114

4.4. Conclusion

stm [block] User [StatechartOfUser]

Idle

WaitForAmount

cardInserted to User2CardUnit

amount(10) to User2Console

askForAmount

WaitForResponse
displayMessage

cardRemoved to User2CardUnit

retrieveCard

WaitForMoney

releaseMoney

StatechartDiagram

Page 1 of 1

(a) User

stm [block] CardUnit [StatechartOfCardUnit]

Idle

WaitForEject

init to CardUnit2Ctr_Init

cardInserted

retrieveCard to CardUnit2User

ejectCard

WaitForRemoval

/t.set(0)

Error

nok to CardUnit2Ctr_Eject

[t > 5]

ok to CardUnit2Ctr_Eject

cardRemoved

StatechartDiagram

Page 1 of 1

(b) CardUnit
stm [block] Controller [StatechartOfController]

Idle

askForAmount to Display2User

init

displayMessage to Display2User

amount

EjectCard

/t.set(0)

ejectCard to Ctr2CardUnit

[t = 1]

WaitForRemoval

Error
nok

releaseMoney(amount.value) to Dispenser2User

ReleaseMoney

ok

StatechartDiagram

Page 1 of 1

(c) Controller

Figure 4.2 – State machines modeling the behavior of the three main blocks of the
sATM.

the multi-layer architecture of a system with block definition diagrams and internal
block diagrams. Components are deemed to communicate by asynchronous message
passing via ports and connectors. Restrictions have been imposed on ports, which

115

Chapter 4. The SysML Context
stm [«observer» block] Property [StatechartOfProperty]

Idle

RemoveCard

WaitForRemoval

/match send retrieveCard //

WaitForMoney

/match acceptsignal cardRemoved //

/match send releaseMoney //

[amount.value =
 releaseMoney.value]

Error
«error»[amount.value <> releaseMoney.value]

SelectAmount

/match acceptsignal amount //

/match acceptsignal cardInserted //

StatechartDiagram

Page 1 of 1

Figure 4.3 – SysML formalization with an observer of the Requirement 4.1: the
amount released by the sATM is equal to the amount demanded.

need to be typed with one interface describing the inbound or outbound accepted
requests, in order to have a typing system. Moreover, ports can transfer requests
to only one target. Finally, the behavior of the system is represented by state
machines invoking actions like signal output, variable assignment or expression
evaluation.

For modeling real-time systems, we have introduced the OMEGA profile which
defines timed behavior as extension via the predefined type Timer. The progress of
time can be controlled by two urgency stereotypes — eager and lazy — which allow
for a more compact modeling and introduce the formal semantics as timed automata
with urgency. The second extension OMEGA describes is the formalization of
the requirement with the concept of observer, while in SysML requirements are
rather informal. The choice of an automata-based language is more adapted to
field engineers than to require a formalization in Linear Temporal Logic or property
modeling language. The differences between the observer and the component are
minimal, almost the same language being used for both description. Moreover,
the formalization of a requirement allows to formally verify its satisfaction by the
system design, OMEGA being connected with the IF Toolset.

116

5 Modeling Behavioral Assume/Guar-
antee Contracts in SysML

The aim of this work is to use the contract-based reasoning methodology presented
in Section 3.1.1 for the compositional design and verification of critical real-time
embedded system designs with respect to timed safety properties. We have pre-
viously identified the component language as a subset of concepts from SysML
required to model such systems. The next step consists in introducing the notion
of contract and of the refinement relations they are subject to, into system models
by defining a clear and coherent syntax for these concepts.

In Section 5.1, we propose an extension of the component language in the form
of a domain meta-model to represent the contract-based meta-theory from [143,
144, 142] that we instantiate. In order to fully comply to the definition of this
meta-theory, we provide for each new concept a set of well-formedness rules that
will further guarantee the correct application of the contract-based compositional
reasoning. A profile instantiation of the meta-model for the OMEGA working
context is provided in Section 5.2. Section 5.3 illustrates the application of the
entire contract-based methodology on the sATM running example.

5.1 A Meta-Model for Behavioral Contracts1

In order to be able to use contracts in a system design, we define in this section
a domain meta-model, illustrated in Figure 5.1, that captures the key concepts
from the meta-theory of Section 3.1.1. For the sake of the clarity, we define this
meta-model on UML; its application to SysML is straightforward by using the
same base meta-classes from the UML4SysML package [90].

1This section is based on [72], [73].

117

Chapter 5. Modeling Behavioral Assume/Guarantee Contracts in
SysML

Figure 5.1 – An extension of the UML meta-model for contract-based reasoning.

We start by presenting the meta-classes that are reused as such from the UML
standard and which are also members of the UML4SysML package. The notion of
component (part) which participates in a composite structure is modeled by the
meta-class Property. The meta-class Class denotes the type of components.

In Section 4.1, we have mentioned that we represent the general notion of timed
safety requirement by the meta-class SafetyProperty. This is due to the fact that
we are interested in keeping the notion of formal requirement abstract and defining
a generic meta-model that can be applied to other UML/SysML-based component
languages, which have the requirements instantiated by other modeling frameworks
as described in Chapter 1.

There are two categories of notions that are defined within the meta-theory from
Section 3.1.1: (1) those that define how to model a contract represented in the
upper part of the meta-model of Figure 5.1 and (2) those that define which
verification relations can be used and between which end elements (components
and/or contracts) represented in the lower part of Figure 5.1. In the following we
describe the notation for each concept and we define a set of well-formedness rules

118

5.1. A Meta-Model for Behavioral Contracts

to ensure that the representation complies to the definition of the meta-theory.
Moreover, this set of rules has been formalized with OCL [92] which allows to
automatically verify (using an OCL interpreter, Topcased2 in our case) the static
typing of a model extended with contracts before applying the verification technique
for system behavior. This formalization has the advantage to find from the first
system design missing connectors or port typing problems.

We firstly introduce the two concepts that constitute a contract, the assumption and
the guarantee, which are respectively represented by the meta-classes Assumption
and Guarantee. Both notions are of type Class. The intuition behind this modeling
is straightforward: in the meta-theory an assumption/guarantee is a particular
kind of component, so it is natural to model it as a class with a behavior modeled
by a state machine. Thus, assumptions/guarantees are described by the same
language syntax as the system components. However, assumptions/guarantees
are presented in the meta-theory as stand-alone components that are not linked
via associations or generalizations to other components. Therefore we need to
restrict their syntax with respect to the relations they may be involved in: all
relations are forbidden except the interface realizations needed to type ports. Yet,
the Assumption/Guarantee may define a composite sub-structure, such an example
being provided in the case study of Chapter 9.

Rule 1. An Assumption has no relations: associations, generalizations, realizations
and dependencies are forbidden.

Rule 2. A Guarantee has no relations: associations, generalizations, realizations
and dependencies are forbidden.

The OCL formalization for Rule 1 is presented in Listing 5.1 and for Rule 2 in
Listing 5.2. The first term of the invariant models that neither the assumption
nor guarantee have properties of type class that are not composite (composite
structures are allowed) or of type Timer (clocks). The second term verifies that
the assumption/guarantee doesn’t have any parents, while the third verifies there
are no dependencies having them as starting point.

2http://www.topcased.org, http://polarsys.org/

119

http://www.topcased.org
http://polarsys.org/

Chapter 5. Modeling Behavioral Assume/Guarantee Contracts in
SysML

Listing 5.1 OCL code for well-formedness of assumption.

1 context Assumption
2

3 −− Rule : An assumpt ion has on l y p r o p e r t i e s w i th p r e d e f i n e d t yp e s
(i . e . \ an assumpt ion i s not i n v o l v e d i n a s s o c i a t i o n s ,
a g g r e g a t i o n s and compo s i t i o n s)

4 de f : a s sumpt i onHasNoPrope r t i e sC la s sType : Boolean =
5 s e l f . ownedAtt r ibute−>s e l e c t (a | a . t ype . o c l I sTypeOf (uml : : C l a s s)

and a . type . name<>’ Timer ’ and not a . i sCompos i t e)−>s i z e () = 0
6

7 de f : a s sumpt i onPrope r t i e sWe l lFo rmed : Boolean =
8 s e l f . a s sumpt i onHasNoPrope r t i e sC la s sType
9

10 −− Rule : An assumpt ion i s not i n v o l v e d i n any g e n e r a l i z a t i o n
r e l a t i o n s (has no pa r e n t s)

11 de f : as sumpt ionHasNoGenera l s : Boolean =
12 s e l f . g en e r a l−>s i z e () = 0
13

14 −− Rule : An assumpt ion does not depend on any model e l ement
15 de f : assumpt ionHasNoDependenc ies : Boolean =
16 s e l f . c l i en tDependency−>r e j e c t (o c l I sTypeOf (uml : :

I n t e r f a c e R e a l i z a t i o n))−>s i z e () = 0
17

18 inv assumpt ionWel lFormed : s e l f . a s sumpt i onPrope r t i e sWe l lFo rmed and
s e l f . a s sumpt ionHasNoGenera l s and s e l f .

assumpt ionHasNoDependenc ies

Listing 5.2 OCL code for well-formedness of guarantee.

1 context Guarantee
2

3 −− Rule : A gua ran t ee has on l y p r o p e r t i e s w i th p r e d e f i n e d t yp e s
(i . e . \ an assumpt ion i s not i n v o l v e d i n a s s o c i a t i o n s ,
a g g r e g a t i o n s and compo s i t i o n s)

4 de f : gua ran t e eHasNoPrope r t i e sC l a s sType : Boolean =
5 s e l f . ownedAtt r ibute−>s e l e c t (a | a . t ype . o c l I sTypeOf (uml : : C l a s s)

and a . type . name<>’ Timer ’ and not a . i sCompos i t e)−>s i z e () = 0
6

7 de f : gua r an t e eP rope r t i e sWe l l Fo rmed : Boolean =
8 s e l f . gua ran t e eHasNoPrope r t i e sC l a s sType
9

10 −− Rule : A gua ran t ee i s not i n v o l v e d i n any g e n e r a l i z a t i o n
r e l a t i o n s (has no pa r e n t s)

11 de f : gua ranteeHasNoGenera l s : Boolean =
12 s e l f . g en e r a l−>s i z e () = 0
13

120

5.1. A Meta-Model for Behavioral Contracts

14 −− Rule : A gua ran t ee does not depend on any model e l ement
15 de f : guaranteeHasNoDependenc ies : Boolean =
16 s e l f . c l i en tDependency−>r e j e c t (o c l I sTypeOf (uml : :

I n t e r f a c e R e a l i z a t i o n))−>s i z e () = 0
17

18 inv guaranteeWel lFormed : s e l f . gua r an t e eP rope r t i e sWe l l Fo rmed and
s e l f . gua ranteeHasNoGenera l s and s e l f . guaranteeHasNoDependenc ies

A contract is represented by the meta-class Contract type of Class as a composite
structure containing exactly one assumption and one guarantee, i.e. all other
properties are forbidden. In order to comply to definition of contract from the
meta-theory, we need again to restrict the language a contract can use. Therefore,
a contract does not exhibit any behavior, i.e. no state machine can be modeled
in the contract class, and it is not involved in any other relations than the ones
defined in the meta-theory. This modeling of a contract allows for reusability : a
contract is defined only by instances, while types (assumption/guarantee) can be
used within other contracts too.

Rule 3. A Contract does not own any properties (except the composite assumption
and guarantee), any operations or signal receptions and any state machines. A
Contract is not involved in other relations besides conformance, dominance and con-
tract satisfaction, i.e. associations, generalizations and aggregations/compositions
are forbidden.

Listing 5.3 presents the OCL formalization of Rule 3. The first term of the
invariant verifies that the contract does not define any properties except the
composite assumption and guarantee. The second and third term model that the
contract does not exhibit any behavior, while the fourth eliminates generalization
relations for contracts.

Listing 5.3 OCL code for well-formedness of contract structure.

1 context Cont rac t
2

3 −− Rule : A c on t r a c t has no p r o p e r t i e s b e s i d e s one pa r t typed
assumpt ion and one pa r t typed gua ran t ee (i . e . \ no p r o p e r t i e s w i th
p r e d e f i n e d type and no p r o p e r t i e s from a s s o c i a t i o n s ,

a g g r e g a t i o n s or c ompo s i t i o n s)
4 de f : c on t r a c tHa sNoPrope r t i e sP r ede f i n edType : Boolean =
5 s e l f . ownedAtt r ibute−>s e l e c t (a | not a . type . o c l I sTypeOf (uml : :

C l a s s))−>s i z e () = 0
6 de f : c on t r a c tHa sNoPrope r t i e sC l a s sType : Boolean =

121

Chapter 5. Modeling Behavioral Assume/Guarantee Contracts in
SysML

7 s e l f . ownedAtt r ibute−>s e l e c t (a | a . t ype . o c l I sTypeOf (uml : : C l a s s)
and

8 ((not a . type . oc lAsType (uml : : C l a s s) . i sAs sumpt i on) or (a . t ype .
oc lAsType (uml : : C l a s s) . i sAs sumpt i on and not a . i sCompos i t e)) and

9 ((not a . type . oc lAsType (uml : : C l a s s) . i sGua r an t e e) or (a . t ype .
oc lAsType (uml : : C l a s s) . i sGua r an t e e and not a . i sCompos i t e)))−>
s i z e () = 0

10 de f : c on t r a c tP r op e r t i e sWe l l Fo rmed : Boolean =
11 s e l f . c on t r a c tHa sNoPrope r t i e sP r ede f i n edType and s e l f .

c on t r a c tHa sNoPrope r t i e sC l a s sType
12

13 −− Rule : A c on t r a c t has no o p e r a t i o n s
14 de f : con t rac tHasNoOpera t i ons : Boolean =
15 s e l f . ownedOperat ion−>s i z e () = 0
16

17 −− Rule : A c on t r a c t has no s t a t emach in e
18 de f : cont ractHasNoStateMach ine : Boolean =
19 s e l f . ownedBehavior−>s i z e () = 0
20

21 −− Rule : A c on t r a c t i s not i n v o l v e d i n any g e n e r a l i z a t i o n r e l a t i o n
(has no pa r e n t s)

22 de f : con t r ac tHasNoGene ra l s : Boolean =
23 s e l f . g en e r a l−>s i z e () = 0
24

25 inv cont rac tWe l lFormed : s e l f . c on t r a c tP r op e r t i e sWe l l F o rmed and
s e l f . con t rac tHasNoOpe ra t i ons and s e l f . cont ractHasNoStateMach ine
and s e l f . con t rac tHasNoGene ra l s

The meta-theory requires for a contract to be a closed component. For the in-
put/output directionality of UML signals it means that all outputs of the contract’s
assumption/guarantee have their target within the guarantee/assumption and all
input triggers are enabled by actions of the other. Since the communication for
our system models is based on ports and connectors, we express this constraint on
contracts with respect to port types that must be matched with reversed direction.

Rule 4. Given a Contract, the Assumption and the Guarantee define a closed
system: all ports of each type have a correspondent (by type and conjugated direction)
within the ports of the other type.

Moreover, the purpose of a contract is to model a partial behavior with respect
to a requirement. We enable this option by allowing a guarantee to define a
subset from the signature of the component satisfying the contract. We denote
here contract satisfaction by the meta-class Implementation and we explain in the
following the rationale of this notation. This constraint is also formalized based

122

5.1. A Meta-Model for Behavioral Contracts

on port correspondence: a port of the guarantee has to have the same name, type
and direction as the port of the class typing the component. We require for the
guarantee ports to have the same name as the component ports for compilation
reasons. When transformed at the semantical level, we can deduce based on name
correspondence and connectors the target for the guarantee’s signals. The aim of
this rule is to contribute to the requirement-driven design of systems: specifications
are refined towards implementations from a requirement, while integrating multiple
requirements in the same specification adds, possibly partially disjoint, behaviors
that lead to an enlarged component signature.

Rule 5. Given an Implementation, the set of ports of the contracts Guarantee is
included in the set of ports of the component source.

Listing 5.4 presents the OCL formalization of the previous two rules. For Rule 4
and 5, we have defined two helper functions: isConjugatedOf to verify if two ports
are conjugated and isIdenticalTo to verify if two ports are corresponding. The
formalization of Rule 4 consists in verifying that for each port of one type there
is at least one port of the other matching the criteria. In order to avoid possible
broadcast, we verify that assumption and guarantee have the same number of
ports. The formalization of Rule 5 summarizes to iterating the set of ports of the
guarantee and verifying that for each port there is one and only one correspondent
in the definition of the component.

Listing 5.4 OCL code for well-formedness of contracts.

1 context Port
2

3 de f : i sCon juga t edOf (p : Port) : Boolean = s e l f . d i r e c t i o n <> p .
d i r e c t i o n and s e l f . i n t e r f a c e = p . i n t e r f a c e

4 de f : i s I d e n t i c a l T o (p : Port) : Boolean = s e l f . name = p . name and s e l f
. d i r e c t i o n = p . d i r e c t i o n and s e l f . i n t e r f a c e = p . i n t e r f a c e

5

6 context Cont rac t
7

8 −− Rule : The assumpt ion and gua ran t ee o f a c o n t r a c t d e f i n e a
c l o s e d system with r e s p e c t to p o r t s

9 de f : h a v e I d e n t i c a lNoO fPo r t s : Boolean =
10 s e l f . i t sA s sumpt i on . ownedPort−>s i z e () = s e l f . i t sGu a r a n t e e .

ownedPort−>s i z e ()
11 de f : a s sumpt i onPo r t sSub s e tGua ran t e ePo r t s : Boolean =
12 s e l f . i t sA s sumpt i on . ownedPort−>f o r A l l (p1 | s e l f . i t sGu a r a n t e e .

ownedPort−>s e l e c t (p2 | p1 . i sCon juga t edOf (p2))−>s i z e () >= 1)
13 de f : gua r an t e ePo r t sSubs e tAs sumpt i onPo r t s : Boolean =

123

Chapter 5. Modeling Behavioral Assume/Guarantee Contracts in
SysML

14 s e l f . i t sGu a r a n t e e . ownedPort−>f o r A l l (p1 | s e l f . i t sA s sumpt i on .
ownedPort−>s e l e c t (p2 | p1 . i sCon juga t edOf (p2))−>s i z e () >= 1)

15

16 de f : contractAGPortsWel lFormed : Boolean =
17 s e l f . h a v e I d e n t i c a lNoO fPo r t s and s e l f .

a s sumpt i onPo r t sSub s e tGua ran t e ePo r t s and s e l f .
gua r an t e ePo r t sSubs e tAs sumpt i onPo r t s

18

19 inv con t r a c tC l o s edSy s t em : s e l f . contractAGPortsWel lFormed
20

21 context Imp l ementa t i on
22

23 −− Rule : The s e t o f p o r t s o f the Guarantee i s a s ub s e t o r equa l to
the s e t o f p o r t s o f the Part imp lement ing i t

24 de f : g ua r an t e ePo r t s Sub s e tPa r tPo r t s : Boolean =
25 s e l f . imp lTa rge t . i t sGu a r a n t e e . ownedPort−>f o r A l l (p1 | s e l f .

imp lSou rce . ownedPort−>s e l e c t (p2 | p2 . i s I d e n t i c a l T o (p1))−>s i z e ()
= 1)

26

27 de f : guaranteePor t sWe l lFo rmed : Boolean =
28 s e l f . g u a r an t e ePo r t s Sub s e tPa r tPo r t s
29

30 inv imp l ementa t i onGuaranteePor t sWe l lFo rmed : s e l f .
gua ranteePor t sWe l lFormed

As we have mentioned, the satisfaction relation that relates a component to a
contract is represented by an Implementation at the level of the type of the
component. This relation, subtype of Dependency, is defined between a Class
and a Contract in Figure 5.1 and expresses that the class satisfies the contract.
A contract can be implemented by several classes, while a class can implement
several contracts. This summarizes the multi-view modeling aspect of our approach.
Then, for verifying one requirement, the designer has to chose in the bouquet of
implemented contracts which one guarantees the satisfaction of the requirement.
Therefore, we define a second relation also type of Dependency, named ContractUse,
that models contract satisfaction at the components level. Since a system model
may have to satisfy several requirements, then for each use of a contract the
designer has to specify which requirement is concerned by the current ContractUse.
This prerequisite is modeled in Figure 5.1 by the unidirectional association from
ContractUse to SafetyProperty.

Since unambiguous typing of models is mandatory, we require that ContractUse
relations to be modeled between a Property and a Contract if and only if the
property’s type implements the contract. We note that given these definitions,

124

5.1. A Meta-Model for Behavioral Contracts

the Implementation relations can be easily derived from the modeled ContractUse
relations.

Rule 6. A Contract can be used by a Property if and only if the property’s type
implements the contract.

Listing 5.5 presents the formalization of the rule above. The function getImple-
mentationsForTarget computes the set of classes that are modeled as sources in an
Implementation relation which has as target the target of the contractUse relation.
Next the function canContractBeUsed verifies that the computed set of classes
contains the class that types the component using the contract.

Listing 5.5 OCL code for well-formedness of contract usage.

1 context Cont ractUse
2

3 −− Rule : A c on t r a c t can be used i n a p r oo f t r e e i f and on l y i f the
type o f the p r o p e r t y u s i n g i t implements the c o n t r a c t

4 de f : g e t Imp l emen ta t i on sFo rTa rge t : Set (C l a s s) = s e l f . u seTarge t .
oc lAsType (uml : : C l a s s i f i e r) . getModel () . ge tDependenc i e s−>s e l e c t (d |
d . i s Imp l emen t a t i o n and d . imp lTarge t = useTarge t) . imp lSou rce .

oc lAsType (uml : : C l a s s)−>asSe t ()
5

6 de f : canContractBeUsed : Boolean = s e l f .
g e t Imp l ementa t i on sFo rTa rge t−>i n c l u d e s (s e l f . u s eSource . type .
oc lAsType (uml : : C l a s s))

7

8 de f : cont ractUseWel lFormed : Boolean = s e l f . canContractBeUsed
9

10 inv cont ractUseWel lFormed : s e l f . cont ractUseWel lFormed

The second step of the methodology from Section 3.1.1 consists in modeling the
dominance relation between one, more general, contract and a set of, more specific,
contracts. This relation is not explicitly modeled in Figure 5.1 since it can be
deduced from the ContractUse relations. Indeed, for the meta-theory to be applied,
each component of the system — atomic or composed — involved in the satisfaction
of a requirement has a ContractUse relation to its contract. Then, from the top-
level contract and the running requirement we get via ContractUse the composed
component implementing it. For each of its sub-components, based again on
ContractUse relations annotated with the requirement under study, we compute
the set of source contracts.

However, there is one case in which the definition of ContractUse is not sufficient in

125

Chapter 5. Modeling Behavioral Assume/Guarantee Contracts in
SysML

ibd [«root» block] System [Architecture]

a:A1

b1:B1

c:C1 d:D1

b2:B1

c:C1 d:D1

reqTarget:Class=Property
«Tag»

C_D_1
«block,contract»

«contractUse»

C_D_2
«block,contract»

«contractUse»

C_C_2
«block,contract»

«contractUse»

C_C_1
«block,contract»

«contractUse»

C_B_2
«block,contract»

«contractUse»

C_B_1
«block,contract»

«contractUse»

Architecture

Page 1 of 1

Figure 5.2 – Configuration which shows the necessity for ContractUse relation to
point to the refined contract.

order to fully determine dominance. An example is presented in Figure 5.2: suppose
a component a that contains two components b1 and b2 of the same type B. At their
tour, each sub-component defines a composite structure containing one component
c and one component d. For verifying the requirement Property, the component b1
uses the contract C_B_1 which is dominated by {C_C_1, C_D_1}, while the
component b2 uses the contract C_B_2 dominated by {C_C_2, C_D_2}. At the
graphical level, dominance seems completely defined by the modeled ContractUse.
But the dependency relations for sub-components c and d are stored at the level of
type B. Then ambiguities are introduced in the (textual) model since we cannot
identify in which upper context ContractUse relations are defined. As an example,
the set {C_C_2, C_D_2} can be computed as dominating contracts for C_B_1,
which is incorrect.

Therefore, we need to make the distinction between contractUse relations defined
in different contexts in order to deduce the correct dominance relation. We require
for each ContractUse relation to specify in which dominance relation takes part by
marking the dominated contract. This condition is represented in the meta-model
of Figure 5.1 by the association from ContractUse to Contract denoted by the

126

5.1. A Meta-Model for Behavioral Contracts

role refTarget. We remark that this is mandatory only for the particular case in
which several instances of the same composite structure are modeled and they use
different contracts for the satisfaction of the same requirement. In consequence,
dominance is a 4-ary relation which can be fully determined based on Contract,
ContractUse and SafetyProperty. Dominance becomes a ternary relation when the
same contract is refined once regardless of the number of composite instances.

For the clarity of the presentation, we will assume in the following that all Con-
tractUse relations involved in a dominance relation specify the dominated contract
whether it is compulsory or not.

Similarly to Implementation, the dominance relation is also subject to signature
refinement: the signature of the dominated guarantee can be a subset of or equal
to the union of signatures of the source guarantees. We express this rule also on
ports: informally, each port of the target guarantee must be identical by type and
direction to a port from the previously defined source set.

Rule 7. Given a dominated contract, the set of ports of its guarantee is a subset
or equal to the set of ports of the dominating contracts.

The OCL formalization of this rule is presented in Listing 5.6. We situate Rule 7
in the Property context that uses the dominated contract since the source set of
contracts has to be computed based on its parts. We consider that a contract is
dominated if there is at least one sub-component that has a ContractUse relation
for the same SafetyRequirement and points to the target contract (the refTarget
value). This condition is described by the isRefined function. Then, for each
requirement, we compute from the Property via its parts (getPart function) the set
of contracts used in the considered dominance relation (getUseContractsOfParts
function). We iterate through the source set of contracts guarantees and we build
the set of ports defined (getPortsFromUseContractsOfParts function). Finally, for
each port of the dominated guarantee we verify if there is at least one matching
the criteria within the computed set of ports (refTargetPortsSubsetSoucesPorts
function).

Listing 5.6 OCL code for well-formedness of contract signature refinement in a
dominance relation.

1 context Port
2

3 de f : h a sType I d en t i c a lTo (p : Port) : Boolean = s e l f . d i r e c t i o n = p .
d i r e c t i o n and s e l f . i n t e r f a c e = p . i n t e r f a c e

4

127

Chapter 5. Modeling Behavioral Assume/Guarantee Contracts in
SysML

5 context C l a s s
6

7 de f : g e tPa r t : Set (P rope r t y) = s e l f . ownedAtt r ibute−>s e l e c t (a | a .
t ype . o c l I sTypeOf (uml : : C l a s s) and a . i sCompos i t e)

8 de f : g e tUsedCon t r a c t sO fPa r t s (t a r g e tCon t r a c t : Contract , r eq :
S a f e t yP r op e r t y) : Set (C l a s s) =

9 s e l f . ge tPar t−>i t e r a t e (p : P rope r t y ; r e s : Set (C l a s s)=Set{} | r e s−>
union (p . c l i en tDependency−>s e l e c t (d | d . i sU sage and

10 d . r eqTarge t = req and d . r e fT a r g e t = t a r g e tCon t r a c t) .
u seTarge t) . oc lAsType (uml : : C l a s s))

11 de f : ge tPor t sF romUsedCont rac t sOfPar t s (t a r g e tCon t r a c t : Contract , r eq :
S a f e t yP r op e r t y) : Set (Port) =

12 s e l f . g e tUsedCon t r a c t sO fPa r t s (t a r g e tCon t r a c t , r eq)−>i t e r a t e (c :
C l a s s ; r e s : Set (Port)=Set{} | r e s−>union (c . i t sGu a r a n t e e .
ownedPort))

13

14 context Prope r t y
15

16 de f : i sU s i n gCon t r a c t (t a r g e tCon t r a c t : Contract , r eq : S a f e t yP r op e r t y) :
Boolean = s e l f . c l i en tDependency−>s e l e c t (d | d . i sU sage and d .

r eqTarge t = req and d . r e fT a r g e t = t a r g e tCon t r a c t)−>s i z e () > 0
17 de f : g e tCon t r a c tU s eRe l a t i o n s : Set (Dependency) = s e l f .

c l i en tDependency−>s e l e c t (d | d . i sU sage)
18 de f : i s R e f i n e d (t a r g e tCon t r a c t : Contract , r eq : S a f e t yP r op e r t y) :

Boolean =
19 s e l f . t ype . o c l I sTypeOf (uml : : C l a s s) and s e l f . t ype . oc lAsType (uml

: : C l a s s) . i sCompos i t e and
20 s e l f . t ype . oc lAsType (uml : : C l a s s) . ownedAtt r ibute−>e x i s t s (a |

a . t ype . o c l I sTypeOf (uml : : C l a s s) and a . i sCompos i t e and a .
i sU s i n gCon t r a c t (t a r g e tCon t r a c t , r eq))

21

22 de f : r e fTa r g e tPo r t s Sub s e t S ou r c e sPo r t s (t a r g e tCon t r a c t : Contract , r eq
: S a f e t yP r op e r t y) : Boolean =

23 l e t sp : Set (Port) = s e l f . t ype . oc lAsType (uml : : C l a s s) .
ge tPor t sF romUsedCont rac t sOfPar t s (t a r g e tCon t r a c t , r eq) i n

24 t a r g e tCon t r a c t . i t sGu a r a n t e e . ownedPort−>f o r A l l (p1 | sp−>
s e l e c t (p2 | p1 . ha sType I d en t i c a lTo (p2))−>s i z e () >= 1)

25

26 −− Rule : The s e t o f p o r t s o f a dominated gua ran t ee have a
co r r e s ponden t w i t h i n the s e t o f p o r t s o f the dominat ing
gua r an t e e s

27 de f : t a rge tGua ran teePor t sWe l lFo rmed : Boolean =
28 s e l f . g e tCon t r a c tU s eRe l a t i o n s−>f o r A l l (d |
29 i f s e l f . i s R e f i n e d (d . useTarget , d . r eqTarge t)
30 then s e l f . r e fTa r g e tPo r t s Sub s e t S ou r c e sPo r t s (d . useTarget

, d . r eqTarge t)
31 e l s e

128

5.1. A Meta-Model for Behavioral Contracts

32 t r u e
33 end i f)
34

35 inv r e f i n ementTarge tGua ran teePor t sWe l lFo rmed : s e l f .
t a rge tGua ran teePor t sWe l lFo rmed

The condition to have at least one port from the source set matching the criteria is
due to the fact that the guarantees might be defined for different components having
the same type which all model the same port, whereas the dominated guarantee
has only one port of that type and direction. Such an example is provided in the
case study of Chapter 9.

The last step of the reasoning consists in verifying conformance which is represented
in Figure 5.1 by the meta-class Conformance. This meta-class, type of Dependency,
links a Contract to a SafetyProperty. We note that one contract can serve as source
for checking several requirements.

Since our aim is to use the meta-theory of Section 3.1.1 for the verification of
system models, we have to guarantee that each modeled step of the reasoning is
complete and unique with respect to each requirement. Then, the following three
conditions must be satisfied by system models extended with contracts:

1. for a component using several contracts for the satisfaction of the same
requirement, there is one and only one ContractUse relation between the
Property, the SafetyProperty and the two instances of Contract, useTarget
and refTarget ;

2. for a component using only a contract for the satisfaction of one requirement,
there is one and only one ContractUse relation between the Property, the
SafetyProperty and the Contract, and

3. within a model, for any SafetyProperty there is a contract conforming to it.

The first two rules ensure the uniqueness of a dominance relation in a given context.
Indeed, if a component uses a contract for which a correct refinement is provided
based on its sub-components there is no need to define a second refinement for the
same contract and the same components. This condition enables the reusability of
contracts with respect to dominance. Listing 5.7 provides the OCL formalization
of these two rules. The if branch of the function isContractUniqueForRequiremen-
tandRefinement verifies that for each component and each requirement there is at
most one ContractUse relation. If there are several contractUse relations (the else
branch) then we verify that each of them refers to different dominated contracts,
i.e. the number of relations must be equal to the number of dominated contracts,

129

Chapter 5. Modeling Behavioral Assume/Guarantee Contracts in
SysML

duplicates being removed.

Listing 5.7 OCL code for uniqueness of contract-based proof obligations.

1 context Prope r t y
2

3 de f : i s U s i n gCon t r a c t s : Boolean = s e l f . g e tCon t r a c tU s eRe l a t i o n s−>
s i z e () > 0

4

5 −− Rule : A component can use at most one c o n t r a c t f o r the
s a t i s f a c t i o n o f one r equ i r emen t and w i t h i n one dominance

6 de f : i sCont rac tUn iqueForRequ i r ementAndRe f inement : Boolean =
7 l e t r : Set (Dependency) = s e l f . g e tCon t r a c tU s eRe l a t i o n s i n
8 i f s e l f . t ype . o c l I sTypeOf (uml : : C l a s s) and s e l f . i s U s i n gCon t r a c t s
9 then r−>f o r A l l (d1 | i f r−>ex c l u d i n g (d1)−>s e l e c t (d2 | d1 .

r eqTarge t = d2 . r eqTarge t)−>s i z e () = 0 then t r u e e l s e
10 r−>s e l e c t (d2 | d1 . r eqTarge t = d2 . r eqTarge t)−>s i z e

() =
11 r−>s e l e c t (d2 | d1 . r eqTarge t = d2 . r eqTarge t) .

r e fTa rg e t−>asSe t ()−>s i z e () end i f)
12 e l s e
13 t r u e
14 end i f
15

16 inv contractUseUniqueRR : s e l f .
i sCont rac tUn iqueForRequ i r ementAndRe f inement

Listing 5.8 describes the completeness rule: within the set of conformance relations
defined in a model there is at least one having as target the current SafetyProperty.

Listing 5.8 OCL code for completeness of contract-based proof obligations.

1 context Sa f e t yP r op e r t y
2

3 −− Rule : A l l S a f e t y P r o p e r t i e s have a c o n t r a c t con fo rming to i t
4 de f : i s V e r i f i e d : Boolean =
5 s e l f . oc lAsType (uml : : C l a s s i f i e r) . getModel () . ge tDependenc i e s−>

s e l e c t (d | d . i sConfo rmance and d . confTarget−>i n c l u d e s (s e l f))
−>s i z e () > 0

6

7 inv s a f e t y P r o p e r t y I s V e r i f i e d : s e l f . i s V e r i f i e d

This set of rules allows us to generate an unambiguous and sound set of proof
obligations whose satisfaction ensures the satisfaction of system’s requirements.
The entire code which can be applied in an OCL interpreter on system models

130

5.2. From Domain Meta-Model to Profile

Figure 5.3 – A stereotype implementation of the extended UML meta-model for
contract-based reasoning.

extended with contracts can be found in Appendix A.1.

5.2 From Domain Meta-Model to Profile

Using contracts in a standard UML/SysML model implies to instantiate the meta-
model previously presented. Our choice is to define a profile and use the stereotype
mechanism on the corresponding base meta-classes. For the meta-class Class the
stereotypes that apply are «assumption», «guarantee» and «contract». Recall that
the SafetyProperty is modeled in the OMEGA Profile by the «observer» stereotype
applied on Class. For the meta-class Dependency, we define the «contractCon-
formance», «contractImplementation» and «contractUse» stereotypes, where the
latter has two properties reqTarget and refTarget (or tagged values depending on
the modeler) that refer to the requirement under study, respectively dominated
contract, for which the relation is defined. Figure 5.3 resumes the profile-dependent
concepts for contract-based reasoning.

We define the type for reqTarget and refTarget to be Class for convenience and we
statically verify that the indicated Class is correctly stereotyped, «observer» for
reqTarget and «contract» for refTarget. This mechanism allows to consider other
formalizations of the requirements in the profile with minor tweaking.

In order to enforce the correct instantiation of the meta-model with stereotypes we

131

Chapter 5. Modeling Behavioral Assume/Guarantee Contracts in
SysML

atm:sATM1

cardUnit:CardUnit1

CardUnit2Ctr_Init
CardUnit2Ctr_Init

Ctr2CardUnit
Ctr4CardUnit CardUnit2Ctr_Eject

CardUnit2Ctr_Eject

CardUnit2User

CardUnit2User
User2CardUnit

User4CardUnit

controller:Controller1

CardUnit2Ctr_Init
CardUnit4Ctr_InitCtr2CardUnit

Ctr2CardUnit CardUnit2Ctr_Eject
CardUnit4Ctr_Eject

Dispenser2User

Dispenser2User

Display2User

Display2User

User2Console

User4Console

Display2User

Display2User

User2Console

User4Console

Dispenser2User

Dispenser2User

User2CardUnit

User4CardUnit

CardUnit2User

CardUnit2User

CardUnit2Ctr_Init
CardUnit2Ctr_InitCtr2CardUnit

Ctr4CardUnit
CardUnit2Ctr_Eject
CardUnit2Ctr_Eject

CardUnit2User

CardUnit2User
User2CardUnit

User4CardUnit

CardUnit2Ctr_Init
CardUnit4Ctr_Init

Ctr2CardUnit
Ctr2CardUnit CardUnit4Ctr_Eject

CardUnit2Ctr_Eject

Dispenser2User

Dispenser2User

Display2User

Display2User

User2Console

User4Console

Display2User

Display2User

User2Console

User4Console

Dispenser2User

Dispenser2User

User2CardUnit

User4CardUnit

CardUnit2User

CardUnit2User

C_Controller
«block,contract»

«contractUse»

C_CardUnit
«block,contract»

«contractUse»

C_sATM
«block,contract»

«contractUse»

Property
«block,observer»

Operations
amount(value:int)
releaseMoney(value:int)

«contractConformance»

refTarget:Class=C_sATM
«Tag»

reqTarget:Class=Property
«Tag»

Architecture

Page 1 of 1

Figure 5.4 – The sATM system model extended with contracts.

propose a second set of well-formedness rules that verify their correct use. This
set of rules is detailed in Appendix A.2 and can be statically evaluated on system
models.

5.3 Modeling Contracts for the sATM

In the following we describe how we apply the contract-based concepts for the
sATM example. The extended system model is presented in Figure 5.4.

Based on the methodology described in Section 3.1.1 and with respect to Require-
ment 4.1, we identify as system under study S the component atm, while the
environment E consists in the component user. In this case, the system S contains
two components: cardUnit and controller.

From the design perspective, the first step consists in modeling a global contract
which has to conform to the requirement Property. In consequence, we define
a contract class C_sATM and we model a contractConformance dependency to
Property. Since the contract C_sATM is designed to be used in the satisfaction
of Property by the atm component, we model a contractImplementation relation
between the type sATM and the contract and a contractUse relation between the
component atm and its contract for which we specify Property as tagged value
reqTarget. Note that in order to keep Figure 5.4 simple, we do not graphically
represent the contractImplementation relations.

132

5.3. Modeling Contracts for the sATM
ibd [«contract» block] C_Controller [Architecture]

aCtr:A_Controller1

Dispenser2User

Dispenser4User

CardUnit2Ctr_Eject

CardUnit2Ctr_Eject
Ctr2CardUnit

Ctr4CardUnit

User2Console

User2Console

Dispenser2User

Dispenser4User

CardUnit2Ctr_Eject

CardUnit2Ctr_Eject

Ctr4CardUnit

Ctr2CardUnit

User2Console

User2Console

gCtr:G_Controller1

Dispenser2User

Dispenser2User

CardUnit2Ctr_Eject

CardUnit4Ctr_Eject

Ctr2CardUnit

Ctr2CardUnit

User2Console

User4Console

Dispenser2User

Dispenser2User

CardUnit2Ctr_Eject

CardUnit4Ctr_Eject

Ctr2CardUnit

Ctr2CardUnit

User2Console

User4Console

Architecture

Page 1 of 1

Figure 5.5 – Architecture of the C_Controller contract used by the controller
component.

The second step consists in modeling two contracts for the atm’s sub-components:
C_Controller for the controller component and C_CardUnit for the cardUnit
component. We link each component to its corresponding contract via a contractUse
relation tagged with the same Property. Since the set {C_Controller, C_CardUnit}
constitutes dominating contracts for C_sATM, we specify the refTarget tagged
value of the two contractUse relations as C_sATM. Then, the modeled contract
tree is complete.

Next, we model each contract as a closed composite structure. The behavior of the
contained assumptions and guarantees is described in Section 6.2.

The architecture of contract C_Controller is presented in Figure 5.5. Based on the
requirement formalization and the behavior of components illustrated in Figure 4.2,
we deduce the set of signals, hence the set of ports that need to be modeled, which
are directly involved in the satisfaction of the requirement: {amount, ok, nok,
ejectCard, releaseMoney}. Remark that the set of ports of the guarantee is a subset
of the set of ports of the controller, interaction points with respect to the display
function or process initialization being abstracted.

The contract C_CardUnit architecture is modeled in Figure 5.6. Again, we can
observe a refinement of signature for the guarantee, which abstracts the initial-
ization process. So, the guarantee signature consists of {cardInserted, ejectCard,
cardRemoved, retrieveCard, ok, nok}, contained by the different ports.

