
1/52

Contract-based Modeling and Verification of Timed
Safety Requirements for System Design in SysML

Iulia Dragomir

Université Toulouse III Paul Sabatier

December 3rd, 2014

Defense committee:

Béatrice BÉRARD Université Pierre et Marie Curie Reviewer
Jean-Paul BODEVEIX Université Toulouse III Paul Sabatier Examiner
Susanne GRAF CNRS-VERIMAG Examiner

Thomas LAMBOLAIS École des Mines d’Alès Examiner
Alexander KNAPP Universität Augsburg Reviewer
Iulian OBER Université Toulouse II Jean Jaurès Adviser
Christian PERCEBOIS Université Toulouse III Paul Sabatier Adviser

2/52

Safety-critical systems are not always error-free

(Ariane 5 flight 501, 1996) (Northeast blackout, 2003)

(Mars Climate Orbiter, 1999)

3/52

Challenges in system design

Key factors:

Consideration and best handling of systems growing size and complexity

System’s correctness with respect to the specified requirements

Efficiency with reduced effort and costs

 Compositional component-based design driven by requirements

Offers support for:

Manageable systems by decomposition

Incremental design by successive refinement

Independent implementation of sub-systems (components)

Sub-systems reusability

3/52

Challenges in system design

Key factors:

Consideration and best handling of systems growing size and complexity

System’s correctness with respect to the specified requirements

Efficiency with reduced effort and costs

 Compositional component-based design driven by requirements

Offers support for:

Manageable systems by decomposition

Incremental design by successive refinement

Independent implementation of sub-systems (components)

Sub-systems reusability

3/52

Challenges in system design

Key factors:

Consideration and best handling of systems growing size and complexity

System’s correctness with respect to the specified requirements

Efficiency with reduced effort and costs

 Compositional component-based design driven by requirements

Offers support for:

Manageable systems by decomposition

Incremental design by successive refinement

Independent implementation of sub-systems (components)

Sub-systems reusability

4/52

Compositional system design in industrial practice

Large, reactive, timed, asynchronous system specifications in UML/SysML:

Rich graphical semi-formal language
⇒ ambiguous or unspecified operational semantics
⇒ different interpretations of the design which may result in erroneous
implementations

The correctness of semi-formal designs must be ensured by model-checking
⇒ subject to the state space explosion problem

... such as the ATV Solar Generation System: 4-level architecture, 95 running
objects and 62 possible hardware failures

4/52

Compositional system design in industrial practice

Large, reactive, timed, asynchronous system specifications in UML/SysML:

Rich graphical semi-formal language
⇒ ambiguous or unspecified operational semantics
⇒ different interpretations of the design which may result in erroneous
implementations

The correctness of semi-formal designs must be ensured by model-checking
⇒ subject to the state space explosion problem

... such as the ATV Solar Generation System: 4-level architecture, 95 running
objects and 62 possible hardware failures

4/52

Compositional system design in industrial practice

Large, reactive, timed, asynchronous system specifications in UML/SysML:

Rich graphical semi-formal language
⇒ ambiguous or unspecified operational semantics
⇒ different interpretations of the design which may result in erroneous
implementations

The correctness of semi-formal designs must be ensured by model-checking
⇒ subject to the state space explosion problem

... such as the ATV Solar Generation System: 4-level architecture, 95 running
objects and 62 possible hardware failures

4/52

Compositional system design in industrial practice

Large, reactive, timed, asynchronous system specifications in UML/SysML:

Rich graphical semi-formal language
⇒ ambiguous or unspecified operational semantics
⇒ different interpretations of the design which may result in erroneous
implementations

The correctness of semi-formal designs must be ensured by model-checking
⇒ subject to the state space explosion problem

BL_ATV
«block,root»

MVM:MVM1

SGS:SGS1

SOFTWARE:SOFTWARE1
HARDWARE:HARDWARE1

WING1:WING1

WING2:WING1

WING3:WING1

WING4:WING1

CU:CU1

... such as the ATV Solar Generation System: 4-level architecture, 95 running
objects and 62 possible hardware failures

5/52

Requirement-driven component-based design dilemma

Let S be a component-based system and ϕ1, · · · , ϕn a set of requirements.

How to achieve correct compositional design when:

a requirement is in general satisfied by the collaboration of a set of
components and

a component is involved in the satisfaction of several requirements?

