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Safety-critical systems are not always error-free

(Ariane 5 flight 501, 1996) (Northeast blackout, 2003)

(Mars Climate Orbiter, 1999)
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Challenges in system design

Key factors:

Consideration and best handling of systems growing size and complexity

System’s correctness with respect to the specified requirements

Efficiency with reduced effort and costs

 Compositional component-based design driven by requirements

Offers support for:

Manageable systems by decomposition

Incremental design by successive refinement

Independent implementation of sub-systems (components)

Sub-systems reusability
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Compositional system design in industrial practice

Large, reactive, timed, asynchronous system specifications in UML/SysML:

Rich graphical semi-formal language
⇒ ambiguous or unspecified operational semantics
⇒ different interpretations of the design which may result in erroneous
implementations

The correctness of semi-formal designs must be ensured by model-checking
⇒ subject to the state space explosion problem

... such as the ATV Solar Generation System: 4-level architecture, 95 running
objects and 62 possible hardware failures
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Requirement-driven component-based design dilemma

Let S be a component-based system and ϕ1, · · · , ϕn a set of requirements.

How to achieve correct compositional design when:

a requirement is in general satisfied by the collaboration of a set of
components and

a component is involved in the satisfaction of several requirements?

φ1
φ2 φ3

φ4

φ5

φ6
φ7

φ8

...

φn
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Contracts

Idea: Abstractly specify how a component is involved in the satisfaction of a
requirement ϕ.

A contract C:

Is a partial and abstract specification modeling how a component behaves
under some assumptions.

Formally, C = (A,G) where:

the assumption A is an abstract description of the environment
(if the component behaves according to G)
the guarantee G is an abstract description of the component
(if the environment behaves according to A).

Advantages:

Requirement-driven iterative design

Substitutivity and reuse of components

Independent implementability
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Goal

Provide a compositional design and verification method with contracts
for the correct development of systems in SysML with respect to

timed safety requirements.
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Outline

1 Context and Problematics

2 A Method for Reasoning with Contracts

3 Theoretical Contributions

4 Practical Contributions

5 Conclusion and Perspectives
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A methodology for contract-based reasoning
(S Quinton, S Graf: A framework for contract-based reasoning: Motivation and application.
FLACOS 2008)

K1 K2

S
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φ
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A meta-theory of contracts

A G

C A || G ⪯ φ  

{C1, ..., Cn} dominates C
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Step 1) Satisfaction :

Step 2) Dominance :

Step 4) Conformance :φ

⪯

E

Step 3) "Mirror" contract satisfaction

Parameters to be instantiated:

formal model of components

conformance relation (�)

satisfaction relation (|=)

Prerequisites concerning parameters:

compositionality of |=
soundness of circular reasoning

The meta-theory provides the
sufficient conditions for dominance:

G1 ‖ G2 ‖ G3 |= (A,G) and

A ‖ G2 ‖ G3 |= (G1, A1) and

G1 ‖ A ‖ G3 |= (G2, A2) and

G1 ‖ G2 ‖ A |= (G3, A3)
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Contributions

Providing a contract-based theory by instancing the meta-theory defined by
S Quinton et al. (2008) for SysML components.

Theoretical contributions:

1 Defining the syntax of the contract-related notions in SysML

2 Formalizing the semantics of the SysML component language with a variant
of Timed Input/Output Automata

3 Defining a sound contract framework for Timed Input/Output Automata and
timed safety properties

4 Providing a model-checking method for verifying proof obligations
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Contributions

Providing a contract-based theory by instancing the meta-theory defined by
S Quinton et al. (2008) for SysML components.