Finally, Figure 5.7 presents the architecture of the top-level contract C_sATM.
Similarly to the previous contracts we abstract the display function. Then its
signature will consist of {cardInserted, amount, cardRemoved, retrieveCard, release-
Money}. We observe that the signature of the guarantee is identical to the union

133

Chapter 5. Modeling Behavioral Assume/Guarantee Contracts in
SysML

ibd [«contract» block] C_CardUnit [Architecture]

aCardUnit:A_CardUnit1

User2CardUnit

User2CardUnit

CardUnit2Ctr_Eject

CardUnit4Ctr_Eject

CardUnit2User

CardUnit4User

Ctr2CardUnit

Ctr2CardUnit

User2CardUnit

User2CardUnit

CardUnit2Ctr_Eject

CardUnit4Ctr_Eject

CardUnit2User

CardUnit4User

Ctr2CardUnit

Ctr2CardUnit

gCardUnit:G_CardUnit1

User2CardUnit

User4CardUnit

CardUnit2Ctr_Eject

CardUnit2Ctr_Eject

CardUnit2User

CardUnit2User

Ctr2CardUnit

Ctr4CardUnit

User4CardUnit

User2CardUnit

CardUnit2Ctr_Eject

CardUnit2Ctr_Eject

CardUnit2User

CardUnit2User

Ctr4CardUnit

Ctr2CardUnit

Architecture

Page 1 of 1

Figure 5.6 – Architecture of the C_CardUnit contract used by the cardUnit
component.ibd [«contract» block] C_sATM [Architecture]

aATM:A_sATM1

User2CardUnit

User2CardUnit

Dispenser2User

Dispenser4User

CardUnit2User

CardUnit4User

User2Console

User2Console

User2CardUnit

User2CardUnit

Dispenser4User

Dispenser2User

CardUnit2User

CardUnit4User

User2Console

User2Console

gATM:G_sATM1

User2CardUnit

User4CardUnit

Dispenser2User

Dispenser2User

CardUnit2User

CardUnit2User

User2Console

User4Console

User4CardUnit

User2CardUnit

Dispenser2User

Dispenser2User

CardUnit2User

CardUnit2User

User2Console

User4Console

Architecture

Page 1 of 1

Figure 5.7 – Architecture of the C_sATM contract used by the atm component.

of ports of G_Controller and G_CardUnit from which the matched ports (by type
and reversed direction) are eliminated.

We verify that the extended system design is correctly modeled. Therefore, we
evaluated the sets of well-formedness rules in Topcased and we conclude that the
extended sATM model is statically correct with respect to the usage of contract-
related notions and the typing system. The result is illustrated in Figure 5.8.

5.4 Conclusion

In this chapter we have defined the contract-related concepts as a domain meta-
model which, besides the methodology, takes into consideration fine-grained con-
straints like contract signature refinement with respect to a component or a set of
contracts. These constraints are then expressed and formalized in OCL with the
purpose of statically detecting modeling errors, e.g. incompleteness of definitions.

134

5.4. Conclusion

Figure 5.8 – Evaluation of the OCL well-formedness set of rules on the sATM
system model.

The notion of contract we defined falls under the category of synchronization
contracts as described in Section 3.2: the assumption/guarantee has a behavior
described by a state machine which corresponds to the call order of requests and
their synchronization. We mention that calling our contracts behavioral is related
to the fact that they describe a behavior and has no connection to the behavioral
category of contracts as described in [28]. Still, we consider that our contracts can
also be used as syntactical and behavioral ones: the contract signature specifies also
the signature of the component and the assumption/guarantee can be considered
as a generic view of the pre/post conditions for component use.

To conclude, with respect to the related work presented in Section 3.2 our contract-
based theory defined for UML/SysML takes a step further by defining contracts for
components, incorporating explicitly modeled behavior as assumption/guarantee in
a contract and describing a compositional approach for requirement decomposition
and satisfaction which is subject to formal verification.

135

6 Formal Reasoning with Contracts

Exploiting the contract-based approach for both design and verification of sys-
tem requirements demands formalizing the semantics of the component language
extended with contracts, which includes the refinement relations that contracts
are subject to, and proving that the compositional properties required by the
meta-theory of [142] hold in our concrete formal framework. In this chapter we
define our contract-based theory as an instance of the aforementioned meta-theory,
where a component is formalized by a variant of Timed Input/Output Automata
from [108] and the contract-related refinement relations are expressed as timed
trace inclusion relations.

Section 6.1 describes the formalization of the SysML component language by a
variant of Timed Input/Output Automata, since the framework from [108] is not
fully adapted to express the semantics of such components. In Section 6.2 we
wrap up the contract framework by formalizing the semantics of the refinement
relations, denoted proof obligations, and proving that the required compositionality
results hold given some restriction on the contract expressiveness. Therefore, we
are able to use the additional results the meta-theory offers, like the sufficient
condition for proving dominance. Section 6.3 unrolls our instance of reasoning with
contracts on the sATM running example. In Section 6.4 we discuss the impact
the restrictions from the formal model have on the expressiveness of contracts in
SysML. In Section 6.5 we describe and discuss a model-checking approach based
on timed property automata and reachability for proving the satisfaction of proof
obligations. Finally, we compare our approach with respect to related work in
Section 6.6.

137

Chapter 6. Formal Reasoning with Contracts

6.1 A Flavor of Timed Input/Output Automata
for SysML Semantics

The first step of our contribution with respect to the formal framework consists
in providing a formalism for the semantics of the SysML component language.
Since contracts are defined as a pair of components, the same framework is used
to describe the behavior of the assumption/guarantee and how they contribute
towards the satisfaction of requirements.

In Section 1.1, we have presented several candidate frameworks for formalizing
the semantics of timed reactive components designed with SysML, from which
we selected as the most appropriate the Timed Input/Output Automata (TIOA)
of [108] due to its thorough definition and the ready-to-use compositional results.
However, TIOA as defined in [108] are not fully adapted to express the semantics
of SysML components. For example, the input/output matching resulting in
an output is not consistent with the unicast communication (i.e. one sender-one
receiver) between components, since it provides a pattern of one sender-multiple
receivers. Therefore, in the following, we describe a variant of the TIOA framework
from [108] in order to correctly encompass the semantics of the component model.

A SysML component is represented at the semantic level by a timed input/output
automaton:

Definition 6.1 (Timed Input/Output Automaton). A timed input/output
automaton A is a tuple (X,Clk,Q, θ, I, O, V,H,D, T) where:

• X is a finite set of discrete variables, Clk a finite set of clocks and Y = X∪Clk
the set of internal variables.
• Q ⊆ val(Y) is a set of states where val(Y) is the set of valuations for Y .
• θ ∈ Q is the start state.
• I is a set of input actions, O a set of output actions and V a set of visible

actions. We denote by E = I ∪O ∪ V the signature of the automaton.
• H is a set of internal actions. A = E ∪H is the set of all executable actions.
• I, O, V and H are pairwise disjoint sets.
• D ⊆ Q× A×Q is a set of discrete transitions.
• T is the set of trajectories. Each trajectory is a function τ : Jτ → Q, where
Jτ is a real interval of type [0, d] or [0,∞) with d ∈ R+, such that ∀t ∈ Jτ :
– τ(t)(x) = τ(0)(x), ∀x ∈ X, and
– τ(t)(clk) = τ(0)(clk) + t, ∀clk ∈ Clk, i.e. τ̇(t)(clk) = 1.

We note that there are two main differences between Definitions 6.1 and 1.13:

138

6.1. A Flavor of Timed Input/Output Automata for SysML Semantics

1. The first one relates to the extension of TIOA with visible actions, in addition
to inputs, outputs and internals. Such actions find their rationale in the
output-input matching of components. When computing a composition, in
the asynchronous SysML semantics sending and receiving a signal needs to
leave a visible trace. In [108], the visibility is achieved by declaring that
an input/output match becomes an output, which makes other components
susceptible to react to a matched output (e.g. broadcast) and which is not
compliant with the component model. Moreover, such visible traces are
later exploited for the decomposition and refinement of components towards
implementations. The need for visible actions is also motivated by the system
requirements which are often described with respect to the visible actions of
closed systems.

2. The second difference consists in the restriction of the type of trajectories
to constant functions for discrete variables and to linear functions with the
derivative equal to 1 for clock variables, while the Definition 1.13 covers
general hybrid systems and allows for any functions to be used as trajectories.
This restriction makes our timed model expressiveness equivalent to that of
Alur-Dill TA [7], thus leaving the possibility of automatically performing
reachability analysis or verification of simulation relations. Note that reacha-
bility and simulation are undecidable for the TIOA of [108]. Based on this
restriction, trajectories are completely defined by their domain which will be
solely used in the following to represent the set of trajectories of an automaton.
However, the compositionality results required by the meta-theory to hold
for sound application are independent from this restriction, i.e. they can be
proved also for hybrid systems as described by [108].

Each TIOA offers the following features based on the axioms it satisfies, detailed
in Section 1.1.2:

• 0-delay in every state, time continuity and time additivity,
• input-enabledness, i.e. in every state all inputs are available, and
• time elapse enabling, i.e. in every state either time can progress to infinity or

to an upper bound in which a locally controlled action H ∪O ∪ V is enabled.

We recall here the two notions that allow to describe the behavior of a system: the
execution (or path) and the trace. The notation fval for a trajectory τ denotes the
starting state τ(0) and lval denotes the state for the trajectory’s domain supremum.

Definition 6.2 (Execution). An execution of a timed input/output automaton
A is a possibly infinite sequence α = τ0a1τ1a2τ2 · · · where

• ∀i, ai ∈ A and τi ∈ T ,

139

Chapter 6. Formal Reasoning with Contracts

• τ0.fval = θ,
• if τi is not the last trajectory in α then τi is closed and τi.lval

ai+1−→ τi+1.fval ,
• if τi is the last trajectory it can be either open or closed, and
• if α is a finite sequence then it ends with a trajectory.

The last item expresses a convenience notation, since an execution can be constituted
by only an open trajectory.

An execution fragment can be obtained by replacing the start state θ with a custom
given state x. Like trajectories, execution fragments are also closed under countable
concatenation.

Definition 6.3 (Trace). Let α be an execution. Then trace(α) is the restriction
of α to (EA, ∅), denoted trace(α) = αd(EA, ∅), where:

• each ai appearing in trace(α) is an action in EA, i.e. removing from α all
actions from HA, and
• each τi : Jτi → ∅, Jτi ⊆ R+, records only the length of time-passage and

ignores the evolution of (clock) variables.

Informally, a trace is obtained from an execution by keeping only the length of the
time-passage for trajectories, removing actions not in EA and concatenating all
adjacent trajectories. A trace fragment can be obtained from an execution fragment
by applying the restriction operator. The formal definition of the restriction operator
can be found in [108]. Based on this description we have that the restriction operator
is monotone on the set of closed executions fragments, i.e. if α is a prefix of the
execution fragment β then trace(α) is a prefix of trace(β), and the obtained set is
directed with respect to the prefix operator. Therefore, restriction is continuous
and the trace of concatenated execution fragments is equal to the concatenation of
trace fragments.

We redefine the parallel composition operator for incorporating the extension/re-
striction we made over the standard Definition 1.13 and allowing the automata to
communicate and be executed in parallel. The following definition presents the
conditions that have to be satisfied in order to compose two automata.

Definition 6.4 (Compatible components). Two timed input/output automata
A1 and A2 are compatible if for i, j = 1, 2, i 6= j, Yi ∩ Yj = Hi ∩ Aj = Vi ∩ Aj =

Oi ∩Oj = Ii ∩ Ij = ∅.

Besides not sharing the internal variables, internal actions and outputs, which are
already required by the standard parallel composition operator, we demand that

140

6.1. A Flavor of Timed Input/Output Automata for SysML Semantics

they have disjoint inputs and visible actions. These conditions ensure that the
parallel composition operator corresponds to the SysML semantics.

Syntactically, the parallel composition operator models the input/output synchro-
nization and interleaving of all other unmatched actions.

Definition 6.5 (Parallel composition). If A1 and A2 are two compatible timed
input/output automata then their composition A1 ‖ A2 is defined to be the tuple
(X,Clk,Q, θ, I, O, V,H,D, T) where:

• X = X1 ∪X2 and Clk = Clk1 ∪ Clk2.
• Q = {x1 ∪ x2|x1 ∈ Q1, x2 ∈ Q2}.
• θ = θ1 ∪ θ2.
• I = (I1 \O2) ∪ (I2 \O1).
• O = (O1 \ I2) ∪ (O2 \ I1).
• V = V1 ∪ V2 ∪ (I1 ∩O2) ∪ (I2 ∩O1).
• H = H1 ∪H2.
• D is the set of discrete transitions where for each x = x1∪x2, x′ = x′1∪x′2 ∈ Q

and each a ∈ A, x
a−→ x′ if and only if for i ∈ {1, 2}, either

1. a ∈ Ai and xi
a−→i x′i, or

2. a 6∈ Ai and xi = x′i.
• τ ∈ T ⇔ τdXi ∈ Ti, i ∈ {1, 2}.

The only difference between this definition and Definition 1.14 is related to the
signature of the composite timed input/output automata: the input and output
sets of actions consist in those that are not matched between components, while
matched inputs/outputs become visible actions. By difference, in Definition 1.14
matched inputs/outputs become outputs, which effectively means that outputs are
treated as broadcasts (i.e. one sender-multiple receivers) and is not conform to the
usual SysML semantics.

We mention that this definition of parallel composition can encompass asynchronous
communications. For this, each automaton owns a predefined internal variable
queue whose role is to store the received messages. Then, for each input/output
match, the receiving automaton adds the message to the queue on transitions with
an input. The consumption of the request is modeled by a transition with an
internal action ε if it is the head of the queue, i.e. removing the message from the
queue. Details about this mechanism are provided in Section 7.1.1.

Theorem 6.1. (A, ‖) is a commutative monoid, where A denotes the set of TIOA.

Proof. Let A1, A2 and A3 be three timed input/output automata.

141

Chapter 6. Formal Reasoning with Contracts

1. Commutativity : A1 ‖ A2 = A2 ‖ A1 is true since the composition operator
does not define an order at computation.

2. Associativity : By applying the composition operator we obtain (A1 ‖ A2) ‖
A3 = A1 ‖ (A2 ‖ A3) = (X,Clk,Q, θ, I, O, V,H,D, T) where:
• X = X1 ∪X2 ∪X3.
• Clk = Clk1 ∪ Clk2 ∪ Clk3.
• Q = {x1 ∪ x2 ∪ x3|x1 ∈ Q1, x2 ∈ Q2 and x3 ∈ Q3}.
• θ = θ1 ∪ θ2 ∪ θ3.
• I = (I1 \ (O2 ∪O3)) ∪ (I2 \ (O1 ∪O3)) ∪ (I3 \ (O1 ∪O2)).
• O = (O1 \ (I2 ∪ I3)) ∪ (O2 \ (I1 ∪ I3)) ∪ (O3 \ (I1 ∪ I2)).
• V = V1 ∪ V2 ∪ V3 ∪ (O1 ∩ (I2 ∪ I3)) ∪ (O2 ∩ (I1 ∪ I3)) ∪ (O3 ∩ (I1 ∪ I2)).
• H = H1 ∪H2 ∪H3.
• D is the set of discrete transitions where for each x = x1 ∪ x2 ∪ x3,

x′ = x′1 ∪ x′2 ∪ x′3 ∈ Q and each a ∈ A, x
a−→ x′ if and only if for

i ∈ {1, 2, 3}, either
(a) a ∈ Ai and xi

a−→ x′i, or
(b) a 6∈ Ai and xi = x′i.

• τ ∈ T ⇔ τdXi ∈ Ti, i ∈ {1, 2, 3}.
3. The identity element is the empty timed input/output automaton: it has no

internal variables, it does not perform any actions and can let time elapse to
infinity.

The set operator computations for the second item of the proof can be found in
Appendix B.1.

As in [108] we use trace inclusion as the refinement relation between automata,
which requires that the two automata have the same signature, i.e. be comparable
components.

Definition 6.6 (Comparable components). Two TIOA A1 and A2 are compa-
rable if they have the same signature, formally written E1 = E2.

Since both the components and the requirements are modeled with the same
component language and, in consequence, have their semantics expressed by TIOA,
we set the definition of conformance from the fourth step of the methodology for
verifying that a top contract satisfies a requirement as the trace inclusion relation.

Definition 6.7 (Conformance). Let A1 and A2 be two comparable TIOA. A1

conforms to (refines) A2, denoted A1 � A2, if tracesA1 ⊆ tracesA2 .

142

6.2. Contract Theory for TIOA

Based on this notation, the fourth step of the reasoning generates the following
proof obligation: C = (A,G) a global contract conforms to ϕ if A ‖ G � ϕ.

Trace inclusion is a preorder relation (i.e. reflexive and transitive) and is preserved
by composition, i.e. if A1 � A2 and E is a compatible TIOA with A1 and A2, then
A1 ‖ E � A2 ‖ E. The latter property is formalized and proved in the standard
framework of TIOA [108] by Theorem 1.1. These results can be easily extended
to our variant of TIOA and represent a prerequisite for a sound contract-based
framework.

6.2 Contract Theory for TIOA1

The second step, described in this section, consists in building the formal contract-
based theory on top of the Timed Input/Output Automata (TIOA) framework
previously presented by defining the proof obligation generated by each modeled
refinement relation and proving the set of compositionality results that ensure the
soundness of the method.

A contract is generally represented in Definition 3.1 as a pair of components where
the assumption is defined on the environment and the guarantee is defined with
respect to the component that uses the contract. We start by clearly stating the
notion of contract, where a component is formalized by a TIOA hereafter, as well
as some other notions that were not required for the definition of the component
framework.

Definition 6.8 (Environment). An environment Env for a component K is a
timed input/output automaton compatible with K for which the following hold:
IEnv ⊆ OK and OEnv ⊆ IK .

Definition 6.9 (Closed/Open component). A component K is closed if IK =

OK = ∅. A component is open if it is not closed.

Closed components result from the composition of components having complemen-
tary interfaces. Unlike one may expect, we relax here Definition 6.8 to include
partial environments. This choice is motivated by the layered architecture of
systems which needs to sequentially model (refined) components that represent the
environment of the other.

Definition 6.10 (Contract). A contract C for a component K is a pair (A,G)

of timed input/output automata such that:
1This section is based on [76],[74],[75].

143

Chapter 6. Formal Reasoning with Contracts

• their composition gives a closed system, i.e. IA = OG and IG = OA, and
• the signature of G is a subset of that of K, i.e. IG ⊆ IK , OG ⊆ OK and
VG ⊆ VK .

We denote by the signature of a contract the signature of its guarantee.

With respect to the general Definition 3.1 for contracts, Definition 6.10 models
compatibility by requiring the composition of the assumption and the guarantee to
be closed and the option for a contract to concentrate only on the component’s
contribution in the satisfaction of the running requirement by a covariant relation
on both inputs and outputs, i.e. the component may offer more inputs and outputs
than its guarantee. The first item comes naturally from the signature refinement, i.e.
a guarantee should know how to handle all requests coming from the environment
which may affect the requirement’s satisfaction.

We remark here that a correct definition for A over an environment Env implies
that EA ⊆ EEnv. In consequence the following order relation can be obtained on
the signatures of component, environment and contract: EG = EA ⊆ EEnv ⊆ EK .

Contract satisfaction has been introduced in Definition 3.2 based on a refinement
under context relation, denoted vEnv. In our contract framework, we chose to
define refinement under context at its turn based on conformance, in order to
respect by default one of its required properties. Since a contract abstracts the
signature of a component, the same condition has to be reflected in the definition
of refinement under context, i.e. a concrete component Ki has a larger signature
than the abstract Kj. Since conformance can be defined only between comparable
components, we derive a set of additional timed input/output automata which we
compose with the components and the environment such that the comparability
condition is satisfied.

Definition 6.11 (Refinement under context). Let K1 and K2 be two compo-
nents such that IK2 ⊆ IK1 ∪ VK1 , OK2 ⊆ OK1 ∪ VK1 and VK2 ⊆ VK1 . Let Env be
an environment for K1 compatible with both K1 and K2. We say that K1 refines
K2 in the context of Env, denoted K1 vEnv K2, if

K1 ‖ Env ‖ Env′ � K2 ‖ Env ‖ K ′ ‖ Env′
where K ′ and Env′ are defined such that both members of the conformance relation
are closed and comparable, as follows:

• K ′ = (∅, ∅, {φ}, φ, ((IK1\IK2)∪(VK1∩OK2)), ((OK1\OK2)∪(VK1∩IK2)), (VK1\
EK2), ∅,DK′ , 2[R0

+]) where φ is the function ∅ → ∅, DK′ = {(φ, a, φ)|∀a ∈ EK′}
and 2[R0

+] = {[0, t]|t ∈ R+} ∪ {[0,∞)}.

144

6.2. Contract Theory for TIOA

• Env′ = (∅, ∅, {φ}, φ, (OK1 \ IEnv), (IK1 \ OEnv), ∅, ∅,DEnv′ , 2[R0
+]) where φ is

the function ∅ → ∅ and DEnv′ = {(φ, a, φ)|∀a ∈ EEnv′}.

Informally, K ′ is defined as a component that complements the abstract K2 such
that K1 and K2 ‖ K ′ are comparable. In consequence, K ′ reacts to the actions
defined as the set difference between the signatures of K1 and K2 and models
an abstraction for the part of K1 that is not involved in the satisfaction of the
running requirement. Similarly, Env′ is a partial environment for K1 and K2 ‖ K ′
which models actions that do not directly contribute towards the satisfaction of
the requirement, in this case represented by K2. We chose to explicitly represent
this additional environment and, therefore, obtain two comparable and closed
conformance members. The signature of Env′ is given by the actions of the concrete
K1 which are not present in the actions of Env but with reversed directionality.
The behavior of K ′ and Env′ is the simplest definition such that all actions are
enabled at any moment and time can elapse to infinity, thus modeling a “don’t
care” semantics.

The particular inclusion relations between the signatures of K1 and K2 in the
definition are required by the compositionality property of refinement under context,
which allows to successively incorporate partial environments in the component
under study. Suppose K1 = K ′1 ‖ K3 and K2 = K ′2 ‖ K3, where K ′2 is a contract
guarantee for K ′1, i.e. IK′

2
⊆ IK′

1
, OK′

2
⊆ OK′

1
and VK′

2
⊆ VK′

1
. Such components

are obtained by integrating the partial environment K3, i.e. Env = Env′ ‖ K3.
Then, by composition, actions of K3 may be matched by actions of K ′1, but may
not have an input/output correspondent in K ′2. This situation also imposes the
term VK1 ∩OK2 for inputs of K ′, since the additional outputs of K2 may belong to
a different component, e.g. K3, which is not concerned by the satisfaction of the
requirement, and the term VK1 ∩ IK2 for the outputs of K ′.

This definition of refinement under context shows the motivation for adding the
set of visible actions for a TIOA. While transforming an input/output match in an
output or an input is inconsistent with the intended semantics, the only choice left
in the standard definition of TIOA from [108] is to transform it into an internal
action. Recall that internal actions are removed from an execution in order to
obtain a trace. Therefore, trace inclusion will always hold — a trace reduces to
time elapse — and incorrect situations, like performing an unexpected output,
cannot be detected.

As summarized in Section 3.1.1, refinement under context has to satisfy several
conditions proved in the following in order for the meta-theory to hold.

145

Chapter 6. Formal Reasoning with Contracts

Theorem 6.2. Given a set K of comparable components and a fixed environment
Env for that signature, the refinement under context vEnv is a preorder over K.

Proof.
1. Reflexivity : K vEnv K

∆⇔ K ‖ Env ‖ Env′ � K ‖ Env ‖ Env′ which is true
from the definition of the conformance relation.
K ′ is not represented since it is the identity element of the composition
operator.

2. Transitivity : K1 vEnv K2 ∧K2 vEnv K3 =⇒ K1 vEnv K3.

K1 vEnv K2
∆⇔ K1 ‖ Env ‖ Env′ � K2 ‖ Env ‖ Env′

K2 vEnv K3
∆⇔ K2 ‖ Env ‖ Env′ � K3 ‖ Env ‖ Env′

 Transitivity of �
=⇒

=⇒ K1 ‖ Env ‖ Env′ � K3 ‖ Env ‖ Env′
∆⇔ K1 vEnv K3

Env′ has the same definition since K1, K2 and K3 have the same signature.
Similarly, we abstract K ′2 and K ′3 since they are the identity elements.

We remark that the transitivity property holds also if we relax the hypothesis and
demand the components to be correctly defined such that refinement under context
holds, i.e. the relation is satisfied and the signature definition is refined.

Proposition 6.1. Let K1, K2, K3 be three components not necessarily comparable
and Env an environment such that K1 vEnv K2 and K2 vEnv K3. Then K1 vEnv
K3.

Proof. K1 vEnv K2
∆⇔ K1 ‖ Env ‖ Env′ � K2 ‖ Env ‖ K ′2 ‖ Env′ (1)

We write the automaton Env′ = Env′1 ‖ Env′2 where :

• Env′1 = (∅, ∅, {φ}, φ, ((OK1 ∩OK2) \ IE), ((IK1 ∩ IK2) \OE), ∅, ∅, DEnv′1
, 2[R0

+]),
• Env′2 = (∅, ∅, {φ}, φ, ((OK1 \OK2) \ IE), ((IK1 \ IK2) \OE), ∅, ∅, DEnv′2

, 2[R0
+]).

Remark that the sets of input and output actions are pairwise disjoint for Env′1
and Env′2.

We write the automaton K ′2 = K ′′2 ‖ Env′3 where:

• K ′′2 = (∅, ∅, {φ}, φ, (IK1 \ IK2), (OK1 \OK2), (VK1 \ EK2), ∅, DK′′
2
, 2[R0

+]),
• Env′3 = (∅, ∅, {φ}, φ, (VK1 ∩OK2), (VK1 ∩ IK2), ∅, ∅, DEnv′3

, 2[R0
+]).

146

6.2. Contract Theory for TIOA

Similarly, the sets of inputs, outputs and visible actions are pairwise disjoint for
K ′′2 and Env′3.

With this notation:
(1) ⇔ K1 ‖ Env ‖ Env′1 ‖ Env′2 � K2 ‖ Env ‖ K ′′2 ‖ Env′3 ‖ Env′1 ‖ Env′2 (2)

K2 vE K3
∆⇔ K2 ‖ Env ‖ Env′′ � K3 ‖ Env ‖ K ′3 ‖ Env′′ (3)

With the same notation we obtain that Env′′ = Env′1 ‖ Env′3, and
(3) ⇔ K2 ‖ E ‖ Env′1 ‖ Env′3 � K3 ‖ E ‖ K ′3 ‖ Env′1 ‖ Env′3 (4)

Composing (4) with K ′′2 ‖ Env′2 and from Theorem 1.1 we get:
K2 ‖ Env ‖ Env′1 ‖ Env′3 ‖ K ′′2 ‖ Env′2 � K3 ‖ Env ‖ K ′3 ‖ Env′1 ‖ Env′3 ‖ K ′′2 ‖
Env′2 ⇔

⇔ K2 ‖ Env ‖ K ′′2 ‖ Env′3 ‖ Env′1 ‖ Env′2 � K3 ‖ Env ‖ K ′3 ‖ K ′2 ‖
‖ Env′1 ‖ Env′2

(2) K1 ‖ Env ‖ Env′1 ‖ Env′2 � K2 ‖ Env ‖ K ′′2 ‖ Env′3 ‖
‖ Env′1 ‖ Env′2


Transitivity of �

=⇒

=⇒ K1 ‖ Env ‖ Env′1 ‖ Env′2 � K3 ‖ Env ‖ K ′3 ‖ K ′2 ‖ Env′1 ‖ Env′2 ⇔
⇔ K1 ‖ Env ‖ Env′ � K3 ‖ Env ‖ K ′2 ‖ K ′3 ‖ Env′

By denoting K ′ = K ′2 ‖ K ′3 we have:
K1 ‖ Env ‖ Env′ � K3 ‖ Env ‖ K ′ ‖ Env′

∆⇔ K1 vEnv K3

The last step consists in proving that K ′ is indeed the automaton generated by the
refinement under context relation. Since K ′2 and K ′3 are built from the hypothesis
by the refinement under context relation, by composition they define the correct
structure for K ′. Moreover:

• IK′ = (IK1 \ IK3) ∪ (VK1 ∩OK3),
• OK′ = (OK1 \OK3) ∪ (VK1 ∩ IK3) and
• VK′ = VK1 \ EK3 .

The proofs on the sets of actions for Env′′ and K ′ are detailed in Appendix B.2.

Furthermore, refinement under context allows deducing conformance for closed sys-
tems: it is true from the definition that for any K1 and K2 comparable components
and Env a complete environment (i.e. EEnv = EK1 = EK2) such that K1 vEnv K2

then K1 ‖ Env � K2 ‖ Env.

147

Chapter 6. Formal Reasoning with Contracts

The following theorem that allows for incremental design holds in our framework:

Theorem 6.3 (Compositionality). Let K1 and K2 be two components and Env
an environment compatible with both K1 and K2 such that Env = Env1 ‖ Env2.
Then K1 vEnv1‖Env2 K2 ⇔ K1 ‖ Env1 vEnv2 K2 ‖ Env1.

Proof. K1 vEnv1‖Env2 K2 ⇔ K1 ‖ (Env1 ‖ Env2) ‖ Env′ � K2 ‖ (Env1 ‖ Env2) ‖
K ′ ‖ Env′
K1 ‖ Env1 vEnv2 K2 ‖ Env1 ⇔ (K1 ‖ Env1) ‖ Env2 ‖ Env′′ � (K2 ‖ Env1) ‖
Env2 ‖ K ′′ ‖ Env′′

The two relations are identical based on the associativity of ‖, where
Env′ = Env′′ = (∅, ∅, {φ}, φ, (OK1\(IEnv1∪IEnv2)), (IK1\(OEnv1∪OEnv2)), ∅, ∅, DEnv′ ,

2[R0
+])

and
K ′ = K ′′ = (∅, ∅, {φ}, φ, ((IK1\IK2)∪(VK1∩OK2)), ((OK1\OK2)∪(VK1∩IK1)), (VK1\
EK2), ∅, DK′ , 2[R0

+]).

The proof with respect to the input, output and visible set of actions is presented
in Appendix B.3.

The soundness of circular reasoning is the main result that guarantees the cor-
rectness of our contract-based framework and which allows for independent imple-
mentability.

Theorem 6.4 (Circular reasoning). Let K be a component, Env its environ-
ment and C = (A,G) a contract for K such that K and G are compatible with both
Env and A. If

1. tracesG is closed under limits,
2. tracesG is closed under time-extension,
3. K vA G and
4. Env vG A

then K vEnv G.

Proof. Notation: for β be a trace, βd(B, ∅) denotes the projection of β on the set
of actions B.

K vA G
∆⇔ K ‖ A ‖ A′ � G ‖ A ‖ G′ ‖ A′

We write A′ = A′1 ‖ A′2 with

148

6.2. Contract Theory for TIOA

• A′1 = (∅, {φ}, φ, (OK \ IEnv), (IK \OEnv), ∅, ∅, DA′
1
, 2[R0

+]),
• A′2 = (∅, {φ}, φ, (IEnv \ IA), (OEnv \OA), ∅, ∅, DA′

2
, 2[R0

+]).

This partition of the sets of interfaces is complete due to the relation between
the interfaces of the components AG = AA ⊆ AEnv ⊆ AK . Moreover, the sets of
actions are pairwise disjoint.

Similarly, we write G′ = G′1 ‖ G′2 with

• G′1 = (∅, {φ}, φ, (IK \OEnv), (OK \ IEnv), (VK \ EG), ∅, DG′
1
, 2[R0

+]),
• G′2 = (∅, {φ}, φ, (OEnv \ IG), (IEnv \OG), ∅, ∅, DG′

2
, 2[R0

+])

where the sets of actions are again pairwise disjoint.

Then
3. ∆⇔ K ‖ A ‖ A′1 ‖ A′2 � G ‖ A ‖ G′1 ‖ G′2 ‖ A′1 ‖ A′2
4. ∆⇔ Env ‖ G ‖ G′2 � A ‖ G ‖ A′2 ‖ A′3 ‖ G′2
with A′3 = (∅, {φ}, φ, ∅, ∅, (VEnv \ EA), ∅, DA′

3
, 2[R0

+]).

With this notation the conclusion becomes: K ‖ Env ‖ A′1 � G ‖ Env ‖ G′1 ‖ G′2 ‖
A′1.

We prove this relation in two steps: every closed trace of K ‖ Env ‖ A′1 is a trace
of G ‖ Env ‖ G′1 ‖ G′2 ‖ A′1 and every non-closed trace of K ‖ Env ‖ A′1 is a trace
of G ‖ Env ‖ G′1 ‖ G′2 ‖ A′1.

Step 1) Every closed trace of K ‖ Env ‖ A′1 is also a trace of G ‖ Env ‖ G′1 ‖
G′2 ‖ A′1. Proof by induction.

Step 1.1) Let β ∈ trajs(∅) be a trace of K ‖ Env ‖ A′1. From axiom A0) we have
that there is a point trajectory τα of G such that α.ltime = 0. Since tracesG are
closed under time-extension =⇒ α_β = β ∈ tracesG (1)

From the definitions of G′1 and G′2 we can similarly deduce that β ∈ tracesG′
1
(2)

and β ∈ tracesG′
2
(3)

From the hypothesis we have that β ∈ tracesK‖Env‖A′
1
⇔ β ∈ tracesEnv‖A′

1
(4)

(1), (2), (3) and (4) =⇒ β ∈ tracesG‖Env‖G′
1‖G′

2‖A

Step 1.2) Let β′ a trace of K ‖ Env ‖ A′1 and G ‖ Env ‖ G′1 ‖ G′2 ‖ A′1. Let

149

Chapter 6. Formal Reasoning with Contracts

β = β′_β′′ a trace of K ‖ Env ‖ A′1.
We have to prove that β ∈ tracesG‖Env‖G′

1‖G′
2‖A′

1

a) β = β′aτ where a is an output action of K and τ a point trajectory.

From the hypothesis we have that β′ ∈ tracesG‖Env‖G′
1‖G′

2‖A′
1

=⇒

β′ ∈ tracesEnv‖G‖G′
2

Env ‖ G ‖ G′2 � A ‖ G ‖ A′2 ‖ A′3 ‖ G′2

}
=⇒ β′ ∈ tracesA‖G‖A′

2‖A′
3‖G′

2

=⇒ β′d(EA, ∅) ∈ tracesA and β′d(EA′
2
, ∅) ∈ tracesA′

2
.

IEnv ∪ IA′
1

= OK . We have two cases:

i) a ∈ IA′
1
. From the hypothesis we have β ∈ tracesK‖Env‖A′

1
=⇒ β′d(EK‖A′

1
, ∅) ∈

tracesK‖A′
1
.

a 6∈ IA =⇒ βd(EA, ∅) = β′d(EA, ∅) ∈ tracesA.
a 6∈ IA′

2
=⇒ βd(EA′

2
, ∅) = β′d(EA′

2
, ∅) ∈ tracesA′

2

=⇒ β ∈ tracesK‖A‖A′
1‖A′

2

K ‖ A ‖ A′1 ‖ A′2 � G ‖ A ‖ G′1 ‖ G′2 ‖ A′1 ‖ A′2

}
=⇒

=⇒ β ∈ tracesG‖A‖G′
1‖G′

2‖A′
1‖A′

2
=⇒ βd(EG‖G′

1‖G′
2
, ∅) ∈ tracesG‖G′

1‖G′
2
(5)

β ∈ tracesK‖Env‖A′
1

=⇒ βd(EEnv‖A′
1
, ∅) ∈ tracesEnv‖A′

1
(6)

(5) and (6) =⇒ β ∈ tracesG‖Env‖G′
1‖G′

2‖A′
1

ii) a ∈ IEnv, IEnv = IA ∪ IA′
2
. We have two cases:

ii.1) a ∈ IA. Let α be an execution of A such that trace(α) = β′d(EA, ∅).
From the axiom A4) we have that ∃x′ state such that (α(α.ltime), a, x′) is a
discrete transition =⇒
=⇒ β′d(EA, ∅)_ad(EA, ∅)_τd(EA, ∅) = βd(EA, ∅) ∈ tracesA.
a 6∈ IA′

2
=⇒ βd(EA′

2
, ∅) = β′d(EA′

2
, ∅) ∈ tracesA′

2

From the hypothesis we have β ∈ tracesK‖Env‖A′
1

=⇒ βd(EK‖A′
1
, ∅) ∈

tracesK‖A′
1

=⇒ β ∈ tracesK‖A‖A′
1‖A′

2

K ‖ A ‖ A′1 ‖ A′2 � G ‖ A ‖ G′1 ‖ G′2 ‖ A′1 ‖ A′2

}
=⇒

=⇒ β ∈ tracesG‖A‖G′
1‖G′

2‖A′
1‖A′

2
=⇒ βd(EG‖G′

1‖G′
2
, ∅) ∈ tracesG‖G′

1‖G′
2
(7)

(6) and (7) =⇒ β ∈ tracesG‖Env‖G′
1‖G′

2‖A′
1

ii.2) a ∈ IA′
2
. Let α be an execution of A′2 such that trace(α) = β′d(EA′

2
, ∅).

150

6.2. Contract Theory for TIOA

From the axiom A4) we have that ∃x′ state such that (α(α.ltime), a, x′) is a
discrete transition =⇒ β′d(EA′

2
, ∅)_ad(EA′

2
, ∅)_τd(EA′

2
, ∅) = βd(EA′

2
, ∅) ∈

tracesA′
2
.

a 6∈ IA =⇒ βd(EA, ∅) = β′d(EA, ∅) ∈ tracesA
From the hypothesis we have β ∈ tracesK‖Env‖A′

1
=⇒ βd(EK‖A′

1
, ∅) ∈

tracesK‖A′
1

=⇒ β ∈ tracesK‖A‖A′
1‖A′

2

K ‖ A ‖ A′1 ‖ A′2 � G ‖ A ‖ G′1 ‖ G′2 ‖ A′1 ‖ A′2

}
=⇒

=⇒ β ∈ tracesG‖A‖G′
1‖G′

2‖A′
1‖A′

2
=⇒ βd(EG‖G′

1‖G′
2
, ∅) ∈ tracesG‖G′

1‖G′
2
(8)

(6) and (8) =⇒ β ∈ tracesG‖Env‖G′
1‖G′

2‖A′
1

b) β = β′aτ where a is an output action of K and τ a point trajectory.
β′ ∈ tracesG‖Env‖G′

1‖G′
2‖A′

1
=⇒ β′d(EG, ∅) ∈ tracesG, β′d(EG′

1
, ∅) ∈ tracesG′

1
and

β′d(EG′
2
, ∅) ∈ tracesG′

2

IG ∪ IG′
2

= OEnv. We have two cases:

i) a ∈ IG. Let α be an execution of G such that trace(α) = β′d(EG, ∅).
From axiom A4) we have that ∃x′ state with (α(α.ltime), a, x′) discrete
transition =⇒ β′d(EG, ∅)_ad(EG, ∅)_τd(EG, ∅) = βd(EG, ∅) ∈ tracesG (9)
a 6∈ IG′

2
=⇒ βd(EG′

2
, ∅) = β′d(EG′

2
, ∅) ∈ tracesG′

2
(10)

a 6∈ IG′
1

=⇒ βd(EG′
1
, ∅) = β′d(EG′

1
, ∅) ∈ tracesG′

1
(11)

(6), (9), (10) and (11) =⇒ β ∈ tracesG‖Env‖G′
1‖G′

2‖A′
1

ii) a ∈ IG′
2
. Let α be an execution of G such that trace(α) = β′d(EG′

2
, ∅).

From axiom A4) we have that ∃x′ state with (α(α.ltime), a, x′) discrete
transition =⇒ β′d(EG′

2
, ∅)_ad(EG′

2
, ∅)_τd(EG′

2
, ∅) = βd(EG′

2
, ∅) ∈ tracesG′

2

(12)
a 6∈ IG =⇒ βd(EG, ∅) = β′d(EG, ∅) ∈ tracesG (13)
a 6∈ IG′

1
=⇒ βd(EG′

1
, ∅) = β′d(EG′

1
, ∅) ∈ tracesG′

1
(14)

(6), (12), (13) and (14) =⇒ β ∈ tracesG‖Env‖G′
1‖G′

2‖A′
1

c) β = β′aτ where a is an output action of A′1 and τ is a point trajectory.
β′ ∈ tracesG‖Env‖G′

1‖G′
2‖A′

1
=⇒ β′d(EG, ∅) ∈ tracesG, β′d(EG′

1
, ∅) ∈ tracesG′

1
and

β′d(EG′
2
, ∅) ∈ tracesG′

2

a 6∈ IG =⇒ βd(EG, ∅) = β′d(EG, ∅) ∈ tracesG (15)
a ∈ IG′

1
(= OA′

1
). Let α be an execution of G′1 such that trace(α) = β′d(EG′

1
, ∅).