φ1
φ2 φ3

φ4

φ5

φ6
φ7

φ8

...

φn

5/52

Requirement-driven component-based design dilemma

Let S be a component-based system and ϕ1, · · · , ϕn a set of requirements.

How to achieve correct compositional design when:

a requirement is in general satisfied by the collaboration of a set of
components and

a component is involved in the satisfaction of several requirements?

φ1
φ2 φ3

φ4

φ5

φ6
φ7

φ8

...

φn

5/52

Requirement-driven component-based design dilemma

Let S be a component-based system and ϕ1, · · · , ϕn a set of requirements.

How to achieve correct compositional design when:

a requirement is in general satisfied by the collaboration of a set of
components and

a component is involved in the satisfaction of several requirements?

φ1
φ2 φ3

φ4

φ5

φ6
φ7

φ8

...

φn

6/52

Contracts

Idea: Abstractly specify how a component is involved in the satisfaction of a
requirement ϕ.

A contract C:

Is a partial and abstract specification modeling how a component behaves
under some assumptions.

Formally, C = (A,G) where:

the assumption A is an abstract description of the environment
(if the component behaves according to G)
the guarantee G is an abstract description of the component
(if the environment behaves according to A).

Advantages:

Requirement-driven iterative design

Substitutivity and reuse of components

Independent implementability

6/52

Contracts

Idea: Abstractly specify how a component is involved in the satisfaction of a
requirement ϕ.

A contract C:

Is a partial and abstract specification modeling how a component behaves
under some assumptions.

Formally, C = (A,G) where:

the assumption A is an abstract description of the environment
(if the component behaves according to G)
the guarantee G is an abstract description of the component
(if the environment behaves according to A).

Advantages:

Requirement-driven iterative design

Substitutivity and reuse of components

Independent implementability

6/52

Contracts

Idea: Abstractly specify how a component is involved in the satisfaction of a
requirement ϕ.

A contract C:

Is a partial and abstract specification modeling how a component behaves
under some assumptions.

Formally, C = (A,G) where:

the assumption A is an abstract description of the environment
(if the component behaves according to G)
the guarantee G is an abstract description of the component
(if the environment behaves according to A).

Advantages:

Requirement-driven iterative design

Substitutivity and reuse of components

Independent implementability

6/52

Contracts

Idea: Abstractly specify how a component is involved in the satisfaction of a
requirement ϕ.

A contract C:

Is a partial and abstract specification modeling how a component behaves
under some assumptions.

Formally, C = (A,G) where:

the assumption A is an abstract description of the environment
(if the component behaves according to G)
the guarantee G is an abstract description of the component
(if the environment behaves according to A).

Advantages:

Requirement-driven iterative design

Substitutivity and reuse of components

Independent implementability

7/52

Goal

Provide a compositional design and verification method with contracts
for the correct development of systems in SysML with respect to

timed safety requirements.

8/52

Outline

1 Context and Problematics

2 A Method for Reasoning with Contracts

3 Theoretical Contributions

4 Practical Contributions

5 Conclusion and Perspectives

8/52

Outline

1 Context and Problematics

2 A Method for Reasoning with Contracts

3 Theoretical Contributions

4 Practical Contributions

5 Conclusion and Perspectives

9/52

A methodology for contract-based reasoning
(S Quinton, S Graf: A framework for contract-based reasoning: Motivation and application.
FLACOS 2008)

K1 K2

S

K3

φ

E

9/52

A methodology for contract-based reasoning
(S Quinton, S Graf: A framework for contract-based reasoning: Motivation and application.
FLACOS 2008)

A1 G1

C1

A2 G2

C2

K1 K2

S

A3 G3

C3

K3

φ

E

9/52

A methodology for contract-based reasoning
(S Quinton, S Graf: A framework for contract-based reasoning: Motivation and application.
FLACOS 2008)

A1 G1

C1

A2 G2

C2

K1 K2

Ki ⊧ Ci , ∀i S

A3 G3

C3

K3

Step 1) Satisfaction :

φ

E

9/52

A methodology for contract-based reasoning
(S Quinton, S Graf: A framework for contract-based reasoning: Motivation and application.
FLACOS 2008)

A G

C

A1 G1

C1

A2 G2

C2

K1 K2

Ki ⊧ Ci , ∀i S

A3 G3

C3

K3

Step 1) Satisfaction :