Practical contributions:

1 Defining and formalizing with OCL a set of well-formedness rules for ensuring
the syntax compliance to the meta-theory (using Topcaseda)

2 Implementing the SysML to Timed Input/Output Automata formalization in
the IFx2 Toolsetb

3 Applying the approach on the ATV SGS industrial-scale system design

ahttp://polarsys.org/
bhttp://www.irit.fr/ifx/
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Outline

1 Context and Problematics

2 A Method for Reasoning with Contracts

3 Theoretical Contributions
Integrating Contracts in SysML
Modeling Components: a Timed Input/Output Automata Flavour
A Formal Contract Theory for TIOA
Automated Verification with Model-Checking
Evaluation and Related Work

4 Practical Contributions

5 Conclusion and Perspectives
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A SysML subset for modeling hierarchical systems

Structure

SysML Block Definition Diagrams & Internal Block Diagrams
Blocks with properties and state machines, interconnection elements and
relationships
Interfaces and signals

Discrete behavior

State machines
Asynchronous communication through signals
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bdd [Package] ATM_system [Archi]

CardUnit
«block»

Attributes
t:Timer

Operations

CardUnit2Ctr_Init

CardUnit2Ctr_Init

Ctr2CardUnit

Ctr4CardUnit

CardUnit2Ctr_Eject

CardUnit2Ctr_Eject

CardUnit2UserCardUnit2User

User2CardUnit

User4CardUnit

CardUnit2Ctr_Init

CardUnit2Ctr_Init

Ctr2CardUnit

Ctr4CardUnit

CardUnit2Ctr_Eject

CardUnit2Ctr_Eject

CardUnit2UserCardUnit2User

User2CardUnit

User4CardUnit

Archi

Page 1 of 1

atm:sATM1

cardUnit:CardUnit1

CardUnit2Ctr_Init
CardUnit2Ctr_Init

Ctr2CardUnit
Ctr4CardUnit CardUnit2Ctr_Eject

CardUnit2Ctr_Eject

CardUnit2User

CardUnit2User
User2CardUnit

User4CardUnit

controller:Controller1

CardUnit2Ctr_Init
CardUnit4Ctr_InitCtr2CardUnit

Ctr2CardUnit CardUnit2Ctr_Eject
CardUnit4Ctr_Eject

Dispenser2User

Dispenser2User
Display2User

Display2User
User2Console

User4Console

Console2User

Console2User

Display2User

Display2User

User2Console

User4Console

Console2User

Console2User

Dispenser2User

Dispenser2User

User2CardUnit

User4CardUnit

CardUnit2User

CardUnit2User

CardUnit2Ctr_Init
CardUnit2Ctr_InitCtr4CardUnit

Ctr2CardUnit CardUnit2Ctr_Eject
CardUnit2Ctr_Eject

CardUnit2User

CardUnit2User
User2CardUnit

User4CardUnit

CardUnit4Ctr_Init
CardUnit2Ctr_Init

Ctr2CardUnit
Ctr2CardUnit CardUnit2Ctr_Eject

CardUnit4Ctr_Eject

Dispenser2User

Dispenser2User

Display2User

Display2User

User2Console

User4Console

Console2User

Console2User

Display2User

Display2User

User4Console

User2Console

Console2User

Console2User

Dispenser2User

Dispenser2User

User4CardUnit

User2CardUnit

CardUnit2User

CardUnit2User

Architecture

Page 1 of 1
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A SysML subset for modeling hierarchical systems

Structure

SysML Block Definition Diagrams & Internal Block Diagrams
Blocks with properties and state machines, interconnection elements and
relationships
Interfaces and signals

Discrete behavior

State machines
Asynchronous communication through signals

stm [block] CardUnit [StatechartOfCardUnit]

Idle

WaitForEject

init to CardUnit2Ctr_Init

cardInserted

retrieveCard to CardUnit2User

ejectCard

WaitForRemoval

/t.set(0)

Error

nok to CardUnit2Ctr_Eject

[t > 5]

ok to CardUnit2Ctr_Eject

cardRemoved

StatechartDiagram

Page 1 of 1
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Real-time and safety properties: the OMEGA profile

Real time

Continuous time model
Clocks specified by the type Timer
⇒ allows to model time guards
Transition urgency (from Timed Automata with urgency)

Observers

Formalizes a safety property
Consists of an object monitoring the system’s events and gives verdicts about
the requirement satisfaction
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Real time