From the axiom A4) we have that ∃x′ state such that (α(α.ltime), a, x′) is a discrete
transition =⇒
=⇒ β′d(EG′

1
, ∅)_ad(EG′

1
, ∅)_τd(EG′

1
, ∅) = βd(EG′

1
, ∅) ∈ tracesG′

1
(16)

151

Chapter 6. Formal Reasoning with Contracts

a 6∈ IG′
2

=⇒ βd(EG′
2
, ∅) = β′d(EG′

2
, ∅) ∈ tracesG′

2
(17)

(6), (15), (16) and (17) =⇒ β ∈ tracesG‖Env‖G′
1‖G′

2‖A′
1

d) β = β′aτ where a is a visible action of K and τ is a point trajectory.
β ∈ tracesK‖Env‖A′

1
=⇒ βd(EK , ∅) ∈ tracesK

a ∈ VK =⇒ a 6∈ EA, a 6∈ EA′
1
and a 6∈ EA′

2
and from the hypothesis

β′d(EA‖A′
1‖A′

2
, ∅) ∈ tracesA‖A′

1‖A′
2

=⇒ βd(EA‖A′
1‖A′

2
, ∅) ∈ tracesA‖A′

1‖A′
2

=⇒ β ∈ tracesK‖A‖A′
1‖A′

2

K ‖ A ‖ A′1 ‖ A′2 � G ‖ A ‖ G′1 ‖ G′2 ‖ A′1 ‖ A′2

}
=⇒

=⇒ β ∈ tracesG‖A‖G′
1‖G′

2‖A′
1‖A′

2
=⇒ βd(EG‖G′

1‖G′
2
, ∅) ∈ tracesG‖G′

1‖G′
2
(18)

(6) and (18) =⇒ β ∈ tracesG‖Env‖G′
1‖G′

2‖A′
1

e) β = β′aτ where a is a visible action of Env and τ is a point trajectory.
β′ ∈ tracesG‖Env‖G′

1‖G′
2

=⇒ β′d(EG‖G′
1‖G′

2
, ∅) ∈ tracesG‖G′

1‖G′
2

Since a ∈ VEnv =⇒ a 6∈ EG, a 6∈ EG′
1
and a 6∈ EG′

2
=⇒ βd(EG‖G′

1‖G′
2
, ∅) =

β′d(EG‖G′
1‖G′

2
, ∅) ∈ tracesG‖G′

1‖G′
2
(19)

(6) and (19) =⇒ β ∈ tracesG‖Env‖G′
1‖G′

2‖A′
1

Step 2) Every non-closed trace of K ‖ Env ‖ A′1 is also a trace of G ‖ Env ‖
G′1 ‖ G′2 ‖ A′1. Let β be a non-closed trace of K ‖ Env ‖ A′1. Then β is the
limit of a sequence β1β2 · · · of closed traces of K ‖ Env ‖ A′1. We have shown
that βi is closed trace of K ‖ Env ‖ A′1, for all i, and thus βi is also a trace of
G ‖ Env ‖ G′1 ‖ G′2 ‖ A′1.

βi ∈ tracesG‖Env‖G′
1‖G′

2‖A′
1

=⇒ βid(EG, ∅) ∈ tracesG, ∀i
restriction is a continuous operation

}
=⇒

=⇒ βd(EG, ∅) = limβid(EG, ∅)
tracesG are closed under limits

}
=⇒ βd(EG, ∅) ∈ tracesG(20)

Similarly, βd(EG′
1
, ∅) ∈ tracesG′

1
(21) and βd(EG′

2
, ∅) ∈ tracesG′

2
(22)

(6), (21), (22) and (23) =⇒ β ∈ tracesG‖Env‖G′
1‖G′

2‖A′
1

This theorem is similar to Theorem 1.2, while the same reasoning is used for the

152

6.2. Contract Theory for TIOA

two theorem proofs. While we prove that K vEnv G, Theorem 1.2 states that
K ‖ Env � G ‖ A. Even if the latter is a stronger result with respect to the state
space reduction at verification, it doesn’t guarantee the circular reasoning needed
for contract refinement. Moreover, our conclusion also allows to relax the theorem’s
hypothesis by requiring only G to model a safety property. Recall that the two
conditions on the set of traces — closure under limits and under time-extension —
specify that the component is a safety property.

The second step of the contract-based reasoning consists in proving the refinement
relation between contracts in order to discard components from now on. Since
our theory satisfies the compositionality results required by the meta-theory, we
can use the following sufficient condition for dominance which is a variant of
Theorem 3.1 proved on the general notation of the meta-theory in [142]. Then
verifying dominance consists in checking several satisfaction relations on abstract
timed input/output automata that are easier to handle.

Theorem 6.5. {Ci}ni=1 dominates C if, for all i, tracesGi and tracesG are closed
under limits and under time-extension and

{
G1 ‖ ... ‖ Gn vA G
A ‖ G1 ‖ ... ‖ Gi−1 ‖ Gi+1 ‖ ... ‖ Gn vGi Ai, ∀i

Proof. Let Ki, i = 1, n, a set of components such that:
(1) Ki vAi Gi

(2) G1 ‖ G2 ‖ . . . ‖ Gn vA G
(3) A ‖ G1 ‖ . . . ‖ Gi−1 ‖ Gi+1 ‖ . . . ‖ Gn vGi Ai,∀i

We have to prove that K1 ‖ K2 ‖ . . . ‖ Kn vA G.

The proof is realized by induction on j where j = 0, n is the number of guarantees
replaced by their corresponding component.

More precisely, we will prove by induction that K1 ‖ ... ‖ Kj−1 ‖ Gj ‖ ... ‖ Gn vA
G.

In parallel, we will also need to prove that A ‖ K1 ‖ K2 ‖ . . . ‖ Kj ‖ Gj+1 ‖ . . . ‖
Gi−1 ‖ Gi+1 ‖ . . . ‖ Gn vGi Ai, ∀i > j.

Step j = 0. Then the conclusion becomes

153

Chapter 6. Formal Reasoning with Contracts

G1 ‖ G2 ‖ . . . ‖ Gn vA G which is true by hypothesis (2).

Step j = 1.

From (1) for i=1 =⇒ K1 vA1 G1

From (3) for i=1 =⇒ A ‖ G2 ‖ . . . ‖ Gn vG1 A1

}
Theorem 6.4

=⇒

=⇒ K1 vA‖G2‖...‖Gn G1 (4)

(4)
Theorem 6.3

=⇒ K1 ‖ G2 ‖ . . . ‖ Gn vA G1 ‖ G2 ‖ . . . ‖ Gn

(2) G1 ‖ . . . ‖ Gn vA G

}
Transitivity of vA=⇒

=⇒ K1 ‖ G2 ‖ . . . ‖ Gn vA G (5)

(4)
Theorem 6.3

=⇒ A ‖ K1 ‖ G2 ‖ . . . ‖ Gi−1 ‖ Gi+1 ‖ . . . ‖
‖ Gn vGi A ‖ G1 ‖ G2 ‖ . . . ‖ Gi−1 ‖ Gi+1 ‖ . . . ‖ Gn, ∀i > 1

(3) A ‖ G1 ‖ . . . Gi−1 ‖ Gi+1 ‖ . . . ‖ Gn vGi Ai,∀i


Transitivity of vGi=⇒

=⇒ A ‖ K1 ‖ G2 ‖ . . . Gi−1 ‖ Gi+1 ‖ . . . ‖ Gn vGi Ai, ∀i > 1 (6)

Relations (5) and (6) constitute the hypotheses for the induction step at j = 2.

Induction step. Let j be fixed. The induction hypotheses for this step are:
K1 ‖ . . . ‖ Kj ‖ Gj+1 ‖ . . . ‖ Gn vA G (7)
A ‖ K1 ‖ K2 ‖ . . . ‖ Kj ‖ Gj+1 ‖ . . . ‖ Gi−1 ‖ Gi+1 ‖ . . . ‖ Gn vGi Ai, ∀i > j (8)

Then we want to prove that:
K1 ‖ . . . ‖ Kj ‖ Kj+1 ‖ Gj+2 ‖ Gn vA G (9) and
A ‖ K1 ‖ . . . ‖ Kj+1 ‖ Gj+2 ‖ . . . ‖ Gi−1 ‖ Gi+1 ‖ . . . ‖ Gn vGi Ai,∀i > j + 1 (10)

We proceed as follows:

(1) Kj+1 vAj+1
Gj+1

From (8) for i=j+1 =⇒ A ‖ K1 ‖ K2 ‖ . . . ‖ Kj ‖
‖ Gj+2 ‖ . . . ‖ Gn vGj+1

Aj+1

 Theorem 6.4
=⇒

154

6.3. Application of the Contract Framework on the sATM

=⇒ Kj+1 vA‖K1‖...‖Kj‖Gj+2‖...‖Gn Gj+1 (11)

(11)
Theorem 6.3

=⇒ K1 ‖ . . . ‖ Kj ‖ Kj+1 ‖ Gj+2 ‖ . . . ‖ Gn vA K1 ‖
‖ . . . ‖ Kj ‖ Gj+1 ‖ Gj+2 ‖ . . . ‖ Gn

(7) K1 ‖ . . . ‖ Kj ‖ Gj+1 ‖ . . . ‖ Gn vA G

 Transitivity of vA=⇒

=⇒ K1 ‖ . . . ‖ Kj ‖ Kj+1 ‖ Gj+2 ‖ Gn vA G (9)

(11)
Theorem 6.3

=⇒ A ‖ K1 ‖ . . . ‖‖ Kj+1 ‖ Gj+2 ‖ . . . ‖ Gi−1 ‖
‖ Gi+1 ‖ . . . ‖ Gn vGi A ‖ K1 ‖ . . . ‖ Kj ‖ Gj+1 ‖ . . . ‖

‖ Gi−1 ‖ Gi+1 ‖ . . . ‖ Gn,∀i > j + 1

(8) A ‖ K1 ‖ . . . ‖ Kj ‖ Gj+1 ‖ . . . ‖ Gi−1 ‖
‖ Gi+1 ‖ . . . ‖ Gn vGi Ai, ∀i > j + 1


Transitivity of vGi=⇒

=⇒ A ‖ K1 ‖ . . . ‖ Kj+1 ‖ Gj+2 ‖ . . . ‖ Gi−1 ‖ Gi+1 ‖ . . . ‖ Gn vGi Ai,∀i > j + 1

(10)

Step j = n. From (9), for j = n, we obtain K1 ‖ K2 ‖ . . . ‖ Kn vA G which
implies dominance.

The previous proof is similar to that of Theorem 3.1 presented in [142] by adapting
it to our notation and taking into consideration the compositional results of
Theorems 6.2, 6.3, 6.4 and Proposition 6.1.

6.3 Application of the Contract Framework on the
sATM

In the sequel we show how our contract framework can be applied on the sATM
running example described in Section 4.2 for the satisfaction of Requirement 4.1.
We start by describing the set of contracts that will be used for verification; we
mention that they were obtained after applying a CEGAR method [50, 29, 1, 97]
on proof obligations as explained below.

Figure 6.1 presents the contract’s C_Controller assumption and guarantee behavior,
modeled for the controller component. We have previously identified based on
the requirement formalization and the component behaviors the signature of
the contract to be {?amount, ?ok, ?nok, !ejectCard, !releaseMoney}, where the

155

Chapter 6. Formal Reasoning with Contracts

stm [«assumption» block] A_Controller [StatechartOfA_Controller]

Idle

amount(10) to User2Console

WaitForRemoval

RemoveCard

ejectCard

ok to CardUnit2Ctr_Eject

WaitForMoney

releaseMoney

StatechartDiagram

Page 1 of 1

(a) Behavior of the assumption

stm [«guarantee» block] G_Controller [StatechartOfG_Controller]

Idle

EjectCard

amount

ejectCard to Ctr2CardUnit

«lazy»

WaitForRemoval

ReleaseMoney

ok

releaseMoney(amount.value) to Dispenser2User

«lazy»

StatechartDiagram

Page 1 of 1

(b) Behavior of the guarantee

Figure 6.1 – Contract modeling for the controller component.

initialization process and display role are abstracted. Therefore, the assumption
represented in Figure 6.1(a) models that after the amount is selected, the card
is removed without the occurrence of an error (i.e. the ok sendAction). The
component guarantees that if the amount is eventually released then it will have
the same value as the one demanded by the customer, modeled in Figure 6.1(b) by
the parameter amount.value of releaseMoney.

The contract for the cardUnit component is defined over the signature {?cardInserted,
?ejectCard, ?cardRemoved, !retrieveCard, !ok, !nok}. Even though the initialization
of the withdrawal process is not concerned by the Requirement 4.1, the card
insertion action has to be modeled. We explain the rationale for this request on the
contract satisfaction proof. The assumption A_CardUnit modeled in Figure 6.2(a)
is informally described by the requirement: once the signal retrieveCard is handled,
a Timer t is set to 0; then the card is removed within at most 5 time units. The
delay is represented with the transition without a guard from RemoveCard to the
sendAction which has a lazy semantics, while the time guarded transition enforces
the execution of the action at 5 time units if not performed before. The cardUnit
will guarantee in Figure 6.2(b) that only the ok signal is raised during the remove
process thus eliminating the nok branch.

156

6.3. Application of the Contract Framework on the sATM

stm [«assumption» block] A_CardUnit [StatechartOfA_CardUnit]

Idle

WaitForRemoval

ejectCard to Ctr2CardUnit

RemoveCard

retrieveCard/t.set(0)

cardRemoved to User2CardUnitRemova

«lazy»

[t = 5]

WaitForAck ok

cardInserted to User2CardUnitInsertion

EjectCard

«lazy»

StatechartDiagram

Page 1 of 1

(a) Behavior of the assumption

stm [«guarantee» block] G_CardUnit [StatechartOfG_CardUnit]

Idle

EjectCard

retrieveCard to CardUnit2User

«lazy»

WaitForRemoval

AckRemoval

cardRemoved

ok to CardUnit2Ctr_Eject

«lazy»

CardInserted

ejectCard

cardInserted

StatechartDiagram

Page 1 of 1

(b) Behavior of the guarantee

Figure 6.2 – Contract modeling for the cardUnit component.

Finally, the top-level contract C_ATM has its signature consisting in {?cardInserted,
?amount, ?cardRemoved, !retrieveCard, !releaseMoney} which is identical on inputs
and outputs with the signature of G_Controller and G_CardUnit composition.
The assumption, modeled in Figure 6.3(a), describes a behavior similar to the
A_CardUnit. The guarantee, represented in Figure 6.3(b), expresses that if the
amount is released then it will have the same value as the one demanded by the
customer.

The first step of the reasoning consists in verifying the following contract satisfaction
relations:

(1.1) controller vaCtr gCtr,
(1.2) cardUnit vaCardUnit gCardUnit.

The conformance proof obligation generated by the contract satisfaction of C_CardUnit
is written:

157

Chapter 6. Formal Reasoning with Contracts

stm [«assumption» block] A_ATM [StatechartOfA_ATM]

Idle

WaitForCard

amount(10) to User2Console

RemoveCard

retrieveCard/t.set(0)

WaitForMoney

releaseMoney

cardRemoved to User2CardUnitRemoval

«lazy»

[t = 5]

cardInserted to User2CardUnitInsertion

SelectAmount

StatechartDiagram

Page 1 of 1

(a) Behavior of the assumption

stm [«guarantee» block] G_sATM [StatechartOfG_sATM]

Idle

AskForRemoval

WaitForRemoval

retrieveCard to CardUnit2User

«lazy»

ReleaseMoney

cardRemoved

releaseMoney(amount.value) to Dispenser2User

«lazy»

WaitForAction

amount

cardInserted

StatechartDiagram

Page 1 of 1

(b) Behavior of the guarantee

Figure 6.3 – Contract modeling for the atm component.

cardUnit ‖ aCardUnit ‖ addEnvCardUnit �
gCardUnit ‖ aCardUnit ‖ addGuaCardUnit ‖ addEnvCardUnit

where the signature of the additional components addEnvCardUnit and addGuaC-
ardUnit is the signal init. Suppose now that the cardInserted signal is not modeled
by aCardUnit and gCardUnit. Then, this signal will appear in the component
addEnvCardUnit which can execute it at any moment. For example, this message
may be sent to the CardUnit while it is in the state WaitForRemoval and before
the occurrence of cardRemoved — see Figure 4.2(b). Then cardUnit will emit a
signal nok — its queue is blocked and the second request cannot be handled —,
which violates the guarantee. In consequence, cardInserted needed to be considered
in the modeling of the assumption/guarantee. This reasoning is consistent with
the CEGAR method [50, 29, 1, 97] for spurious counterexamples, which allows to
perform abstraction refinement.

158

6.4. Contract Expressiveness for SysML Models

For the dominance step, we apply Theorem 6.5 since G_ATM, G_Controller and
G_CardUnit satisfy the closure under limits and under time-extension conditions
and we obtain the following contract satisfaction proofs:

(2.1) gCtr ‖ gCardUnit vaATM gATM ,
(2.2) aATM ‖ gCardUnit vgCtr aCtr and
(2.3) aATM ‖ gCtr vgCardUnit aCardUnit.

Two remarks need to be made here, with respect to the modeling of cardInserted
in the contract of the satm and the lazy stereotypes on assumption transitions.
Regarding the cardInserted requests, its modeling is imposed by the proof obligation
(2.3): in order for refinement under context to be defined the actions of aCardUnit
need to be a subset of the actions of aATM ‖ gCtr. In consequence, the output of
cardInserted has to be added to the modeling of aATM and gATM.

With respect to the lazy semantics of some transitions within the assumptions (e.g.
!ejectCard, !ok), this is due to the fact that they also appear in the guarantee of the
other component where they have a lazy semantics and individual assumption have
to be refined within dominance by the guarantees and the global assumption. For
example, in the proof obligation (2.2), the ok action of gCardUnit is lazy, which
imposes the same timed semantics for its correspondence in aCtr. This case can
also be detected using a counterexample diagnosis based on time elapse.

The third step consists in the satisfaction of the “mirror” C_ATM contract. The
next proof obligation has to be satisfied:

(3) user vgATM aATM

We remark that aATM is a loose abstraction of the behavior of the user where the
cardRemoved signal has a delay of 5 time units instead of being eager as modeled
in the user state machine.

The last proof obligation corresponds to the conformance step:

(4) aATM ‖ gATM � Property.

6.4 Contract Expressiveness for SysML Models

This theory can be applied on system models extended with contracts if the
component playing the role of the guarantee satisfies two important conditions:
closure under limits and under time-extension. We discuss here the restrictions
that are imposed by these constraints on the language for modeling contracts.

159

Chapter 6. Formal Reasoning with Contracts

Closure under limits models that any trace can be indefinitely extended with trace
fragments, while the result is also a trace. This constraint is guaranteed by default
by a category of TIOA: Lemma 4.20 from [108] proves that an automaton with
finite internal non-determinism has its set of traces limit-closed.

Definition 6.12 (Finite internal non-determinism). An automaton has finite
internal non-determinism if:

1. the set of start states θ is finite and
2. ∀x ∈ Q, ∀β ∈ tracefrags(x), the set {α.lval |α ∈ frags(x), α has the last

trajectory closed and traces(α) = β} is finite.

The first condition is satisfied by definition by our TIOAs which model only one
initial state corresponding to the initial state of the state machine it represents. The
second condition implies that, for any trace, an infinite set of execution fragments
does not exist. In order for this condition to hold, cycles of silent transitions cannot
be modeled in the state machine. By silent transition we mean a transition defined
for an internal action except signal handling. A cycle of silent transitions might
modify the values of variables thus leading to an infinite set of last states. Secondly,
the timed semantics for all internal transitions is eager. Indeed, a lazy semantics
would generate an infinitely-branching non-determinism, since the transition can be
executed at any moment during time elapse and so change the state of the system.
Defining transitions with internal actions as eager and forbidding the modeling
of cycles of silent transitions ensures that the automaton is non-Zeno, i.e. does
not execute an infinity of internal actions in a finite time. These conditions are
sufficient to ensure finite internal non-determinism for an automaton.

Closure under time-extension lets time elapse in any state of the automaton. The
easiest way to achieve time progress in a state machine is to stereotype outgoing
transitions from the control state as lazy. This stereotype can be applied on
transitions that perform an output, since internal transitions are already stereotyped
with eager for closure under limits. Recall that signal consumptions are modeled
as internal transitions, hence they have an eager semantics.

Indeed, this setting of urgency is sufficient to ensure closure under time-extension
for a state machine that is non-Zeno. This is due to the fact that eager transitions
are executed as soon as they are enabled, thus eventually leading to a state where
either an output may occur (and the transition executing the output being lazy
lets time progress to infinity) or to a final user-defined state, i.e. termination state
without outgoing transitions, where again time may progress to infinity.

160

6.4. Contract Expressiveness for SysML Models

stm [«guarantee» block] G_Controller [StatechartOfG_Controller]

Idle

EjectCard

amount

ejectCard to Ctr2CardUnit

«lazy»

WaitForRemoval

ReleaseMoney

ok/t.set(0)

releaseMoney(amount.value) to Dispenser2User

«lazy»

End[t = 1]

StatechartDiagram

Page 1 of 1

(a) Time-bounded behavior for
G_Controller

stm [«guarantee» block] G_sATM [StatechartOfG_sATM]

Idle

AskForRemoval

WaitForRemoval

retrieveCard to CardUnit2User

«lazy»

ReleaseMoney

releaseMoney(amount.value) to Dispenser2User

«lazy»

WaitForAction

amount

cardInserted

End[t = 1]

WaitForAck

cardRemoved

«lazy»

/begin
 informal "ok";
 t.set(0)
end

StatechartDiagram

Page 1 of 1

(b) Time-bounded behavior for
G_sATM

Figure 6.4 – Time-bounded behaviors for sATM example guarantees.

To summarize, the following stereotypes apply on TIOA transitions: (1) transitions
with an output are lazy and (2) internal transitions are eager. Visible actions
have a lazy semantics obtained from the output action at composition. Compound
transitions are broken into a sequence of transitions with intermediate generated
states which are evaluated in the order they are modeled.

We remark that this restriction does not allow specifying, in a guarantee, a hard
upper bound for when an output/visible action may occur. However, a bound
may be specified using a timed guard, but the interpretation is that either the
output/visible action occurs within/after this bound or does not occur at all.
Therefore, the execution of an output/visible action cannot be enforced and,
moreover, cannot be performed at a given deadline. This is a limitation of the
expressiveness of guarantees in our theory.

161

Chapter 6. Formal Reasoning with Contracts

For the sATM running example, the guarantee of the controller depicted in Fig-
ure 6.1(b) is loose: it models that eventually the controller will release the money —
it includes the case that this can never happen. We can strengthen this guarantee
by modeling that if the amount is released then the action will take place in at
most 1 time unit, while satisfying the closure under limits and under time-extension
conditions. This new guarantee is represented in Figure 6.4(a): from the state
ReleaseMoney there are two outgoing transitions. One transition eventually exe-
cutes the releaseMoney output since it is lazy. The second transition models an
internal action ε when the clock t is equal to 1 and moves to a final state End.
Then either releaseMoney is executed in at most 1 time unit (including the 1 time
unit moment) or never due to the evolution to the state End. Its modification
imposes also the change of the atm’s guarantee to take into account the delay,
modeled in Figure 6.4(b).

We remark that this new set of contracts can be used to verify a second requirement
of the atm: the atm either releases the amount within at most one second after its
controller is aware of the card removal or never.

6.5 Automatic Verification of Generated Proof Obli-
gations

The contract theory we defined is based on the trace inclusion relation. However
this relation is undecidable in the general case and cannot be automatically verified
by tools except for restricted categories of timed automata [131, 155]. Two solutions
can be envisioned for the automatical verification of refinement under context: (1)
either by making additional hypotheses on the form of the abstract component
and requiring it to be a deterministic timed safety property, which allows one to
use reachability analysis for guaranteeing trace inclusion, or (2) by using timed
simulation [154] which also guarantees trace inclusion.

We chose to use the first option based on model-checking, by applying reachability
analysis on our TIOA models composed with a timed property automaton that
models the requirement to be verified. This model-checking algorithm is imple-
mented in the IF toolset [34] which serves to automatically verify our models.
In the following we describe our technique to model-check contract satisfaction
relations by deriving from the deterministic timed safety property modeled by a
guarantee a timed property automaton and we show that this transformation is
sufficient to satisfy trace inclusion.

162

6.5. Automatic Verification of Generated Proof Obligations

A timed property automaton, introduced in Section 1.1, consists in a complete
definition of a safety requirement: it defines an “error” state π to which incorrect
behaviors will lead and synchronizes with the component under study C on common
actions. The reasoning for proving contract satisfaction proceeds as follows: (1)
transform the guarantee into a timed property automaton and (2) apply model-
checking, i.e. run in parallel the component C and the property automaton and
explore the final state graph to check if the error state π has been reached. Reaching
the error state π signifies the violation of the contract satisfaction relation.

We start by defining the transformation process from a deterministic safety property
to a timed property automaton. The mechanism is similar to the one defined in
[41], albeit for untimed systems, and later used for automated assume-guarantee
reasoning and the LTSA tool [84, 30].

Definition 6.13 (Timed property automaton). Given a deterministic TIOA
A = (XA, ClkA, QA, θA, IA, OA, VA, HA,DA, TA), the timed property automaton
for A is defined as the following TIOA OA = (XA, ClkA, Q, θA, ∅, ∅, V,HA,D, TA)

where:

• Q = QA ∪ {π}, where π is an additional error state,
• V = IA ∪OA ∪ VA,
• D = DA ∪ {(x, a, π)|x ∈ QA, a ∈ V such that (��∃ x′.(x, a, x′) ∈ DA) ∧ (��∃ ε ∈
HA ∧ x′ ∈ QA.(x, ε, x′) ∈ DA)}.

The idea behind this transformation is that sequences of actions that are not
explicitly modeled should be considered as erroneous behaviors. Since a timed
property automaton is used to monitor a closed component, we consider the
signature of OA to contain only visible actions, corresponding to the inputs,
outputs and visible actions of A. Then in every state of the automaton from which
there is no outgoing internal transition, we complement the set of transitions with
those “missing”: for each visible action there must be a discrete transition either
leading to a state defined in A or to π. So, the actions leading to π model the
discrete actions that are not allowed to occur in a given timed sequence of A.

We remark that the definition of the timed property automaton is similar to the
modeling of requirements with observers in OMEGA. Indeed, an observer formalizes
a safety property by already modeling the error state π via the error stereotype
and defines only the set of visible actions, i.e. no inputs or outputs. Therefore,
the same verification mechanism can be applied for checking the satisfaction of
conformance. In this case π is not added to the Oϕ if it has been modeled by the
user.

163

Chapter 6. Formal Reasoning with Contracts

However, for this method to work the component A must be a deterministic safety
property both for visible actions and for internal actions. For internal actions,
determinism means that there is at most one outgoing transition from a state. The
guarantee is already required to have finite internal non-determinism. Therefore,
in order to obtain determinism, we restrict the second condition of Definition 6.12
such that the cardinal of the set of last states to be equal to 2: the last state can be
either the initial state if no internal transition has been fired or the state obtained
by firing the transition. We remark that these conditions have to hold in the TIOA
framework. It implies that in a SysML state machine, one is still able to model
several outgoing internal transitions given that they are not to be enabled at the
same time, e.g. two transitions handling different inputs or two transitions having
disjoint guards.

The synchronization at run-time between C and the timed property automaton
OA is defined by the following composition operator, denoted ./. It is similar
with the previous parallel composition operator described in Definition 6.5 with
synchronization on the common visible actions and interleaving of the others. The
operator can be applied on two timed input/output automata if they do not share
any internal actions by label and they do not exhibit any inputs/outputs. The latter
condition is motivated by the fact that the timed property automaton monitors a
closed environment.

Definition 6.14 (Observer composition). Let A1 be a closed component and
A2 a timed property automaton such that EA1 ⊆ EA2 . Then A1 ./ A2 = A1 ‖ A2

where the compatibility condition is relaxed to the constraint HA1 ∩HA2 = ∅.

The following result expressed on reachability analysis concludes the reasoning.
Informally, not reaching the error state during any run of the composed component
satisfies the trace inclusion relation.

Theorem 6.6. If K2 is a deterministic safety property and reach((K1 ‖ Env ‖
Env′) ./ OK2) ∩ {π} = ∅ then K1 vEnv K2.

Proof. This proof is realized by contradiction. We suppose that K1 ���vEnv K2.
=⇒ ∃σ ∈ tracesK1‖Env‖Env′ ∧ σ 6∈ tracesK2‖Env‖Env′‖K′

Let σ′a be a prefix of σ such that σ′ ∈ tracesK1‖Env‖Env′ ∩ tracesK2‖Env‖Env′‖K′ and
σ′a 6∈ tracesK2‖Env‖Env′‖K′ , where a is a visible action. Such prefix exists because
K2 is a safety property.

Then reach((K1 ‖ Env ‖ Env′) ./ OK2)(σ
′) = {(q1, q2)}.

164

6.5. Automatic Verification of Generated Proof Obligations

Concatenating a we obtain:
(q1, q2)

a−→(K1‖Env‖Env′)./OK2
π =⇒

=⇒ reach((K1 ‖ Env ‖ Env′) ./ OK2) ∩ {π} 6= ∅ in contradiction with the
hypothesis.

With this notation, the conformance step is written: reach((A ‖ G) ./ Oϕ)∩{π} =

∅.

The fact that the abstract TIOA has to be deterministic is a limitation of this
verification method which has an impact on the modeling of contracts since it can
induce an overhead for their definition. The limitation is usually not problematic
for verifying contract satisfaction as safety guarantees have to be expressed as time-
and limit-closed TIOA and they can often be determinized. However, in order to
establish dominance, one has to verify also “mirror” contract satisfaction, which is
more tricky since until now we did not require assumptions to be safety properties.
In consequence, modeling assumption as deterministic safety properties becomes
necessary for using model-checking in combination with timed property automata
on all proof obligations.

The sATM running example is in this case: the assumptions modeled need to be
customized in order to describe safety properties. In the case of A_Controller,
the only modification to be made is to stereotype transitions with an output as
lazy. However, the case of A_CardUnit and A_sATM is more challenging: the
assumption expressed by Requirement 4.1 about the environment — the card must
be removed within 5 time units — contains a hard upper bound and cannot be
modeled by a safety property. A solution is to make use in the assumptions of the
concrete environment user, possibly with a loose behavior with respect to card
removal that is a delayable transition (as modeled by A_sATM) denoted user’. In
this case A_CardUnit can be defined as the composition user′ ‖ G′_Controller,
where G’_Controller has the same signature as Controller in order for the refine-
ment relations to hold. The signatures of G_sATM and G_CardUnit will also be
identical to the one of their corresponding components. In consequence, G’_sATM,
G’_Controller and G’_CardUnit are merely identical to the components, except
the nok branch which can be removed from the guarantees. This running example
shows the important overhead modeling verifiable contracts entails with respect to
small systems.

In consequence, if the assumptions cannot be described using deterministic safety
properties, there are two solutions which may open up the possibility of auto-

165

Chapter 6. Formal Reasoning with Contracts

matically verifying proof obligations: either verify timed simulation which implies
the satisfaction of trace inclusion or use, if possible, the concrete environment as
assumption such that “mirror” contract satisfaction relations become trivial to
verify. We will illustrate how the second option concretely works on the case studies
presented in Part III.

6.6 Comparison with Related Approaches

As described in Section 3.1.2, there are several contract-based frameworks available
for timed systems that are based on assume-guarantee reasoning. The meta-theory
of [142] is the only one which proposes circular reasoning that allows to reduce
dominance to a set of contract satisfaction proofs. To the best of our knowledge,
this is the first instantiation of the meta-theory defined in [142] for timed systems
with asynchronous communication.

The contract-framework proposed in [63] for the TIOA framework presented in
[61, 62] defines contract satisfaction as timed alternating simulation while computing
quotient. Formally, the relation is written K 6 (A ‖ G)\\A, where 6 denotes
simulation and \\ the quotient operator. This theory does not allow for refinement
of signature between specifications. Moreover, quotient operator is partial: the
conditions in which the operator can be applied and what happens if the result
cannot be computed are not discussed. As an instantiation of the meta-theory
from [17], dominance can be established only by composing contracts and verifying
pairwise refinement between the composition and the abstract component. Finally,
this framework does not clearly state which type of requirements can be verified
nor how a requirement should be modeled. In consequence, the conformance step
is not formalized. With respect to the target TIOA frameworks, a comparison is
provided in Section 1.1.4.

In [44], a specification theory is developed for the TA of [7] with input/output
distinction and which are extended with the notion of co-invariant on states in order
to express liveness timing assumptions. This framework is suited to verify safety and
bounded liveness properties (on finite traces). The refinement relation is identical
to ours since it consists in timed trace inclusion, however the signature refinement
is not considered here whereas it is explicitly handled in our framework. A second
difference can be remarked with respect to the definition of contract: the framework
from [44] defines an interface theory where a specification encompasses both the
assumption and the guarantee. The advantage of having disjoint assumptions and
guarantees is discussed in Section 3.1.2.

166

6.7. Conclusion

The theory from [43, 39, 42] covers these differences by proposing an assume-
guarantee reasoning framework but only for untimed systems. Therefore, a contract
is given by two sets of traces — one for the assumption and one for the guarantee,
while a covariant inclusion relation on inputs and a contravariant relation on outputs
is considered for contract satisfaction. Again, the refinement relation is given by
trace inclusion. Similarly to the meta-theory from [17], checking dominance requires
computing contract composition and afterwards verifying refinement. In contrast,
our sufficient condition for dominance allows to perform verification on smaller
components, while, in case of a violation, the erroneous contract could be more
easily identified.

The work from [84, 85, 133, 54] focuses on the automatic generation of assumptions
via a CEGAR approach or automatic learning such that assume-guarantee reasoning
holds. One inconvenient is that a contract framework is not clearly defined:
assume-guarantee reasoning is independently used from the notion of contract
in order to establish compositional verification of requirement satisfaction. The
implementation of this approach is provided in LTSA tool2 for systems described
by LTS, thus untimed. Yet, our verification method is greatly inspired from their
verification strategy with respect to the transformation of a component into a
property automaton.

We consider that one asset of our contract framework is that almost all proof
obligations reduce to contract satisfaction checks and on which we can perform
error diagnosis. Hence, our framework facilitates finding bugs at the different levels
of the proof tree by clearly identifying the cause and possibly correcting it. The
diagnosis strategy, which was used of the sATM running example, is discussed in
the next chapter and it represents one of the important perspectives of our work.

6.7 Conclusion

In this chapter we defined our contract framework for system designs modeled with
SysML as an instance of the meta-theory of [142], where the component framework
is formalized by a variant of the Timed Input/Output Automata framework from
[108] and the proof obligations each refinement relation generates are expressed as
a timed trace inclusion relation. We showed that the reasoning with contracts is
sound in our framework by proving that the compositionality properties required by
the meta-theory hold. The contract-related notions and application methodology
of the contract framework are illustrated with the sATM running example.

2http://www.doc.ic.ac.uk/ltsa/

167

http://www.doc.ic.ac.uk/ltsa/

Chapter 6. Formal Reasoning with Contracts

In order to fully comply to the semantics of SysML components, two modifications
were required to be made on the TIOA framework of [108]: (1) extending the set
of actions with visible ones, which denote an input/output matching and which
play an important role for behavior decomposition on several components and for
proving refinement, and (2) restricting the clock rate to a derivative equal to 1, thus
having a time expressiveness equivalent to the TA of [7]. However, this restriction
does not impact the compositionality results required by the meta-theory, i.e. it
is not used as hypothesis in the corresponding proofs. Therefore, our contract
framework holds also for general hybrid systems having different clock rates.

Yet, this restriction opens up the possibility of automatically verifying refinement
relations. We have chosen as conformance relation (on which refinement under
context is based) the timed trace inclusion, for which we know that is undecidable in
the general case of TA [7]. Proposition 1.1, which can be extended to timed words,
gives a sufficient condition for satisfying trace inclusion by proving that simulation
holds. Simulation is decidable for the TA of [7], which are time equivalent to our
variant, but not for the the TA of [108].

We preferred a second solution for verifying trace inclusion: we use model-checking
as automatic verification algorithm based on a transformation from component to
requirement formalization and the application of reachability analysis for undesir-
able states. Therefore, the abstract component playing the role of the guarantee
is represented by a timed property automaton which is synchronized with the
component under study in order to address its satisfaction. The IF model-checker
implements this algorithm and allows us to automatically verify the obtained proof
obligations.

Our contract framework imposes some restrictions on what contracts can model.
The formal theory holds if and only if the contract’s guarantee is a safety property
that does not describe hard upper time bounds for actions, i.e. a specific deadline
when the action has to be performed. Moreover, the automatic verification can
be applied only if the safety component is deterministic with respect to external
actions and internal actions disjointedly. Therefore, both the assumption and
the guarantee need to be designed as deterministic safety properties. The case
of the assumption may be problematic for critical real-time system: the modeled
environment for a component, which is constituted by other components, often
exhibits hard clock bounds on actions. A solution would be to use the environment
as assumption if it is not subject to combinatorial explosion such that the concerned
verification steps become trivial, or to verify timed simulation on the obtained
conformance relation

168

7 Implementation in the IFx2 Toolset

The last step for using the formal contract-based framework for requirement
verification in system designs with SysML consists in bridging the gap between the
two frameworks by proposing a model transformation from SysML to our variant
of Timed Input/Output Automata and implementing it into a compiler. In this
chapter we present the IFx2 toolset, which allows to model-check and simulate a
SysML model extended with contracts respecting the OMEGA convention notation,
and how it can be used to diagnose errors in the system model.

In Section 7.1 we sketch the mapping of a system model extended with contracts into
a network of Timed Input/Output Automata and how the model can be explored
in order to generate the proof obligations corresponding to the modeled refinement
relations. Section 7.2 presents the compiler included in the IFx2 distribution that
implements this transformation. Finally, Section 7.3 describes how error diagnosis
can be performed for a system model with contracts.

7.1 Compiling OMEGA Designs with Contracts to
TIOA

The transformation of a component-based system extended with contracts and
modeled with the SysML notions presented in Sections 4.1 and 4.2 into a network of
Timed Input/Output Automata (TIOA) ready for formal verification is realized in
two steps: first transform each component into a TIOA and secondly generate the
required proof obligations based on the refinement relations modeled in the design.
Since a contract’s assumption/guarantee is described by the same component
language as the system, the same process for transforming them into TIOA is
applied here.

169

Chapter 7. Implementation in the IFx2 Toolset

7.1.1 Mapping Components into TIOA

Transforming a component into a TIOA is relatively straightforward. In the
following we sketch a set of rules that allows this transformation. Our mapping
follows the same strategy that has been described in previous work like [122, 109]
or lately [128].

We consider that for each atomic component K of the extended system a timed
input/output automaton AK is generated. The reason for mapping directly com-
ponents is the lack of a mechanism in the described TIOA formalism to define
structured types and instantiation operations. The set of clocks ClkAK consists
in all the attributes defined by the component of type Timer, while all the other
modeled attributes form the set of discrete variables XAK . It is assumed that each
automaton AK contains two implicit discrete variables: queue stores all incoming
requests and dispatches them to be handled by the automaton and location models
the current control state of the component. The valuation function for the location
variable ranges in a finite domain as it is modeled by the component’s state machine.
At the level of the component’s type, one may model relations: associations are
handled based on their end elements that represent attributes in the corresponding
classes, while generalization between classes is flattened and all inherited attributes
and association ends are duplicated in the automaton corresponding to the child
class instance.

The set of states of the automaton AK is given by the valuation of all variables,
where the initial state θAK either contains a user-defined value at initialization for
variables or a predefined one like 0 for clocks or ∅ for the message queue.

The behavior of the component is modeled by its type’s state machine that describes
the transitions and trajectories of the automaton. A state machine transition is
defined between a control source state s and a control target state s′ on which we
can evaluate a guard and execute several effects. A transition is usually enabled by
a trigger or time delay deadline. Thus for each state machine transition a set of
TIOA transitions is generated between two states q and q′ where q.location = s

and q′.location = s′. We denote by q.x the value of the variable x in the TIOA
state q.

The guard models the conditions for which the TIOA transition exists given that
it is satisfied in the starting state q, otherwise no transition is generated. In each
state of the automaton there is a predefined transition for each input action a. Its
effect is to add the signal to the queue, i.e. q′.queue = [q.queue; a]. Then a trigger
m is transformed into a transition executing an internal action ↓ m that consumes

170

7.1. Compiling OMEGA Designs with Contracts to TIOA

the message m thus s.queue = [m; a] and s′.queue = [a]. The declaration of an
internal variable queue and the difference between an input, which adds a request
to the queue, and an internal consumption action, which handles the top message
from the queue, formalize the asynchronous communication between components.

The set of effects defined on a transition can consist in several signal outputs and
assignments. For each effect an independent TIOA transition is generated. The
signal sending action (or sendAction) becomes a transition with an output; the
value of the location in the target TIOA state is either the target control state if
there is only this effect modeled on the transition or an intermediate location is
generated in case the effect is structured. This transition will synchronize with the
input transition of the signal’s target at composition and will modify the value of
the queue. The assignment effect for discrete and clock variables is transformed
into a TIOA transition with an internal ε action, which exists if and only if q′ can
be obtained from q by applying the assignment.

By default the time elapse in each state of the automaton is given by the set of all
possible trajectories defined on {[0, t]|t ∈ R+} ∪ {[0,∞)}. This set of trajectories
is controlled by the urgency labels of the outgoing transitions from s = q.location

in the state machine as follows:

• lazy does not add any restrictions;
• eager with no clock guard restricts the set of trajectories to point trajectory

only, and
• eager with a clock guard restricts the set of trajectories so that they end in

the smallest j where the guard is evaluated to true.

The formal definition of urgency stereotypes by trajectories is given in Section 1.1.4.

The set of signals that can be handled by the automaton is defined by the port
types, while their input/output direction is given by the port directionality. So,
all signal receptions modeled in the interfaces typing provided ports define the
set of inputs IAK the automaton can handle and all signal receptions modeled
in the interfaces typing required ports define the set of output actions OAK the
automaton can perform. The set of visible actions for an automaton mapped from
an atomic component is the empty set, VAK = ∅. The set of internal actions HAK
consists in instantiations of the silent transition ε, one for every transition defining
a guard or trigger or assignment as obtained at transition mapping.