φ

E

9/52

A methodology for contract-based reasoning
(S Quinton, S Graf: A framework for contract-based reasoning: Motivation and application.
FLACOS 2008)

A G

C

{C1, ..., Cn} dominates C

A1 G1

C1

A2 G2

C2

K1 K2

Ki ⊧ Ci , ∀i S

A3 G3

C3

K3

Step 1) Satisfaction :

Step 2) Dominance :

φ

E

9/52

A methodology for contract-based reasoning
(S Quinton, S Graf: A framework for contract-based reasoning: Motivation and application.
FLACOS 2008)

A G

C

{C1, ..., Cn} dominates C

A1 G1

C1

A2 G2

C2

K1 K2

Ki ⊧ Ci , ∀i S

A3 G3

C3

K3

Step 1) Satisfaction :

Step 2) Dominance :

φ

E

Step 3) "Mirror" contract satisfaction

9/52

A methodology for contract-based reasoning
(S Quinton, S Graf: A framework for contract-based reasoning: Motivation and application.
FLACOS 2008)

A G

C A || G ⪯ φ

{C1, ..., Cn} dominates C

A1 G1

C1

A2 G2

C2

K1 K2

Ki ⊧ Ci , ∀i S

A3 G3

C3

K3

Step 1) Satisfaction :

Step 2) Dominance :

Step 4) Conformance :φ

⪯

E

Step 3) "Mirror" contract satisfaction

10/52

A meta-theory of contracts

A G

C A || G ⪯ φ

{C1, ..., Cn} dominates C

A1 G1

C1

A2 G2

C2

K1 K2

Ki ⊧ Ci , ∀i S

A3 G3

C3

K3

Step 1) Satisfaction :

Step 2) Dominance :

Step 4) Conformance :φ

⪯

E

Step 3) "Mirror" contract satisfaction

Parameters to be instantiated:

formal model of components

conformance relation (�)

satisfaction relation (|=)

Prerequisites concerning parameters:

compositionality of |=
soundness of circular reasoning

The meta-theory provides the
sufficient conditions for dominance:

G1 ‖ G2 ‖ G3 |= (A,G) and

A ‖ G2 ‖ G3 |= (G1, A1) and

G1 ‖ A ‖ G3 |= (G2, A2) and

G1 ‖ G2 ‖ A |= (G3, A3)

10/52

A meta-theory of contracts

A G

C A || G ⪯ φ

{C1, ..., Cn} dominates C

A1 G1

C1

A2 G2

C2

K1 K2

Ki ⊧ Ci , ∀i S

A3 G3

C3

K3

Step 1) Satisfaction :

Step 2) Dominance :

Step 4) Conformance :φ

⪯

E

Step 3) "Mirror" contract satisfaction

Parameters to be instantiated:

formal model of components

conformance relation (�)

satisfaction relation (|=)

Prerequisites concerning parameters:

compositionality of |=
soundness of circular reasoning

The meta-theory provides the
sufficient conditions for dominance:

G1 ‖ G2 ‖ G3 |= (A,G) and

A ‖ G2 ‖ G3 |= (G1, A1) and

G1 ‖ A ‖ G3 |= (G2, A2) and

G1 ‖ G2 ‖ A |= (G3, A3)

10/52

A meta-theory of contracts

A G

C A || G ⪯ φ

{C1, ..., Cn} dominates C

A1 G1

C1

A2 G2

C2

K1 K2

Ki ⊧ Ci , ∀i S

A3 G3

C3

K3

Step 1) Satisfaction :

Step 2) Dominance :

Step 4) Conformance :φ

⪯

E

Step 3) "Mirror" contract satisfaction

Parameters to be instantiated:

formal model of components

conformance relation (�)

satisfaction relation (|=)

Prerequisites concerning parameters:

compositionality of |=
soundness of circular reasoning

The meta-theory provides the
sufficient conditions for dominance:

G1 ‖ G2 ‖ G3 |= (A,G) and

A ‖ G2 ‖ G3 |= (G1, A1) and

G1 ‖ A ‖ G3 |= (G2, A2) and

G1 ‖ G2 ‖ A |= (G3, A3)