Continuous time model
Clocks specified by the type Timer
⇒ allows to model time guards
Transition urgency (from Timed Automata with urgency)

Observers

Formalizes a safety property
Consists of an object monitoring the system’s events and gives verdicts about
the requirement satisfactionbdd [Package] ATM_system [Archi]

Property
«block,observer»

Attributes

Operations

Archi

Page 1 of 1

stm [«observer» block] Property [StatechartOfProperty]

Idle

RemoveCard

WaitForRemoval

/match send retrieveCard //

WaitForMoney

/match acceptsignal cardRemoved //

/match send releaseMoney //

[amount.value = 
   releaseMoney.value]

Error
«error»[amount.value <> releaseMoney.value]

SelectAmount

/match acceptsignal amount //

/match acceptsignal cardInserted //

StatechartDiagram

Page 1 of 1
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A domain meta-model for contracts
Extending UML meta-model
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A domain meta-model for contracts
Extending UML meta-model

A contract is a closed composite structure formed of
one assumption and one guarantee.



15/52

A domain meta-model for contracts
Extending UML meta-model

A class implements 0..* contracts.
(Ports of G must partially match those of class.)
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A domain meta-model for contracts
Extending UML meta-model

A contract is used in the context of a part of a larger structure.
(The part’s type must implement the contract in this case.)
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A domain meta-model for contracts
Extending UML meta-model

A set of contracts for the parts of a larger structure can refine (dominate)
the contract of the structure.

(Ports of G must partially match those of refining contracts’ Gs.)
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A domain meta-model for contracts
Extending UML meta-model

A contracts conforms to (satisfies) a safety property.
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Timed Input/Output Automaton
(a variant of D Kaynar, N Lynch, R Segala, F Vaandrager: The Theory of Timed I/O Automata.
Morgan&Claypool Publ., 2010)

The semantics of a UML/SysML state machine can be formalized by a timed
input/output automaton.

Definition

Timed input/output automaton A = (X,Clk,Q, θ, I, O, V,H,D, T ).

Differences wrt D Kaynar et al. (2010) due to the SysML semantics:

modeling of visible actions besides inputs, outputs and internals,

trajectories restricted to the linear function with slope 1 for clocks and
constant for discrete variables.

Behavior:

Execution: sequence of trajectories and actions.

Trace: sequence of time-passage lengths and external actions (from
I ∪O ∪ V ).
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TIOA parallel composition

Composition compatibility: Ai ‖ Aj defined iff
Xi∩Xj = Clki∩Clkj = Oi∩Oj = Ii∩Ij = Hi∩Aj = Vi∩Aj = ∅, for i 6= j

Synchronization on common I/O actions, interleaving of other actions

Difference wrt D Kaynar et al. (2010): an input of Ai synchronized with an
output of Aj , i 6= j, becomes a visible action in Ai ‖ Aj

⇒ closer to the semantics of SysML signals
⇒ broadcasts are forbidden

Theorem

The parallel composition operator is commutative and associative.
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Conformance relation

Comparable components: Ii ∪Oi ∪ Vi = Ij ∪Oj ∪ Vj , i 6= j

Definition

Let K1 and K2 be two comparable components. K1 � K2 if
tracesK1

⊆ tracesK2
.

Theorem

Conformance is a preorder relation.

Theorem (Composability)

Let K1 and K2 be two comparable components with K1 � K2 and E a
component compatible with both K1 and K2. Then K1 ‖ E � K2 ‖ E.

(Straightforward extensions of results from D Kaynar et al. (2010).)
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Mapping SysML to TIOA

Limited to the identified SysML subset for modeling hierarchical
component-based systems

Similar with related transformations

An atomic component Ki is a TIOA AKi

features  internal variables
two predefined internal variables location and queue (for asynchronous
communication)
state machine transitions  sets of TIOA transitions
triggers  internal actions
...

A composed component K is the TIOA obtained by applying the parallel
composition on the corresponding TIOA components

An observer O is a TIOA AO with only visible actions
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Formal contract

Some terminology :

Component K: a timed input/output automaton.

Signature of K: I ∪O ∪ V .