A particular attention must be brought to the name of signals since a model usually
contains several components of the same type and they react to the same stimuli,
in contradiction with the compatibility condition. Such an example is provided

171

Chapter 7. Implementation in the IFx2 Toolset
ibd [block] System [archi]

b:B1

A_2_BpA_4_BpA_4_B A_2_B

a1:A1

A_2_B

pA_2_B

A_2_B

pA_2_B

a2:A1

A_2_B

pA_2_BpA_2_B

A_2_B

archi

Page 1 of 1

(a) Achitecture

stm [block] A [StatechartOfA]

s1

s2

sig to pA_2_B

StatechartDiagram

Page 1 of 1

(b) Behavior for com-
ponents of type A

stm [block] B [StatechartOfB]

s1

s2

sig

StatechartDiagram

Page 1 of 1

(c) Behavior for
component b

s1

s2

!a1_sig

s1

s2

!a2_sig

s1

s2

↓a1_sig

a1 a2 b

↓a2_sig

(d) Components behavior as TIOA

Figure 7.1 – An example for signal renaming in the SysML to TIOA transformation.

in Figure 7.1(a): two components a1 and a2 of the same type A communicate
a signal sig to the component b. In this case, we need to make the difference
between the instances of sig sent by a1, respectively a2. Our solution is to rename
conflicting signals in the sender/receiver automata by appending their qualified
name. Figure 7.1(d) presents the transformation of a1 and a2 into a TIOA, where
a1 sends the signal a1_sig and a2 the signal a2_sig. In consequence, the two
signals are disjoint. In order to represent the transformation we use the same
notation convention as for LTS (see Section 1.1.1), where for compactness reason
we represent a state only by its corresponding location in the state machine. If
the receive automaton handles a signal that has multiple senders, the transition
that handles the signal is duplicated for each sender: in Figure 7.1(d) the TIOA
corresponding to the component b models two consumption ↓ transitions, one for
each signal it receives. The target of a signal can be statically computed based on
the traveled chain or ports and connectors. Since broadcast communication (i.e.
one sender-multiple receivers) need to be explicitly modeled in a SysML design
by different signals, there are no specific modifications to perform here, except
the renaming the outgoing signals. This renaming convention actually flattens the
TIOA network.

172

7.1. Compiling OMEGA Designs with Contracts to TIOA

The case for a component representing a guarantee needs to be handled separately
with respect to action renaming. The signals the guarantee executed need to be a
subset (by name) of the signals that the component using it performs. Therefore,
based on the contractUse relation we obtain for the guarantee the corresponding
component and we rename the signals as they are instantiated in the component’s
TIOA representation. In the same time, the signals are renamed in the assumption
of the contract such that they have a match in the guarantee and the component.

Finally, a composed component is not translated, since the TIOA framework does
not define instantiation operations. The new signal names describe the hierarchical
architecture of the system, while their renaming as both inputs and outputs based
on the traveled chain of ports and connectors covers the entire architecture. As
mentioned, the generated architecture of TIOA is flat. A hierarchical component is
obtained at run-time via the composition operator.

The requirement formalization given by an observer in OMEGA is also transformed
into a TIOA by applying the same rules. The difference consists in the fact that
an observer does not have any inputs or outputs, all its actions being defined
as visible. A transition is typed with a visible action if it is preceded by a send
or informal match clause and with an internal action ↓ a if it is preceded by an
acceptsignal clause. In each state the automaton defines a visible transition that
adds the signal obtained from an input clause to the queue. The added signal can
be later handled on the consumption transition. The timed semantics is defined as
lazy for transitions resulting from send and informal match clauses and as eager
for the rest. This timed semantics formalizes a safety property.

7.1.2 Generating Proof Obligations

Generating the relations that need to be verified for proving the satisfaction of
a requirement is realized in the reversed order of the design steps, an in-depth
exploration of the modeled contract tree. This is due to the fact that their definition
relies on the inner structure of components which has to be computed, as it is the
case for dominance. An algorithm is sketched in Listing 7.1.

It starts by computing the set of dependency relations modeled — Conformance,
Implementation and ContractUse are type of Dependency — and the set of require-
ments that need to be verified with contracts. For each requirement, a set of proof
obligations is generated.

First, we obtain via a Conformance relation the contract which conforms to the

173

Chapter 7. Implementation in the IFx2 Toolset

requirement. Because we require that each system design extended with contracts
is complete, formalized in Listing 5.8, then we are sure this top contract exists.
Then, we generate with the generateConformanceProofObligation function the
conformance proof, i.e. c � o with the notations from Listing 7.1.

The next step consists in the verification that the “mirror” contract is satisfied by
the environment of the component using the contract c for the requirement o, i.e.
generateMirrorContractSatisfactionProofObligation function.

The third step consists of iterating through the modeled dominance relations as
described by the function generateRecursiveProofObligations. This function is called
in the context of the property using the contract c. Such an algorithm has been
provided and explained in Listing 5.6 in the OCL language. There are two cases to
be considered here: either the contract c is refined with respect to the requirement
o or it is a contract used by a component that is not further decomposed. If the
contract is refined then we compute the set of dominating contracts, as described in
Section 5.1, and we generate with the generateDominanceProofObligations function
the set of proofs that need to be verified. Next we verify if each of the dominating
contracts is refined in the context in which is used via the recursive call of the
proof obligation generation function.

If the contract is not refined, it means that we have reached the fourth step of the
methodology and we generate a contract satisfaction proof, the generateContract-
SatisfactionProofObligation function. Recall that all operation calls are realized on
the context of the component using the target contract.

Listing 7.1 An algorithm for generating proofs obligations from a system model
extended with contracts

1 procedure g e n e r a t eR e c u r s i v eP r o o fOb l i g a t i o n s (c : Contract , o :
Sa f e t yP rope r t y , d e p e n d e n c i e s L i s t : L i s t) i s

2 i f i s R e f i n e d (c , o) then
3 r e f i n em e n tC o n t r a c t s L i s t := ge tRe f i n ementCon t r a c t sO f (c , o ,

d e p e n d e n c i e s L i s t) ;
4 gene r a t eDom inanceP roo fOb l i g a t i on s (c , r e f i n em e n tC o n t r a c t s L i s t) ;
5 f o r each c ’ : Cont rac t i n r e f i n em e n tC o n t r a c t s L i s t do
6 g e n e r a t eR e c u r s i v eP r o o fOb l i g a t i o n s (c ’ , o , d e p e n d e n c i e s L i s t)
7 end fo r
8 e l s e
9 g e n e r a t e C o n t r a c t S a t i s f a c t i o nP r o o fOb l i g a t i o n (c) ;

10 end i f
11 end procedure
12

174

7.2. Tool Architecture and Functionalities

13 begin
14 d e p e n d e n c i e s L i s t := getDependenc iesFromModel () ;
15 p r o p e r t i e s L i s t := ge tSa f e t yP rope r t i e sF romMode l () ;
16

17 f o r each o : S a f e t yP r op e r t y i n p r o p e r t i e s L i s t do
18 c on t r a c tCon f o rm i ngSa f e t yP r op e r t y := getCont ractConformingTo (o ,

d e p e n d e n c i e s L i s t) ;
19 gene r a t eCon fo rmanceP roo fOb l i g a t i on (c , o) ;
20 g e n e r a t eM i r r o r C o n t r a c t S a t i s f a c t i o nP r o o fOb l i g a t i o n (c , o) ;
21 g e n e r a t eR e c u r s i v eP r o o fOb l i g a t i o n s (c , o , d e p e n d e n c i e s L i s t) ;
22 end fo r
23 end

7.2 Tool Architecture and Functionalities

The transformation previously presented is implemented in the IFx2 Toolset for
OMEGA models, by updating the proprietary uml2if compiler that was compatible
only with UML 1.3 models. Two tasks had to be performed: (1) add all modeling
elements specific to UML 2.x (e.g. ports, connectors, composite structures) and
ensure that the strong typing rules are satisfied and (2) implement the transforma-
tion to TIOA. Moreover, the interactive simulator of OMEGA models, contained
in the IFx toolset, was updated for taking into account the new modeling elements.

With respect to the technological choices, uml2if is still a proprietary tool developed
with Java, Eclipse UML 2.x and Eclipse EMF1. The usage of Eclipse UML 2.x/EMF
is motivated by the fact that it offers a rich API fully compliant with the UML
2.x / SysML standards, which can be used from stand-alone Java applications,
and offers a good basis for compatibility with UML/SysML modelers like IBM
Rhapsody or Papyrus. In consequence, the transformation encoded by the compiler
has been fully developed with Java. An overview of the uml2if compiler is given in
the package diagram represented in Figure 7.2. Some metrics with respect to the
Java code are presented in Figure 7.3. We remark that the tool contains almost
13,000 lines of code.

With respect to its features, the compiler takes as input a (system) model in the
XMI 2.0 format and produces the IF textual representation of the network of TIOA.
Its usage is described by the following command line:

uml2if [options] <filename.xmi>

1http://www.eclipse.org/modeling/emf/

175

http://www.eclipse.org/modeling/emf/

Chapter 7. Implementation in the IFx2 Toolset

Figure 7.2 – uml2if package diagrams, with the classes each package defines.

Figure 7.3 – Some calculated metrics on the Java code of the uml2if compiler.

The following options are available:

• -uml handles a UML compliant model;
• -sysml handled a SysML compliant model. For example, if flowports are

176

7.2. Tool Architecture and Functionalities

Figure 7.4 – The IFx2 Toolbox.

modeled a warning is produced by the compiler.
• -rhapsody handles a Rhapsody generated XMI file;
• -rhplang ensures the translation of a subset of the Rhapsody C language for

actions;
• -papyrus handles a Papyrus model, which is already saved in the XMI format;
• -sa handles a particular version of Papyrus that saves association relations

separately;
• -eager considers the eager-lazy time model, i.e. transitions that are not typed

lazy are by default considered eager;

as well as others that are not discussed here. If errors are found in the model,
the compiler produces an error message describing it and stops its execution. In
consequence, the set of well-formedness rules OMEGA describes are guaranteed
to be satisfied. The position of the compiler in the IFx2 Toolset is represented in
Figure 7.4.

For example, on the sATM running example the following command line was
used to generate the TIOA representation: uml2if -sysml -rhapsody -eager
satm.xmi.

Finally, with respect to its functionality, the compiler implements the mapping
described in Section 7.1.1 for system models extended with contracts. The algorithm
presented in Section 7.1.2 for the generation of proof obligations is currently under

177

Chapter 7. Implementation in the IFx2 Toolset

development. We mention that this tool2 has been assessed on industrial-grade
system models, which we will see in Chapter 9.

7.3 Error Diagnosis for Contract-Based Reasoning

Within the proof obligations set, one or even several checks may not be satisfied.
In this case we have to perform a diagnosis in order to establish if either the
requirement is not satisfied or the set of contracts defined needs to be refined in
order to prove the satisfaction of the requirement. We base this diagnosis on the
generation of a counterexample which in our verification algorithm will lead to the
error state π and use the same approach as for CEGAR [50]. This diagnosis is
supported by the IFx2 toolset, which implements the verification method described
in Section 6.5. The workflow of an OMEGA model through the IFx2 environment
for both verification and diagnosis is showed in Figure 7.5.

We can distinguish two cases for which the solution depends on whether the
reasoning has been applied for design or for verification: (1) a contract satisfaction
or dominance verification fails or (2) the conformance verification fails. For the first
case, if we are in a design approach and all previous steps have been proved correct,
we have to refine the source component/contracts such that the counterexample is
eliminated. This could possibly imply that the developed components are correct-
by-construction with respect to the requirement. If we are in a verification approach
with a completely modeled system, one should refine the target contract(s) since
it is more frequent that the designed abstractions (in the form of contracts) are
erroneous.

For the latter case, we have at first to verify on the concrete system if the generated
counterexample is a spurious one due to the abstractions defined or it is a relevant
one, which means that the system does not satisfy the requirement. Verifying if a
counterexample is spurious or valid can be realized in our toolbox via interactive
simulation. For a spurious counterexample, one should refine the top contract and
re-verify at least the upper dominance step and the “mirror” contract satisfaction.
Possibly, iterations of refinement of contracts must be performed until all checks pass.
For a correct counterexample, the modeler should redesign the implementations (i.e.
leaf components) on which the requirement is expressed. For this, the contract-based
reasoning can be applied in a design approach in order to derive the correct contracts
that satisfy the relations they are involved in, towards correct implementations.

2The uml2if compiler and if2gui simulator are available for download in the distribution of
the IFx-OMEGA toolset at http://www.irit.fr/ifx.

178

http://www.irit.fr/ifx

7.3. Error Diagnosis for Contract-Based Reasoning

Figure 7.5 – IFx2 workflow for verifying and diagnosing a system design.

This diagnostic reasoning has been applied in Section 6.3 for modeling the correct
contracts for the sATM running example. It allowed to detect the modeling errors
that were presented.

We remark that, in the case of our tools, the generated counterexample is expressed
on the TIOA level, while the refinement of contracts/components is realized
in a high-level modeling language. The bridge between the two frameworks is
unidirectional, since the transformation presented in Section 7.1 is given from
SysML to TIOA. In order to exploit the error scenario, the developer has to
apprehend in details the system and to make use of his experience for performing
refinement. This point is an open question for which current research provides
some options [56, 3] and it is outside the scope of this thesis.

179

Chapter 7. Implementation in the IFx2 Toolset

7.4 Conclusion

In this chapter we presented a mapping of the component language (extended
with contracts) into a network of Timed Input/Output Automata and a model
exploring algorithm that allows to generate the proof obligation associated to
each modeled refinement relation. The approach is implemented for the OMEGA
working context in the IFx2 toolset by the uml2if compiler, where the generation
of proof obligations is currently under development. This tool, which is available
for download and evaluation, had to be updated for UML 2.x and SysML by
taking into account new modeling elements and their well-formedness rules. The
implementation of the mapping rules opens up the possibility to automatically
verify and validate OMEGA models extended with contracts with the IF toolset. In
case of requirement (including guarantee) violation, we have sketched a diagnosis
process, which was applied on the sATM running example, and it constitutes one
direction of our future work.

180

Part IIIExperimental Results

181

8 A Parametric Case Study for Com-
paring Verification Results

In this chapter we apply our contract-based framework on a parametric case study
modeled with OMEGA, from contract specification to the verification of proof
obligations. While the sATM running example was used to illustrate the theoretical
concepts we defined, this case study aims to complement it by focusing on how
the proposed verification method can be used to check the satisfaction of proof
obligations. The ultimate goal is to provide a comparative efficiency study between
monolithic model-checking and the contract-based model-checking we presented.
Being a parametric design, i.e. internal variables are user-bounded, it also allows
to assess the efficiency of the defined contract-based method for different state
space sizes.

8.1 System Description and Contracts

The parametric case study is essentially made of two components k1 and k2 that
use a timed protocol to coordinate in order to emit an alternating sequence of
a’s and b’s. A nominal scenario of this system is presented in Figure 8.1: the
component k1 sends to its environment e a signal a and to k2 a signal p. The
component k2 receives p and sends a signal b to the same environment e. Next, k2

waits for 10 time units and sends q to k1 which restarts the behavior of the entire
system.

In order to parameterize the system, we define two integer variables i and j for
k1, respectively k2, which count the number of a’s and b’s sent to e. Moreover,
for showing how the signature refinement works when contracts are defined and
refinement is verified, we model a component k3 in Figure 8.3(c), which sporadically
sends m and u to k1, respectively k2.

183

Chapter 8. A Parametric Case Study for Comparing Verification
Results

sd [Package] SystemBlocks [nominal_scenario]

loop

k1:K1 k2:K2

p()

Tm(10)

q()

e:Env

a()

b()

nominal_scenario

Page 1 of 1

Figure 8.1 – A nominal scenario for the parametric case study.

The architecture of this system1 is represented in Figure 8.2 and consists in
two hierarchical layers: the subsystem K composed of k1, k2 and k3, and its
environment Env. We describe now the communication protocol between k1 and
k2 by taking into account k3: k1 sends a message a to the environment (port
pK1_2_Env) and a message p to k2 (port pK1_2_K2), then awaits a message q
from k2 (port pK2_2_K1). If q is received before the deadline set to the clock
clock, k1 emits a again (the q-a cycle), otherwise it goes back to the initial state
when q is received. In addition, k1 can answer to a message m (port pK3_2_K1)
with a message n(i) (port pK1_2_K3) in any state (the m-n cycle). The behavior
for K1 is represented in Figure 8.3(a).

The component k2 waits for p then sends a message b to the environment (port
pK2_2_Env). After that, it waits for the clock deadline and sends q to k1; if a p
request is received during this time, b is emitted again (the p-b cycle). Similarly,
k2 can answer to a message u (port pK3_2_K2) with a message v(j) (port
pK2_2_K3) in any state (the u-v cycle). The state machine of K2 is modeled in
Figure 8.3(b).

Finally, the behavior for the environment component e is represented in Figure 8.3(d)
and consists in consuming the messages received from the composed component k.

On this system, we are interested in verifying the following requirement:

Requirement 8.1. The component k emits a sequence of alternating a’s and b’s.
1Notation. The name of the ports starts with “p”, followed by the name of the sender’s type,

followed by “2” and the name of the receiver’s type. The name of interfaces uses the same
convention where “p” is replaced with “I”.

184

8.1. System Description and Contracts
ibd [block] Main [Architecture]

k:K1

k1:K11

I_K3_2_K1
pK3_2_K1

I_K1_2_K3
pK1_2_K3

I_K1_2_Env

pK1_2_Env

I_K2_2_K1

pK2_2_K1

I_K1_2_K2

pK1_2_K2

k2:K21

I_K3_2_K2
pK3_2_K2

I_K2_2_K3
pK2_2_K3

I_K2_2_Env

pK2_2_Env

I_K2_2_K1

pK2_2_K1

q

I_K1_2_K2

pK1_2_K2

p

k3:K31

I_K3_2_K2
pK3_2_K2

u

I_K2_2_K3
pK2_2_K3

v

I_K3_2_K1

pK3_2_K1

m

I_K1_2_K3

pK1_2_K3

n

I_K2_2_Env

pK2_2_Env
b

I_K1_2_Env

pK1_2_Env
a

pK3_2_K1
I_K3_2_K1 I_K1_2_K3

pK1_2_K3

I_K1_2_Env

pK1_2_Env

I_K2_2_K1

pK2_2_K1

I_K1_2_K2

pK1_2_K2

pK3_2_K2
I_K3_2_K2I_K2_2_K3

pK2_2_K3

pK2_2_Env

I_K2_2_Env

pK2_2_K1

I_K2_2_K1

I_K1_2_K2

pK1_2_K2

I_K3_2_K2
pK3_2_K2

pK2_2_K3
I_K2_2_K3

pK3_2_K1

I_K3_2_K1

I_K1_2_K3

pK1_2_K3

pK2_2_Env

I_K2_2_EnvI_K1_2_Env

pK1_2_Env

e:Env1

I_K1_2_Env

pK1_2_Env

I_K2_2_Env

pK2_2_EnvpK1_2_Env

I_K1_2_Env I_K2_2_Env

pK2_2_Env

reqTarget:Class=Property
«Tag»

refTarget:Class=C_K
«Tag»

C_K
«block,contract»

«contractUse»

C_K1
«block,contract»

«contractUse»

C_K2
«block,contract»

«contractUse»

Property
«block,observer»

«contractConformance»

Architecture

Page 1 of 1

Figure 8.2 – Architecture of the parametric example K and its contract extension.

The requirement is formalized by the observer Property in Figure 8.4. The observer
synchronizes with each execution of a and b and if detects any of the trace fragments
{b, aa} starting in the location ObserveA, then it moves to the Error state.

It is interesting to note that this requirement can also be parameterized. In the
presented setting the deadline for the clocks modeled in k1 and k2 is respectively
set to 5 and 10 time units. However we can consider general values as δ1 for k1

and δ2 for k2. The requirement is satisfied by the component k in the general case,
if δ1 < δ2. In the following we do not consider this second parameter, but it can be
easily explored.

As we will later see, the monolithic model-checking fails to produce a result for even
medium bounds of i and j like 100. We set out to use the contract-based approach.
We start by identifying the system under study as the composed component k

185

Chapter 8. A Parametric Case Study for Comparing Verification
Results

stm [block] K1 [StatechartOfK1]

Idle

/i:=0

m/pK1_2_K3 ! n(i)

Wait

m/pK1_2_K3 ! n(i)

a to pK1_2_Env

p to pK1_2_K2
/clock.set(5)

NextStep2

/timeout(clock) //

q

m/pK1_2_K3 ! n(i)

a to pK1_2_Env

q/i := i + 1

NextStep1

/i := i + 1

m/pK1_2_K3 ! n(i)

StatechartDiagram

Page 1 of 1

(a) K1

stm [block] K2 [StatechartOfK2]

Idle

/j:=0
u/pK2_2_K3 ! v(j)

Wait

u/pK2_2_K3 ! v(j)

b to pK2_2_Env

/begin
 clock.set(10);
 j := j + 1
end

q to pK2_2_K1

b to pK2_2_Env

p/j := j + 1

NextStep1

p u/pK2_2_K3 ! v(j)

NextStep2

/timeout(clock) //

u/pK2_2_K3 ! v(j)

StatechartDiagram

Page 1 of 1

(b) K2

stm [block] K3 [StatechartOfK3]

Idle

NextStep1

n

NextStep2

v

m to pK3_2_K1

«lazy»

u to pK3_2_K2

«lazy»

StatechartDiagram

Page 1 of 1

(c) K3

stm [«assumption» block] A_K [StatechartOfA_K]

Idle
a

b

StatechartDiagram

Page 1 of 1

(d) Env

Figure 8.3 – Behavior of the components involved in the parametric example.

stm [«observer» block] Property [StatechartOfProperty]

ObserveA

ObserveB

/match send a ///match send b //

Error
«error»

/match send b //

/match send a //

StatechartDiagram

Page 1 of 1

Figure 8.4 – Formalization of Requirement 8.1 by the observer Property.

and the environment as the component e. Based on the system’s architecture,
we have to model a set of contracts for the components k1, k2, k3 and a global
contract for k and apply the dominance step once. Therefore, in Figure 8.2 we have
represented the contracts together with the required contractUse relations tagged

186

8.1. System Description and Contracts

stm [«assumption» block] A_K1 [StatechartOfA_K1]

Idle

a

Wait

a

q to pK2_2_K1 NextStep1

/clock.set(5)

a

p

NextStep2
[clock > 0]/
clock.reset()

«lazy»a

StatechartDiagram

Page 1 of 1

(a) Assumption aK1 behavior

stm [«guarantee» block] G_K1 [StatechartOfG_K1]

Idle

a to pK1_2_Env

«lazy»

p to pK1_2_K2

NextStep2

q

NextStep1

«lazy»

StatechartDiagram

Page 1 of 1

(b) Guarantee gK1 behavior

Figure 8.5 – Contract for the component k1.

with Property as requirement and C_K as refined contract for modeling dominance.
The contractConformance relation completes the set of proof obligations that need
to be verified.

Figure 8.5 presents a contract C_K1 for the component k1. The assumption is
that the environment sends a q after at least 5 time units since a p is received and
the component guarantees that consecutive a’s are triggered by a message q from
the environment. For k2, the contract C_K2 is represented in Figure 8.6. The
environment guarantees that it will wait for a q between sending two consecutive
p’s and the component guarantees that it waits for a p before sending a b and then
for a delay of 10 time units before a q. Since Requirement 8.1 is defined on the
subset {a, b} of actions, the component k3, whose signature is {m,n, u, v}, does
not contribute to the satisfaction of this property. Its contract for this requirement
is given by two empty timed input/output automata, i.e. the sets of variables and
actions of the automaton are empty and all trajectories up to ∞ are admitted.
Therefore, we do not require to model this contract and it is not represented in
Figure 8.2.

Figure 8.7 contains a top contract for the subsystem k. This contract guarantees
that if an a message followed by a b message are sent to the environment then at
least a delay of 10 time units will elapse between 2 cycles.

187

Chapter 8. A Parametric Case Study for Comparing Verification
Results

stm [«assumption» block] A_K2 [StatechartOfA_K2]

Idle

b

NextStep
q

b

p to pK1_2_K2

«lazy»

StatechartDiagram

Page 1 of 1

(a) Assumption aK2 behavior

stm [«guarantee» block] G_K2 [StatechartOfG_K2]

Idle

b to pK2_2_Env

Wait

/clock.set(10)

q to pK2_2_K1NextStep1

p

NextStep2

/timeout(clock) //

«lazy»

StatechartDiagram

Page 1 of 1

(b) Guarantee gK2 behavior

Figure 8.6 – Contract for the component k2.
stm [«assumption» block] A_K [StatechartOfA_K]

Idle
a

b

StatechartDiagram

Page 1 of 1

(a) Assumption aK behavior

stm [«guarantee» block] G_K [StatechartOfG_K]

Idle

NextStep Wait

/timeout(clock) //

a to pK1_2_Env

«lazy»

b to pK2_2_Env

«lazy»

/clock.set(10)

StatechartDiagram

Page 1 of 1

(b) Guarantee gK behavior

Figure 8.7 – Top contract for the component k.

8.2 Contract-based Verification Results

The first verification step consists in checking contract satisfaction. This generates
the following proof obligations:

(1.1) k1 vaK1 gK1,
(1.2) k2 vaK2 gK2 and
(1.3) k3 vaK3 gK3.

Since gK1 and gK2 are deterministic safety properties we use the verification
method described in Section 6.5. We present the transformation process from
component to timed property automaton in OMEGA, thus by using an observer

188

8.2. Contract-based Verification Results
stm [«observer» block] G1_obs [StatechartOfG1_obs]

Idle

NextStep1

/match send a //

NextStep2

/match send p //

/match acceptsignal q //

Error
«error»/match send a //

/match send a //

/match send p //

/match send p //

StatechartDiagram

Page 1 of 1

Figure 8.8 – Timed property automaton obtained from the component gK1 repre-
sented using an OMEGA observer.

to model the safety property. The obtained observer from gK1 is illustrated in
Figure 8.8. In the location Idle it waits to synchronize with the action a. If instead a
p is produced, then it moves to the location Error, otherwise it moves to NextStep1.
It waits for a p action to be executed and to move to NextStep2, otherwise an error
has occurred. In location NextStep2, the timed property automaton eventually
waits to receive q and consumes it as soon as the action is enabled. During the
wait, the component should not execute a or p represented by transitions to the
Error location.

The system as it is described is infinite since the variables i and j and the queue
length are not bounded and therefore model-checking cannot be applied. We
bound in the following i and j with different limits, e.g. 5, 10 and 100, and
the queue length to 1. We prove contract satisfaction for different bounds and
the quantitative results obtained — number of explored states, transitions and
verification time — are available in Table 8.1. We remark that the empty timed
input/output automaton is the weakest component that refinement under context
always satisfies and, in consequence, the verification is not performed.

The second step consists in proving that the set {C_K1, C_K2, C_K3} dominates
C_K. For this we apply Theorem 6.5, since all components from contracts are
timed safety properties, and we obtain the following proof obligations:

(2.1) gK1 ‖ gK2 vaK gK,
(2.2) aK ‖ gK1 vgK2 aK2 and
(2.3) aK ‖ gK2 vgK1 aK1.

189

Chapter 8. A Parametric Case Study for Comparing Verification
Results

We have dropped aK3 and gK3, since the empty component is the identity element
for composition and it is always satisfied by refinement under context. Since aK1

and aK2 are deterministic safety properties we apply the same verification method
for checking dominance. The obtained results are depicted in Table 8.1. It is
interesting to observe that this verification step needs to be performed only once
independently from the bound for variables i and j since they do not appear in
the abstraction.

The third step which consists in checking the satisfaction of C_K−1 is trivial
since e and aK are identical. The corresponding proof obligation is written:
e ‖ gK ‖ gK ′ � e ‖ gK ‖ gK ′.

The fourth step in the verification of a system model is to prove that the top
contract satisfies the global property, i.e. A ‖ G � ϕ, which is true for this case
study because the requirement does not posit any condition about the delay between
cycles of a and b.

Table 8.1 presents some quantitative measures (number of transitions and of states
explored and time needed for verification in seconds) for each verification step of
the running example after bounding the counters i and j and the queue from the
additional defined environment to the component2. The first column corresponds
to the verification of the property on the whole system without contracts. It is
interesting to note that the longest verification step with contracts is an order
of magnitude smaller than the monolithic verification in this case, the explosion
being caused by messages exchanged with k3 which are abstracted away from the
contracts.

2We were using a IA64 computing server with 16GB of memory.

190

8.2. Contract-based Verification Results

Mono-
lithic

Step 1 Step 2 Step
3

Step
41.1 1.2 1.3 2.1 2.2 2.3

max(i)
=

max(j)
=
5

No. of
states 41504 364 3372 -3 158 148 231 -4 51

No. of
transi-
tions

79249 604 5070 - 239 229 422 - 65

Time
(sec) 6.86 0.1 0.42 - 0.04 0.04 0.03 - 0.02

max(i)
=

max(j)
=
10

No. of
states 400711 13422 10702 -

*5
-

*No. of
transi-
tions

827591 23210 15925 - -

Time
(sec) 78.84 1.51 1.21 - -

max(i)
=

max(j)
=
100

No. of
states ∞ 1089102 809542 -

*
-

*No. of
transi-
tions

∞ 1853540 1190290 - -

Time
(sec) ∞6 148.44 123.39 - -

Table 8.1 – Verification results for without/with the contract-based methodology
on the parametric case study.

3Since an empty timed input/output automaton is the weakest component always satisfied,
this verification step has not been performed.

4This verification is trivial since the environment is identical to the top assumption.
5The results are identical as for max(i)=max(j)=5
6The monolithic model-checking has been halted after 10 minutes without results.

191

Chapter 8. A Parametric Case Study for Comparing Verification
Results

8.3 Conclusion

The sATM running example on which we illustrated our concepts has revealed
the overhead the modeling of contracts generates in contrast with monolithic
model-checking. Indeed, for systems that generate a relatively small state space
at execution, finding the correct contracts that allow to prove the satisfaction
of requirements may be a more complex and costly task than directly applying
model-checking.

The interest of applying contract-based reasoning is engendered by the generation
of a larger state space which cannot be explored even with reduction techniques.
This case study shows us that the complexity of defining contracts can be worth
to consider contract-based verification even for small case studies. The quality of
these verification results can be argued by the quantitative measures which allow to
compare the two approaches. While contract-based model-checking allows to verify
requirement satisfaction in a reasonable time for medium bound values for i and
j, the monolithic version is not able to get through the state space. We mention
here that partial order reduction has been applied on-the-fly when performing
monolithic model-checking.

These positive results encourage the use of contract-based reasoning for requirement
specification and satisfaction, especially for real-life systems that are often subject
to state space explosion. We are not concerned here by finding a general threshold
with respect to the system’s complexity from which the performance of contract-
based verification is greatly superior to other approaches and, so, making it
recommendable for usage.

192

9 A Real-Life Case Study:
The Automated Transfer Vehicle

This chapter presents the Solar Generation Wing Management System (SGS)
of the Automated Transfer Vehicle (ATV) case study and its verification and
validation with the contract-based reasoning technique. The ATV, developed by
Airbus Defence and Space (ADS)1 is a space cargo ship launched into orbit by
the European Ariane 5 launcher with the aim of resupplying the International
Space Station. The SGS system described here is responsible for the management
of the solar arrays that provide the vehicle with the energy needed to fulfill its
mission. It contains the functional chains that realize the solar arrays deployment
and rotation.

9.1 System Description and Architecture

The system’s design, illustrated in Figure 9.1, has been reverse engineered from
the actual system by the ADS engineers, for the purpose of this case study. It
is described with OMEGA SysML and the IBM Rhapsody tool. The model has
a 4-layer architecture structured in a set of hardware and software entities that
captures its timed behavior. Figure 9.1 adopts a high-level view of the main
components, without the details of their substructure:

• The mission and vehicle management component (MVM) “simulates” a finite
mission scenario going through the two operating modes of the SGS described
below.
• The SOFTWARE component, subsystem of the Flight Application Software,

consists of three sub-components, each with a specific function. They react
to requests coming from the MVM and control the hardware by executing

1http://airbusdefenceandspace.com/

193

http://airbusdefenceandspace.com/

Chapter 9. A Real-Life Case Study: The Automated Transfer Vehicle

BL_ATV
«block,root»

MVM:MVM1

SGS:SGS1

SOFTWARE:SOFTWARE1
HARDWARE:HARDWARE1

WING1:WING1

WING2:WING1

WING3:WING1

WING4:WING1

CU:CU1

C_W1
«block,contract»

C_W2
«block,contract»

C_W3
«block,contract»

C_W4
«block,contract»

C_HW
«block,contract»

Property
«block,observer»

IBD_COMPLETE

Page 1 of 1

Figure 9.1 – An overview of the SGS model in Rhapsody SysML.

automated procedures in response to MVM demands.
• The HARDWARE component contains the four solar arrays of the ATV.
This component has more than 70 pieces of equipment with multiple levels of
redundancy for achieving reliability and availability in case of failures. Every
wing is held in its initial position by four hold-down and release systems
(HDRS). In order for the deployment to occur each HDRS has to be set loose.
This is realized, for each wing, by eight thermal knives (TK); 2 TKs are
needed for each HDRS — one for the nominal case and a redundant one
in case of anomaly. Each time a HDRS is cut, a wing locking mechanism
evolves to a deployed state for that array.
• The command units (CU) component, which may also be subject to failure,
coordinates the HARDWARE based on requests received from the SOFT-
WARE. It has numerous interconnections both nominal and redundant with
the wings, connections that are abstracted to 4 in Figure 9.1. It contains 4
power units (PCDU) and 4 thermal control units (TCU) that are responsible
for the activation/deactivation of the TKs, each of them being connected to
two different wings. Two command and monitoring units (CMU) supervise
the entire system, i.e. all requests from the software transit the CMUs.

The SGS describes two operating modes: (1) the deployment of the solar arrays
and (2) their rotation. We are interested here only in the first mode. Initially the
four solar arrays of the ATV are stowed. Their deployment starts by removing the
safety barriers from the thermal control units. Safety barriers prevent an unwanted
unfolding of the wings by blocking the enabling of the thermal knives. Next the
HDRSs are cut by at least 4 of the 8 thermal knives of each wing. In order for
a HDRS to be cut, the knife has to be active for 50 consecutive time units. The

194

9.1. System Description and Architecture

deployment of the wing starts immediately after the last HDRS is cut. After the
deployment is completed, the safety barriers are restored.

The system’s redundancy is explicitly modeled for the TKs and HDRSs of each
wing, TCUs and PCDUs, in case of anomaly at execution. There are 56 possible
failures and each may occur at an arbitrary moment during the execution. The
hypothesis is that the system may be subject to at most one failure, i.e. 1-fault
tolerance. In order to ease the generation of verification configurations, a special
SIMULATION component is added to the model to command non-deterministically
the failure of an equipment based on a parameter that can be provided prior to
the verification session.

The initial SGS model was realized using standard SysML modeling which does
not impose strong static typing rules. Therefore, several modifications were made
in order to make the model comply to the static well-formedness rules of OMEGA
and correcting a range of inconsistencies which often go unnoticed throughout the
system engineering phase and last sometimes until the integration test campaign,
when correcting them becomes very costly. An example is provided by the lack
of interface definition and bidirectional port modeling. This led us to model 18
interfaces for typing ports and correcting around 20% of the ports defined in the
design that were not respecting either the unidirectionality rule or the uniqueness
rule for outgoing connectors. The effort required for these syntactic changes is
minor relative to the size of the project: between 1 and 2 person*days for the SGS
model.

In terms of metrics, the obtained model defines a total of 21 block types (7 of
which are refined by means of 24 Internal Block Diagrams) with 348 port types
and 372 connector types for communication. At run-time, the system contains 96
block instances running in parallel with a total of 651 ports and 504 connectors.

We are interested in proving that the system is indeed 1-fault tolerant. Informally, it
means that no matter which error occurs to equipment devices and at what moment,
the software will attain the correct deployment of the wings. It is expressed by the
following requirement modeled in Figure 9.2.

Requirement 9.1. At the end of the deployment sequence, all four wings are
deployed.

We formalize this requirement with an observer. We add to the system model a
block Property whose state machine describes the safety property to be verified:
initially the observer waits in the state SYSTEM_IS_ON for the wing status

195

Chapter 9. A Real-Life Case Study: The Automated Transfer Vehicle

SYSTEM_IS_ON

VERIFY_DEPLOYMENT

/match send SGS_DEPLOY_WING_STATUS //

[SGS_DEPLOY_WING_STATUS.STATUS ==
 T_SGS_DEPLOY_WING_STS::LOCKED_DEPLOYED]

NO_DEPLOYMENT
«error»

[SGS_DEPLOY_WING_STATUS.STATUS !=
 T_SGS_DEPLOY_WING_STS::LOCKED_DEPLOYED]

StatechartDiagram

Page 1 of 1

Figure 9.2 – Observer formalizing Requirement 9.1: all four wings are deployed.

interrogation to be executed. After the entire sequence deployment is performed, a
software piece verifies the locked status of the wings. When asked, the target wing
answers with a SGS_DEPLOY_WING_STATUS message that has as parameter
its current status. When the action is matched, the automaton passes into the
VERIFY_DEPLOYMENT state where it checks the value of the parameter. If
it is LOCKED_DEPLOYED, then it will wait for another occurrence of the
interrogation for another or the same wing. Otherwise, something wrong has
occurred at deployment and it advances to the error state NO_DEPLOYMENT.
The reaching of the error state during verification means that the requirement is
violated.

9.2 Preliminary Verification Results without Con-
tracts2

We started by reviewing the system model and performing some preliminary
validation and verification in order to detect modeling errors that may lead to
the violation of the requirement. During this phase we did not yet make use of
contracts, however we chose to review them here briefly, since they participated in
eliminating some errors in the model and in showing that direct model-checking
Requirement 9.1 is not feasible.

Interactive simulation of nominal scenarios and execution of random scenarios
allowed us to discover several modeling errors. Most of them concerned unexpected
message receptions that blocked the execution of components thus leading to general

2This section is based on [71].

196

9.2. Preliminary Verification Results without Contracts

MVM0

manager67

FSM0

PCDU0

manager44 manager68

POWER3 POWER6

PCDU1

manager36 manager76

POWER2 POWER7

PCDU2

manager29manager51

POWER1POWER4

PCDU3

manager21manager59

POWER0POWER5

CMU10

manager13

manager30

manager4

manager45manager60

manager66

manager77

BEHAVIOUR3

LOCKING0

BEHAVIOUR0

LOCKING1LOCKING2

DEPLOYMENT0

LOCKING3

CMU20

manager10 manager7

BEHAVIOUR2 BEHAVIOUR1

manager5manager6

SADG0SADG1

manager8 manager9

SADG2 SADG3

manager11 manager12

SADG4 SADG5

manager14manager15

SADG6SADG7

manager16

manager83

AP0

manager1

manager17manager18manager19

manager2

manager20

manager24manager26 manager34 manager35manager23 manager25manager28manager33

KNIFE0 KNIFE2KNIFE4KNIFE5 KNIFE1KNIFE3 KNIFE6 KNIFE7

manager22manager27 manager32 manager31

HDRS0HDRS1 HDRS3 HDRS2

manager39 manager41manager49 manager50 manager38manager40 manager43manager48

KNIFE9 KNIFE11KNIFE14 KNIFE15KNIFE8 KNIFE10 KNIFE12KNIFE13

manager37manager42 manager47 manager46

HDRS4HDRS5 HDRS7 HDRS6

manager53 manager55manager58 manager63 manager54manager56manager64 manager65

KNIFE16 KNIFE18KNIFE20 KNIFE21 KNIFE17KNIFE19KNIFE22 KNIFE23

manager52 manager57manager62manager61

HDRS8 HDRS9HDRS11HDRS10

manager70manager72 manager75manager80manager71 manager73manager81 manager82

KNIFE24 KNIFE26 KNIFE28KNIFE29KNIFE25 KNIFE27KNIFE30 KNIFE31

manager69 manager74 manager79 manager78

HDRS12 HDRS13 HDRS15 HDRS14

Mission Management

Software instances

Hardware instances

Wing 1 instances Wing 2 instances Wing 3 instances Wing 4 instances

!!!!!!!!!Command Unit instances

Figure 9.3 – System’s communication graph displaying the components — rep-
resented as nodes — and their unidirectional communication — represented as
arrows.

deadlocks, as it was the case for TKs. Message receptions had to be modeled
for correct behavior. In other cases, like for the MVM, the unexpected message
receptions were due to the existence of parallel composite states reacting to the
same request: the designer intended only one parallel state to react to the message
during a certain flight phase, but failed to correctly specify the conditions that
enabled and disabled the receptions when going from one phase to another. We
mention that an examined system scenario has around 2400 transitions fired and
needs around a minute to be executed with the IFx simulator on a regular desktop
machine.

We also inspected formally the system model for the absence of deadlocks since
simulation allows only to partially explore the system’s execution. This step
permitted to discover missing timing constraints but for the rotation phase of the
flight, which is not considered by the requirement to satisfy.

Performing model-checking on the current configuration is not possible3 due to the
combinatorial explosion of the state space. This is caused by the large number of
component instances at run-time together with the large number of failures that
need to be checked, as it can be seen in the communication graph represented

3The state space generation had to be stopped after 8 hours as the memory was exhausted.

197

Chapter 9. A Real-Life Case Study: The Automated Transfer Vehicle

in Figure 9.3. As a first way around the explosion problem, we used in the
beginning a non-exhaustive exploration by limiting concurrency in the system
to two threads, one for the SIMULATION component and one for all the other
components. This allowed us to discover several missing transitions for TKs and,
most importantly, incorrect connections between the PCDU and the wings. Each
PCDU was erroneously connected to the same wing by both connections while it
had to be nominally connected to one wing and redundantly connected to another
wing.

Once corrections were made to the model, the exploration of the state space in the
2-thread configuration produced no further errors. However, this is not sufficient
to establish the satisfaction of the requirement in the general case. For this reason
we set out to use contract-based reasoning, which is described in the following
section.