10/52

A meta-theory of contracts

A G

C A || G ⪯ φ

{C1, ..., Cn} dominates C

A1 G1

C1

A2 G2

C2

K1 K2

Ki ⊧ Ci , ∀i S

A3 G3

C3

K3

Step 1) Satisfaction :

Step 2) Dominance :

Step 4) Conformance :φ

⪯

E

Step 3) "Mirror" contract satisfaction

Parameters to be instantiated:

formal model of components

conformance relation (�)

satisfaction relation (|=)

Prerequisites concerning parameters:

compositionality of |=
soundness of circular reasoning

The meta-theory provides the
sufficient conditions for dominance:

G1 ‖ G2 ‖ G3 |= (A,G) and

A ‖ G2 ‖ G3 |= (G1, A1) and

G1 ‖ A ‖ G3 |= (G2, A2) and

G1 ‖ G2 ‖ A |= (G3, A3)

11/52

Contributions

Providing a contract-based theory by instancing the meta-theory defined by
S Quinton et al. (2008) for SysML components.

Theoretical contributions:

1 Defining the syntax of the contract-related notions in SysML

2 Formalizing the semantics of the SysML component language with a variant
of Timed Input/Output Automata

3 Defining a sound contract framework for Timed Input/Output Automata and
timed safety properties

4 Providing a model-checking method for verifying proof obligations

11/52

Contributions

Providing a contract-based theory by instancing the meta-theory defined by
S Quinton et al. (2008) for SysML components.

Practical contributions:

1 Defining and formalizing with OCL a set of well-formedness rules for ensuring
the syntax compliance to the meta-theory (using Topcaseda)

2 Implementing the SysML to Timed Input/Output Automata formalization in
the IFx2 Toolsetb

3 Applying the approach on the ATV SGS industrial-scale system design

ahttp://polarsys.org/
bhttp://www.irit.fr/ifx/

12/52

Outline

1 Context and Problematics

2 A Method for Reasoning with Contracts

3 Theoretical Contributions
Integrating Contracts in SysML
Modeling Components: a Timed Input/Output Automata Flavour
A Formal Contract Theory for TIOA
Automated Verification with Model-Checking
Evaluation and Related Work

4 Practical Contributions

5 Conclusion and Perspectives

12/52

Outline

1 Context and Problematics

2 A Method for Reasoning with Contracts

3 Theoretical Contributions
Integrating Contracts in SysML
Modeling Components: a Timed Input/Output Automata Flavour
A Formal Contract Theory for TIOA
Automated Verification with Model-Checking
Evaluation and Related Work

4 Practical Contributions

5 Conclusion and Perspectives

13/52

A SysML subset for modeling hierarchical systems

Structure

SysML Block Definition Diagrams & Internal Block Diagrams
Blocks with properties and state machines, interconnection elements and
relationships
Interfaces and signals

Discrete behavior

State machines
Asynchronous communication through signals

13/52

A SysML subset for modeling hierarchical systems

Structure

SysML Block Definition Diagrams & Internal Block Diagrams
Blocks with properties and state machines, interconnection elements and
relationships
Interfaces and signals

Discrete behavior

State machines
Asynchronous communication through signals

bdd [Package] ATM_system [Archi]

CardUnit
«block»