Closed component: I = O = ∅.
Open component: a component that it is not closed.

Environment E for K: a timed input/output automaton compatible with K
such that IE ⊆ OK and OE ⊆ IK .

Definition

A contract C for a component K is a pair (A,G) of TIOA such that IA = OG and
OA = IG (i.e. the composition is a closed system), and IG ⊆ IK , OG ⊆ OK and
VG ⊆ VK (i.e. the signature of K is a refinement of that of G).
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Refinement under context relation

Definition

Let K1 and K2 be two components such that IK2
⊆ IK1

∪ VK1
,

OK2
⊆ OK1

∪ VK1
and VK2

⊆ VK1
. Let E be an environment for K1 compatible

with both K1 and K2. We say that K1 refines K2 in the context of E, denoted
K1 vE K2, if

K1 ‖ E ‖ E′ � K2 ‖ E ‖ K ′ ‖ E′

where K ′ and E′ are chaotic components defined such that both members of the
conformance relation are comparable and closed.

Definition

K |= C = (A,G) ⇔ K vA G
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Properties of refinement under context

Theorem

Given a set K of comparable components and a fixed environment E for that
interface, the refinement under context relation vE is a preorder over K.

Proposition

Let K1, K2 and K3 be three components not necessarily comparable and E an
environment such that K1 vE K2 and K2 vE K3. Then K1 vE K3.

Theorem (Compositionality)

Let K1 and K2 be two components and E an environment compatible with both
K1 and K2 such that E = E1 ‖ E2.

K1 vE1‖E2
K2 ⇔ K1 ‖ E1 vE2

K2 ‖ E1
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Correctness of circular reasoning

Central result, required for applying the meta-theory:

Theorem (Circular reasoning)

Let K be a component, E its environment and C = (A,G) the contract for K
such that K and G are compatible with each of E and A. If the following
conditions hold:

1 tracesG is closed under limits

2 tracesG is closed under time-extension

3 K vA G

4 E vG A

then K vE G.
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Contract dominance

Follows directly from the correctness of circular reasoning:

Theorem (Sufficient condition for dominance)

{Ci}ni=1 dominates C if, ∀i, tracesGi
and tracesG are closed under limits and

under time-extension and{
G1 ‖ ... ‖ Gn vA G
A ‖ G1 ‖ ... ‖ Gi−1 ‖ Gi+1 ‖ ... ‖ Gn vGi

Ai, ∀i

(Result presented in S Quiton et al. and adapted to our notation and prerequisites.)

⇒ lists the proof obligations that need to be discharged when applying the
verification methodology
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Automated verification of proof obligations

Timed trace inclusion is undecidable.

⇒ Verify the generated proof obligations by model-checking.

1 Transform the deterministic safety property into a timed property automaton
(i.e. observer) by negating the formalized property.

2 Compute the observer composition ./ between the component under study
and the timed property automaton.

3 Apply reachability analysis for the error state π.
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Evaluation of our approach: expressiveness of contracts

1 The component playing the role of the guarantee is a safety property.

the automaton is non-Zeno
all internal transitions are eager
all outputs/visible actions are lazy

⇒ the execution of an output/visible action cannot be guaranteed
... yet, if an output/visible action is executed, the execution can be
performed before or after a deadline

2 The safety property must be deterministic for applying automatic verification.
⇒ assumptions must satisfy this condition for automatically proving contract
dominance
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Related work

Contracts in UML/SysML:

Provided/required interfaces for typing components: T Weiss et al. (UML

2001), ...

OCL (pre,post) conditions for operations: M Kriegger et al. (GPCE 2010),

P André et al. (IDM 2011, WCSI 2010), E Cariou et al. (ECMFA 2011), ...

State machine on connectors for describing component compatibility:
R Payne et al. (2011)

Formal contract-based theories:

Specification theories defining quotient, logical conjunction, ...