9.3 Applying the Contract-based Verification Tech-
nique

We start by identifying the components that represent the system under study S
and the environment E. Since Requirement 9.1 is expressed with respect to the
behavior of the four wings that are contained in the HARDWARE block, with
regard to the methodology of Figure 3.1, we consider the subsystem S to be the
HARDWARE and the Ki the WINGi, i = 1, 4. The environment of the subsystem
is given by the parts with which it communicates: bidirectional communication is
established between CU and HARDWARE, while CU depends on the behavior of
SOFTWARE and MVM. So, the environment E of Figure 3.1 is represented here
by the composition of MVM, SOFTWARE and CU.

We model a set of contracts {C_W1, . . . , C_W4}, one for each wing, and a dom-
inated contract C_HW for the HARDWARE component. Each component is
linked to its contract by a contractUse relation, as illustrated in Figure 9.4, where
the reqTarget is set to Property and C_HW as refTarget. Finally, the top contract
is linked by a contractConformance to the Property it must satisfy.

The first step of the methodology consists in defining the contract C_Wi =

(A_Wi,G_Wi) for each WINGi, and next proving that WINGi satisfies C_Wi,
i = 1, 4. We chose for WINGi to use as assumption the concrete environment of
the subsystem HARDWARE composed with an abstraction WAj for each WINGj
with j 6= i. We propose the following abstraction WAj : the wing consumes all

198

9.3. Applying the Contract-based Verification Technique

BL_ATV
«block,root»

MVM:MVM1

SGS:SGS1

SOFTWARE:SOFTWARE1

CU:CU1

HARDWARE:HARDWARE1

WING1:WING1

WING2:WING1

WING3:WING1

WING4:WING1

C_W1
«block,contract»

«contractUse»

C_W2
«block,contract»

«contractUse»

C_W3
«block,contract»

«contractUse»

C_W4
«block,contract»

«contractUse»

C_HW
«block,contract»

«contractUse»

Property
«block,observer

«contractConformance»

reqTarget:Class=Property
«Tag»

refTarget:Class=C_HW
«Tag»

IBD_COMPLETE

Page 1 of 1

Figure 9.4 – The SGS model extended with contracts for verifying Requirement 9.1.

requests coming from the environment, and answers to any status request with
deployed. Then the assumption A_Wi is given by the parallel composition of
MVM, SOFTWARE, CU and WAj with j 6= i. This abstraction of the environment
is sufficient to drastically reduce the state space of the verification model, since
the exponential explosion in the original model is mainly due to the parallelism
of the hardware pieces which are abstracted to the three leaf parts WAj. We can
evaluate this reduction only with respect to the number of model elements instances
— blocks, ports and connectors: the system instances are reduced in average by
55%. We want to guarantee that even if WINGi exhibits a failure it ends up being
deployed.

Contract C_Wi = (A_Wi, G_Wi) where:

• A_Wi = MVM ‖ SOFTWARE ‖ CU ‖ (‖j 6=iWAj).
• G_Wi = WAi : the wing answers to requests about its status with deployed

and ignores all other requests.

The contract is modeled in Figure 9.5, while Figure 9.6 presents the behavior of
the guarantee. We note that since we use as assumption the concrete environment,
the signature of the guarantee remains the same as that of the component. For
this reason, we have to add consuming transitions in every state for all inputs
corresponding to the wing deployment process. Moreover, we remark that the same
guarantee type is used within all 4 modeled contracts; this shows the reusability
of our contract modeling framework. Also, the guarantee G_Wi has the same

199

Chapter 9. A Real-Life Case Study: The Automated Transfer Vehicle

C_W1
«block,contract»

gW1:G_W1

IF_WING_2_CU

pWING_out

IF_CU_2_WING

pWING_in
aW1:A_W11

MVM:MVM1

SGS:SGS1

HARDWARE:HARDWARE1

WING2:WA1

IF_WING_2_CU

pWING_out

IF_CU_2_WING

pWING_in

WING3:WA1

IF_WING_2_CU

pWING_out

IF_CU_2_WING

pWING_in

WING4:WA1

IF_WING_2_CU

pWING_out

IF_CU_2_WING

pWING_in

IF_CU_2_WING

pWING4_in

IF_CU_2_WING

pWING3_in

IF_WING_2_CU

pWING_out

IF_CU_2_WING

pWING2_in
SOFTWARE:SOFTWARE1

CU:CU1

IF_WING_2_CU

pWING_in

IF_CU_2_WING

pWING4_out

IF_CU_2_WING

pWING3_out

IF_CU_2_WING

pWING2_out

IF_CU_2_WING

pWING1_out IF_WING_2_CU

pWING_in
IF_CU_2_WING

pWING1_out

IF_WING_2_CU

pWING_out

pWING_in

IF_CU_2_WING

IF_WING_2_CU

pWING_out

pWING_in

IF_CU_2_WING

IF_WING_2_CU

pWING_out

pWING_in

IF_CU_2_WING

IF_WING_2_CU

pWING_out

pWING_in

IF_CU_2_WING

pWING4_in

IF_CU_2_WING

IF_CU_2_WING

pWING3_in

pWING_out

IF_WING_2_CU
pWING2_in

IF_CU_2_WING

IF_WING_2_CU

pWING_in

pWING4_out

IF_CU_2_WING

pWING3_out

IF_CU_2_WING

IF_CU_2_WING

pWING2_out

IF_CU_2_WING

pWING1_out

pWING_in

IF_WING_2_CU

IF_CU_2_WING

pWING1_out

internal block diagram_2

Page 1 of 1

Figure 9.5 – The contract C_W1 for WING1 in SysML.

IDLE

SGS_TCUi_SADG1_CMD

SGS_TCUi_SADG2_CMD

TCU_SAD_ESB_DSARM_CMD

TCU_SAD_ESB_ARM_CMD

ACTIVATE_TK

DEACTIVATE_TK

FAILURE

SGS_DEPLOY_WING_STATUS(params->j, ::PredefinedTypes_ATV::T_SGS_DEPLOY_WING_STS::LOCKED_DEPLOYED)

SGS_REQUEST_DEPLOY_WING_STATUS

StatechartDiagram

Page 1 of 1

Figure 9.6 – The modeled behavior for all G_Wi and G — parameter j ranges
through 1 to 4.

behavior as the abstraction WAi. We prefer not to introduce a new notation
which is already cumbersome and we will use WAi to denote also the guarantees.
Furthermore, one can remark that the guarantee is stronger than the projection
of the Requirement 9.1 on WINGi : the abstraction WAj can also be subject
to one failure since this case was not excluded from its behavior; so, the fault
tolerance property that we verify via contracts is stronger than the one intended.
We guarantee that the system is 4-fault tolerant if faults occur in separate wings.

Next, we model the global contract C_HW = (A_HW,G_HW) for HARDWARE
and we prove that the contract is dominated by {C_W1, C_W2, C_W3, C_W4},
i.e. the second step of the methodology. Again, we use as assumption A_HW the
concrete environment of HARDWARE. The guarantee G_HW is the composition
of the four WAi. In fact, G_HW has the same type as G_Wi since the same state
machine can be used to describe its behavior.

200

9.3. Applying the Contract-based Verification Technique

Contract C_HW = (A_HW , G_HW) where:

• A_HW = MVM ‖ SOFTWARE ‖ CU
• G_HW : for each wing status interrogation answers with deployed, while all

other requests are ignored.

All WAi, i = 1, 4, and, in consequence, G_HW as defined satisfy the closure
conditions for applying Theorem 6.5. In consequence, the following proof obligations
need to be verified:

(2.1) WA1 ‖ WA2 ‖ WA3 ‖ WA4 vMVM‖SOFTWARE‖CU G_HW
(2.2) MVM ‖ SOFTWARE ‖ CU ‖ WA2 ‖ WA3 ‖ WA4 vWA1 MVM ‖ SOFT-

WARE ‖ CU ‖ WA2 ‖ WA3 ‖ WA4
(2.3) MVM ‖ SOFTWARE ‖ CU ‖ WA1 ‖ WA3 ‖ WA4 vWA2 MVM ‖ SOFT-

WARE ‖ CU ‖ WA1 ‖ WA3 ‖ WA4
(2.4) MVM ‖ SOFTWARE ‖ CU ‖ WA1 ‖ WA2 ‖ WA4 vWA3 MVM ‖ SOFT-

WARE ‖ CU ‖ WA1 ‖ WA2 ‖ WA4
(2.5) MVM ‖ SOFTWARE ‖ CU ‖ WA1 ‖ WA2 ‖ WA3 vWA4 MVM ‖ SOFT-

WARE ‖ CU ‖ WA1 ‖ WA2 ‖ WA3

We remark that the last 4 items are trivial since we have the same member on
both sides of the relations. Then only item (2.1) has to be automatically verified.

The third step of the reasoning consists in proving the satisfaction of the “mirror”
contract C_HW−1. This verification is trivial since the concrete environment is
used as assumption and the proof obligation is written: MVM ‖ SOFTWARE ‖
CU vG_HW MVM ‖ SOFTWARE ‖ CU.

The last step consists in verifying that C_HW conforms to Requirement 9.1:
MVM ‖ SOFTWARE ‖ CU ‖ G_HW � Property.

The proofs of steps 1, 2 and 4 have been automatically performed within the IFx2
Toolset with the method described in Section 6.5. For each step of the verification
methodology we have manually modeled the contracts: assumptions as composite
blocks that we had to connect via ports with the other components and one type
of guarantee that we have instantiated in every contract. Since our compiler does
not yet generate the complete proof obligations, we had to manually provide the
verification configurations for each step.

The implementation step resulted in 4 possible configurations with one concrete
wing and 3 abstract ones that were each verified with respect to all 14 possible
failures. The average time in seconds needed for the verification of the satisfaction

201

Chapter 9. A Real-Life Case Study: The Automated Transfer Vehicle

Average verification time (s)
Type of induced failure Wing 1 Wing 2 Wing 3 Wing 4

Thermal knife 13993 6869 18842 11412
Hold-down and release system 12672 6516 16578 9980

Solar array driving group 11527 5432 13548 6807

Table 9.1 – Average verification time for each contract C_Wi per induced failure
group.

relation for each contract with respect to each class of failures is presented in
Table 9.1. Even though the system model looks symmetrical, the command units
do not have a symmetrical behavior and, due to their interconnections with the
wings, the state space of system’s abstraction for WING1 and WING3 is larger
than the one of WING2 and WING4 : the CMU1 is responsible for WING1 and
WING3 during wing deployment but transfers requests to the four wings during
preparation, whereas CMU2 handles only the wing deployment for WING2 and
WING4.

It is interesting to note that these results have been obtained after the model was
corrected: the first verification of contract satisfaction failed with a counterexample
when injecting a failure on TKs due to their parallel execution. Deployment starts
by switching on a subset of nominal TKs for each wing. The TK will inform the
HDRS of its enabling. If, in the 50 seconds needed for the cut, the redunant TK
that is off fails, it will send the disabling command to the HDRS, and the HDRS
won’t be cut. Now, the redundant TK cannot be enabled due to the failure mode,
the cable is not cut and the wing not deployed. The correction consisted in sending
the switch off request in case of a failure only if the TK is on.

For the dominance step, the only proof obligation to be verified is the refinement
of the global guarantee — item (2.1) —, which took 1 second.

Finally, on the only model configuration provided by dominance, we proved the
conformance of C_HW to Requirement 9.1 that also took 1 second.

9.4 Conclusion

This case study, extracted from an industrial-scale system, provides the practical
motivation for our work. It clearly shows the limitations of current verification
techniques for proving the satisfaction of system requirements which is a compelling
burden for the correct development of systems with respect to their safety, reliability,

202

9.4. Conclusion

availability, etc.

In the effort of tackling these issues, we have applied the contract-based framework
we developed on the case study. So, we have defined a set of contracts and we
automatically verified each proof obligation. Once the system was apprehended, the
definition of contracts was rather straightforward: the global guarantee is almost
identical to the requirement to prove, while the component guarantees are the
projection of the latter on each component. From our view, the expected overhead
in this case study was moderate: it is directly related to the effort of understanding
the developed system and of modifying the system model to comply to the strong
static typing rules imposed by the component framework. Moreover, this approach
has allowed us to detect some intricate modeling errors and, finally, to conclude
that the system satisfies indeed its requirement.

Based on the positive feedback with respect to the verification results, we can
ascertain that previously intractable models can be tamed by the contract-based
verification methodology and technique described in this thesis.

203

Conclusion and Perspectives

In order to tackle the growing complexity of nowadays critical real-time systems,
we considered in this thesis a compositional component-based design methodology
driven by requirements. In order to obtain directly from requirements a correct sys-
tem design, we examined an intermediate layer in the form of a contract framework
that allows to specify, in an abstract manner, how a requirement can be decomposed
on components and how components contribute to the satisfaction of a requirement.
Therefore, the notion of contract consists in a pair (assumption, guarantee) and
it is involved in three refinement relations that allow for iterative design, namely:
conformance verifies that the contract refines the global requirement, dominance
verifies that a general contract is refined by a set of specific ones and satisfaction
verifies that the implementation satisfies its contract. These generic notions are
structured in a contract-based reasoning methodology in [143, 144, 142] that is
instantiated throughout this thesis.

We developed a behavioral contract framework for system designs modeled with
SysML, which can also be used for the compositional verification of timed safety
requirement satisfaction. Our contribution is two-fold: first, we have introduced the
generic contract framework by syntax in SysML and secondly, we have defined its
semantics based on a variant of Timed Input/Output Automata and we sketched
a verification method based on model-checking in order prove that the modeled
refinement relations are satisfied.

Overall, the presented contract-based theory aims to offer the following features:

• scalability: the methodology can be applied on large real-life systems and
produce a yes/no satisfaction answer for the global requirements,
• predictability: design errors may be detected from the early phases of the
system design, while the method can be applied from coarse-grained to
fine-grained architectural models, and
• reusability both for the design, e.g. contracts are defined by instances of type
which are at their turn reusable, and the verification — a component/contract

205

Conclusion and Perspectives

can be replaced with another one as long as refinement locally holds.

Moreover, it supports an incremental and independent development of system
designs.

Contracts in SysML

In the first place, since SysML is a rich modeling standard, we have selected a
subset of its modeling elements sufficient to describe hierarchical component-based
systems. Moreover, being a semi-formal modeling language which leaves open
several semantic variation points that result in an ambiguous model semantics, we
have presented a component framework based on SysML, called OMEGA, which
allows for rigorous system engineering by requiring for a set of strong typing well-
formedness rules to hold. This component language is extended with a continuous
time base and clock notions and a mechanism for formalizing and verifying timed
safety system requirements with observers.

Next, we have introduced the contract-related notions by defining a domain meta-
model enriched with well-formedness rules such that a system design extended
with contracts is unambiguous and strongly typed. The meta-model is described
using the UML standard and, therefore, the proposed extension can be generally
applied on any UML/SysML model. The syntactic definition of the contract-based
framework is generic enough to be used with other defined semantical frameworks,
provided that they can represent the semantics of a SysML model. Our definition
of contracts explicitly handles an important aspect of the requirement-driven
design: components/contracts can have a larger signature than their corresponding
abstract version, which is due to either incorporating several requirements into an
implementation or detailing the component’s contribution toward the satisfaction
of the requirement.

We have instantiated the meta-model for the OMEGA component language by using
the stereotype mechanism in order to make the extension usable with standard
model editors and we have formalized the meta-model’s well-formedness rules using
OCL such that system designs extended with contracts can be statically checked
for consistency and coherence. The key concepts and design methodology have
been illustrated of a simplified version of an Automated Teller Machine (sATM).

In order to keep the description simple, we assumed some restrictions on the
component model which do not have an impact on the expressiveness of the design,
like all communications bypass ports and one port can be typed with only one

206

Conclusion and Perspectives

interface. Future work should explore the relaxation of these conditions. For
example, an idea which is available in SysML is to allow ports to express different
functionalities with respect to different components by typing them with several
interfaces, possibly hierarchically structured for a clear typing system. Then, the
contract signature refinement would be transferred from port definition to port
type definition. Indeed, it would be interesting to allow the user to redefine the
type of a port from the guarantee by considering only a subset. Yet, such modeling
will also transfer the design complexity from ports to types and may induce an
important overhead at compilation for contract satisfaction during dominance,
since the target for signals has to be automatically computed based on ports and
connectors and for which type verification would be necessary.

Formal Contract-based Theory with Timed Input/Output Automata

The novelty for this notion of contract is given by the behavioral aspect of the
assumption/guarantee which expresses properties of the whole dynamics of a com-
ponent via the state machine they can model. Therefore, verifying the behavioral
refinement relations a contract is involved in requires to formalize the semantics
of the component language. The second goal of our work consisted in providing a
suitable semantic framework in the form of Timed Input/Output Automata for the
component language extended with contracts. We have defined a variant of the
TIOA framework of [108] such that it complies to the semantics of the component
model and we have established as refinement relation between components the
timed trace inclusion, which is preserved by composition. Subsequently, we have
presented the mapping of SysML modeling elements to TIOA and we have sketched
an algorithm for the generation of proof obligations.

Upon the TIOA component framework, we have built the contract-based framework
by defining the semantics of proof obligations, i.e. refinement under context on
which both contract satisfaction and dominance are based. At its turn, refinement
under context relies on the conformance relation, in our case timed trace inclusion.
The reasoning with this contract framework is both well-defined and sound for
timed safety properties, fact which is established by the compositionality results
the theory satisfies, i.e. refinement under context is preserved by composition and
guarantees the correctness of circular reasoning.

Since the associated proof obligations consist in verifying a set of timed trace
inclusion relations and trace inclusion is undecidable (except for some categories of
TA), we have presented a verification method for a sub-class of safety properties that
allows to check trace inclusion by model-checking. So, a guarantee is transformed

207

Conclusion and Perspectives

into a timed property automaton (an observer) and we show that this transformation
is sufficient in order to prove trace inclusion. Yet, the verification method is limited
to deterministic safety properties. A particular attention must be given to contract
assumptions, which, different from guarantees, are not required to be modeled as
safety properties by the formal framework. Recall that assumptions play the role
of a timed safety property when proving dominance. In consequence, modeling
assumptions as timed safety properties may turn out difficult if the environment’s
behavior they abstract exhibits hard timed upper bounds on actions.

Future work concerns the enlarging or strengthening of the type of requirements
that can be verified by the contract-based approach. The motivation is given
by the language that can be used to express safety properties, which does not
allow to specify hard timed bounds for actions. A solution would be to use
timed simulation as conformance and/or refinement under context, relation which
allows to express stronger times delays and possibly remove the closure under
time-extension condition: the abstract component observes at least the same time
elapse as the concrete component and, if it is explicitly modeled, then the lazyness
of actions may be avoided. Also a simulation relation would permit to extend the
type of requirements as for example with progress ones. An example of refinement
under context relation based on simulation which verifies both safety and progress
properties and ensures sound circular reasoning is given in [99, 98] for the BIP
framework. Yet, two questions are raised by the usage of simulation: (1) how the
refinement of signature can be taken into account and which semantics to use for
actions that are not explicitly modeled in the guarantee and (2) how can it be
automatically verified. With respect to the first item, we considered a covariant
refinement of signature (i.e. more inputs and outputs in the component), where
actions not appearing in the guarantee can be ignored. Yet, other interpretations
are available: a co- and contravariant signature refinement (i.e. more inputs, less
outputs in the component) may be used, while actions not explicitly modeled in the
guarantee can be handled as errors. With respect to the second item, incorporating
several types of requirements into a simulation relation would require to customize
it and, so, induce an increased complexity for the automatic verification that is not
equipped with a customizable tooling.

Implementation and Feedback on Experimental Results

The contract-based approach is partially implemented in the IFx2 toolset. The
uml2if compiler automatically transforms an input system model with contracts
into a network of TIOA, which can be model-checked and simulated within the

208

Conclusion and Perspectives

toolset. The modeled refinement relations, as well as contracts, are not yet
taken into consideration for generating the corresponding proof obligations, these
steps remaining manual. For our experimentation, we have manually modeled
different variations of the system that correspond to the left-hand side members
of the obtained conformance relations, as well as the transformation from an
assumption/guarantee defined as component into a safety property formalization.
Future work consists in automating all described intermediate model generation
steps and adding the functionality to manage the proof obligations.

Finally, we have illustrated our method on two case studies — a parametric one
and another extracted from an industrial-scale system model — and we have shown
how our approach can alleviate the problem of combinatorial explosion for the
verification of large systems. This statement is supported by the positive feedback
of the verification results.

We conclude that our contract-based framework is appropriate for the design and
compositional verification of large critical real-time systems described by multiple
hierarchical layers, which have to satisfy timed safety properties that do not model
strong timed bounds for actions.

Automatic Generation of Contracts

An important issue which was not discussed in this thesis and which constitutes
future work deals with the methodological guideline for modeling contracts. The
lack of a well-defined technique which prescribes how to derive contracts for the
whole system and the components is one of the reasons why previous attempts to
introduce contracts in software engineering, merely programming languages, have
not enjoyed an extensive popularity. Nevertheless, we believe that the case for
contracts in the early phases of system engineering is different and that the contract
concept is strongly needed for decomposing systems, as well as verifying their
correctness before system implementation. We believe that applying verification
techniques, even if the overhead for these applications is rather important, may be
in most cases less expensive than finding errors in the system after implementation
and deployment. Therefore, providing methods or methodological guidelines for
deriving intermediate contracts from the properties one is trying to prove is our
main perspective in the long run.

An idea would be to automatically generate the guarantees to use, based on (local)
requirements. Indeed starting from a global requirement we could derive a first
contract which incorporates in its signature specific (visible) actions that can be

209

Conclusion and Perspectives

further used for contract decomposition. In general, this contract would need to be
specified by the designer. Then from the guarantee we could project the global
guarantee onto a set of sub-guarantees by taking into account the global assumption
and having predefined a signature for each sub-component. The correctness of
local guarantees with respect to the abstract one can be ensured with the CEGAR
approach. We assume that such a step can be iteratively applied until the level of
granularity corresponds to an implementation for that contract. Such an approach
has been recently studied in [96] for LTS under the term of realizability.

This reasoning corresponds to the technique we have applied for finding the
contracts throughout the cases studies of this thesis. In each example we started
by identifying which actions the component performs that directly contribute to
the requirement satisfaction, that also include the environment-dependent ones.
The modeled guarantees are the weakest components which merely simulate the
structure of their corresponding implementations. For the real-life system, the
task was simple and straightforward: the global guarantee is almost identical
to the requirement, while component guarantees represent a projection of the
global one on components. Yet, this task requires to speculate an implementable
component-based architecture and a set of possible actions.

In the same line of thought, we are interested in automatically generating the
assumptions over the environment that are to be modeled for each contract. The
reasoning is similar to generating the weakest pre-condition for a Hoare triplet: the
guarantee Gi has been previously computed, either automatically or by definition,
and the implementationKi is provided; then an environment Ai such thatKi vAi Gi

holds may be determined. If Ai cannot be computed it means that Ki is not a
correct implementation for Gi. We could also make use of the proof obligations the
dominance relation generates, if the implementation Ki is not provided: G, Gi and
A are known; then we have to compute the weakest (and simplest) Ai such that
the conformance relation roughly written A ‖ (‖nj=1 Gj) � Ai ‖ Gi holds. How to
compute Ai based on contract satisfaction has been studied in [84, 134, 83] based
on CEGAR and automatic learning for LTS.

Such results would provide a fully automated technique for correct-by-construction
system designs which could be integrated in an iterative component-based develop-
ment process.

210

Conclusion and Perspectives

Error Diagnosis with Contracts

In the short run, a second perspective consists in exploring the error diagnosis
topic for the contract-based framework, but also in its general. Indeed, shifting the
obtained counterexample from the formal model to the semi-formal one will help
system engineers to easily find the error and correct it. Bridging the two worlds
would provide an asset for modeling abstractions — in the form of assumption-
s/guarantees in our case — and correcting them, whenever refinement does not
locally hold.

Secondly, diagnosis should be performed on the entire proof tree, not only locally.
We have sketched in Section 7.3 a set of indications of what to be done if one
proof fails, which we have applied on the presented case studies for defining the
correct abstractions. Yet, these rules should be thoroughly studied and ultimately
defined as a methodology for diagnosis, which could be integrated in a development
process.

211

Bibliography

[1] Fides Aarts, Faranak Heidarian, Harco Kuppens, Petur Olsen, and Frits W.
Vaandrager. Automata Learning through Counterexample Guided Abstrac-
tion Refinement. In Dimitra Giannakopoulou and Dominique Méry, editors,
FM 2012: Formal Methods - 18th International Symposium, Paris, France,
August 27-31, 2012. Proceedings, volume 7436 of Lecture Notes in Computer
Science, pages 10–27. Springer, 2012.

[2] Martín Abadi and Gordon D. Plotkin. A Logical View of Composition and
Refinement. In David S. Wise, editor, Conference Record of the Eighteenth
Annual ACM Symposium on Principles of Programming Languages, Orlando,
Florida, USA, January 21-23, 1991, pages 323–332. ACM Press, 1991.

[3] El Arbi Aboussoror, Ileana Ober, and Iulian Ober. Seeing Errors: Model
Driven Simulation Trace Visualization. In Robert B. France, Jürgen Kazmeier,
Ruth Breu, and Colin Atkinson, editors, Model Driven Engineering Languages
and Systems - 15th International Conference, MODELS 2012, Innsbruck,
Austria, September 30-October 5, 2012. Proceedings, volume 7590 of Lecture
Notes in Computer Science, pages 480–496. Springer, 2012.

[4] Luca Aceto, Augusto Burgueño, and Kim G. Larsen. Model checking via
reachability testing for timed automata. In Bernhard Steffen, editor, Tools
and Algorithms for the Construction and Analysis of Systems, volume 1384
of Lecture Notes in Computer Science, pages 263–280. Springer Berlin Hei-
delberg, 1998.

[5] Luay Alawneh, Mourad Debbabi, Yosr Jarraya, Andrei Soeanu, and Fawzi
Hassaïne. A Unified Approach for Verification and Validation of Systems and
Software Engineering Models. In 13th Annual IEEE International Conference
and Workshop on Engineering of Computer Based Systems (ECBS 2006),
27-30 March 2006, Potsdam, Germany, pages 409–418. IEEE Computer
Society, 2006.

213

Bibliography

[6] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-Checking for
Real-Time Systems. In Proceedings, Fifth Annual IEEE Symposium on Logic
in Computer Science, 4-7 June 1990, Philadelphia, Pennsylvania, USA, pages
414–425. IEEE Computer Society, 1990.

[7] Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theor.
Comput. Sci., 126(2):183–235, 1994.

[8] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time
temporal logic. J. ACM, 49(5):672–713, 2002.

[9] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y. Vardi.
Alternating Refinement Relations. In Davide Sangiorgi and Robert de Simone,
editors, CONCUR ’98: Concurrency Theory, 9th International Conference,
Nice, France, September 8-11, 1998, Proceedings, volume 1466 of Lecture
Notes in Computer Science, pages 163–178. Springer, 1998.

[10] Charles André, Frédéric Mallet, and Robert de Simone. Modeling Time(s).
In Gregor Engels, Bill Opdyke, Douglas C. Schmidt, and Frank Weil, edi-
tors, Model Driven Engineering Languages and Systems, 10th International
Conference, MoDELS 2007, Nashville, USA, September 30 - October 5, 2007,
Proceedings, volume 4735 of Lecture Notes in Computer Science, pages 559–
573. Springer, 2007.

[11] Pascal André, Gilles Ardourel, and Mohamed Messabihi. Vérification de
contrats logiciels a l’aide de transformations de modeles. In 7èmes journées
sur l’Ingénierie Dirigée par les Modèles (IDM), 2011.

[12] Ludovic Apvrille, Pierre de Saqui-Sannes, and Ferhat Khendek. TURTLE-P:
a UML profile for the formal validation of critical and distributed systems.
Software and System Modeling, 5(4):449–466, 2006.

[13] Alexandre Arnold, Benoît Boyer, and Axel Legay. Contracts and Behavioral
Patterns for SoS: The EU IP DANSE approach. In Kim G. Larsen, Axel
Legay, and Ulrik Nyman, editors, Proceedings 1st Workshop on Advances in
Systems of Systems, AiSoS 2013, Rome, Italy, 16th March 2013., volume 133
of EPTCS, pages 47–66, 2013.

[14] Roberto Barbuti and Luca Tesei. Timed automata with urgent transitions.
Acta Inf., 40(5):317–347, 2004.

[15] Luciano Baresi, Angelo Morzenti, Alfredo Motta, and Matteo Rossi. Towards
the UML-Based Formal Verification of Timed Systems. In Bernhard K.

214

Bibliography

Aichernig, Frank S. de Boer, and Marcello M. Bonsangue, editors, Formal
Methods for Components and Objects - 9th International Symposium, FMCO
2010, Graz, Austria, November 29 - December 1, 2010. Revised Papers,
volume 6957 of Lecture Notes in Computer Science, pages 267–286. Springer,
2010.

[16] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling Heterogeneous
Real-time Components in BIP. In Fourth IEEE International Conference on
Software Engineering and Formal Methods (SEFM 2006), 11-15 September
2006, Pune, India, pages 3–12. IEEE Computer Society, 2006.

[17] Sebastian S. Bauer, Alexandre David, Rolf Hennicker, Kim Guldstrand
Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wasowski. Moving from
Specifications to Contracts in Component-Based Design. In Juan de Lara and
Andrea Zisman, editors, Fundamental Approaches to Software Engineering
- 15th International Conference, FASE 2012, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn,
Estonia, March 24 - April 1, 2012. Proceedings, volume 7212 of Lecture Notes
in Computer Science, pages 43–58. Springer, 2012.

[18] Sebastian S. Bauer, Rolf Hennicker, and Axel Legay. Component Interfaces
with Contracts on Ports. In Pasareanu and Salaün [135], pages 19–35.

[19] Andreas Baumgart, Philipp Reinkemeier, Achim Rettberg, Ingo Stierand,
Eike Thaden, and Raphael Weber. A Model-Based Design Methodology with
Contracts to Enhance the Development Process of Safety-Critical Systems.
In Sang Lyul Min, Robert G. Pettit IV, Peter P. Puschner, and Theo Un-
gerer, editors, Software Technologies for Embedded and Ubiquitous Systems -
8th IFIP WG 10.2 International Workshop, SEUS 2010, Waidhofen/Ybbs,
Austria, October 13-15, 2010. Proceedings, volume 6399 of Lecture Notes in
Computer Science, pages 59–70. Springer, 2010.

[20] Danièle Beauquier. On probabilistic timed automata. Theor. Comput. Sci.,
292(1):65–84, 2003.

[21] Matthew Bennion and Ibrahim Habli. A candid industrial evaluation of
formal software verification using model checking. In Pankaj Jalote, Lionel C.
Briand, and André van der Hoek, editors, 36th International Conference on
Software Engineering, ICSE ’14, Companion Proceedings, Hyderabad, India,
May 31 - June 07, 2014, pages 175–184. ACM, 2014.

215

Bibliography

[22] Albert Benveniste, Benoît Caillaud, Alberto Ferrari, Leonardo Mangeruca,
Roberto Passerone, and Christos Sofronis. Multiple Viewpoint Contract-
Based Specification and Design. In Frank S. de Boer, Marcello M. Bonsangue,
Susanne Graf, and Willem P. de Roever, editors, Formal Methods for Compo-
nents and Objects, 6th International Symposium, FMCO 2007, Amsterdam,
The Netherlands, October 24-26, 2007, Revised Lectures, volume 5382 of
Lecture Notes in Computer Science, pages 200–225. Springer, 2007.

[23] Albert Benveniste, Benoît Caillaud, and Roberto Passerone. A Generic Model
of Contracts for Embedded Systems. CoRR, abs/0706.1456, 2007.

[24] Luca Benvenuti, Alberto Ferrari, Leonardo Mangeruca, Emanuele Mazzi,
Roberto Passerone, and Christos Sofronis. A Contract-based Formalism
for the Specification of Heterogeneous Systems (invited). In Forum on
specification and Design Languages, FDL 2008, September 23-25, 2008,
Stuttgart, Germany, Proceedings, pages 142–147. IEEE, 2008.

[25] Bernard Berthomieu, Jean-Paul Bodeveix, Patrick Farail, Mamoun Filali,
Hubert Garavel, Pierre Gaufillet, Frederic Lang, François Vernadat, et al.
Fiacre: an intermediate language for model verification in the TOPCASED
environment. In ERTS 2008, 2008.

[26] Nathalie Bertrand, Axel Legay, Sophie Pinchinat, and Jean-Baptiste Raclet.
A Compositional Approach on Modal Specifications for Timed Systems. In
Karin Breitman and Ana Cavalcanti, editors, Formal Methods and Software
Engineering, 11th International Conference on Formal Engineering Methods,
ICFEM 2009, Rio de Janeiro, Brazil, December 9-12, 2009. Proceedings,
volume 5885 of Lecture Notes in Computer Science, pages 679–697. Springer,
2009.

[27] Nathalie Bertrand, Axel Legay, Sophie Pinchinat, and Jean-Baptiste Raclet.
Modal event-clock specifications for timed component-based design. Sci.
Comput. Program., 77(12):1212–1234, 2012.

[28] Antoine Beugnard, Jean-Marc Jézéquel, and Noël Plouzeau. Making Compo-
nents Contract Aware. IEEE Computer, 32(7):38–45, 1999.

[29] Per Bjesse and James H. Kukula. Using Counter Example Guided Abstraction
Refinement to Find Complex Bugs. In 2004 Design, Automation and Test
in Europe Conference and Exposition (DATE 2004), 16-20 February 2004,
Paris, France, pages 156–161. IEEE Computer Society, 2004.

216

Bibliography

[30] Mihaela Gheorghiu Bobaru, Corina S. Pasareanu, and Dimitra Gian-
nakopoulou. Automated Assume-Guarantee Reasoning by Abstraction Refine-
ment. In Aarti Gupta and Sharad Malik, editors, Computer Aided Verification,
20th International Conference, CAV 2008, Princeton, NJ, USA, July 7-14,
2008, Proceedings, volume 5123 of Lecture Notes in Computer Science, pages
135–148. Springer, 2008.

[31] Sébastien Bornot and Joseph Sifakis. An Algebraic Framework for Urgency.
Inf. Comput., 163(1):172–202, 2000.

[32] Sébastien Bornot, Joseph Sifakis, and Stavros Tripakis. Modeling Urgency
in Timed Systems. In de Roever et al. [68], pages 103–129.

[33] Timothy Bourke, Alexandre David, Kim G. Larsen, Axel Legay, Didier Lime,
Ulrik Nyman, and Andrzej Wasowski. New Results on Timed Specifications.
In Till Mossakowski and Hans-Jörg Kreowski, editors, Recent Trends in
Algebraic Development Techniques - 20th International Workshop, WADT
2010, Etelsen, Germany, July 1-4, 2010, Revised Selected Papers, volume
7137 of Lecture Notes in Computer Science, pages 175–192. Springer, 2010.

[34] Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and Joseph Sifakis.
The IF Toolset. In Marco Bernardo and Flavio Corradini, editors, Formal
Methods for the Design of Real-Time Systems, International School on Formal
Methods for the Design of Computer, Communication and Software Systems,
SFM-RT 2004, Bertinoro, Italy, September 13-18, 2004, Revised Lectures,
volume 3185 of Lecture Notes in Computer Science, pages 237–267. Springer,
2004.

[35] Eric Cariou, Cyril Ballagny, Alexandre Feugas, and Franck Barbier. Contracts
for Model Execution Verification. In France et al. [77], pages 3–18.

[36] Eric Cariou, Nicolas Belloir, Franck Barbier, and Nidal Djemam. OCL
contracts for the verification of model transformations. ECEASST, 24, 2009.

[37] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim Guldstrand Larsen,
and Didier Lime. Efficient On-the-Fly Algorithms for the Analysis of Timed
Games. In Martín Abadi and Luca de Alfaro, editors, CONCUR 2005 -
Concurrency Theory, 16th International Conference, CONCUR 2005, San
Francisco, CA, USA, August 23-26, 2005, Proceedings, volume 3653 of Lecture
Notes in Computer Science, pages 66–80. Springer, 2005.

217

Bibliography

[38] Karlis Cerans, Jens Chr. Godskesen, and Kim Guldstrand Larsen. Timed
Modal Specification - Theory and Tools. In Costas Courcoubetis, editor, Com-
puter Aided Verification, 5th International Conference, CAV ’93, Elounda,
Greece, June 28 - July 1, 1993, Proceedings, volume 697 of Lecture Notes in
Computer Science, pages 253–267. Springer, 1993.

[39] Taolue Chen, Chris Chilton, Bengt Jonsson, and Marta Z. Kwiatkowska.
A Compositional Specification Theory for Component Behaviours. In Hel-
mut Seidl, editor, Programming Languages and Systems - 21st European
Symposium on Programming, ESOP 2012, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn,
Estonia, March 24 - April 1, 2012. Proceedings, volume 7211 of Lecture Notes
in Computer Science, pages 148–168. Springer, 2012.

[40] Zhe Chen, Yi Gu, Zhiqiu Huang, Jun Zheng, Chang Liu, and Ziyi Liu. Model
checking aircraft controller software: a case study. Software: Practice and
Experience, 2013.

[41] Shing-Chi Cheung and Jeff Kramer. Checking Safety Properties Using
Compositional Reachability Analysis. ACM Trans. Softw. Eng. Methodol.,
8(1):49–78, 1999.

[42] Chris Chilton, Bengt Jonsson, and Marta Z. Kwiatkowska. Assume-Guarantee
Reasoning for Safe Component Behaviours. In Pasareanu and Salaün [135],
pages 92–109.

[43] Chris Chilton, Bengt Jonsson, and Marta Z. Kwiatkowska. Compositional
assume-guarantee reasoning for input/output component theories. Sci. Com-
put. Program., 91:115–137, 2014.

[44] Chris Chilton, Marta Z. Kwiatkowska, and Xu Wang. Revisiting Timed
Specification Theories: A Linear-Time Perspective. In Marcin Jurdzinski and
Dejan Nickovic, editors, Formal Modeling and Analysis of Timed Systems
- 10th International Conference, FORMATS 2012, London, UK, September
18-20, 2012. Proceedings, volume 7595 of Lecture Notes in Computer Science,
pages 75–90. Springer, 2012.

[45] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and Ar-
mando Tacchella. NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In Ed Brinksma and Kim Guldstrand Larsen, editors, Computer
Aided Verification, 14th International Conference, CAV 2002,Copenhagen,

218

Bibliography

Denmark, July 27-31, 2002, Proceedings, volume 2404 of Lecture Notes in
Computer Science, pages 359–364. Springer, 2002.

[46] Alessandro Cimatti, Michele Dorigatti, and Stefano Tonetta. OCRA: A tool
for checking the refinement of temporal contracts. In Ewen Denney, Tevfik
Bultan, and Andreas Zeller, editors, 2013 28th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2013, Silicon Valley,
CA, USA, November 11-15, 2013, pages 702–705. IEEE, 2013.

[47] Alessandro Cimatti and Stefano Tonetta. A Property-Based Proof System
for Contract-Based Design. In Vittorio Cortellessa, Henry Muccini, and Onur
Demirörs, editors, 38th Euromicro Conference on Software Engineering and
Advanced Applications, SEAA 2012, Cesme, Izmir, Turkey, September 5-8,
2012, pages 21–28. IEEE Computer Society, 2012.

[48] Alessandro Cimatti and Stefano Tonetta. Contracts-refinement proof system
for component-based embedded systems. Science of Computer Programming,
(0):–, 2014.

[49] Edmund M. Clarke and E. Allen Emerson. Design and Synthesis of Syn-
chronization Skeletons Using Branching-Time Temporal Logic. In Dexter
Kozen, editor, Logics of Programs, Workshop, Yorktown Heights, New York,
May 1981, volume 131 of Lecture Notes in Computer Science, pages 52–71.
Springer, 1981.

[50] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-Guided Abstraction Refinement. In E. Allen Emerson
and A. Prasad Sistla, editors, Computer Aided Verification, 12th International
Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceedings,
volume 1855 of Lecture Notes in Computer Science, pages 154–169. Springer,
2000.

[51] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model Checking
and Abstraction. ACM Trans. Program. Lang. Syst., 16(5):1512–1542, 1994.

[52] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT
Press, 2001.

[53] Edmund M. Clarke, David E. Long, and Kenneth L. McMillan. Compositional
Model Checking. In Proceedings, Fourth Annual Symposium on Logic in
Computer Science, 5-8 June, 1989, Asilomar Conference Center, Pacific
Grove, California, USA, pages 353–362. IEEE Computer Society, 1989.

219

Bibliography

[54] Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Pasareanu.
Learning Assumptions for Compositional Verification. In Hubert Garavel
and John Hatcliff, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 9th International Conference, TACAS 2003, Held as
Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings, volume 2619
of Lecture Notes in Computer Science, pages 331–346. Springer, 2003.

[55] Darren D. Cofer, Andrew Gacek, Steven P. Miller, Michael W. Whalen, Brian
LaValley, and Lui Sha. Compositional Verification of Architectural Models.
In Alwyn Goodloe and Suzette Person, editors, NASA Formal Methods -
4th International Symposium, NFM 2012, Norfolk, VA, USA, April 3-5,
2012. Proceedings, volume 7226 of Lecture Notes in Computer Science, pages
126–140. Springer, 2012.

[56] Benoît Combemale, Laure Gonnord, and Vlad Rusu. A Generic Tool for
Tracing Executions Back to a DSML’s Operational Semantics. In France
et al. [77], pages 35–51.