Attributes
t:Timer

Operations

CardUnit2Ctr_Init

CardUnit2Ctr_Init

Ctr2CardUnit

Ctr4CardUnit

CardUnit2Ctr_Eject

CardUnit2Ctr_Eject

CardUnit2UserCardUnit2User

User2CardUnit

User4CardUnit

CardUnit2Ctr_Init

CardUnit2Ctr_Init

Ctr2CardUnit

Ctr4CardUnit

CardUnit2Ctr_Eject

CardUnit2Ctr_Eject

CardUnit2UserCardUnit2User

User2CardUnit

User4CardUnit

Archi

Page 1 of 1

atm:sATM1

cardUnit:CardUnit1

CardUnit2Ctr_Init
CardUnit2Ctr_Init

Ctr2CardUnit
Ctr4CardUnit CardUnit2Ctr_Eject

CardUnit2Ctr_Eject

CardUnit2User

CardUnit2User
User2CardUnit

User4CardUnit

controller:Controller1

CardUnit2Ctr_Init
CardUnit4Ctr_InitCtr2CardUnit

Ctr2CardUnit CardUnit2Ctr_Eject
CardUnit4Ctr_Eject

Dispenser2User

Dispenser2User
Display2User

Display2User
User2Console

User4Console

Console2User

Console2User

Display2User

Display2User

User2Console

User4Console

Console2User

Console2User

Dispenser2User

Dispenser2User

User2CardUnit

User4CardUnit

CardUnit2User

CardUnit2User

CardUnit2Ctr_Init
CardUnit2Ctr_InitCtr4CardUnit

Ctr2CardUnit CardUnit2Ctr_Eject
CardUnit2Ctr_Eject

CardUnit2User

CardUnit2User
User2CardUnit

User4CardUnit

CardUnit4Ctr_Init
CardUnit2Ctr_Init

Ctr2CardUnit
Ctr2CardUnit CardUnit2Ctr_Eject

CardUnit4Ctr_Eject

Dispenser2User

Dispenser2User

Display2User

Display2User

User2Console

User4Console

Console2User

Console2User

Display2User

Display2User

User4Console

User2Console

Console2User

Console2User

Dispenser2User

Dispenser2User

User4CardUnit

User2CardUnit

CardUnit2User

CardUnit2User

Architecture

Page 1 of 1

13/52

A SysML subset for modeling hierarchical systems

Structure

SysML Block Definition Diagrams & Internal Block Diagrams
Blocks with properties and state machines, interconnection elements and
relationships
Interfaces and signals

Discrete behavior

State machines
Asynchronous communication through signals

stm [block] CardUnit [StatechartOfCardUnit]

Idle

WaitForEject

init to CardUnit2Ctr_Init

cardInserted

retrieveCard to CardUnit2User

ejectCard

WaitForRemoval

/t.set(0)

Error

nok to CardUnit2Ctr_Eject

[t > 5]

ok to CardUnit2Ctr_Eject

cardRemoved

StatechartDiagram

Page 1 of 1

14/52

Real-time and safety properties: the OMEGA profile

Real time

Continuous time model
Clocks specified by the type Timer
⇒ allows to model time guards
Transition urgency (from Timed Automata with urgency)

Observers

Formalizes a safety property
Consists of an object monitoring the system’s events and gives verdicts about
the requirement satisfaction

14/52

Real-time and safety properties: the OMEGA profile

Real time

Continuous time model
Clocks specified by the type Timer
⇒ allows to model time guards
Transition urgency (from Timed Automata with urgency)

Observers

Formalizes a safety property
Consists of an object monitoring the system’s events and gives verdicts about
the requirement satisfactionbdd [Package] ATM_system [Archi]

Property
«block,observer»

Attributes

Operations

Archi

Page 1 of 1

stm [«observer» block] Property [StatechartOfProperty]

Idle

RemoveCard

WaitForRemoval

/match send retrieveCard //

WaitForMoney

/match acceptsignal cardRemoved //

/match send releaseMoney //

[amount.value =
 releaseMoney.value]

Error
«error»[amount.value <> releaseMoney.value]

SelectAmount

/match acceptsignal amount //

/match acceptsignal cardInserted //

StatechartDiagram

Page 1 of 1

15/52

A domain meta-model for contracts
Extending UML meta-model

15/52

A domain meta-model for contracts
Extending UML meta-model

A contract is a closed composite structure formed of
one assumption and one guarantee.

15/52

A domain meta-model for contracts
Extending UML meta-model

A class implements 0..* contracts.
(Ports of G must partially match those of class.)

15/52

A domain meta-model for contracts
Extending UML meta-model

A contract is used in the context of a part of a larger structure.
(The part’s type must implement the contract in this case.)

15/52

A domain meta-model for contracts
Extending UML meta-model

A set of contracts for the parts of a larger structure can refine (dominate)
the contract of the structure.

(Ports of G must partially match those of refining contracts’ Gs.)

15/52

A domain meta-model for contracts
Extending UML meta-model

A contracts conforms to (satisfies) a safety property.

16/52

Outline

1 Context and Problematics

2 A Method for Reasoning with Contracts

3 Theoretical Contributions
Integrating Contracts in SysML
Modeling Components: a Timed Input/Output Automata Flavour
A Formal Contract Theory for TIOA
Automated Verification with Model-Checking
Evaluation and Related Work

4 Practical Contributions

5 Conclusion and Perspectives

17/52

Timed Input/Output Automaton
(a variant of D Kaynar, N Lynch, R Segala, F Vaandrager: The Theory of Timed I/O Automata.
Morgan&Claypool Publ., 2010)

The semantics of a UML/SysML state machine can be formalized by a timed
input/output automaton.