Defined for:

TIOA (ECDAR): S Bauer et al. (FASE 2012, FACS 2012), A David et al.
(STTT 2012), ...
timed logical specifications (i.e. sets of traces): C Chilton et al. (FACS 2012,
FORMATS 2012, Sci. Comp. Prog. 2014)

Differences wrt:

the modeling of contracts
the reasoning method with contracts
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OCL formalization of profile’s set of well-formedness rules

Well-formedness rules tackling:

the meta-model’s conformance to the meta-theory

a model’s conformance to the meta-model

signature refinement of contracts for requirement-driven design

 formalized with OCL in order to automatically verify the static typing of a
model extended with contracts (with Topcased1)

20 rules

480 lines of code

1http://polarsys.org/
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Implementation in the IFx2 toolset2

Goal: Early model validation and debugging

Functionalities:

Simulation

Static analysis: dead code/variable
elimination, ...

Model-checking: observers, state
graph minimization, ...

Implementation details:

Proprietary compiler which takes as input an (OMEGA) SysML model (in
XMI 2.0 format) and produces the TIOA model (in the IF language)

Adapted for IBM Rhapsody and Papyrus

Several compiling options available: uml/sysml, rhapsody/papyrus, rhplang,
eager, ...

Used technologies: Java, Eclipse UML 2.3, Eclipse EMF

∼ 13000 lines of code
2www.irit.fr/ifx/
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The Solar Generation System (SGS)

BL_ATV
«block,root»

MVM:MVM1

SGS:SGS1

SOFTWARE:SOFTWARE1
HARDWARE:HARDWARE1

WING1:WING1

WING2:WING1

WING3:WING1

WING4:WING1

CU:CU1

Reverse engineered from the actual system by Airbus Defence and Space:

4-level architecture, 20 blocks and 95 block instances

661 port and 504 connector instances

1-fault tolerant

62 possible hardware failures

Requirement ϕ: At the end of the deployment sequence, all 4 WINGs are deployed.
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Formalizing the requirement
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Formalizing the requirement
Behavior of Property (ϕ)

SYSTEM_IS_ON

VERIFY_DEPLOYMENT

/match send SGS_DEPLOY_WING_STATUS //

[SGS_DEPLOY_WING_STATUS.STATUS == 
     T_SGS_DEPLOY_WING_STS::LOCKED_DEPLOYED]

NO_DEPLOYMENT
«error»

[SGS_DEPLOY_WING_STATUS.STATUS !=
      T_SGS_DEPLOY_WING_STS::LOCKED_DEPLOYED]

StatechartDiagram

Page 1 of 1
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Preliminary V&V

Simulation

Scenario length: 2400 steps and one minute execution
Discovered modeling errors: unexpected message receptions

Model-checking

Subject to the combinatorial state space explosion problem
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Applying contract-based reasoning

BL_ATV
«block,root»

MVM:MVM1

SGS:SGS1

SOFTWARE:SOFTWARE1
HARDWARE:HARDWARE1

WING1:WING1

WING2:WING1

WING3:WING1

WING4:WING1

CU:CU1

ϕ: At the end of the
deployment sequence, all 4
WINGs are deployed.

The system S is given by HARDWARE which contains the WINGs.

The environment E is given by MVM ‖ SOFTWARE ‖ CU.
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Individual contracts for wings
Modeling contract satisfaction
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BL_ATV
«block,root»

MVM:MVM1

SGS:SGS1

HARDWARE:HARDWARE1

WING1:WING1

WING3:WING1

WING4:WING1

WING2:WING1

CU:CU1

SOFTWARE:SOFTWARE1

C_W1
«block,contract»

«contractUse»

C_W2
«block,contract»

«contractUse»

C_W3
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C_W4
«block,contract»
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Property
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Individual contracts for wings
Contract architecture

C_W1
«block,contract»