[57] Éric Conquet, François-Xavier Dormoy, Iulia Dragomir, Susanne Graf, David
Lesens, Piotr Nienaltowski, and Iulian Ober. Formal Model Driven Engineer-
ing for Space Onboard Software. Embedded Real Time Software and Systems
(ERTS2), 2012.

[58] Éric Conquet, François-Xavier Dormoy, Iulia Dragomir, Alain Le Guennec,
David Lesens, Piotr Nienaltowski, and Iulian Ober. Modèles système, modèles
logiciel et modèles de code dans les applications spatiales. Génie logiciel,
97:9–15, 2011.

[59] Eduardo Correia da Silva and Emilia Villani. Integrando SysML e model
checking para V&V de software crítico espacial. In Brasilian Symposium on
Aeropspace Engineering and Applications, São José dos Campos, SP, Brazil,
2009.

[60] Werner Damm, Hardi Hungar, Bernhard Josko, Thomas Peikenkamp, and
Ingo Stierand. Using contract-based component specifications for virtual
integration testing and architecture design. In Design, Automation and
Test in Europe, DATE 2011, Grenoble, France, March 14-18, 2011, pages
1023–1028. IEEE, 2011.

[61] Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Nyman, and Andrzej
Wasowski. Methodologies for Specification of Real-Time Systems Using

220

Bibliography

Timed I/O Automata. In Frank S. de Boer, Marcello M. Bonsangue, Stefan
Hallerstede, and Michael Leuschel, editors, FMCO, volume 6286 of Lecture
Notes in Computer Science, pages 290–310. Springer, 2009.

[62] Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Nyman, and Andrzej
Wasowski. Timed I/O automata: a complete specification theory for real-time
systems. In Karl Henrik Johansson and Wang Yi, editors, Proceedings of the
13th ACM International Conference on Hybrid Systems: Computation and
Control, HSCC 2010, Stockholm, Sweden, April 12-15, 2010, pages 91–100.
ACM, 2010.

[63] Alexandre David, Kim Guldstrand Larsen, Axel Legay, Mikael H. Møller, Ulrik
Nyman, Anders P. Ravn, Arne Skou, and Andrzej Wasowski. Compositional
verification of real-time systems using ECDAR. STTT, 14(6):703–720, 2012.

[64] Alexandre David, Kim Guldstrand Larsen, Axel Legay, Ulrik Nyman, and
Andrzej Wasowski. ECDAR: An Environment for Compositional Design
and Analysis of Real Time Systems. In Ahmed Bouajjani and Wei-Ngan
Chin, editors, Automated Technology for Verification and Analysis - 8th
International Symposium, ATVA 2010, Singapore, September 21-24, 2010.
Proceedings, volume 6252 of Lecture Notes in Computer Science, pages 365–
370. Springer, 2010.

[65] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Proceed-
ings of the 8th European Software Engineering Conference held jointly with
9th ACM SIGSOFT International Symposium on Foundations of Software
Engineering 2001, Vienna, Austria, September 10-14, 2001, pages 109–120.
ACM, 2001.

[66] Luca de Alfaro and Thomas A. Henzinger. Interface Theories for Component-
Based Design. In Thomas A. Henzinger and Christoph M. Kirsch, editors,
Embedded Software, First International Workshop, EMSOFT 2001, Tahoe
City, CA, USA, October, 8-10, 2001, Proceedings, volume 2211 of Lecture
Notes in Computer Science, pages 148–165. Springer, 2001.

[67] Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga. Timed In-
terfaces. In Alberto L. Sangiovanni-Vincentelli and Joseph Sifakis, editors,
Embedded Software, Second International Conference, EMSOFT 2002, Greno-
ble, France, October 7-9, 2002, Proceedings, volume 2491 of Lecture Notes in
Computer Science, pages 108–122. Springer, 2002.

[68] Willem P. de Roever, Hans Langmaack, and Amir Pnueli, editors. Composi-
tionality: The Significant Difference, International Symposium, COMPOS’97,

221

Bibliography

Bad Malente, Germany, September 8-12, 1997. Revised Lectures, volume
1536 of Lecture Notes in Computer Science. Springer, 1998.

[69] Henning Dierks, Sebastian Kupferschmid, and Kim Guldstrand Larsen. Au-
tomatic Abstraction Refinement for Timed Automata. In Raskin and Thia-
garajan [146], pages 114–129.

[70] Iulia Dragomir and Iulian Ober. Well-formedness and typing rules for UML
Composite Structures. CoRR, abs/1010.6155, 2010.

[71] Iulia Dragomir, Iulian Ober, and David Lesens. A Case Study in Formal
System Engineering with SysML. In Isabelle Perseil, Karin Breitman, and
Marc Pouzet, editors, 17th IEEE International Conference on Engineering
of Complex Computer Systems, ICECCS 2012, Paris, France, July 18-20,
2012, pages 189–198. IEEE Computer Society, 2012.

[72] Iulia Dragomir, Iulian Ober, and Christian Percebois. Integrating verifiable
Assume/Guarantee contracts in UML/SysML. In Iulian Ober, Florian Noyrit,
Susanne Graf, and Gabor Karsai, editors, ACESMB@MoDELS, volume 1084
of CEUR Workshop Proceedings. CEUR-WS.org, 2013.

[73] Iulia Dragomir, Iulian Ober, and Christian Percebois. Integrating Verifiable
Assume/Guarantee Contracts in UML/SysML. Technical Report IRIT/RT-
2013-14-FR, IRIT, July 2013.

[74] Iulia Dragomir, Iulian Ober, and Christian Percebois. Safety contracts
for timed reactive components (extended abstract). In Laurence Duchien,
editor, Journées nationales du GDR CNRS Programmation et Logiciel, Nancy,
03/04/2013-05/04/2013, pages 37–46. Université de Loraine, avril 2013.

[75] Iulia Dragomir, Iulian Ober, and Christian Percebois. Safety contracts for
timed reactive systems. Technical Report IRIT/RT-2013-11-FR, IRIT, June
2013.

[76] Iulia Dragomir, Iulian Ober, and Christian Percebois. Safety Contracts for
Timed Reactive Components in SysML. In Viliam Geffert, Bart Preneel,
Branislav Rovan, Julius Stuller, and A Min Tjoa, editors, SOFSEM, volume
8327 of Lecture Notes in Computer Science, pages 211–222. Springer, 2014.

[77] Robert B. France, Jochen Malte Küster, Behzad Bordbar, and Richard F.
Paige, editors. Modelling Foundations and Applications - 7th European
Conference, ECMFA 2011, Birmingham, UK, June 6 - 9, 2011 Proceedings,
volume 6698 of Lecture Notes in Computer Science. Springer, 2011.

222

Bibliography

[78] Andrew Gacek, Andreas Katis, Michael W. Whalen, and Darren Cofer.
Hierarchical Circular Compositional Reasoning. Technical Report 2014-
1, University of Minnesota Software Engineering Center, 200 Union St.,
Minneapolis, MN 55455, March 2014.

[79] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. CADP
2010: A Toolbox for the Construction and Analysis of Distributed Processes.
In Parosh Aziz Abdulla and K. Rustan M. Leino, editors, Tools and Algorithms
for the Construction and Analysis of Systems - 17th International Conference,
TACAS 2011, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2011, Saarbrücken, Germany, March 26-April
3, 2011. Proceedings, volume 6605 of Lecture Notes in Computer Science,
pages 372–387. Springer, 2011.

[80] Ning Ge and Marc Pantel. Time Properties Verification Framework for UML-
MARTE Safety Critical Real-Time Systems. In Antonio Vallecillo, Juha-Pekka
Tolvanen, Ekkart Kindler, Harald Störrle, and Dimitrios S. Kolovos, editors,
Modelling Foundations and Applications - 8th European Conference, ECMFA
2012, Kgs. Lyngby, Denmark, July 2-5, 2012. Proceedings, volume 7349 of
Lecture Notes in Computer Science, pages 352–367. Springer, 2012.

[81] Marc Geilen, Stavros Tripakis, and Maarten Wiggers. The earlier the better:
a theory of timed actor interfaces. In Marco Caccamo, Emilio Frazzoli, and
Radu Grosu, editors, Proceedings of the 14th ACM International Conference
on Hybrid Systems: Computation and Control, HSCC 2011, Chicago, IL,
USA, April 12-14, 2011, pages 23–32. ACM, 2011.

[82] Abdelouahed Gherbi and Ferhat Khendek. UML Profiles for Real-Time
Systems and their Applications. Journal of Object Technology, 5(4):149–169,
2006.

[83] Dimitra Giannakopoulou and Corina S. Pasareanu. Abstraction and Learning
for Infinite-State Compositional Verification. In Anindya Banerjee, Olivier
Danvy, Kyung-Goo Doh, and John Hatcliff, editors, Festschrift for Dave
Schmidt, volume 129 of EPTCS, pages 211–228, 2013.

[84] Dimitra Giannakopoulou, Corina S. Pasareanu, and Howard Barringer. As-
sumption Generation for Software Component Verification. In 17th IEEE
International Conference on Automated Software Engineering (ASE 2002),
23-27 September 2002, Edinburgh, Scotland, UK, pages 3–12. IEEE Computer
Society, 2002.

223

Bibliography

[85] Dimitra Giannakopoulou, Corina S. Pasareanu, and Howard Barringer. Com-
ponent Verification with Automatically Generated Assumptions. Autom.
Softw. Eng., 12(3):297–320, 2005.

[86] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems - An Approach to the State-Explosion Problem, volume 1032 of
Lecture Notes in Computer Science. Springer, 1996.

[87] Susanne Graf, Ileana Ober, and Iulian Ober. A real-time profile for UML.
STTT, 8(2):113–127, 2006.

[88] Susanne Graf and Sophie Quinton. Contracts for BIP: Hierarchical Interaction
Models for Compositional Verification. In John Derrick and Jüri Vain, editors,
FORTE, volume 4574 of Lecture Notes in Computer Science, pages 1–18.
Springer, 2007.

[89] Object Management Group. UML Profile for Schedulability, Performance,
and Time Specification (SPT) v1.0, 2003.

[90] Object Management Group. Systems Modelling Language (SysML) v1.1,
2008.

[91] Object Management Group. Unified Modeling Language (UML) v2.2, 2009.

[92] Object Management Group. Object Constraint Language (OCL) v2.2, 2010.

[93] Object Management Group. XML Metadata Interchange (XMI) v2.4, 2014.

[94] Orna Grumberg and David E Long. Model checking and modular verification.
ACM Transactions on Programming Languages and Systems (TOPLAS),
16(3):843–871, 1994.

[95] Orna Grumberg and David E. Long. Model Checking and Modular Verifica-
tion. ACM Trans. Program. Lang. Syst., 16(3):843–871, 1994.

[96] Matthias Güdemann, Gwen Salaün, and Meriem Ouederni. Counterexample
Guided Synthesis of Monitors for Realizability Enforcement. In Supratik
Chakraborty and Madhavan Mukund, editors, Automated Technology for
Verification and Analysis - 10th International Symposium, ATVA 2012, Thiru-
vananthapuram, India, October 3-6, 2012. Proceedings, volume 7561 of Lecture
Notes in Computer Science, pages 238–253. Springer, 2012.

[97] Anubhav Gupta and Edmund M. Clarke. Reconsidering CEGAR: Learning
Good Abstractions without Refinement. In 23rd International Conference

224

Bibliography

on Computer Design (ICCD 2005), 2-5 October 2005, San Jose, CA, USA,
pages 591–598. IEEE Computer Society, 2005.

[98] Imene Ben Hafaiedh. Systèmes à base de composants : du design à
l’implémentation. PhD thesis, Université de Grenoble, 2011.

[99] Imene Ben Hafaiedh, Susanne Graf, and Sophie Quinton. Reasoning about
Safety and Progress Using Contracts. In Jin Song Dong and Huibiao Zhu,
editors, ICFEM, volume 6447 of Lecture Notes in Computer Science, pages
436–451. Springer, 2010.

[100] Thomas A. Henzinger. The Theory of Hybrid Automata. In Proceedings, 11th
Annual IEEE Symposium on Logic in Computer Science, New Brunswick,
New Jersey, USA, July 27-30, 1996, pages 278–292. IEEE Computer Society,
1996.

[101] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. Timed Transition
Systems. In J. W. de Bakker, Cornelis Huizing, Willem P. de Roever, and
Grzegorz Rozenberg, editors, Real-Time: Theory in Practice, REX Workshop,
Mook, The Netherlands, June 3-7, 1991, Proceedings, volume 600 of Lecture
Notes in Computer Science, pages 226–251. Springer, 1991.

[102] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. Temporal Proof
Methodologies for Timed Transition Systems. Inf. Comput., 112(2):273–337,
1994.

[103] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine.
Symbolic Model Checking for Real-Time Systems. Inf. Comput., 111(2):193–
244, 1994.

[104] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Commun.
ACM, 12(10):576–580, 1969.

[105] Gerard J. Holzmann. The SPIN Model Checker - primer and reference
manual. Addison-Wesley, 2004.

[106] International Telecommunication Union (ITU). Specification and Description
Language (SDL-2010). ITU-T Recommandation Z.100, December 2011.

[107] International Telecommunication Union (ITU). Specification and Descrip-
tion Language - Unified modeling language profile for SDL-2010. ITU-T
Recommandation Z.109, October 2013.

225

Bibliography

[108] Dilsun Kirli Kaynar, Nancy A. Lynch, Roberto Segala, and Frits W. Vaan-
drager. The Theory of Timed I/O Automata, Second Edition. Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool Publishers,
2010.

[109] Alexander Knapp, Stephan Merz, and Christopher Rauh. Model Checking -
Timed UML State Machines and Collaborations. In Werner Damm and Ernst-
Rüdiger Olderog, editors, Formal Techniques in Real-Time and Fault-Tolerant
Systems, 7th International Symposium, FTRTFT 2002, Co-sponsored by IFIP
WG 2.2, Oldenburg, Germany, September 9-12, 2002, Proceedings, volume
2469 of Lecture Notes in Computer Science, pages 395–416. Springer, 2002.

[110] Daniel Knorreck, Ludovic Apvrille, and Pierre de Saqui-Sannes. TEPE: a
SysML language for time-constrained property modeling and formal verifica-
tion. ACM SIGSOFT Software Engineering Notes, 36(1):1–8, 2011.

[111] Alexander Kraas. The SDL-UML Profile Revisited. In Frank Alexander
Kraemer and Peter Herrmann, editors, System Analysis and Modeling: About
Models, volume 6598 of Lecture Notes in Computer Science, pages 108–123.
Springer Berlin Heidelberg, 2011.

[112] Alexander Kraas and Patrick Rehm. Results in using the new version of the
SDL-UML profile. In Joint ITU-T and SDL Forum Society Workshop on
ITU System Design Languages, Geneva, Switzerland, September 2008.

[113] Moez Krichen and Stavros Tripakis. Conformance testing for real-time
systems. Formal Methods in System Design, 34(3):238–304, 2009.

[114] Matthias P. Krieger, Alexander Knapp, and Burkhart Wolff. Automatic and
efficient simulation of operation contracts. In Eelco Visser and Jaakko Järvi,
editors, Generative Programming And Component Engineering, Proceedings
of the Ninth International Conference on Generative Programming and Com-
ponent Engineering, GPCE 2010, Eindhoven, The Netherlands, October
10-13, 2010, pages 53–62. ACM, 2010.

[115] Barath Kumar and Jürgen Jasperneite. UML Profiles for Modeling Real-Time
Communication Protocols. Journal of Object Technology, 9(2):178–198, 2010.

[116] Kim Guldstrand Larsen. Modal Specifications. In Joseph Sifakis, editor,
Automatic Verification Methods for Finite State Systems, International Work-
shop, Grenoble, France, June 12-14, 1989, Proceedings, volume 407 of Lecture
Notes in Computer Science, pages 232–246. Springer, 1989.

226

Bibliography

[117] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski. Interface
Input/Output Automata. In Jayadev Misra, Tobias Nipkow, and Emil
Sekerinski, editors, FM 2006: Formal Methods, 14th International Symposium
on Formal Methods, Hamilton, Canada, August 21-27, 2006, Proceedings,
volume 4085 of Lecture Notes in Computer Science, pages 82–97. Springer,
2006.

[118] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski. On Modal Re-
finement and Consistency. In Luís Caires and Vasco Thudichum Vasconcelos,
editors, CONCUR 2007 - Concurrency Theory, 18th International Confer-
ence, CONCUR 2007, Lisbon, Portugal, September 3-8, 2007, Proceedings,
volume 4703 of Lecture Notes in Computer Science, pages 105–119. Springer,
2007.

[119] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a
Nutshell. STTT, 1(1-2):134–152, 1997.

[120] Mohamed Messabihi, Pascal André, and Christian Attiogbé. Multilevel
Contracts for Trusted Components. In Javier Cámara, Carlos Canal, and
Gwen Salaün, editors, Proceedings International Workshop on Component
and Service Interoperability, WCSI 2010, Málaga, Spain, 29th June 2010.,
volume 37 of EPTCS, pages 71–85, 2010.

[121] Bertrand Meyer. Applying ’Design by Contract’. IEEE Computer, 25(10):40–
51, 1992.

[122] Erich Mikk, Yassine Lakhnechi, and Michael Siegel. Hierarchical automata as
model for statecharts. In R.K. Shyamasundar and K. Ueda, editors, Advances
in Computing Science - ASIAN’97, volume 1345 of Lecture Notes in Computer
Science, pages 181–196. Springer Berlin Heidelberg, 1997.

[123] Robin Milner. Communication and concurrency. PHI Series in computer
science. Prentice Hall, 1989.

[124] Ileana Ober, Iulian Ober, Iulia Dragomir, and El Arbi Aboussoror. UM-
L/SysML semantic tunings. ISSE, 7(4):257–264, 2011.

[125] Iulian Ober and Iulia Dragomir. OMEGA2: A New Version of the Profile and
the Tools. In Radu Calinescu, Richard F. Paige, and Marta Z. Kwiatkowska,
editors, 15th IEEE International Conference on Engineering of Complex
Computer Systems, ICECCS 2010, Oxford, United Kingdom, 22-26 March
2010, pages 373–378. IEEE Computer Society, 2010.

227

Bibliography

[126] Iulian Ober and Iulia Dragomir. Unambiguous UML Composite Struc-
tures: The OMEGA2 Experience. In Ivana Cerná, Tibor Gyimóthy, Juraj
Hromkovic, Keith G. Jeffery, Rastislav Královic, Marko Vukolic, and Stefan
Wolf, editors, SOFSEM 2011: Theory and Practice of Computer Science
- 37th Conference on Current Trends in Theory and Practice of Computer
Science, Nový Smokovec, Slovakia, January 22-28, 2011. Proceedings, volume
6543 of Lecture Notes in Computer Science, pages 418–430. Springer, 2011.

[127] Iulian Ober, Susanne Graf, and David Lesens. Modeling and Validation
of a Software Architecture for the Ariane-5 Launcher. In Roberto Gorri-
eri and Heike Wehrheim, editors, Formal Methods for Open Object-Based
Distributed Systems, 8th IFIP WG 6.1 International Conference, FMOODS
2006, Bologna, Italy, June 14-16, 2006, Proceedings, volume 4037 of Lecture
Notes in Computer Science, pages 48–62. Springer, 2006.

[128] Iulian Ober, Susanne Graf, and Ileana Ober. Validating timed UML models
by simulation and verification. STTT, 8(2):128–145, 2006.

[129] Object Management Group. UML Profile for MARTE: Modeling and Analysis
of Real-Time Embedded Systems v1.1, 2011.

[130] Object Management Group. Semantics of A Foundational Subset For Exe-
cutable UML Models (FUML) v1.1, 2013.

[131] Joël Ouaknine and James Worrell. On the Language Inclusion Problem for
Timed Automata: Closing a Decidability Gap. In 19th IEEE Symposium on
Logic in Computer Science (LICS 2004), 14-17 July 2004, Turku, Finland,
Proceedings, pages 54–63. IEEE Computer Society, 2004.

[132] David Lorge Parnas and David M. Weiss. Active design reviews: Principles
and practices. Journal of Systems and Software, 7(4):259–265, 1987.

[133] Corina S. Pasareanu, Matthew B. Dwyer, and Michael Huth. Assume-
Guarantee Model Checking of Software: A Comparative Case Study. In
Dennis Dams, Rob Gerth, Stefan Leue, and Mieke Massink, editors, Theoret-
ical and Practical Aspects of SPIN Model Checking, 5th and 6th International
SPIN Workshops, Trento, Italy, July 5, 1999, Toulouse, France, September
21 and 24 1999, Proceedings, volume 1680 of Lecture Notes in Computer
Science, pages 168–183. Springer, 1999.

[134] Corina S. Pasareanu, Dimitra Giannakopoulou, Mihaela Gheorghiu Bobaru,
Jamieson M. Cobleigh, and Howard Barringer. Learning to divide and

228

Bibliography

conquer: applying the L* algorithm to automate assume-guarantee reasoning.
Formal Methods in System Design, 32(3):175–205, 2008.

[135] Corina S. Pasareanu and Gwen Salaün, editors. Formal Aspects of Component
Software, 9th International Symposium, FACS 2012, Mountain View, CA,
USA, September 12-14, 2012. Revised Selected Papers, volume 7684 of Lecture
Notes in Computer Science. Springer, 2013.

[136] Richard Payne and John Fitzgerald. Contract-based interface specification
language for functional and non-functional properties. Technical report,
Newcastle University, 2011.

[137] Gabriel Pedroza, Ludovic Apvrille, and Daniel Knorreck. AVATAR: A SysML
environment for the formal verification of safety and security properties. In
New Technologies of Distributed Systems (NOTERE), 2011 11th Annual
International Conference on, pages 1–10. IEEE, 2011.

[138] Amir Pnueli. The Temporal Logic of Programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31
October - 1 November 1977, pages 46–57. IEEE Computer Society, 1977.

[139] Louchka Popova-Zeugmann. On time petri nets. Elektronische Informa-
tionsverarbeitung und Kybernetik, 27(4):227–244, 1991.

[140] Imran Rafiq Quadri, Etienne Brosse, Ian Gray, Nikolas Drivalos Matragkas,
Leandro Soares Indrusiak, Matteo Rossi, Alessandra Bagnato, and Andrey
Sadovykh. MADES FP7 EU project: Effective high level SysML/MARTE
methodology for real-time and embedded avionics systems. In Leandro Soares
Indrusiak, Guy Gogniat, and Nikolaos S. Voros, editors, 7th International
Workshop on Reconfigurable and Communication-Centric Systems-on-Chip
(ReCoSoC), York, United Kingdom, July 9-11, 2012, pages 1–8. IEEE, 2012.

[141] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of
concurrent systems in CESAR. In Mariangiola Dezani-Ciancaglini and
Ugo Montanari, editors, International Symposium on Programming, 5th
Colloquium, Torino, Italy, April 6-8, 1982, Proceedings, volume 137 of Lecture
Notes in Computer Science, pages 337–351. Springer, 1982.

[142] Sophie Quinton. Design, vérification est implémentation de système à com-
posants. PhD thesis, Université de Grenoble, 2011.

[143] Sophie Quinton and Susanne Graf. A framework for contract-based reasoning:
Motivation and application. In FLACOS’08 Second Workshop on Formal

229

Bibliography

Languages and Analysis of Contract-Oriented Software, volume 7, page 77,
2008.

[144] Sophie Quinton and Susanne Graf. Contract-Based Verification of Hierarchical
Systems of Components. In Antonio Cerone and Stefan Gruner, editors, Sixth
IEEE International Conference on Software Engineering and Formal Methods,
SEFM 2008, Cape Town, South Africa, 10-14 November 2008, pages 377–381.
IEEE Computer Society, 2008.

[145] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benoît Caillaud, Axel
Legay, and Roberto Passerone. Modal interfaces: unifying interface automata
and modal specifications. In Samarjit Chakraborty and Nicolas Halbwachs,
editors, Proceedings of the 9th ACM & IEEE International conference on
Embedded software, EMSOFT 2009, Grenoble, France, October 12-16, 2009,
pages 87–96. ACM, 2009.

[146] Jean-François Raskin and P. S. Thiagarajan, editors. Formal Modeling and
Analysis of Timed Systems, 5th International Conference, FORMATS 2007,
Salzburg, Austria, October 3-5, 2007, Proceedings, volume 4763 of Lecture
Notes in Computer Science. Springer, 2007.

[147] Samuel Rochet and Yves Bernand. AGATE, a transfomation tool for simula-
tion and formal checking for UML/SysML activity (Abstract). In TOPCASED
Days, Toulouse, february 2011.

[148] SAE. Architecture Analysis and Design Language (AADL), 2004. Document
No. AS5506/1.

[149] SDL-RT. Specification and Description Language - Real Time (SDL-RT),
v2.3. ITU-T Recommandation Z.100, April 2013.

[150] Bran Selic. Using UML for Modeling Complex Real-Time Systems. In Frank
Mueller and Azer Bestavros, editors, Languages, Compilers, and Tools for
Embedded Systems, ACM SIGPLAN Workshop LCTES’98, Montreal, Canada,
June 1998, Proceedings, volume 1474 of Lecture Notes in Computer Science,
pages 250–260. Springer, 1998.

[151] SPEEDS. D 2.5.4: Contract Specification Language, 2008.

[152] Jagadish Suryadevara, Cristina Cerschi Seceleanu, Frédéric Mallet, and Paul
Pettersson. Verifying MARTE/CCSL Mode Behaviors Using UPPAAL.
In Robert M. Hierons, Mercedes G. Merayo, and Mario Bravetti, editors,
Software Engineering and Formal Methods - 11th International Conference,

230

Bibliography

SEFM 2013, Madrid, Spain, September 25-27, 2013. Proceedings, volume
8137 of Lecture Notes in Computer Science, pages 1–15. Springer, 2013.

[153] Stavros Tripakis, Ben Lickly, Thomas A. Henzinger, and Edward A. Lee. A
Theory of Synchronous Relational Interfaces. ACM Trans. Program. Lang.
Syst., 33(4):14, 2011.

[154] Farn Wang. Symbolic Simulation-Checking of Dense-Time Automata. In
Raskin and Thiagarajan [146], pages 352–368.

[155] Ting Wang, Jun Sun, Yang Liu, Xinyu Wang, and Shanping Li. Are Timed
Automata Bad for a Specification Language? Language Inclusion Checking for
Timed Automata. In Erika Ábrahám and Klaus Havelund, editors, Tools and
Algorithms for the Construction and Analysis of Systems - 20th International
Conference, TACAS 2014, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April
5-13, 2014. Proceedings, volume 8413 of Lecture Notes in Computer Science,
pages 310–325. Springer, 2014.

[156] Torben Weis, Christian Becker, Kurt Geihs, and Noël Plouzeau. A UML
Meta-model for Contract Aware Components. In Martin Gogolla and Cris
Kobryn, editors, «UML» 2001 - The Unified Modeling Language, Modeling
Languages, Concepts, and Tools, 4th International Conference, Toronto,
Canada, October 1-5, 2001, Proceedings, volume 2185 of Lecture Notes in
Computer Science, pages 442–456. Springer, 2001.

[157] Michael W. Whalen, Andrew Gacek, Darren D. Cofer, Anitha Murugesan,
Mats Per Erik Heimdahl, and Sanjai Rayadurgam. Your ’What’ Is My ’How’:
Iteration and Hierarchy in System Design. IEEE Software, 30(2):54–60, 2013.

231

Appendices

233

A OCL Formalization of the Well-
Formedness Set of Rules for Con-
tracts in UML/SysML
A.1 Rules Defined on the Meta-Model of Contracts

1 MainModel : h t tp : //www. e c l i p s e . org /uml2 /3 . 0 . 0 /UML
2

3 context Namespace
4

5 de f : ge tDependenc i e sRec : Set (Dependency) =
6 s e l f . member−>i t e r a t e (m: NamedElement ; r e s : Set (Dependency)=Set{}

| i f m. oc l I sTypeOf (uml : : Dependency) then r e s−>union (m.
oc lAsType (uml : : Dependency)−>asSe t ())

7 e l s e i f m. o c l I sK i n dO f (uml : : Namespace) then r e s−>union (m.
oc lAsType (uml : : Namespace) . ge tDependenc i e sRec) e l s e r e s−>
union (Set {}) end i f end i f)

8

9 context Model
10

11 de f : ge tDependenc i e s : Set (Dependency) =
12 s e l f . member−>i t e r a t e (m: NamedElement ; r e s : Set (Dependency)=Set{}

| i f m. oc l I sTypeOf (uml : : Dependency) then r e s−>union (m.
oc lAsType (uml : : Dependency)−>asSe t ())

13 e l s e i f m. o c l I sK i n dO f (uml : : Namespace) then r e s−>union (m.
oc lAsType (uml : : Namespace) . ge tDependenc i e sRec) e l s e r e s−>
union (Set {}) end i f end i f)

14

15 context C l a s s
16

17 de f : i s C o n t r a c t : Boolean = s e l f . g e tApp l i e d S t e r e o t y p e s ()−>s e l e c t (
name=’ c on t r a c t ’)−>s i z e ()<>0

18 de f : i sAs sumpt i on : Boolean = s e l f . g e tApp l i e d S t e r e o t y p e s ()−>s e l e c t
(name=’ assumpt ion ’)−>s i z e ()<>0

19 de f : i t sA s sumpt i on : C l a s s =

235

Appendix A. OCL Formalization of the Well-Formedness Set of Rules
for Contracts in UML/SysML

20 s e l f . ownedAtt r ibute−>s e l e c t (a | a . t ype . o c l I sTypeOf (uml : : C l a s s)
and a . type . oc lAsType (uml : : C l a s s) . i sAs sumpt i on)−>at (1) . t ype .

oc lAsType (uml : : C l a s s)
21 de f : i sGua r an t e e : Boolean = s e l f . g e tApp l i e d S t e r e o t y p e s ()−>s e l e c t (

name=’ gua ran t ee ’)−>s i z e ()<>0
22 de f : i t sGu a r a n t e e : C l a s s =
23 s e l f . ownedAtt r ibute−>s e l e c t (a | a . t ype . o c l I sK i n dO f (uml : : C l a s s)

and a . type . oc lAsType (uml : : C l a s s) . i sGua r an t e e)−>at (1) . t ype .
oc lAsType (uml : : C l a s s)

24 de f : i sOb s e r v e r : Boolean = s e l f . g e tApp l i e d S t e r e o t y p e s ()−>s e l e c t (
name=’ o b s e r v e r ’)−>s i z e ()<>0

25 de f : i sCompos i t e : Boolean = s e l f . ownedAtt r ibute−>s e l e c t (a | a .
t ype . o c l I sTypeOf (uml : : C l a s s) and a . type . oc lAsType (uml : : C l a s s) .
name <> ’ Timer ’)−>s i z e () <> 0

26

27 context Dependency
28

29 de f : i s Imp l emen t a t i o n : Boolean = s e l f . g e tApp l i e d S t e r e o t y p e s ()−>
s e l e c t (name=’ con t r a c t Imp l emen t a t i o n ’)−>s i z e ()<>0

30 de f : imp lSou rce : C l a s s = s e l f . c l i e n t −>asOrde redSe t ()−>at (1) .
oc lAsType (uml : : C l a s s)

31 de f : imp lTa rge t : C l a s s = s e l f . s u p p l i e r−>asOrde redSe t ()−>at (1) .
oc lAsType (uml : : C l a s s)

32

33 de f : i sU sage : Boolean = s e l f . g e tApp l i e d S t e r e o t y p e s ()−>s e l e c t (name
=’ con t r a c tUse ’)−>s i z e ()<>0

34 de f : u seSource : P rope r t y = s e l f . c l i e n t −>asOrde redSe t ()−>at (1) .
oc lAsType (uml : : P rope r t y)

35 de f : u seTarge t : C l a s s = s e l f . s u p p l i e r−>asOrde redSe t ()−>at (1) .
oc lAsType (uml : : C l a s s)

36 de f : r eqTarge t : C l a s s = s e l f . g e tVa lue (s e l f . g e tApp l i e d S t e r e o t y p e s
()−>s e l e c t (name=’ con t r a c tUse ’)−>asOrde redSe t ()−>at (1) , ’ r eqTarge t
’) . oc lAsType (uml : : C l a s s)

37 de f : r e fT a r g e t : C l a s s = s e l f . g e tVa lue (s e l f . g e tApp l i e d S t e r e o t y p e s
()−>s e l e c t (name=’ con t r a c tUse ’)−>asOrde redSe t ()−>at (1) , ’ r e fT a r g e t
’) . oc lAsType (uml : : C l a s s)

38

39 de f : i sConfo rmance : Boolean = s e l f . g e tApp l i e d S t e r e o t y p e s ()−>
s e l e c t (name=’ cont rac tCon fo rmance ’)−>s i z e ()<>0

40 de f : con fSou r ce : C l a s s = s e l f . c l i e n t −>asOrde redSe t ()−>at (1) .
oc lAsType (uml : : C l a s s)

41 de f : con fTa rge t : Set (C l a s s) = s e l f . s u p p l i e r . oc lAsType (uml : : C l a s s)
−>asSe t ()

42

43 context Prope r t y
44

236

A.1. Rules Defined on the Meta-Model of Contracts

45 de f : i sU s i n gCon t r a c t (t a r g e tCon t r a c t : C la s s , r eq : C l a s s) : Boolean =
s e l f . c l i en tDependency−>s e l e c t (d | d . i sU sage and d . r eqTarge t = req
and d . r e fT a r g e t = t a r g e tCon t r a c t)−>s i z e () > 0

46 de f : g e tCon t r a c tU s eRe l a t i o n s : Set (Dependency) = s e l f .
c l i en tDependency−>s e l e c t (d | d . i sU sage)

47 de f : i s U s i n gCon t r a c t s : Boolean = s e l f . g e tCon t r a c tU s eRe l a t i o n s−>
s i z e () > 0

48 de f : i s R e f i n e d (t a r g e tCon t r a c t : C la s s , r eq : C l a s s) : Boolean =
49 s e l f . t ype . o c l I sTypeOf (uml : : C l a s s) and s e l f . t ype . oc lAsType (uml

: : C l a s s) . i sCompos i t e and
50 s e l f . t ype . oc lAsType (uml : : C l a s s) . ownedAtt r ibute−>e x i s t s (a |

a . t ype . o c l I sTypeOf (uml : : C l a s s) and a . i sCompos i t e and a .
i sU s i n gCon t r a c t (t a r g e tCon t r a c t , r eq))

51

52 context C l a s s
53

54 de f : g e tPa r t : Set (P rope r t y) = s e l f . ownedAtt r ibute−>s e l e c t (a | a .
t ype . o c l I sTypeOf (uml : : C l a s s) and a . i sCompos i t e)

55 de f : g e tUsedCon t r a c t sO fPa r t s (t a r g e tCon t r a c t : C la s s , r eq : C l a s s) : Set
(C l a s s) =

56 s e l f . ge tPar t−>i t e r a t e (p : P rope r t y ; r e s : Set (C l a s s)=Set{} | r e s−>
union (p . c l i en tDependency−>s e l e c t (d | d . i sU sage and

57 d . r eqTarge t = req and d . r e fT a r g e t = t a r g e tCon t r a c t) .
u seTarge t) . oc lAsType (uml : : C l a s s))

58 de f : ge tPor t sF romUsedCont rac t sOfPar t s (t a r g e tCon t r a c t : C la s s , r eq :
C l a s s) : Set (Port) =

59 s e l f . g e tUsedCon t r a c t sO fPa r t s (t a r g e tCon t r a c t , r eq)−>i t e r a t e (c :
C l a s s ; r e s : Set (Port)=Set{} | r e s−>union (c . i t sGu a r a n t e e .
ownedPort))

60

61 context Port
62

63 de f : i n t e r f a c e : I n t e r f a c e = s e l f . p rov ided−>asOrde redSe t ()−>at (1) .
oc lAsType (uml : : I n t e r f a c e)

64 de f : d i r e c t i o n : Str ing =
65 i f s e l f . g e tVa lue (s e l f . g e tApp l i e d S t e r e o t y p e s ()−>s e l e c t (name=’

RhpPort ’)−>asOrde redSe t ()−>at (1) , ’ i s R e v e r s e d ’) . oc lAsType (
Boolean)

66 then ’ r e q u i r e d ’
67 e l s e ’ p r o v i d ed ’
68 end i f
69 de f : i s I d e n t i c a l T o (p : Port) : Boolean = s e l f . name = p . name and s e l f

. d i r e c t i o n = p . d i r e c t i o n and s e l f . i n t e r f a c e = p . i n t e r f a c e
70 de f : h a sType I d en t i c a lTo (p : Port) : Boolean = s e l f . d i r e c t i o n = p .

d i r e c t i o n and s e l f . i n t e r f a c e = p . i n t e r f a c e
71 de f : i sCon juga t edOf (p : Port) : Boolean = s e l f . d i r e c t i o n <> p .

d i r e c t i o n and s e l f . i n t e r f a c e = p . i n t e r f a c e

237

Appendix A. OCL Formalization of the Well-Formedness Set of Rules
for Contracts in UML/SysML

72

73

74

75 −− con t e x t Assumption
76 context C l a s s
77

78 −− Rule : An assumpt ion has on l y p r o p e r t i e s w i th p r e d e f i n e d t yp e s (
i . e . an assumpt ion i s not i n v o l v e d i n a s s o c i a t i o n s and
a g g r e g a t i o n s)

79 de f : a s sumpt i onHasNoPrope r t i e sC la s sType : Boolean =
80 s e l f . ownedAtt r ibute−>s e l e c t (a | a . t ype . o c l I sTypeOf (uml : : C l a s s)

and a . type . name<>’ Timer ’ and not a . i sCompos i t e)−>s i z e () = 0
81

82 de f : a s sumpt i onPrope r t i e sWe l lFo rmed : Boolean =
83 i f s e l f . i sAs sumpt i on
84 then s e l f . a s sumpt i onHasNoPrope r t i e sC la s sType
85 e l s e
86 t r u e
87 end i f
88

89

90 −− Rule : An assumpt ion i s not i n v o l v e d i n any g e n e r a l i z a t i o n
r e l a t i o n s (has no pa r e n t s)

91 de f : as sumpt ionHasNoGenera l s : Boolean =
92 i f s e l f . i sAs sumpt i on
93 then s e l f . g en e r a l−>s i z e () = 0
94 e l s e
95 t r u e
96 end i f
97

98

99 −− Rule : An assumpt ion does not depend on any model e l ement
100 de f : assumpt ionHasNoDependenc ies : Boolean =
101 i f s e l f . i sAs sumpt i on
102 then s e l f . c l i en tDependency−>r e j e c t (o c l I sTypeOf (uml : :

I n t e r f a c e R e a l i z a t i o n))−>s i z e () = 0
103 e l s e
104 t r u e
105 end i f
106

107

108 inv assumpt ionWel lFormed : s e l f . a s sumpt i onPrope r t i e sWe l lFo rmed and
s e l f . a s sumpt ionHasNoGenera l s and s e l f .

assumpt ionHasNoDependenc ies
109

110

111

238

A.1. Rules Defined on the Meta-Model of Contracts

112 −− con t e x t Guarantee
113 context C l a s s
114

115 −− Rule : A gua ran t ee has on l y p r o p e r t i e s w i th p r e d e f i n e d t yp e s (i .
e . an assumpt ion i s not i n v o l v e d i n a s s o c i a t i o n s and a g g r e g a t i o n s
)

116 de f : gua ran t e eHasNoPrope r t i e sC l a s sType : Boolean =
117 s e l f . ownedAtt r ibute−>s e l e c t (a | a . t ype . o c l I sTypeOf (uml : : C l a s s)

and a . type . name<>’ Timer ’ and not a . i sCompos i t e)−>s i z e () = 0
118

119 de f : gua r an t e eP rope r t i e sWe l l Fo rmed : Boolean =
120 i f s e l f . i sGua r an t e e
121 then s e l f . gua ran t e eHasNoPrope r t i e sC l a s sType
122 e l s e
123 t r u e
124 end i f
125

126

127 −− Rule : A gua ran t ee i s not i n v o l v e d i n any g e n e r a l i z a t i o n
r e l a t i o n s (has no pa r e n t s)

128 de f : gua ranteeHasNoGenera l s : Boolean =
129 i f s e l f . i sGua r an t e e
130 then s e l f . g en e r a l−>s i z e () = 0
131 e l s e
132 t r u e
133 end i f
134

135

136 −− Rule : A gua ran t ee does not depend on any model e l ement
137 de f : guaranteeHasNoDependenc ies : Boolean =
138 i f s e l f . i sGua r an t e e
139 then s e l f . c l i en tDependency−>r e j e c t (o c l I sTypeOf (uml : :

I n t e r f a c e R e a l i z a t i o n))−>s i z e () = 0
140 e l s e
141 t r u e
142 end i f
143

144

145 inv guaranteeWel lFormed : s e l f . gua r an t e eP rope r t i e sWe l l Fo rmed and
s e l f . gua ranteeHasNoGenera l s and s e l f . guaranteeHasNoDependenc ies

146

147

148

149 −− con t e x t Cont rac t
150 context C l a s s
151

239

Appendix A. OCL Formalization of the Well-Formedness Set of Rules
for Contracts in UML/SysML

152 −− Rule : A c on t r a c t has no p r o p e r t i e s b e s i d e s one pa r t typed
assumpt ion and one pa r t typed gua ran t ee (i . e . no p r o p e r t i e s w i th
p r e d e f i n e d type and no p r o p e r t i e s

153 −− from a s s o c i a t i o n s , a g g r e g a t i o n s or c ompo s i t i o n s)
154 de f : c on t r a c tHa sNoPrope r t i e sP r ede f i n edType : Boolean =
155 s e l f . ownedAtt r ibute−>s e l e c t (a | not a . type . o c l I sTypeOf (uml : :