Definition

Timed input/output automaton A = (X,Clk,Q, θ, I, O, V,H,D, T).

Differences wrt D Kaynar et al. (2010) due to the SysML semantics:

modeling of visible actions besides inputs, outputs and internals,

trajectories restricted to the linear function with slope 1 for clocks and
constant for discrete variables.

Behavior:

Execution: sequence of trajectories and actions.

Trace: sequence of time-passage lengths and external actions (from
I ∪O ∪ V).

17/52

Timed Input/Output Automaton
(a variant of D Kaynar, N Lynch, R Segala, F Vaandrager: The Theory of Timed I/O Automata.
Morgan&Claypool Publ., 2010)

The semantics of a UML/SysML state machine can be formalized by a timed
input/output automaton.

Definition

Timed input/output automaton A = (X,Clk,Q, θ, I, O, V,H,D, T).

Differences wrt D Kaynar et al. (2010) due to the SysML semantics:

modeling of visible actions besides inputs, outputs and internals,

trajectories restricted to the linear function with slope 1 for clocks and
constant for discrete variables.

Behavior:

Execution: sequence of trajectories and actions.

Trace: sequence of time-passage lengths and external actions (from
I ∪O ∪ V).

17/52

Timed Input/Output Automaton
(a variant of D Kaynar, N Lynch, R Segala, F Vaandrager: The Theory of Timed I/O Automata.
Morgan&Claypool Publ., 2010)

The semantics of a UML/SysML state machine can be formalized by a timed
input/output automaton.

Definition

Timed input/output automaton A = (X,Clk,Q, θ, I, O, V,H,D, T).

Differences wrt D Kaynar et al. (2010) due to the SysML semantics:

modeling of visible actions besides inputs, outputs and internals,

trajectories restricted to the linear function with slope 1 for clocks and
constant for discrete variables.

Behavior:

Execution: sequence of trajectories and actions.

Trace: sequence of time-passage lengths and external actions (from
I ∪O ∪ V).

17/52

Timed Input/Output Automaton
(a variant of D Kaynar, N Lynch, R Segala, F Vaandrager: The Theory of Timed I/O Automata.
Morgan&Claypool Publ., 2010)

The semantics of a UML/SysML state machine can be formalized by a timed
input/output automaton.

Definition

Timed input/output automaton A = (X,Clk,Q, θ, I, O, V,H,D, T).

Differences wrt D Kaynar et al. (2010) due to the SysML semantics:

modeling of visible actions besides inputs, outputs and internals,

trajectories restricted to the linear function with slope 1 for clocks and
constant for discrete variables.

Behavior:

Execution: sequence of trajectories and actions.

Trace: sequence of time-passage lengths and external actions (from
I ∪O ∪ V).

18/52

TIOA parallel composition

Composition compatibility: Ai ‖ Aj defined iff
Xi∩Xj = Clki∩Clkj = Oi∩Oj = Ii∩Ij = Hi∩Aj = Vi∩Aj = ∅, for i 6= j

Synchronization on common I/O actions, interleaving of other actions

Difference wrt D Kaynar et al. (2010): an input of Ai synchronized with an
output of Aj , i 6= j, becomes a visible action in Ai ‖ Aj

⇒ closer to the semantics of SysML signals
⇒ broadcasts are forbidden

Theorem

The parallel composition operator is commutative and associative.

18/52

TIOA parallel composition

Composition compatibility: Ai ‖ Aj defined iff
Xi∩Xj = Clki∩Clkj = Oi∩Oj = Ii∩Ij = Hi∩Aj = Vi∩Aj = ∅, for i 6= j

Synchronization on common I/O actions, interleaving of other actions

Difference wrt D Kaynar et al. (2010): an input of Ai synchronized with an
output of Aj , i 6= j, becomes a visible action in Ai ‖ Aj

⇒ closer to the semantics of SysML signals
⇒ broadcasts are forbidden

Theorem

The parallel composition operator is commutative and associative.