A_W1:A_W11

MVM:MVM1

SGS:SGS1

SOFTWARE:SOFTWARE1

CU:CU1

IF_WING_2_CU

pWING_in

IF_CU_2_WING

pWING4_out

IF_CU_2_WING

pWING3_out

IF_CU_2_WING

pWING2_out

IF_CU_2_WING

pWING1_out

HARDWARE:HARDWARE1

WING2:G_W1

IF_WING_2_CU

pWING_out

IF_CU_2_WING

pWING_in

WING3:G_W1

IF_WING_2_CU

pWING_out

IF_CU_2_WING

pWING_in

WING4:G_W1

IF_WING_2_CU

pWING_out

IF_CU_2_WING

pWING_in

IF_CU_2_WING

pWING4_in

IF_CU_2_WING

pWING3_in

IF_WING_2_CU

pWING_out

IF_CU_2_WING

pWING2_in

IF_WING_2_CU

pWING_in
IF_CU_2_WING

pWING1_out
G_W1:G_W1

IF_WING_2_CU

pWING_out

IF_CU_2_WING

pWING_in

pWING_in

IF_WING_2_CU

IF_CU_2_WING

pWING4_out

IF_CU_2_WING

pWING3_out

IF_CU_2_WING

pWING2_out

IF_CU_2_WING

pWING1_out

IF_WING_2_CU

pWING_out

IF_CU_2_WING

pWING_in

pWING_out

IF_WING_2_CU
pWING_in

IF_CU_2_WING
pWING_out

IF_WING_2_CU

IF_CU_2_WING

pWING_in

IF_CU_2_WING

pWING4_in

IF_CU_2_WING

pWING3_in

pWING_out

IF_WING_2_CU

IF_CU_2_WING

pWING2_in

IF_WING_2_CU

pWING_in

pWING1_out

IF_CU_2_WING

IF_WING_2_CU

pWING_out

pWING_in

IF_CU_2_WING

internal block diagram_2

Page 1 of 1
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Individual contracts for wings
Behavior of the guarantee

IDLE

SGS_TCUi_SADG1_CMD

SGS_TCUi_SADG2_CMD

TCU_SAD_ESB_DSARM_CMD

TCU_SAD_ESB_ARM_CMD

ACTIVATE_TK

DEACTIVATE_TK

FAILURE

SGS_DEPLOY_WING_STATUS(params->j, ::PredefinedTypes_ATV::T_SGS_DEPLOY_WING_STS::LOCKED_DEPLOYED) 

SGS_REQUEST_DEPLOY_WING_STATUS

StatechartDiagram

Page 1 of 1
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Contract satisfaction
Generated proof obligations

WING1 vMVM‖SOFTWARE‖CU‖WING2‖WING3‖WING4 G W1
where WINGi, i ∈ 2..4, is of type G W

WING2 vMVM‖SOFTWARE‖CU‖WING1‖WING3‖WING4 G W2

WING3 vMVM‖SOFTWARE‖CU‖WING1‖WING2‖WING4 G W3

WING4 vMVM‖SOFTWARE‖CU‖WING1‖WING2‖WING3 G W4
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Top contract for the system
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Top contract for the system
Contract architecture

C_HW
«block,contract»

A_HW:A_HW1

MVM:MVM1 SOFTWARE:SOFTWARE1

CU:CU1
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Top contract for the system
Behavior of the guarantee

IDLE

SGS_TCUi_SADG1_CMD

SGS_TCUi_SADG2_CMD

TCU_SAD_ESB_DSARM_CMD

TCU_SAD_ESB_ARM_CMD

ACTIVATE_TK

DEACTIVATE_TK

FAILURE

SGS_DEPLOY_WING_STATUS(params->j, ::PredefinedTypes_ATV::T_SGS_DEPLOY_WING_STS::LOCKED_DEPLOYED) 

SGS_REQUEST_DEPLOY_WING_STATUS

StatechartDiagram
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Dominance
Modeling dominance
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Dominance
Generated proof obligations