C l a s s))−>s i z e () = 0
156 de f : c on t r a c tHa sNoPrope r t i e sC l a s sType : Boolean =
157 s e l f . ownedAtt r ibute−>s e l e c t (a | a . t ype . o c l I sTypeOf (uml : : C l a s s)

and
158 ((not a . type . oc lAsType (uml : : C l a s s) . i sAs sumpt i on) or (a .

t ype . oc lAsType (uml : : C l a s s) . i sAs sumpt i on and not a .
i sCompos i t e)) and

159 ((not a . type . oc lAsType (uml : : C l a s s) . i sGua r an t e e) or (a . t ype
. oc lAsType (uml : : C l a s s) . i sGua r an t e e and not a . i sCompos i t e)
))−>s i z e () = 0

160 de f : c on t r a c tP r op e r t i e sWe l l Fo rmed : Boolean =
161 i f s e l f . i s C o n t r a c t
162 then s e l f . c on t r a c tHa sNoPrope r t i e sP r ede f i n edType and s e l f .

c on t r a c tHa sNoPrope r t i e sC l a s sType
163 e l s e
164 t r u e
165 end i f
166

167

168 −− Rule : A c on t r a c t has no o p e r a t i o n s
169 de f : con t rac tHasNoOpera t i ons : Boolean =
170 i f s e l f . i s C o n t r a c t
171 then s e l f . ownedOperat ion−>s i z e () = 0
172 e l s e
173 t r u e
174 end i f
175

176

177 −− Rule : A c on t r a c t has no s t a t emach in e
178 de f : cont ractHasNoStateMach ine : Boolean =
179 i f s e l f . i s C o n t r a c t
180 then s e l f . ownedBehavior−>s i z e () = 0
181 e l s e
182 t r u e
183 end i f
184

185

186 −− Rule : A c on t r a c t i s not i n v o l v e d i n any g e n e r a l i z a t i o n
r e l a t i o n s (has no pa r e n t s)

187 de f : con t r ac tHasNoGene ra l s : Boolean =
188 i f s e l f . i s C o n t r a c t

240

A.1. Rules Defined on the Meta-Model of Contracts

189 then s e l f . g en e r a l−>s i z e () = 0
190 e l s e
191 t r u e
192 end i f
193

194 inv cont rac tWe l lFormed : s e l f . c on t r a c tP r op e r t i e sWe l l F o rmed and
s e l f . con t rac tHasNoOpe ra t i ons and s e l f . cont ractHasNoStateMach ine
and s e l f . con t rac tHasNoGene ra l s

195

196

197

198 −− con t e x t Cont rac t
199 context C l a s s
200

201 −− Rule : The assumpt ion and gua ran t ee o f a c o n t r a c t d e f i n e a
c l o s e d system with r e s p e c t to p o r t s

202 de f : h a v e I d e n t i c a lNoO fPo r t s : Boolean = s e l f . i t sA s sumpt i on .
ownedPort−>s i z e () = s e l f . i t sGu a r a n t e e . ownedPort−>s i z e ()

203 de f : a s sumpt i onPo r t sSub s e tGua ran t e ePo r t s : Boolean =
204 s e l f . i t sA s sumpt i on . ownedPort−>f o r A l l (p1 | s e l f . i t sGu a r a n t e e .

ownedPort−>s e l e c t (p2 | p1 . i sCon juga t edOf (p2))−>s i z e () >= 1)
205 de f : gua r an t e ePo r t sSubs e tAs sumpt i onPo r t s : Boolean =
206 s e l f . i t sGu a r a n t e e . ownedPort−>f o r A l l (p1 | s e l f . i t sA s sumpt i on .

ownedPort−>s e l e c t (p2 | p1 . i sCon juga t edOf (p2))−>s i z e () >= 1)
207

208 de f : contractAGPortsWel lFormed : Boolean =
209 i f s e l f . i s C o n t r a c t
210 then s e l f . h a v e I d e n t i c a lNoO fPo r t s and s e l f .

a s sumpt i onPo r t sSub s e tGua ran t e ePo r t s and s e l f .
gua r an t e ePo r t sSub se tAs sumpt i onPo r t s

211 e l s e
212 t r u e
213 end i f
214

215 inv con t r a c tC l o s edSy s t em : s e l f . contractAGPortsWel lFormed
216

217

218

219 −− con t e x t Imp l ementa t i on
220 context Dependency
221

222 −− Rule : The s e t o f p o r t s o f the Guarantee i s a s ub s e t o r equa l to
the s e t o f p o r t s o f the Part imp lement ing i t

223 −− Two po r t s a r e i d e n t i c a l i f they have the same name , d i r e c t i o n
and type

224 de f : g ua r an t e ePo r t s Sub s e tPa r tPo r t s : Boolean =

241

Appendix A. OCL Formalization of the Well-Formedness Set of Rules
for Contracts in UML/SysML

225 s e l f . imp lTa rge t . i t sGu a r a n t e e . ownedPort−>f o r A l l (p1 | s e l f .
imp lSou rce . ownedPort−>s e l e c t (p2 | p2 . i s I d e n t i c a l T o (p1))−>s i z e
() = 1)

226

227 de f : guaranteePor t sWe l lFo rmed : Boolean =
228 i f s e l f . i s Imp l emen t a t i o n
229 then s e l f . g u a r an t e ePo r t s Sub s e tPa r tPo r t s
230 e l s e
231 t r u e
232 end i f
233

234 inv imp l ementa t i onGuaranteePor t sWe l lFo rmed : s e l f .
gua ranteePor t sWe l lFormed

235

236

237

238 −− con t e x t Cont ractUse
239 context Dependency
240

241 de f : g e t Imp l emen ta t i on sFo rTa rge t : Set (C l a s s) =
242 l e t ut : C l a s s = s e l f . s u p p l i e r−>asOrde redSe t ()−>at (1) . oc lAsType (

uml : : C l a s s) i n
243 ut . oc lAsType (uml : : C l a s s i f i e r) . getModel () . ge tDependenc i e s−>

s e l e c t (d | d . i s Imp l emen t a t i o n and
244 d . s u p p l i e r−>asOrde redSe t ()−>at (1) . oc lAsType (uml : : C l a s s) =

ut) . c l i e n t . oc lAsType (uml : : C l a s s)−>asSe t ()
245

246 −− Rule : A c on t r a c t can be used i n a p r oo f t r e e i f and on l y i f the
type o f the p r o p e r t y u s i n g i t implements the c o n t r a c t

247 de f : canContractBeUsed : Boolean = s e l f .
g e t Imp l ementa t i on sFo rTa rge t−>i n c l u d e s (s e l f . c l i e n t −>asOrde redSe t ()
−>at (1) . oc lAsType (uml : : P rope r t y) . t ype . oc lAsType (uml : : C l a s s))

248

249 de f : cont ractUseWel lFormed : Boolean =
250 i f s e l f . i sU sage
251 then s e l f . canContractBeUsed
252 e l s e
253 t r u e
254 end i f
255

256 inv cont ractUseWel lFormed : s e l f . cont ractUseWel lFormed
257

258

259

260 context Prope r t y
261

262

242

A.1. Rules Defined on the Meta-Model of Contracts

263 de f : r e fTa r g e tPo r t s Sub s e t S ou r c e sPo r t s (t a r g e tCon t r a c t : C la s s , r eq :
C l a s s) : Boolean =

264 l e t sp : Set (Port) = s e l f . t ype . oc lAsType (uml : : C l a s s) .
ge tPor t sF romUsedCont rac t sOfPar t s (t a r g e tCon t r a c t , r eq) i n

265 t a r g e tCon t r a c t . i t sGu a r a n t e e . ownedPort−>f o r A l l (p1 | sp−>
s e l e c t (p2 | p1 . ha sType I d en t i c a lTo (p2))−>s i z e () >= 1)

266

267 −− Rule : The s e t o f p o r t s o f a dominated gua ran t ee have a
co r r e s ponden t w i t h i n the s e t o f p o r t s o f the dominat ing gu r an t e e s

268 de f : t a rge tGua ran teePor t sWe l lFo rmed : Boolean =
269 s e l f . g e tCon t r a c tU s eRe l a t i o n s−>f o r A l l (d |
270 i f s e l f . i s R e f i n e d (d . useTarget , d . r eqTarge t)
271 then s e l f . r e fTa r g e tPo r t s Sub s e t S ou r c e sPo r t s (d . useTarget

, d . r eqTarge t)
272 e l s e
273 t r u e
274 end i f)
275

276 inv r e f i n ementTarge tGua ran teePor t sWe l lFo rmed : s e l f .
t a rge tGua ran teePor t sWe l lFo rmed

277

278

279

280 context Prope r t y
281

282 −− Rule : A component can use at most one c o n t r a c t f o r the
s a t i s f a c t i o n o f one r equ i r emen t and w i t h i n one dominance

283 de f : i sCont rac tUn iqueForRequ i r ementAndRe f inement : Boolean =
284 l e t r : Set (Dependency) = s e l f . g e tCon t r a c tU s eRe l a t i o n s i n
285 i f s e l f . t ype . o c l I sTypeOf (uml : : C l a s s) and s e l f . i s U s i n gCon t r a c t s
286 then r−>f o r A l l (d1 | i f r−>ex c l u d i n g (d1)−>s e l e c t (d2 | d1 .

r eqTarge t = d2 . r eqTarge t)−>s i z e () = 0 then t r u e e l s e
287 r−>s e l e c t (d2 | d1 . r eqTarge t = d2 . r eqTarge t)−>s i z e

() =
288 r−>s e l e c t (d2 | d1 . r eqTarge t = d2 . r eqTarge t) .

r e fTa rg e t−>asSe t ()−>s i z e () end i f)
289 e l s e
290 t r u e
291 end i f
292

293 inv contractUseUniqueRR : s e l f .
i sCont rac tUn iqueForRequ i r ementAndRe f inement

294

295

296

297 −− con t e x t S a f e t yP r op e r t y
298 context C l a s s

243

Appendix A. OCL Formalization of the Well-Formedness Set of Rules
for Contracts in UML/SysML

299

300 −− Rule : A l l S a f e t y P r o p e r t i e s have a c o n t r a c t con fo rming to i t
301 de f : i s V e r i f i e d : Boolean =
302 s e l f . oc lAsType (uml : : C l a s s i f i e r) . getModel () . ge tDependenc i e s−>

s e l e c t (d | d . i sConfo rmance and d . confTarget−>i n c l u d e s (s e l f))
−>s i z e () > 0

303

304 de f : s p I s V e r i f i e d : Boolean =
305 i f s e l f . i sOb s e r v e r
306 then s e l f . i s V e r i f i e d
307 e l s e
308 t r u e
309 end i f
310

311 inv s a f e t y P r o p e r t y I s V e r i f i e d : s e l f . s p I s V e r i f i e d

A.2 Rules Defined on the OMEGA Contracts Pro-
file for Enforcing the Meta-Model

1 MainModel : h t tp : //www. e c l i p s e . org /uml2 /3 . 0 . 0 /UML
2

3 context C l a s s
4

5 de f : i s C o n t r a c t : Boolean = s e l f . g e tApp l i e d S t e r e o t y p e s ()−>s e l e c t (
name=’ c o n t r a c t ’)−>s i z e ()<>0

6 de f : i sAs sumpt i on : Boolean = s e l f . g e tApp l i e d S t e r e o t y p e s ()−>s e l e c t
(name=’ assumpt ion ’)−>s i z e ()<>0

7 de f : i sGua r an t e e : Boolean = s e l f . g e tApp l i e d S t e r e o t y p e s ()−>s e l e c t (
name=’ gua ran t ee ’)−>s i z e ()<>0

8 de f : i sOb s e r v e r : Boolean = s e l f . g e tApp l i e d S t e r e o t y p e s ()−>s e l e c t (
name=’ o b s e r v e r ’)−>s i z e ()<>0

9 de f : i sNo t S t e r e o t y p e dC l a s s : Boolean = not s e l f . i s C o n t r a c t and not
s e l f . i sAs sumpt i on and not s e l f . i sGua r an t e e and not s e l f .

i sOb s e r v e r
10 −−de f : i sCompos i t e : Boolean = s e l f . ownedAtt r ibute−>s e l e c t (a | a .

t ype . o c l I sTypeOf (uml : : C l a s s) and a . type . oc lAsType (uml : : C l a s s) .
name <> ’ Timer ’)−>s i z e () <> 0

11

12 context Dependency
13

14 de f : i sConfo rmance : Boolean = s e l f . g e tApp l i e d S t e r e o t y p e s ()−>
s e l e c t (name=’ cont rac tCon fo rmance ’)−>s i z e ()<>0

15 de f : i s Imp l emen t a t i o n : Boolean = s e l f . g e tApp l i e d S t e r e o t y p e s ()−>
s e l e c t (name=’ con t r a c t Imp l emen t a t i o n ’)−>s i z e ()<>0

244

A.2. Rules Defined on the OMEGA Contracts Profile for Enforcing
the Meta-Model

16 de f : i sU sage : Boolean = s e l f . g e tApp l i e d S t e r e o t y p e s ()−>s e l e c t (name
=’ con t r a c tUs e ’)−>s i z e ()<>0

17

18

19 context C l a s s
20

21 −− Rule : S t e r e o t y p e s a r e d i s j o i n t
22 inv c o r r e c t D e f i n i t i o n : (i s C o n t r a c t and not i sAs sumpt i on and not

i sGua r an t e e and not i sOb s e r v e r) or
23 (not i s C o n t r a c t and i sAs sumpt i on and not

i sGua r an t e e and not i sOb s e r v e r) or
24 (not i s C o n t r a c t and not i sAs sumpt i on and

i sGua r an t e e and not i sOb s e r v e r) or
25 (not i s C o n t r a c t and not i sAs sumpt i on and

not i sGua r an t e e and i sOb s e r v e r) or
26 (not i s C o n t r a c t and not i sAs sumpt i on and

not i sGua r an t e e and not i sOb s e r v e r)
27

28 −− Rule : A c on t r a c t has one compos i t e assumpt ion and gua ran t ee
29 de f : cont rac tHasAssumpt ion : Boolean =
30 s e l f . ownedAtt r ibute−>s e l e c t (a | a . t ype . o c l I sTypeOf (uml : : C l a s s)

and a . type . oc lAsType (uml : : C l a s s) . i sAs sumpt i on and a .
i sCompos i t e)−>s i z e () = 1

31 de f : con t r ac tHasGua ran tee : Boolean =
32 s e l f . ownedAtt r ibute−>s e l e c t (a | a . t ype . o c l I sTypeOf (uml : : C l a s s)

and a . type . oc lAsType (uml : : C l a s s) . i sGua r an t e e and a .
i sCompos i t e)−>s i z e () = 1

33 de f : c on t r a c tP r op e r t i e sWe l l F o rmed : Boolean =
34 i f s e l f . i s C o n t r a c t
35 then s e l f . cont rac tHasAssumpt ion and s e l f .

con t r ac tHasGua ran tee
36 e l s e
37 t r u e
38 end i f
39

40 inv c on t r a c tP r op e r t i e sWe l l F o rmed : s e l f .
c on t r a c tP r op e r t i e sWe l l F o rmed

41

42

43 context Dependency
44

45 −− Rule : S t e r e o t y p e s a r e d i s j o i n t
46 inv c o r r e c t D e f i n i t i o n : (i s Imp l emen t a t i o n and not i sU sage and not

i sConfo rmance) or
47 (not i s Imp l emen t a t i o n and i sU sage and not

i sConfo rmance) or

245

Appendix A. OCL Formalization of the Well-Formedness Set of Rules
for Contracts in UML/SysML

48 (not i s Imp l emen t a t i o n and not i sU sage and
i sConfo rmance) or

49 (not i s Imp l emen t a t i o n and not i sU sage and
not i sConfo rmance)

50

51 −− Rule : The sou r c e o f a Conformance r e l a t i o n i s a Cont rac t and
i t s c a r d i n a l i t y e qu a l s to 1

52 de f : conformanceHas1Source : Boolean =
53 s e l f . c l i e n t −>s i z e () = 1
54 de f : con fo rmanceHasCont rac tSource : Boolean =
55 l e t s : NamedElement = s e l f . c l i e n t −>asOrde redSe t ()−>at (1) i n
56 s . o c l I sTypeOf (uml : : C l a s s) and s . oc lAsType (uml : : C l a s s) .

i s C o n t r a c t
57 de f : conformanceSourceWel lFormed : Boolean =
58 i f s e l f . i sConfo rmance
59 then s e l f . conformanceHas1Source and s e l f .

con fo rmanceHasCont ractSource
60 e l s e
61 t r u e
62 end i f
63

64 inv conformanceSourceWel lFormed : s e l f . conformanceSourceWel lFormed
65

66 −− Rule : The t a r g e t o f a Conformance r e l a t i o n i s a s e t o f
Obse r v e r s

67 de f : conformanceHasTargets : Boolean =
68 s e l f . s u p p l i e r−>s i z e () > 0
69 de f : con fo rmanceHasObse rve rTarget s : Boolean =
70 s e l f . s u p p l i e r−>f o r A l l (s | s . o c l I sTypeOf (uml : : C l a s s) and s .

oc lAsType (uml : : C l a s s) . i sOb s e r v e r)
71 de f : conformanceTargetWel lFormed : Boolean =
72 i f s e l f . i sConfo rmance
73 then s e l f . conformanceHasTargets and s e l f .

con fo rmanceHasObse rve rTarge t s
74 e l s e
75 t r u e
76 end i f
77

78 inv conformanceTargetWel lFormed : s e l f . conformanceTargetWel lFormed
79

80 −− Rule : The sou r c e o f an Imp l ementa t i on r e l a t i o n i s a C l a s s and
i t s c a r d i n a l i t y e qu a l s to 1

81 de f : imp lementat ionHas1Source : Boolean =
82 s e l f . c l i e n t −>s i z e () = 1
83 de f : imp l emen ta t i onHasC l a s sSou r c e : Boolean =
84 l e t s : NamedElement = s e l f . c l i e n t −>asOrde redSe t ()−>at (1) i n

246

A.2. Rules Defined on the OMEGA Contracts Profile for Enforcing
the Meta-Model

85 s . o c l I sTypeOf (uml : : C l a s s) and s . oc lAsType (uml : : C l a s s) .
i sNo t S t e r e o t y p e dC l a s s

86 de f : imp lementat ionSourceWel lFormed : Boolean =
87 i f s e l f . i s Imp l emen t a t i o n
88 then s e l f . imp lementat ionHas1Source and s e l f .

imp l emen ta t i onHasC l a s sSou r c e
89 e l s e
90 t r u e
91 end i f
92

93 inv imp lementat ionSourceWel lFormed : s e l f .
imp lementat ionSourceWel lFormed

94

95 −− Rule : The t a r g e t o f an Imp l ementa t i on r e l a t i o n i s a Cont rac t
and i t s c a r d i n a l i t y e qu a l s to 1

96 de f : imp lementat ionHas1Targe t : Boolean =
97 s e l f . s u p p l i e r−>s i z e () = 1
98 de f : imp l ementa t i onHasCont rac tTa rge t : Boolean =
99 l e t s : NamedElement = s e l f . s u p p l i e r−>asOrde redSe t ()−>at (1) i n

100 s . o c l I sTypeOf (uml : : C l a s s) and s . oc lAsType (uml : : C l a s s) .
i s C o n t r a c t

101 de f : imp lementat ionTargetWel lFormed : Boolean =
102 i f s e l f . i s Imp l emen t a t i o n
103 then s e l f . imp lementat ionHas1Targe t and s e l f .

imp l ementa t i onHasCont rac tTa rge t
104 e l s e
105 t r u e
106 end i f
107

108 inv imp lementat ionTargetWe l lFormed : s e l f .
imp lementat ionTargetWe l lFormed

109

110 −− Rule : The sou r c e o f a Cont ractUse r e l a t i o n i s a P rope r t y and
i t s c a r d i n a l i t y e qu a l s to 1

111 de f : usageHas1Source : Boolean =
112 s e l f . c l i e n t −>s i z e () = 1
113 de f : u sageHasPrope r tySource : Boolean =
114 l e t s : NamedElement = s e l f . c l i e n t −>asOrde redSe t ()−>at (1) i n
115 s . o c l I sTypeOf (uml : : P rope r t y) and not s . o c l I sTypeOf (uml : : Port)
116 de f : usageSourceWel lFormed : Boolean =
117 i f s e l f . i sU sage
118 then s e l f . usageHas1Source and s e l f . u sageHasPrope r tySource
119 e l s e
120 t r u e
121 end i f
122

123 inv usageSourceWel lFormed : s e l f . usageSourceWel lFormed

247

Appendix A. OCL Formalization of the Well-Formedness Set of Rules
for Contracts in UML/SysML

124

125 −− Rule : The t a r g e t o f a Cont ractUse r e l a t i o n i s a Cont rac t and
i t s c a r d i n a l i t y e qu a l s to 1

126 de f : usageHas1Target : Boolean =
127 s e l f . s u p p l i e r−>s i z e () = 1
128 de f : u sageHasCont rac tTarge t : Boolean =
129 l e t s : NamedElement = s e l f . s u p p l i e r−>asOrde redSe t ()−>at (1) i n
130 s . o c l I sTypeOf (uml : : C l a s s) and s . oc lAsType (uml : : C l a s s) .

i s C o n t r a c t
131 de f : usageTargetWel lFormed : Boolean =
132 i f s e l f . i sU sage
133 then s e l f . usageHas1Target and s e l f . u sageHasCont rac tTarge t
134 e l s e
135 t r u e
136 end i f
137

138 inv usageTargetWel lFormed : s e l f . usageTargetWel lFormed
139

140 −− Rule : The r equ i r emen t f o r a Cont ractUse r e l a t i o n i s an Obse rve r
and i t s c a r d i n a l i t y e qu a l s to 1

141 de f : usageHas1Requi rement : Boolean =
142 s e l f . g e tVa lue (s e l f . g e tApp l i e d S t e r e o t y p e s ()−>s e l e c t (name=’

con t r a c tUse ’)−>asOrde redSe t ()−>at (1) , ’ r eqTarge t ’)−>s i z e () =
1

143 de f : usageHasObse rve rRequ i r ement : Boolean =
144 s e l f . g e tVa lue (s e l f . g e tApp l i e d S t e r e o t y p e s ()−>s e l e c t (name=’

con t r a c tUse ’)−>asOrde redSe t ()−>at (1) , ’ r eqTarge t ’) .
o c l I sTypeOf (uml : : C l a s s) and

145 s e l f . g e tVa lue (s e l f . g e tApp l i e d S t e r e o t y p e s ()−>s e l e c t (name=’
con t r a c tUse ’)−>asOrde redSe t ()−>at (1) , ’ r eqTarge t ’) . oc lAsType (
uml : : C l a s s) . i sOb s e r v e r

146 de f : usageReqTargetWel lFormed : Boolean =
147 i f s e l f . i sU sage
148 then s e l f . usageHas1Requi rement and s e l f .

u sageHasObse rve rRequ i rement
149 e l s e
150 t r u e
151 end i f
152

153 inv usageReqTargetWel lFormed : s e l f . usageReqTargetWel lFormed
154

155 −− Rule : The dominated c o n t r a c t f o r a Cont ractUse r e l a t i o n i f
d e f i n e d i s a Cont rac t

156 de f : usageHasNoDominatedContract : Boolean =
157 s e l f . g e tVa lue (s e l f . g e tApp l i e d S t e r e o t y p e s ()−>s e l e c t (name=’

con t r a c tUse ’)−>asOrde redSe t ()−>at (1) , ’ r e fT a r g e t ’)−>s i z e () =
0

248

A.2. Rules Defined on the OMEGA Contracts Profile for Enforcing
the Meta-Model

158 de f : usageHas1DominatedContract : Boolean =
159 s e l f . g e tVa lue (s e l f . g e tApp l i e d S t e r e o t y p e s ()−>s e l e c t (name=’

con t r a c tUse ’)−>asOrde redSe t ()−>at (1) , ’ r e fT a r g e t ’)−>s i z e () =
1

160 de f : usageHasCor rec tDominatedCont rac t : Boolean =
161 s e l f . g e tVa lue (s e l f . g e tApp l i e d S t e r e o t y p e s ()−>s e l e c t (name=’

con t r a c tUse ’)−>asOrde redSe t ()−>at (1) , ’ r e fT a r g e t ’) .
o c l I sTypeOf (uml : : C l a s s) and

162 s e l f . g e tVa lue (s e l f . g e tApp l i e d S t e r e o t y p e s ()−>s e l e c t (name=’
con t r a c tUse ’)−>asOrde redSe t ()−>at (1) , ’ r e fT a r g e t ’) . oc lAsType (
uml : : C l a s s) . i s C o n t r a c t

163 de f : usageDominatedContractWel lFormed : Boolean =
164 i f s e l f . i sU sage
165 then s e l f . usageHasNoDominatedContract or (s e l f .

usageHas1DominatedContract and s e l f .
u sageHasCor rec tDominatedCont rac t)

166 e l s e
167 t r u e
168 end i f
169

170 inv usageDominatedContractWel lFormed : s e l f .
usageDominatedContractWel lFormed

249

B Proofs of the Required Composition-
ality Results

The following theorems from the algebra of sets are used for the set computations
in the proofs of compositionality properties:

1. A \ A = ∅
2. A \ ∅ = A

3. ∅ \ A = ∅
4. B \ (A \B) = B

5. (A \B) \ A = ∅
6. A \ (A \B) = A ∩B
7. (A \B) \B = A \B
8. (A \B) \ C = A \ (B ∪ C)

9. A \ (B \ C) = (A \B) ∪ (A ∩ C)

10. A \ (B ∩ C) = (A \B) ∪ (A \ C)

11. A \ (B ∪ C) = (A \B) ∩ (A \ C)

12. (A ∪B) \ C = (A \ C) ∪ (B \ C)

13. (A ∩B) \ C = A ∩ (B \ C) = (A \ C) ∩B
14. (A \B) ∪ C = (A ∪ C) \ (B \ C)

15. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

16. A ∪ (A ∩B) = A

17. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

18. A ∩ (A ∪B) = A

where A, B and C are sets.

B.1 Proof of Theorem 6.1

Theorem 6.1. (A, ‖) is a commutative monoid, where A denotes the set of TIOA.

251

Appendix B. Proofs of the Required Compositionality Results

Proof. Let A1, A2 and A3 be three timed input/output automata.

1. Commutativity : A1 ‖ A2 = A2 ‖ A1 is true since the composition operator
does not define an order at computation.

2. Associativity : By applying the composition operator we obtain (A1 ‖ A2) ‖
A3 = A1 ‖ (A2 ‖ A3) = (X,Clk,Q, θ, I, O, V,H,D, T) where
• X = X1 ∪X2 ∪X3.
• Clk = Clk1 ∪ Clk2 ∪ Clk3.
• Q = {x1 ∪ x2 ∪ x3|x1 ∈ Q1, x2 ∈ Q2 and x3 ∈ Q3}.
• θ = θ1 ∪ θ2 ∪ θ3.
• I = (I1 \ (O2 ∪O3)) ∪ (I2 \ (O1 ∪O3)) ∪ (I3 \ (O1 ∪O2)).
I(A1‖A2)‖A3 =

= (IA1‖A2 \O3) ∪ (I3 \OA1‖A2)

= (((I1 \O2) ∪ (I2 \O1)) \O3) ∪ (I3 \ ((O1 \ I2) ∪ (O2 \ I1)

= ((I1 \O2) \O3) ∪ ((I2 \O1) \O3) ∪ ((I3 \ (O1 \ I2)) ∩ (I3 \ (O2 \ I1)))

= (I1 \ (O2 ∪ O3)) ∪ (I2 \ (O1 ∪ O3)) ∪ (((I3 ∩ I2) ∪ (I3 \ O1)) ∩ ((I3 ∩
I1) ∪ (I3 \O2)))

= (I1 \ (O2 ∪O3)) ∪ (I2 \ (O1 ∪O3)) ∪ ((I3 \O1) ∩ (I3 \O2))

= (I1 \ (O2 ∪O3)) ∪ (I2 \ (O1 ∪O3)) ∪ (I3 \ (O1 ∪O2))

IA1‖(A2‖A3) =

= (I1 \OA2‖A3) ∪ (IA2‖A3 \O1)

= (I1 \ ((O2 \ I3) ∪ (O3 \ I2))) ∪ (((I2 \O3) ∪ (I3 \O2)) \O1)

= ((I1 \ (O2 \ I3))∩ (I1 \ (O3 \ I2)))∪ (((I2 \O3) \O1)∪ ((I3 \O2) \O1))

= (((I1 ∩ I3) ∪ (I1 \O2)) ∩ ((I1 ∩ I2) ∪ (I1 \O3))) ∪ ((I2 \ (O1 ∪O3)) ∪
((I3 \ (O1 ∪O2)))

= ((I1 \O2) ∩ (I1 \O3)) ∪ ((I2 \ (O1 ∪O3)) ∪ ((I3 \ (O1 ∪O2)))

= (I1 \ (O2 ∪O3)) ∪ (I2 \ (O1 ∪O3)) ∪ (I3 \ (O1 ∪O2))

• O = (O1 \ (I2 ∪ I3)) ∪ (O2 \ (I1 ∪ I3)) ∪ (O3 \ (I1 ∪ I3)).
O(A1‖A2)‖A3 =

= (OA1‖A2 \ I3) ∪ (O3 \ IA1‖A2)

= (((O1 \ I2) ∪ (O2 \ I1)) \ I3) ∪ (O3 \ ((I1 \O2) ∪ (I2 \O1)

= ((O1 \ I2) \ I3) ∪ ((O2 \ I1) \ I3) ∪ ((O3 \ (I1 \O2)) ∩ (O3 \ (I2 \O1)))

= (O1 \ (I2 ∪ I3)) ∪ (O2 \ (I1 ∪ I3)) ∪ (((O3 ∩O2) ∪ (O3 \ I1)) ∩ ((O3 ∩
O1) ∪ (O3 \ I2)))

= (O1 \ (I2 ∪ I3)) ∪ (O2 \ (I1 ∪ I3)) ∪ ((O3 \ I1) ∩ (O3 \ I2))

= (O1 \ (I2 ∪ I3)) ∪ (O2 \ (I1 ∪ I3)) ∪ (O3 \ (I1 ∪ I2))

OA1‖(A2‖A3) =

= (O1 \ IA2‖A3) ∪ (OA2‖A3 \ I1)

= (O1 \ ((I2 \O3) ∪ (I3 \O2))) ∪ (((O2 \ I3) ∪ (O3 \ I2)) \ I1)

= ((O1 \ (I2 \O3))∩ (O1 \ (I3 \O2)))∪ (((O2 \ I3) \ I1)∪ ((O3 \ I2) \ I1))

252

B.1. Proof of Theorem 6.1

= (((O1 ∩O3)∪ (O1 \ I2))∩ ((O1 ∩O2)∪ (O1 \ I3)))∪ ((O2 \ (I1 ∪ I3))∪
((O3 \ (I1 ∪ I2)))

= ((O1 \ I2) ∩ (O1 \ I3)) ∪ ((O2 \ (I1 ∪ I3)) ∪ ((O3 \ (I1 ∪ I2)))

= (O1 \ (I2 ∪ I3)) ∪ (O2 \ (I1 ∪ I3)) ∪ (O3 \ (I1 ∪ I2))

• V = V1 ∪ V2 ∪ V3 ∪ (O1 ∩ (I2 ∪ I3)) ∪ (O2 ∩ (I1 ∪ I3)) ∪ (O3 ∩ (I1 ∪ I2)).
V(A1‖A2)‖A3 =

= VA1‖A2 ∪ V3 ∪ (OA1‖A2 ∩ I3) ∪ (IA1‖A2 ∩O3)

= V1 ∪ V2 ∪ V3 ∪ (O1 ∩ I2) ∪ (O2 ∩ I1) ∪ (((O1 \ I2) ∪ (O2 \ I1)) ∩ I3) ∪
(((I1 \O2) ∪ (I2 \O1)) ∩O3)

= V1 ∪ V2 ∪ V3 ∪ (O1 ∩ I2) ∪ (O2 ∩ I1) ∪ ((O1 \ I2) ∩ I3) ∪ ((O2 \ I1) ∩
I3) ∪ ((I1 \O2) ∩O3) ∪ ((I2 \O1) ∩O3)

= V1∪V2∪V3∪ (O1∩ I2)∪ (O2∩ I1)∪ (O1∩ (I3 \ I2))∪ (O2∩ (I3 \ I1))∪
(I1 ∩ (O3 \O2)) ∪ (I2 ∩ (O3 \O1))

= V1∪V2∪V3∪(O1∩I2)∪(O2∩I1)∪(O1∩I3)∪(O2∩I3)∪(I1∩O3)∪(I2∩O3)

= V1 ∪ V2 ∪ V3 ∪ (O1 ∩ (I2 ∪ I3)) ∪ (O2 ∩ (I1 ∪ I3)) ∪ (O3 ∩ (I1 ∪ I2))

VA1‖(A2‖A3) =

= V1 ∪ VA2‖A3 ∪ ((O1 ∩ IA2‖A3) ∪ (OA2‖A3 ∩ I1))

= V1 ∪ V2 ∪ V3 ∪ (O2 ∩ I3) ∪ (I2 ∩O3) ∪ (((I2 \O3) ∪ (I3 \O2)) ∩O1) ∪
(((O2 \ I3) ∪ (O3 \ I2)) ∩ I1)

= V1 ∪ V2 ∪ V3 ∪ (O2 ∩ I3) ∪ (I2 ∩ O3) ∪ ((I2 \ O3) ∩ O1) ∪ ((I3 \ O2) ∩
O1) ∪ ((O2 \ I3) ∩ I1) ∪ ((O3 \ I2) ∩ I1)

= V1 ∪ V2 ∪ V3 ∪ (O2 ∩ I3) ∪ (I2 ∩ O3) ∪ (I2 ∩ (O1 \ O3)) ∪ (I3 ∩ (O1 \
O2)) ∪ (O2 ∩ (I1 \ I3)) ∪ (O3 ∩ (I1 \ I2))

= V1∪V2∪V3∪(O2∩I3)∪(I2∩O3)∪(I2∩O1)∪(I3∩O1)∪(O2∩I1)∪(O3∩I1)

= V1 ∪ V2 ∪ V3 ∪ (O1 ∩ (I2 ∪ I3)) ∪ (O2 ∩ (I1 ∪ I3)) ∪ (O3 ∩ (I1 ∪ I2))

• H = H1 ∪H2 ∪H3.
• D is the set of discrete transitions where for each x = x1 ∪ x2 ∪ x3

and x′ = x′1 ∪ x′2 ∪ x′3 ∈ Q and each a ∈ A, x
a−→ x′ if and only if for

i ∈ {1, 2, 3}, either
(a) a ∈ Ai and xi

a−→ x′i, or
(b) a 6∈ Ai and xi = x′i.

• τ ∈ T ⇔ τdXi ∈ Ti, i ∈ {1, 2, 3}.
3. The identity element is the empty timed input/output automaton: it has no

internal variables, it does not perform any actions and can let time elapse to
infinity.

253

Appendix B. Proofs of the Required Compositionality Results

B.2 Proof of Proposition 6.1

Proposition 6.1. Let K1, K2, K3 be three components not necessarily comparable
and Env an environment such that K1 vEnv K2 and K2 vEnv K3. Then K1 vEnv
K3.

Proof. K1 vEnv K2
∆⇔ K1 ‖ Env ‖ Env′ � K2 ‖ Env ‖ K ′2 ‖ Env′ (1)

We write the automaton Env′ = Env′1 ‖ Env′2 where

• Env′1 = (∅, {φ}, φ, ((OK1 ∩OK2)\IEnv), ((IK1 ∩IK2)\OEnv), ∅, ∅, DEnv′1
, 2

[R+]
0)

• Env′2 = (∅, {φ}, φ, ((OK1 \OK2) \ IEnv), ((IK1 \ IK2) \OEnv), ∅, ∅, DEnv′2
, 2

[R+]
0)

Remark that the sets of input and output actions are pairwise disjoint for Env′1
and Env′2.

We write the automaton K ′2 = K ′′2 ‖ Env′3 where

• K ′′2 = (∅, {φ}, φ, (IK1 \ IK2), (OK1 \OK2), (VK1 \ EK2), ∅, DK′′
2
, 2

[R+]
0)

• Env′3 = (∅, {φ}, φ, (VK1 ∩OK2), (VK1 ∩ IK2), ∅, ∅, DEnv′3
, 2

[R+]
0)

Similarly, the sets of input, output and visible actions are pairwise disjoint for K ′′2
and Env′3.