18/52

TIOA parallel composition

Composition compatibility: Ai ‖ Aj defined iff
Xi∩Xj = Clki∩Clkj = Oi∩Oj = Ii∩Ij = Hi∩Aj = Vi∩Aj = ∅, for i 6= j

Synchronization on common I/O actions, interleaving of other actions

Difference wrt D Kaynar et al. (2010): an input of Ai synchronized with an
output of Aj , i 6= j, becomes a visible action in Ai ‖ Aj

⇒ closer to the semantics of SysML signals
⇒ broadcasts are forbidden

Theorem

The parallel composition operator is commutative and associative.

19/52

Conformance relation

Comparable components: Ii ∪Oi ∪ Vi = Ij ∪Oj ∪ Vj , i 6= j

Definition

Let K1 and K2 be two comparable components. K1 � K2 if
tracesK1

⊆ tracesK2
.

Theorem

Conformance is a preorder relation.

Theorem (Composability)

Let K1 and K2 be two comparable components with K1 � K2 and E a
component compatible with both K1 and K2. Then K1 ‖ E � K2 ‖ E.

(Straightforward extensions of results from D Kaynar et al. (2010).)

19/52

Conformance relation

Comparable components: Ii ∪Oi ∪ Vi = Ij ∪Oj ∪ Vj , i 6= j

Definition

Let K1 and K2 be two comparable components. K1 � K2 if
tracesK1

⊆ tracesK2
.

Theorem

Conformance is a preorder relation.

Theorem (Composability)

Let K1 and K2 be two comparable components with K1 � K2 and E a
component compatible with both K1 and K2. Then K1 ‖ E � K2 ‖ E.

(Straightforward extensions of results from D Kaynar et al. (2010).)

19/52

Conformance relation

Comparable components: Ii ∪Oi ∪ Vi = Ij ∪Oj ∪ Vj , i 6= j

Definition

Let K1 and K2 be two comparable components. K1 � K2 if
tracesK1

⊆ tracesK2
.

Theorem

Conformance is a preorder relation.

Theorem (Composability)

Let K1 and K2 be two comparable components with K1 � K2 and E a
component compatible with both K1 and K2. Then K1 ‖ E � K2 ‖ E.

(Straightforward extensions of results from D Kaynar et al. (2010).)

20/52

Mapping SysML to TIOA

Limited to the identified SysML subset for modeling hierarchical
component-based systems

Similar with related transformations

An atomic component Ki is a TIOA AKi

features internal variables
two predefined internal variables location and queue (for asynchronous
communication)
state machine transitions sets of TIOA transitions
triggers internal actions
...

A composed component K is the TIOA obtained by applying the parallel
composition on the corresponding TIOA components

An observer O is a TIOA AO with only visible actions

21/52

Outline

1 Context and Problematics

2 A Method for Reasoning with Contracts

3 Theoretical Contributions
Integrating Contracts in SysML
Modeling Components: a Timed Input/Output Automata Flavour
A Formal Contract Theory for TIOA
Automated Verification with Model-Checking
Evaluation and Related Work

4 Practical Contributions

5 Conclusion and Perspectives

22/52

Formal contract

Some terminology :

Component K: a timed input/output automaton.

Signature of K: I ∪O ∪ V .

Closed component: I = O = ∅.
Open component: a component that it is not closed.

Environment E for K: a timed input/output automaton compatible with K
such that IE ⊆ OK and OE ⊆ IK .

Definition

A contract C for a component K is a pair (A,G) of TIOA such that IA = OG and
OA = IG (i.e. the composition is a closed system), and IG ⊆ IK , OG ⊆ OK and
VG ⊆ VK (i.e. the signature of K is a refinement of that of G).

22/52

Formal contract

Some terminology :

Component K: a timed input/output automaton.

Signature of K: I ∪O ∪ V .

Closed component: I = O = ∅.
Open component: a component that it is not closed.

Environment E for K: a timed input/output automaton compatible with K
such that IE ⊆ OK and OE ⊆ IK .

Definition

A contract C for a component K is a pair (A,G) of TIOA such that IA = OG and
OA = IG (i.e. the composition is a closed system), and IG ⊆ IK , OG ⊆ OK and
VG ⊆ VK (i.e. the signature of K is a refinement of that of G).