1 G W1 ‖ G W2 ‖ G W3 ‖ G W4 vMVM‖SOFTWARE‖CU G HW

2 (MVM ‖ SOFTWARE ‖ CU) ‖ G W2 ‖ G W3 ‖ G W4 vG W1

MVM ‖ SOFTWARE ‖ CU ‖ G W2 ‖ G W3 ‖ G W4

3 (MVM ‖ SOFTWARE ‖ CU) ‖ G W1 ‖ G W3 ‖ G W4 vG W2

MVM ‖ SOFTWARE ‖ CU ‖ G W1 ‖ G W3 ‖ G W4

4 (MVM ‖ SOFTWARE ‖ CU) ‖ G W1 ‖ G W2 ‖ G W4 vG W3

MVM ‖ SOFTWARE ‖ CU ‖ G W1 ‖ G W2 ‖ G W4

5 (MVM ‖ SOFTWARE ‖ CU) ‖ G W1 ‖ G W2 ‖ G W3 vG W4

MVM ‖ SOFTWARE ‖ CU ‖ G W1 ‖ G W2 ‖ G W3
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Top “mirror” contract satisfaction

BL_ATV
«block,root»

MVM:MVM1

SGS:SGS1

HARDWARE:HARDWARE1

WING1:WING1

WING3:WING1

WING4:WING1

WING2:WING1

CU:CU1

SOFTWARE:SOFTWARE1

C_W1
«block,contract»

«contractUse»

C_W2
«block,contract»

«contractUse»

C_W3
«block,contract»

«contractUse»

C_W4
«block,contract»

«contractUse»

C_HW
«block,contract»

«contractUse»

Property
«block,observer»

reqTarget:Class=Property
«Tag»

refTarget:Class=C_HW
«Tag»

⇒ generates the following proof obligation:
MVM ‖ SOFTWARE ‖ CU vG HW MVM ‖ SOFTWARE ‖ CU



46/52

Conformance

BL_ATV
«block,root»

MVM:MVM1

SGS:SGS1

HARDWARE:HARDWARE1

WING1:WING1

WING3:WING1

WING4:WING1

WING2:WING1

CU:CU1

SOFTWARE:SOFTWARE1

C_W1
«block,contract»

«contractUse»

C_W2
«block,contract»

«contractUse»

C_W3
«block,contract»

«contractUse»

C_W4
«block,contract»

«contractUse»

C_HW
«block,contract»

«contractUse»

Property
«block,observer»

«contractConformance»

reqTarget:Class=Property
«Tag»

refTarget:Class=C_HW
«Tag»

⇒ generates the following proof obligation:
MVM ‖ SOFTWARE ‖ CU ‖ G HW � Property
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Verification results

1 Contract satisfaction:

detected error: deployment deactivation in case of failure of disabled
components
after correction:

Average verification time (s)

Type of induced failure Wing 1 Wing 2 Wing 3 Wing 4

Thermal knife 13993 6869 18842 11412

Hold-down and release system 12672 6516 16578 9980

Solar array driving group 11527 5432 13548 6807

2 Dominance:

for G HW : < 1 second
for assumptions: trivial

3 Top “mirror” contract satisfaction: trivial

4 Conformance < 1 second
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Conclusion
Overview

Behavioral contract framework for the compositional design and verification of
system models in UML/SysML with respect to timed safety requirements

Features of the developed approach:

scalability in order to tackle the design and verification of very large systems,

reusability for both contracts and components.
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Conclusion
Contributions

1 An extension for modeling contracts in UML/SysML amenable to
compositional verification

2 Ensured compliance with the methodology for reasoning with contracts

3 Formalization of the UML/SysML component and contract language with a
variant of Timed Input/Output Automata

4 A partial implementation in the IFx2 verification tool

5 A contract theory for Timed Input/Output Automata supporting the
verification of general safety properties

6 Automated model-checking for verification of contract satisfaction and
deterministic safety properties

7 Experimental evidence that previously intractable models can be tamed
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Perspectives

Short-term perspectives:

1 Extend the contract framework in order to encompass other types of
requirements, i.e. progress, etc.

2 Automate all the verification steps, provide automate assistance for building
the proof tree

Long-term perspectives:

1 Provide methods or methodological guidelines for deriving intermediate
contracts from the properties one is trying to prove

2 Automatically generate assumptions and guarantees

3 Perform error diagnostics on contracts both locally and globally in the proof
tree and bridge the gap to the semi-formal model

Thank you!
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