With this notation:
(1) ⇔ K1 ‖ Env ‖ Env′1 ‖ Env′2 � K2 ‖ Env ‖ K ′′2 ‖ Env′3 ‖ Env′1 ‖ Env′2 (2)

K2 vEnv K3
∆⇔ K2 ‖ Env ‖ Env′′ � K3 ‖ Env ‖ K ′3 ‖ Env′′ (3)

With the same notation we obtain that Env′′ = Env′1 ‖ Env′3, and
(3) ⇔ K2 ‖ Env ‖ Env′1 ‖ Env′3 � K3 ‖ Env ‖ K ′3 ‖ Env′1 ‖ Env′3 (4)

Indeed, the Env′′ and Env′1 ‖ Env′3 have the same signature and the same structure
of the automata:

• IEnv′′ = ((OK1 ∩OK2) \ IEnv)∪ (VK1 ∩OK2) = ((OK1 ∩OK2)∪ (VK1 ∩OK2)) \
(IEnv \ (VK1 ∩OK2)) = ((VK1 ∪OK1) ∩OK2) \ IEnv = OK2 \ IEnv
• OEnv′′ = ((IK1 ∩ IK2) \ OEnv) ∪ (VK1 ∩ IK2) = ((IK1 ∩ IK2) ∪ (VK1 ∩ IK2)) \

(OEnv \ (VK1 ∩ IK2)) = ((VK1 ∪ IK1) ∩ IK2) \OEnv = IK2 \OEnv

• VEnv′′ = ∅

Composing (4) with K ′′2 ‖ Env′2 and from Theorem 1.1 we get:
K2 ‖ Env ‖ Env′1 ‖ Env′3 ‖ K ′′2 ‖ Env′2 � K3 ‖ Env ‖ K ′3 ‖ Env′1 ‖ Env′3 ‖ K ′′2 ‖
Env′2 ⇔

254

B.2. Proof of Proposition 6.1

⇔ K2 ‖ Env ‖ K ′′2 ‖ Env′3 ‖ Env′1 ‖ Env′2 � K3 ‖ Env ‖ K ′3 ‖ K ′2 ‖ Env′1 ‖ Env′2
(2) K1 ‖ Env ‖ Env′1 ‖ Env′2 � K2 ‖ Env ‖ K ′′2 ‖ Env′3 ‖ Env′1 ‖ Env′2

}
Transitivity of �

=⇒

=⇒ K1 ‖ Env ‖ Env′1 ‖ Env′2 � K3 ‖ Env ‖ K ′3 ‖ K ′2 ‖ Env′1 ‖ Env′2 ⇔
⇔ K1 ‖ Env ‖ Env′ � K3 ‖ Env ‖ K ′2 ‖ K ′3 ‖ Env′

By denoting K ′ = K ′2 ‖ K ′3 we have:
K1 ‖ Env ‖ Env′ � K3 ‖ Env ‖ K ′ ‖ Env′

∆⇔ K1 vEnv K3

We prove that K ′ is indeed the automaton generated by the refinement under
context relation. Since K ′2 and K ′3 are built from the hypothesis by the refinement
under context relation, by composition they define the correct structure for K ′.
Moreover:

• IK′
2‖K′

3
= (IK′

2
\OK′

3
) ∪ (IK′

3
\OK′

2
) =

= (((IK1 \ IK2)∪ (VK1 ∩OK2)) \ ((OK2 \OK3)∪ (VK2 ∩ IK3)))∪ (((IK2 \ IK3)∪
(VK2 ∩OK3)) \ ((OK1 \OK2) ∪ (VK1 ∩ IK2)))

= ((((IK1 \ IK2) \ (OK2 \OK3))∩ ((IK1 \ IK2) \ (VK2 ∩ IK3)))∪ (((VK1 ∩OK2) \
(OK2\OK3))∩((VK1∩OK2)\(VK2∩IK3))))∪((((IK2\IK3)\(OK1\OK2))∩((IK2\
IK3)\(VK1∩IK2)))∪(((VK2∩OK3)\(OK1 \OK2))∩((VK2∩OK3)\(VK1∩IK2))))

= (((((IK1 \ IK2) \OK2)∪ ((IK1 \ IK2)∩OK3))∩ (((IK1 \ IK2) \ VK2)∪ ((IK1 \
IK2) \ IK3)))∪ ((VK1 ∩ (OK2 \ (OK2 \OK3)))∩ (((VK1 ∩OK2) \ VK2)∪ ((VK1 ∩
OK2) \ IK3)))) ∪ (((((IK2 \ IK3 \OK1) ∪ ((IK2 \ IK3) ∩OK2)) ∩ (((IK2 \ IK3) \
VK1) ∪ ((IK2 \ IK3) \ IK2))) ∪ ((OK3 ∩ (VK2 \ (OK1 \OK2))) ∩ (((VK1 ∩OK3) \
VK1) ∪ ((VK2 ∩OK3) \ IK2))))

= ((((IK1 \ (IK2 ∪OK2))∪ ((IK1 ∩OK3) \ IK2))∩ ((IK1 \ (IK2 ∪ VK2))∪ ((IK1 \
IK2)\IK3)))∪((VK1∩OK2∩OK3)∩((VK1∩(OK2\VK2))∪(VK1∩(OK2\IK3)))))∪
((((IK2 \(IK3∪OK1))∪((IK2∩OK2)\IK3))∩((IK2 \(IK3∪VK1))∪∅))∪((OK3∩
((VK2 \OK1) ∪ (VK2 ∩OK2))) ∩ ((VK1 \ VK1) ∩OK3) ∪ ((VK2 \ IK2) ∩OK3))))

= (((((IK1 \IK2)∩(IK1 \OK2))∪\)∩(((IK1 \VK2)\IK2)∪(IK1 \(IK2∪IK3))))∪
((VK1 ∩OK2 ∩OK3)∩ ((VK1 ∩OK2)∪ (VK1 ∩OK2))))∪ (((((IK2 \ IK3)∩ (IK2 \
OK1))∪ ∅)∩ ((IK2 \ IK3) \ VK1))∪ ((OK3 ∩ (VK2 \OK1))∩ (∅ ∪ (VK2 ∩OK3))))

= (((((IK1 \ IK2) ∩ IK1) ∪ ∅) ∩ ((IK1 \ IK2) ∪ (IK1 \ (IK2 ∪ IK3)))) ∪ ((VK1 ∩
OK2 ∩ OK3) ∩ (VK1 ∩ OK2))) ∪ ((((IK2 \ IK3) ∩ IK2) ∩ ((IK2 \ IK3) \ VK1)) ∪
((VK2 ∩ (OK3 \OK1)) ∩ (VK2 ∩OK3)))

= (((IK1 \IK3)∩((IK1 \IK2)∪(IK1 \(IK2∪IK3))))∪((VK1∩OK2∩OK3)∩(VK1∩
OK2)))∪(((IK2\IK3)∩((IK2\IK3)\VK1))∪((VK2∩(OK3\OK1))∩(VK2∩OK3)))

= ((((IK1 \IK2)∩(IK1 \IK2))∪((IK1 \IK2)∩((IK1 \IK2)\IK3)))∪(VK1∩OK2∩
OK3))∪(((IK2 \IK3)∩((IK2 \IK3)\VK1))∪(((VK2∩OK3)\OK1)∩(VK2∩OK3)))

= (((IK1 \ IK2) ∪ ((IK1 \ IK2) \ IK3)) ∪ (VK1 ∩ OK2 ∩ OK3)) ∪ (((IK2 \ IK3) \

255

Appendix B. Proofs of the Required Compositionality Results

VK1) ∪ ((VK2 ∩OK3) \OK1))

= (((IK1 \ IK2) \ (IK3 \ (IK1 \ IK2))) ∪ (VK1 ∩ OK2 ∩ OK3)) ∪ (((IK2 \ IK3) \
VK1) ∪ (VK2 ∩ (OK3 \OK1)))

= ((IK1 \IK2)∪(VK1∩OK2∩OK3))∪(((IK2 \IK3)\VK1)∪(VK2∩(OK3 \OK1)))

= (IK1 \ IK2)∪ ((IK2 \ IK3) \ VK1)∪ (VK1 ∩OK2 ∩OK3)∪ (VK2 ∩ (OK3 \OK1))

= ((IK1 ∪ ((IK2 \ VK1) \ IK3)) \ (IK2 \ ((IK2 \ VK1) \ IK3))) ∪ (((VK1 ∩OK3) ∩
OK2) ∪ ((VK2 ∩OK3) \OK1))

= (((IK1 ∪ (IK2 \ VK1)) \ (IK3 \ IK1)) \ ((IK2 ∩ IK3) ∪ (IK2 \ (IK2 \ VK1)))) ∪
(((VK1 ∩OK3) ∪ ((VK1 ∩OK3) ∩OK2)) \ (OK1 \ ((VK1 ∩OK3) ∩OK2)))

= ((((IK1∪IK2)\(VK1\IK1))\(IK3\IK1))\((IK2∩IK3)∪(IK2∩VK1)))∪((((VK1∩
OK3)∪(VK2∩OK3))∩((VK2∩OK3)∪OK2)))\((OK1\(VK1∩OK3)∪(OK1\OK2)))

= ((((IK1 ∪ IK2) \ VK1) \ (IK3 \ IK1) \ (IK2 ∩ (IK3 ∪ VK1))) ∪ ((((VK1 ∪ VK2) ∩
OK3) ∩ ((VK2 ∩OK3) ∪OK2))) \ (OK1 ∪ (OK1 \OK2)))

= ((IK1 \ (IK3 \ IK1)) \ (IK2 ∩ (IK3 ∪ VK1)))∪ (((VK1 ∩OK3)∩ ((VK2 ∩OK3)∪
OK2)) \ (OK1 \ (OK2 \OK1)))

= (IK1 \ (IK2 ∩ (IK3 ∪VK1)))∪ (((VK1 ∩OK3 ∩VK2)∪ (VK1 ∩OK3 ∩OK2))\OK1)

= ((IK1 \ IK2)∪ (IK1 \ (IK3 ∪ VK1)))∪ (((VK1 ∩ (VK2 ∩OK3))∪ (VK1 ∩ (OK2 ∩
OK3)) \OK1)

= ((IK1 \ IK2) ∪ ((IK1 \ IK3) ∩ (IK1 \ VK1))) ∪ ((VK1 ∩ ((VK2 ∩OK3) ∪ (OK2 ∩
OK3))) \OK1)

= ((IK1 \ IK2) ∪ ((IK1 \ IK3) ∩ IK1)) ∪ ((VK1 ∩ (OK3 ∩ (OK2 ∪ VK2))) \OK1)

= ((IK1 \ IK2) ∪ (IK1 \ IK3)) ∪ ((VK1 ∩OK3) \OK1)

= (IK1 \ IK3) ∪ ((VK1 \OK1) ∩OK3)

= (IK1 \ IK3) ∪ (VK1 ∩OK3) = IK′ ,
• OK′

2‖K′
3

= (OK′
2
\ IK′

3
) ∪ (OK′

3
\ IK′

2
) =

= (((OK1 \OK2)∪ (VK1 ∩ IK2))\ ((IK2 \ IK3)∪ (VK2 ∩OK3)))∪ (((OK2 \OK3)∪
(VK2 ∩ IK3)) \ ((IK1 \ IK2) ∪ (VK1 ∩OK2)))

= ((((OK1 \OK2)\ (IK2 \ IK3))∩ ((OK1 \OK2)\ (VK2 ∩OK3)))∪ (((VK1 ∩ IK2)\
(IK2\IK3))∩((VK1∩IK2)\(VK2∩OK3))))∪((((OK2\OK3)\(IK1\IK2))∩((OK2\
OK3)\(VK1∩OK2)))∪(((VK2∩IK3)\(IK1 \IK2))∩((VK2∩IK3)\(VK1∩OK2))))

= (((((OK1 \ OK2) \ IK2) ∪ ((OK1 \ OK2) ∩ IK3)) ∩ (((OK1 \ OK2) \ VK2) ∪
((OK1 \OK2) \OK3))) ∪ ((VK1 ∩ (IK2 \ (IK2 \ IK3))) ∩ (((VK1 ∩ IK2) \ VK2) ∪
((VK1 ∩ IK2)\OK3))))∪ (((((OK2 \OK3 \ IK1)∪ ((OK2 \OK3)∩ IK2))∩ (((OK2 \
OK3) \ VK1) ∪ ((OK2 \OK3) \OK2))) ∪ ((IK3 ∩ (VK2 \ (IK1 \ IK2))) ∩ (((VK1 ∩
IK3) \ VK1) ∪ ((VK2 ∩ IK3) \OK2))))

= ((((OK1 \(OK2∪IK2))∪((OK1∩IK3)\OK2))∩((OK1 \(OK2∪VK2))∪((OK1 \
OK2)\OK3)))∪((VK1∩IK2∩IK3)∩((VK1∩(IK2\VK2))∪(VK1∩(IK2\OK3)))))∪
((((OK2 \ (OK3 ∪ IK1)) ∪ ((OK2 ∩ IK2) \OK3)) ∩ ((OK2 \ (OK3 ∪ VK1)) ∪ ∅)) ∪
((IK3∩((VK2 \IK1)∪(VK2∩IK2)))∩((VK1 \VK1)∩IK3)∪((VK2 \OK2)∩IK3))))

256

B.2. Proof of Proposition 6.1

= (((((OK1 \OK2)∩ (OK1 \ IK2))∪ \)∩ (((OK1 \ VK2) \OK2)∪ (OK1 \ (OK2 ∪
OK3))))∪ ((VK1 ∩ IK2 ∩ IK3)∩ ((VK1 ∩ IK2)∪ (VK1 ∩ IK2))))∪ (((((OK2 \OK3)∩
(OK2 \IK1))∪∅)∩((OK2 \OK3)\VK1))∪((IK3∩(VK2 \IK1))∩(∅∪(VK2∩IK3))))

= (((((OK1 \ OK2) ∩ OK1) ∪ ∅) ∩ ((OK1 \ OK2) ∪ (OK1 \ (OK2 ∪ OK3)))) ∪
((VK1 ∩ IK2 ∩ IK3) ∩ (VK1 ∩ IK2))) ∪ ((((OK2 \OK3) ∩OK2) ∩ ((OK2 \OK3) \
VK1)) ∪ ((VK2 ∩ (IK3 \ IK1)) ∩ (VK2 ∩ IK3)))

= (((OK1\OK3)∩((OK1\OK2)∪(OK1\(OK2∪OK3))))∪((VK1∩IK2∩IK3)∩(VK1∩
IK2)))∪(((OK2\OK3)∩((OK2\OK3)\VK1))∪((VK2∩(IK3\IK1))∩(VK2∩IK3)))

= ((((OK1 \ OK2) ∩ (OK1 \ OK2)) ∪ ((OK1 \ OK2) ∩ ((OK1 \ OK2) \ OK3))) ∪
(VK1 ∩ IK2 ∩ IK3)) ∪ (((OK2 \ OK3) ∩ ((OK2 \ OK3) \ VK1)) ∪ (((VK2 ∩ IK3) \
IK1) ∩ (VK2 ∩ IK3)))

= (((OK1 \OK2)∪ ((OK1 \OK2) \OK3))∪ (VK1 ∩ IK2 ∩ IK3))∪ (((OK2 \OK3) \
VK1) ∪ ((VK2 ∩ IK3) \ IK1))

= (((OK1 \OK2) \ (OK3 \ (OK1 \OK2)))∪ (VK1 ∩ IK2 ∩ IK3))∪ (((OK2 \OK3) \
VK1) ∪ (VK2 ∩ (IK3 \ IK1)))

= ((OK1 \OK2)∪(VK1∩IK2∩IK3))∪(((OK2 \OK3)\VK1)∪(VK2∩(IK3 \IK1)))

= (OK1 \OK2)∪ ((OK2 \OK3) \ VK1)∪ (VK1 ∩ IK2 ∩ IK3)∪ (VK2 ∩ (IK3 \ IK1))

= ((OK1 ∪ ((OK2 \ VK1) \ OK3)) \ (OK2 \ ((OK2 \ VK1) \ OK3))) ∪ (((VK1 ∩
IK3) ∩ IK2) ∪ ((VK2 ∩ IK3) \ IK1))

= (((OK1∪(OK2 \VK1))\(OK3 \OK1))\((OK2∩OK3)∪(OK2 \(OK2 \VK1))))∪
(((VK1 ∩ IK3) ∪ ((VK1 ∩ IK3) ∩ IK2)) \ (IK1 \ ((VK1 ∩ IK3) ∩ IK2)))

= ((((OK1 ∪ OK2) \ (VK1 \ OK1)) \ (OK3 \ OK1)) \ ((OK2 ∩ OK3) ∪ (OK2 ∩
VK1)))∪ ((((VK1 ∩ IK3)∪ (VK2 ∩ IK3))∩ ((VK2 ∩ IK3)∪ IK2))) \ ((IK1 \ (VK1 ∩
IK3) ∪ (IK1 \ IK2)))

= ((((OK1 ∪ OK2) \ VK1) \ (OK3 \ OK1) \ (OK2 ∩ (OK3 ∪ VK1))) ∪ ((((VK1 ∪
VK2) ∩ IK3) ∩ ((VK2 ∩ IK3) ∪ IK2))) \ (IK1 ∪ (IK1 \ IK2)))

= ((OK1 \ (OK3 \OK1))\ (OK2 ∩ (OK3 ∪VK1)))∪ (((VK1 ∩ IK3)∩ ((VK2 ∩ IK3)∪
IK2)) \ (IK1 \ (IK2 \ IK1)))

= (OK1 \ (OK2 ∩ (OK3 ∪VK1)))∪ (((VK1 ∩ IK3 ∩VK2)∪ (VK1 ∩ IK3 ∩ IK2))\ IK1)

= ((OK1 \OK2)∪ (OK1 \ (OK3 ∪VK1)))∪ (((VK1 ∩ (VK2 ∩ IK3))∪ (VK1 ∩ (IK2 ∩
IK3)) \ IK1)

= ((OK1 \OK2)∪ ((OK1 \OK3)∩ (OK1 \VK1)))∪ ((VK1 ∩ ((VK2 ∩ IK3)∪ (IK2 ∩
IK3))) \ IK1)

= ((OK1 \OK2) ∪ ((OK1 \OK3) ∩OK1)) ∪ ((VK1 ∩ (IK3 ∩ (IK2 ∪ VK2))) \ IK1)

= ((OK1 \OK2) ∪ (OK1 \OK3)) ∪ ((VK1 ∩ IK3) \ IK1)

= (OK1 \OK3) ∪ ((VK1 \ IK1) ∩ IK3)

= (OK1 \OK3) ∪ (VK1 ∩ IK3) = OK′ and
• VK′

2‖K′
3

= VK′
2
∪ VK′

3
∪ (OK′

2
∩ IK′

3
) ∪ (IK′

2
∩OK′

3
) =

= VK′
2
∪ VK′

3
∪ (((OK1 \OK2) ∪ (VK1 ∩ IK2)) ∩ ((IK2 \ IK3) ∪ (VK2 ∩OK3))) ∪

257

Appendix B. Proofs of the Required Compositionality Results

(((IK1 \ IK2) ∪ (VK1 ∩OK2)) ∩ ((OK2 \OK3) ∪ (VK2 ∩ IK3)))

= VK′
2
∪ VK′

3
∪ (((OK1 \ OK2) ∩ (IK2 \ IK3)) ∪ ((VK1 ∩ IK2) ∩ (IK2 \ IK3)) ∪

((OK1 \OK2) ∪ (VK2 ∩OK3)) ∪ ((VK1 ∩ IK2) ∩ (VK2 ∩OK3))) ∪ (((IK1 \ IK2) ∩
(OK2 \ OK3)) ∪ ((VK1 ∩ OK2) ∩ (OK2 \ OK3)) ∪ ((IK1 \ IK2) ∩ VK2 ∩ IK3)) ∪
((VK1 ∩OK2) ∩ (VK2 ∩ IK3)))

= VK′
2
∪ VK′

3
∪ (∅ ∪ (((VK1 ∩ IK2)∩ IK2) \ IK3)∪ ((OK1 ∩ VK2 ∩OK3) \OK2)∪

∅) ∪ (∅ ∪ (((VK1 ∩OK2) ∩OK2) \OK3) ∪ ((VK2 ∩ IK1 ∩ IK3) \ IK2) ∪ ∅)
= VK′

2
∪ VK′

3
∪ (((VK1 ∩ IK2) \ IK3) ∪ ∅) ∪ (((VK1 ∩OK2) \OK3) ∪ ∅)

= VK′
2
∪ VK′

3
∪ (VK1 ∩ (IK2 \ IK3)) ∪ (VK1 ∩ (OK2 \OK3))

= VK′
2
∪ VK′

3
∪ (VK1 ∩ ((IK2 \ IK3) ∪ (OK2 \OK3)))

= VK′
2
∪ VK′

3
∪ (VK1 ∩ ((IK2 ∪ (OK2 \OK3)) \ (IK3 \ (OK2 \OK3))))

= VK′
2
∪ VK′

3
∪ (VK1 ∩ ((IK2 ∪OK2) \ (OK3) \ IK2)) \ IK3)))

= VK′
2
∪ VK′

3
∪ (VK1 ∩ (((IK2 ∪OK2) \OK3) \ IK3))

= VK′
2
∪ VK′

3
∪ (VK1 ∩ ((IK2 ∪OK2) \ (IK3 ∪OK3)))

= VK′
2
∪ VK′

3
∪ (VK1 ∩ ((EK2 \ VK2) \ (EK3 \ VK3)))

= VK′
2
∪ VK′

3
∪ ((VK1 ∩ (EK2 \ VK2)) \ (EK3 \ VK3))

= VK′
2
∪ VK′

3
∪ (((VK1 ∩ EK2) \ VK2) \ (EK3 \ VK3))

= VK′
2
∪ VK′

3
∪ ((VK1 ∩ EK2) \ (VK2 ∪ (EK3 \ VK3)))

= VK′
2
∪ VK′

3
∪ ((VK1 ∩ EK2) \ ((VK2 ∪ EK3) \ (VK3 \ VK2)))

= VK′
2
∪ VK′

3
∪ ((VK1 ∩ EK2) \ ((VK2 ∪ EK3) \ ∅))

= VK′
2
∪ VK′

3
∪ ((VK1 ∩ EK2) ∩ (VK2 ∪ EK3))

= VK′
2
∪ VK′

3
∪ (((VK1 ∩ EK2) \ VK2) ∩ ((VK1 ∩ EK2) \ EK3))

= VK′
2
∪ VK′

3
∪ ((VK1 ∩ (EK2 \ VK2) ∩ ((VK1 \ EK3) ∩ EK2))

= VK′
2
∪ VK′

3
∪ (VK1 ∩ (VK1 \ EK3) ∩ EK2 ∩ (EK2 \ VK2))

= VK′
2
∪ VK′

3
∪ ((VK1 \ EK3) ∩ (EK2 \ VK2))

= (VK′
2
∪ VK′

3
∪ (VK1 \ EK3)) ∩ (VK′

2
∪ VK′

3
∪ (EK2 \ VK2))

= ((VK1 \ EK2) ∪ (VK2 \ EK3) ∪ (VK1 \ EK3)) ∩ ((VK1 \ EK2) ∪ (EK2 \ VK2) ∪
(VK2 \ EK3))

= ((VK1 \ (EK2 ∩EK3))∪ (VK2 \EK3))∩ (((VK1 ∪ (EK2 \VK2)) \ (EK2 \ (EK2 \
VK2)) ∪ (VK2 \ EK3))

= ((VK1\EK3)∪(VK2\EK3))∩(((VK1∪(EK2\VK2))\(EK2∩VK2))∪(VK2\EK3))

= ((VK1 ∪ VK2) \ EK3) ∩ (((VK1 ∪ (EK2 \ VK2)) \ VK2) ∪ (VK2 \ EK3))

= (VK1 \ EK3) ∩ ((VK1 ∪ (EK2 \ VK2) ∪ (VK2 \ EK3)) \ (VK2 \ (VK2 \ EK3)))

= (VK1\EK3)∩((VK1∪(((EK2\VK2)∪VK2)\(EK3\(EK2\VK2))))\(VK2∩EK3))

= (VK1 \EK3) ∩ (VK1 ∪ (EK2 \ ((EK3 \EK2) ∪ (EK3 ∩ VK2)))) \ (VK2 ∩EK3))

= (VK1 \ EK3) ∩ ((VK1 ∪ (EK2 \ (∅ ∪ (VK2 ∩ EK3))) \ (VK2 ∩ EK3))

= (VK1 \ EK3) ∩ ((VK1 ∪ (EK2 \ (EK3 ∩ VK2))) \ (EK3 ∩ VK2))

= (VK1 \ EK3) ∩ (((EK2 ∪ VK1) \ ((EK3 ∩ VK2) \ VK1))) \ (EK3 ∩ VK2))

= (VK1 \ EK3) ∩ ((EK2 ∪ VK1) \ (((EK3 ∩ VK2) \ VK1) ∪ (EK3 ∩ VK2)))

258

B.3. Proof of Theorem 6.3

= (VK1 \ EK3) ∩ ((EK2 ∪ VK1) \ (EK3 ∩ VK2))

= ((VK1 ∪EK2)∩ (VK1 \EK3)) \ (EK3 \ VK2) = ((VK1 ∩ (VK1 ∪EK2)) \ (EK3 \
(VK1∪EK2)))\(EK3 \VK2) = (VK1 \((EK3 \VK1)∩(EK3 \EK2)))\(EK3 \VK2) =

VK1 \ (EK3 \ VK2) = (VK1 \ EK3) \ (VK2 \ VK1) = VK1 \ EK3 = VK′ .

B.3 Proof of Theorem 6.3

Theorem 6.3. Let K1 and K2 be two components and Env an environment com-
patible with both K1 and K2 such that Env = Env1 ‖ Env2. Then K1 vEnv1‖Env2
K2 ⇔ K1 ‖ Env1 vEnv2 K2 ‖ Env1.

Proof. K1 vEnv1‖Env2 K2 ⇔ K1 ‖ (Env1 ‖ Env2) ‖ Env′ � K2 ‖ (Env1 ‖ Env2) ‖
K ′ ‖ Env′
K1 ‖ Env1 vEnv2 K2 ‖ Env1 ⇔ (K1 ‖ Env1) ‖ Env2 ‖ Env′′ � (K2 ‖ Env1) ‖
Env2 ‖ K ′′ ‖ Env′′

The two relations identical based on the associativity of ‖, where

1. Env′ = Env′′ = (∅, ∅, {φ}, φ, (OK1\(IEnv1∪IEnv2)), (IK1\(OEnv1∪OEnv2)), ∅, ∅,
DEnv′ , 2

[R+]
0)

• IEnv′ = OK1 \ IEnv1‖Env2 =

= OK1 \ ((IEnv1 \OEnv1) ∪ (IEnv2 \OEnv1))

= (OK1 \ (IEnv1 \OEnv2)) ∩ (OK1 \ (IEnv2 \OEnv1))

= ((OK1 ∩OEnv2) ∪ (OK1 \ IEnv1)) ∩ ((OK1 ∩OEnv1) ∪ (OK1 \ IEnv2))
= (∅ ∪ (OK1 \ IEnv1)) ∩ (∅ ∪ (OK1 \ IEnv2))
= (OK1 \ IEnv1) ∩ (OK1 \ IEnv2)
= OK1 \ (IEnv1 ∪ IEnv2)
IEnv′′ = OK1‖Env1 \ IEnv2 =

= ((OK1 \ IEnv1) ∪ (OEnv1 \ IK1)) \ IEnv2
= ((OK1 \ IEnv1) \ IEnv2) ∪ ((OEnv1 \ IK1) \ IEnv2)
= (OK1 \ (IEnv1 ∪ IEnv2)) ∪ (OEnv1 \ (IK1 ∪ IEnv2))
= (OK1 \ (IEnv1 ∪ IEnv2)) ∪ ∅
= OK1 \ (IEnv1 ∪ IEnv2)
• OEnv′ = IK1 \OEnv1‖Env2 =

= IK1 \ ((OEnv1 \ IEnv2) ∪ (OEnv2 \ IEnv1))
= (IK1 \ (OEnv1 \ IEnv2)) ∩ (IK1 \ (OEnv2 \ IEnv1))
= ((IK1 ∩ IEnv2) ∪ (IK1 \OEnv1)) ∩ ((IK1 ∩ IEnv1) ∪ (IK1 \OEnv2))

259

Appendix B. Proofs of the Required Compositionality Results

= (∅ ∪ (IK1 \OEnv1)) ∩ (∅ ∪ (IK1 \OEnv2))

= (IK1 \OEnv1) ∩ (IK1 \OEnv2)

= IK1 \ (OEnv1 ∪OEnv2)

OEnv′′ = IK1‖Env1 \OEnv2 =

= ((IK1 \OEnv1) \OEnv2) ∪ ((IEnv1 \OK1) \OEnv2)

= (IK1 \ (OEnv1 ∪OEnv2)) ∪ (IEnv1 \ (OK1 ∪OEnv2))

= (IK1 \ (OEnv1 ∪OEnv2)) ∪ ∅
= IK1 \ (OEnv1 ∪OEnv2)

• VEnv′ = ∅ = VEnv′′

2. K ′ = K ′′ = (∅, ∅, {φ}, φ, ((IK1 \ IK2) ∪ (VK1 ∩ OK2)), ((OK1 \ OK2) ∪ (VK1 ∩
IK1)), (VK1 \ EK2), ∅, DK′ , 2

[R+]
0)

• IK′ = (IK1 \ IK2) ∪ (VK1 ∩OK2)

IK′′ = (IK1‖Env1 \ IK2‖Env1) ∪ (VK1‖Env1 ∩OK2‖Env1) =

= (((IK1 \ OEnv1) ∪ (IEnv1 \ OK1)) \ ((IK2 \ OEnv1) ∪ (IEnv1 \ OK2))) ∪
((VK1 ∪ VEnv1 ∪ (OK1 ∩ IEnv1) ∪ (IK1 ∩OEnv1)) ∩OK2‖Env1)

= (((IK1\OEnv1)\(IK2\OEnv1))∩((IK1\OEnv1)\(IEnv1\OK2)))∪(((IEnv1\
OK1)\(IK2 \OEnv1))∩((IEnv1 \OK1)\(IEnv1 \OK2)))∪(VK1∩OK2‖Env1)∪
(VEnv1∩OK2‖Env1)∪((OK1∩IEnv1)∩OK2‖Env1)∪((IK1∩OEnv1)∩OK2‖Env1
= ((IK1 \ (OEnv1 ∪ (IK2 \ OEnv1))) ∩ (IK1 \ (OEnv1 ∪ (IEnv1 \ OK2)))) ∪
((IEnv1 \ (OK2 ∪ (IK2 \OEnv1)))∩ (IEnv1 \ (OK1 ∪ (IEnv1 \OK2))))∪ (VK1 ∩
((OK2 \IEnv1)∪(OEnv1 \IK2)))∪(VEnv1∩((OK2 \IEnv1)∪(OEnv1 \IK2)))∪
((OK1 ∩ IEnv1 ∩ ((OK2 \ IEnv1)∪ (OEnv1 \ IK2)))∪ ((OEnv1 ∩ IK1)∩ ((OK2 \
IEnv1) ∪ (OEnv1 \ IK2)))

= ((IK1 \ ((OEnv1 ∪ IK2) \ (OEnv1 \OEnv1))) ∩ (IK1 \ ((OEnv1 ∪ IEnv1) \
(OK2 \ OEnv1)))) ∪ ((IEnv1 \ ((OK2 ∪ IK2) \ (OEnv1 \ OK2))) ∩ (IEnv1 \
((OK1 ∪ IEnv1) \ (OK2 \OK1))))∪ (VK1 ∩ (OK2 \ IEnv1))∪ (VK1 ∩ (OEnv1 \
IK2)) ∪ ∅ ∪ ((OK1 ∩ IEnv1) ∩ (OK2 \ IEnv1)) ∪ ((OK1 ∩ IEnv1) ∩ (OEnv1 \
IK2))∪ ((OEnv1 ∩ IK1)∩ (OK2 \ IEnv1))∪ ((OEnv1 ∩ IK1)∩ (OEnv1 \ IK1))

= ((IK1 \ (OEnv1 ∪ IK2)) ∩ (IK1 \ ((OEnv1 ∪ IEnv1) \ OK2))) ∪ ((IEnv1 \
((OK2 ∪ IK2) \OEnv1))∩ (IEnv1 \ ((OK1 ∪ IEnv1) \ (OK2 \OK1))))∪ (VK1 ∩
OK2)∪∅∪ ((OK1 ∩ IEnv1 ∩OK2)\ IEnv1)∪ ((OK1 ∩ IEnv1 ∩OEnv1)\ IK2)∪
((OEnv1 ∩ IK1 ∩OK2) \ IK2) ∪ ((OEnv1 ∩ IK1 ∩OEnv1) \ IK2

= ((IK1 \ (OEnv1 ∪ IK2)) ∩ ((IK1 ∩ OK2) ∪ (IK1 \ (OEnv1 ∪ IEnv1)))) ∪
(((IEnv1 ∩ OEnv1) ∪ (IEnv1 \ (OK2 ∪ IK2))) ∩ ((IEnv1 ∩ ((OK2 \ OK1)) ∪
(IEnv1 \ (OK1 ∪ IEnv1))))∪ (VK1 ∩OK2)∪∅∪ ∅∪ ∅∪ ((OEnv1 ∩ IK1) \ IK2)

= ((IK1 \ IK2) \ OEnv1) ∩ (∅ ∪ ((IK1 \ OEnv1) ∩ (IK1 \ IEnv1)))) ∪ ((∅ ∪
((IEnv1 \OK2)∩ (IEnv1 \ IK2)))∩ ((IEnv1 ∩ (OK2 \OK1))∪ ((IEnv1 \OK1)∩
(IEnv1 \ IEnv1)))) ∪ (VK1 ∩OK2) ∪ ((IK1 \ IK2) ∩OEnv1)

= (((IK1 \IK2)\OEnv1)∩((IK1 \OEnv1)∩IK1))∪(((IEnv1 \OK2)∩IEnv1)∩

260

B.3. Proof of Theorem 6.3

((IEnv1 ∩ (OK2 \ OK1)) ∪ ((IEnv1 \ OK1) ∩ ∅))) ∪ (VK1 ∩ OK2) ∪ ((IK1 \
IK2) ∩OEnv1)

= (((IK1 \IK2)\OEnv1)∩ (IK1 \OEnv1))∪ ((IEnv1 \OK2)∩ (IEnv1 ∩ (OK2 \
OK1))) ∪ (VK1 ∩OK2) ∪ ((IK1 \ IK2) ∩OEnv1)

= ((((IK1 \IK2)\OEnv1)∩IK1)\OEnv1)∪ ((IEnv1 ∩ (OK2 \OK1)∩IEnv1)\
OK2) ∪ (VK1 ∩OK2) ∪ ((IK1 \ IK2) ∩OEnv1)

= ((((IK1 \ IK2)∩ IK1)\OEnv1)\OEnv1)∪ ((IEnv1 ∩ (OK2 \OK1))\OK2)∪
(VK1 ∩OK2) ∪ ((IK1 \ IK2) ∩OEnv1)

= ((IK1 \ IK2) \OEnv1)∪ (IEnv1 ∩ ((OK2 \OK1) \OK2)))∪ (VK1 ∩OK2)∪
((IK1 \ IK2) ∩OEnv1)

= ((IK1 \ IK2)\OEnv1)∪ (IEnv1 ∩∅)∪ (VK1 ∩OK2)∪ ((IK1 \ IK2)∩OEnv1)

= ((IK1 \ IK2) \ OEnv1) ∪ ((IK1 \ IK2) ∩ OEnv1) ∪ (VK1 ∩ OK2) = (IK1 \
IK2) ∪ (VK1 ∩OK2)

• OK′ = (OK1 \OK2) ∪ (VK1 ∩ IK1)

OK′′ = (OK1‖Env1 \OK2‖Env1) ∪ (VK1‖Env1 ∩ IK2‖Env1 =

= (((OK1 \ IEnv1) ∪ (OEnv1 \ IK1)) \ ((OK2 \ IEnv1) ∪ (OEnv1 \ IK2))) ∪
((VK1 ∪ VEnv1 ∪ (IK1 ∩OEnv1) ∪ (OK1 ∩ IEnv1)) ∩ IK2‖Env1)

= (((OK1 \ IEnv1) \ (OK2 \ IEnv1)) ∩ ((OK1 \ IEnv1) \ (OEnv1 \ IK2))) ∪
(((OEnv1 \ IK1) \ (OK2 \ IEnv1))∩ ((OEnv1 \ IK1) \ (OEnv1 \ IK2)))∪ (VK1 ∩
IK2‖Env1) ∪ (VEnv1 ∩ IK2‖Env1) ∪ ((IK1 ∩ OEnv1) ∩ IK2‖Env1) ∪ ((OK1 ∩
IEnv1) ∩ IK2‖Env1
= ((OK1 \ (IEnv1 ∪ (OK2 \ IEnv1))) ∩ (OK1 \ (IEnv1 ∪ (OEnv1 \ IK2)))) ∪
((OEnv1 \ (IK2 ∪ (OK2 \ IEnv1)))∩ (OEnv1 \ (IK1 ∪ (OEnv1 \ IK2))))∪ (VK1 ∩
((IK2 \OEnv1)∪(IEnv1 \OK2)))∪(VEnv1∩((IK2 \OEnv1)∪(IEnv1 \OK2)))∪
((IK1 ∩OEnv1 ∩ ((IK2 \OEnv1)∪ (IEnv1 \OK2)))∪ ((IEnv1 ∩OK1)∩ ((IK2 \
OEnv1) ∪ (IEnv1 \OK2)))

= ((OK1 \ ((IEnv1 ∪OK2) \ (IEnv1 \ IEnv1))) ∩ (OK1 \ ((IEnv1 ∪OEnv1) \
(IK2 \IEnv1))))∪ ((OEnv1 \ ((IK2 ∪OK2)\ (IEnv1 \IK2)))∩ (OEnv1 \ ((IK1 ∪
OEnv1) \ (IK2 \ IK1)))) ∪ (VK1 ∩ (IK2 \OEnv1)) ∪ (VK1 ∩ (IEnv1 \OK2)) ∪
∅ ∪ ((IK1 ∩ OEnv1) ∩ (IK2 \ OEnv1)) ∪ ((IK1 ∩ OEnv1) ∩ (IEnv1 \ OK2)) ∪
((IEnv1 ∩OK1) ∩ (IK2 \OEnv1)) ∪ ((IEnv1 ∩OK1) ∩ (IEnv1 \OK1))

= ((OK1 \ (IEnv1 ∪OK2)) ∩ (OK1 \ ((IEnv1 ∪OEnv1) \ IK2))) ∪ ((OEnv1 \
((IK2 ∪OK2) \ IEnv1))∩ (OEnv1 \ ((IK1 ∪OEnv1) \ (IK2 \ IK1))))∪ (VK1 ∩
IK2)∪∅∪ ((IK1 ∩OEnv1 ∩ IK2) \OEnv1)∪ ((IK1 ∩OEnv1 ∩ IEnv1) \OK2)∪
((IEnv1 ∩OK1 ∩ IK2) \OK2) ∪ ((IEnv1 ∩OK1 ∩ IEnv1) \OK2

= ((OK1 \ (IEnv1 ∪ OK2)) ∩ ((OK1 ∩ IK2) ∪ (OK1 \ (IEnv1 ∪ OEnv1)))) ∪
(((OEnv1 ∩ IEnv1) ∪ (OEnv1 \ (IK2 ∪ OK2))) ∩ ((OEnv1 ∩ ((IK2 \ IK1)) ∪
(OEnv1 \ (IK1 ∪OEnv1))))∪ (VK1 ∩ IK2)∪∅∪∅∪∅∪ ((IEnv1 ∩OK1) \OK2)

= ((OK1 \OK2) \ IEnv1) ∩ (∅ ∪ ((OK1 \ IEnv1) ∩ (OK1 \OEnv1)))) ∪ ((∅ ∪

261

Appendix B. Proofs of the Required Compositionality Results

((OEnv1 \IK2)∩ (OEnv1 \OK2)))∩ ((OEnv1 ∩ (IK2 \IK1))∪ ((OEnv1 \IK1)∩
(OEnv1 \OEnv1)))) ∪ (VK1 ∩ IK2) ∪ ((OK1 \OK2) ∩ IEnv1)
= (((OK1 \ OK2) \ IEnv1) ∩ ((OK1 \ IEnv1) ∩ OK1)) ∪ (((OEnv1 \ IK2) ∩
OEnv1) ∩ ((OEnv1 ∩ (IK2 \ IK1)) ∪ ((OEnv1 \ IK1) ∩ ∅))) ∪ (VK1 ∩ IK2) ∪
((OK1 \OK2) ∩ IEnv1)
= (((OK1 \ OK2) \ IEnv1) ∩ (OK1 \ IEnv1)) ∪ ((OEnv1 \ IK2) ∩ (OEnv1 ∩
(IK2 \ IK1))) ∪ (VK1 ∩ IK2) ∪ ((OK1 \OK2) ∩ IEnv1)
= ((((OK1 \OK2)\IEnv1)∩OK1)\IEnv1)∪((OEnv1∩(IK2 \IK1)∩OEnv1)\
IK2) ∪ (VK1 ∩ IK2) ∪ ((OK1 \OK2) ∩ IEnv1)
= ((((OK1 \OK2)∩OK1) \ IEnv1) \ IEnv1)∪ ((OEnv1 ∩ (IK2 \ IK1)) \ IK2)∪
(VK1 ∩ IK2) ∪ ((OK1 \OK2) ∩ IEnv1)
= ((OK1 \OK2) \ IEnv1) ∪ (OEnv1 ∩ ((IK2 \ IK1) \ IK2))) ∪ (VK1 ∩ IK2) ∪
((OK1 \OK2) ∩ IEnv1)
= ((OK1 \OK2)\IEnv1)∪ (OEnv1∩∅)∪ (VK1∩IK2)∪ ((OK1 \OK2)∩IEnv1)
= ((OK1 \OK2) \ IEnv1) ∪ ((OK1 \OK2) ∩ IEnv1) ∪ (VK1 ∩ IK2) = (OK1 \
OK2) ∪ (VK1 ∩ IK2)

• VK′ = VK1 \ EK2

VK′′ = VK1‖Env1 \ EK2‖Env1 =

= (VK1 ∪ VEnv1 ∪ (IK1 ∩OEnv1) ∪ (IEnv1 ∩OK1)) \ (EK2 ∪ EEnv1)
= (VK1 \ (EK2 ∪ EEnv1)) ∪ (VEnv1 \ (EK2 ∪ EEnv1)) ∪ ((IK1 ∩ OEnv1) \
(EK2 ∪ EEnv1)) ∪ ((OK1 ∩ IEnv1) \ (EK2 ∪ EEnv1))
= ((VK1 \ EK2) \ EEnv1) ∪ ∅ ∪ ∅ ∪ ∅
= VK1 \ EK2

262

	Abstract
	Acknowledgements
	Contents
	List of figures
	List of tables
	Résumé étendu
	Introduction
	Raisonnement à base de contrats pour les systèmes hiérarchiques à base de composants
	Une méta-théorie pour le raisonnement à base de contrats
	Travaux connexes

	Modélisation de contrats comportementaux hypothèse/garantie en SysML
	Le contexte de modélisation SysML
	Un méta-modèle pour les contrats comportementaux
	Instanciation du méta-modèle par un profil
	Travaux connexes

	Un modèle formel pour la sémantique de modèles SysML
	Une variante des automates temporisés entrée/sortie pour les modèles SysML
	Transformation des modèles SysML en modèles TIOA
	Implémentation avec IFx2

	Raisonnement formel avec contrats
	Théorie à base de contrats pour les TIOA
	Expressivité des contrats
	Vérification automatique des obligations de preuve
	Diagnostic avec les contrats
	Travaux connexes

	Une étude de cas issue de l'industrie : le Solar Generation System de l'ATV
	Spécification du système
	Application de la théorie à base de contrats

	Conclusion et perspectives

	Introduction
	I State of the Art
	Formal Modeling and Verification of Real-Time Embedded Systems: Current Approaches
	Formal Models for Reactive Systems
	Modeling Semantics: Transition Systems
	Timed (Input/Output) Automata
	Interface Theories
	Summary

	Verification Techniques for Formal Models
	Overview on System Requirements
	Model-Checking
	Summary

	Conclusion

	High-Level Modeling Languages and Associated Environments for Real-Time Embedded Systems
	UML/SysML and Related Profiles for Real-Time Systems
	Verification Tools for System Designs
	Conclusion

	Contract-based Reasoning for Hierarchical Systems of Components
	Contract-based Meta-Theories and their Implementations
	A Meta-theory for Contract-based Reasoning
	Related Contract-based Approaches

	Contracts in High-Level Modeling Languages
	Conclusion

	II Modeling and Reasoning with Contracts in SysML
	The SysML Context
	A SysML Subset for Modeling Asynchronous Component-based Systems
	Real-Time and Requirement Formalization: the OMEGA Profile
	The sATM Running Example
	Conclusion

	Modeling Behavioral Assume/Guarantee Contracts in SysML
	A Meta-Model for Behavioral Contracts
	From Domain Meta-Model to Profile
	Modeling Contracts for the sATM
	Conclusion

	Formal Reasoning with Contracts
	A Flavor of Timed Input/Output Automata for SysML Semantics
	Contract Theory for TIOA
	Application of the Contract Framework on the sATM
	Contract Expressiveness for SysML Models
	Automatic Verification of Generated Proof Obligations
	Comparison with Related Approaches
	Conclusion

	Implementation in the IFx2 Toolset
	Compiling OMEGA Designs with Contracts to TIOA
	Mapping Components into TIOA
	Generating Proof Obligations

	Tool Architecture and Functionalities
	Error Diagnosis for Contract-Based Reasoning
	Conclusion

	III Experimental Results
	A Parametric Case Study for Comparing Verification Results
	System Description and Contracts
	Contract-based Verification Results
	Conclusion

	A Real-Life Case Study: The Automated Transfer Vehicle
	System Description and Architecture
	Preliminary Verification Results without Contracts
	Applying the Contract-based Verification Technique
	Conclusion

	Conclusion and Perspectives
	Bibliography
	Appendices
	OCL Formalization of the Well-Formedness Set of Rules for Contracts in UML/SysML
	Rules Defined on the Meta-Model of Contracts
	Rules Defined on the OMEGA Contracts Profile for Enforcing the Meta-Model

	Proofs of the Required Compositionality Results
	Proof of Theorem 6.1
	Proof of Proposition 6.1
	Proof of Theorem 6.3