23/52

Refinement under context relation

Definition

Let K1 and K2 be two components such that IK2
⊆ IK1

∪ VK1
,

OK2
⊆ OK1

∪ VK1
and VK2

⊆ VK1
. Let E be an environment for K1 compatible

with both K1 and K2. We say that K1 refines K2 in the context of E, denoted
K1 vE K2, if

K1 ‖ E ‖ E′ � K2 ‖ E ‖ K ′ ‖ E′

where K ′ and E′ are chaotic components defined such that both members of the
conformance relation are comparable and closed.

Definition

K |= C = (A,G) ⇔ K vA G

23/52

Refinement under context relation

Definition

Let K1 and K2 be two components such that IK2
⊆ IK1

∪ VK1
,

OK2
⊆ OK1

∪ VK1
and VK2

⊆ VK1
. Let E be an environment for K1 compatible

with both K1 and K2. We say that K1 refines K2 in the context of E, denoted
K1 vE K2, if

K1 ‖ E ‖ E′ � K2 ‖ E ‖ K ′ ‖ E′

where K ′ and E′ are chaotic components defined such that both members of the
conformance relation are comparable and closed.

Definition

K |= C = (A,G) ⇔ K vA G

23/52

Refinement under context relation

Definition

Let K1 and K2 be two components such that IK2
⊆ IK1

∪ VK1
,

OK2
⊆ OK1

∪ VK1
and VK2

⊆ VK1
. Let E be an environment for K1 compatible

with both K1 and K2. We say that K1 refines K2 in the context of E, denoted
K1 vE K2, if

K1 ‖ E ‖ E′ � K2 ‖ E ‖ K ′ ‖ E′

where K ′ and E′ are chaotic components defined such that both members of the
conformance relation are comparable and closed.

Definition

K |= C = (A,G) ⇔ K vA G

24/52

Properties of refinement under context

Theorem

Given a set K of comparable components and a fixed environment E for that
interface, the refinement under context relation vE is a preorder over K.

Proposition

Let K1, K2 and K3 be three components not necessarily comparable and E an
environment such that K1 vE K2 and K2 vE K3. Then K1 vE K3.

Theorem (Compositionality)

Let K1 and K2 be two components and E an environment compatible with both
K1 and K2 such that E = E1 ‖ E2.

K1 vE1‖E2
K2 ⇔ K1 ‖ E1 vE2

K2 ‖ E1

24/52

Properties of refinement under context

Theorem

Given a set K of comparable components and a fixed environment E for that
interface, the refinement under context relation vE is a preorder over K.

Proposition

Let K1, K2 and K3 be three components not necessarily comparable and E an
environment such that K1 vE K2 and K2 vE K3. Then K1 vE K3.

Theorem (Compositionality)

Let K1 and K2 be two components and E an environment compatible with both
K1 and K2 such that E = E1 ‖ E2.

K1 vE1‖E2
K2 ⇔ K1 ‖ E1 vE2

K2 ‖ E1

24/52

Properties of refinement under context

Theorem

Given a set K of comparable components and a fixed environment E for that
interface, the refinement under context relation vE is a preorder over K.

Proposition

Let K1, K2 and K3 be three components not necessarily comparable and E an
environment such that K1 vE K2 and K2 vE K3. Then K1 vE K3.

Theorem (Compositionality)

Let K1 and K2 be two components and E an environment compatible with both
K1 and K2 such that E = E1 ‖ E2.

K1 vE1‖E2
K2 ⇔ K1 ‖ E1 vE2

K2 ‖ E1

25/52

Correctness of circular reasoning

Central result, required for applying the meta-theory:

Theorem (Circular reasoning)

Let K be a component, E its environment and C = (A,G) the contract for K
such that K and G are compatible with each of E and A. If the following
conditions hold:

1 tracesG is closed under limits

2 tracesG is closed under time-extension

3 K vA G

4 E vG A

then K vE G.

26/52

Contract dominance

Follows directly from the correctness of circular reasoning:

Theorem (Sufficient condition for dominance)

{Ci}ni=1 dominates C if, ∀i, tracesGi
and tracesG are closed under limits and

under time-extension and{
G1 ‖ ... ‖ Gn vA G
A ‖ G1 ‖ ... ‖ Gi−1 ‖ Gi+1 ‖ ... ‖ Gn vGi

Ai, ∀i

(Result presented in S Quiton et al. and adapted to our notation and prerequisites.)

⇒ lists the proof obligations that need to be discharged when applying the
verification methodology

27/52

Outline

1 Context and Problematics

2 A Method for Reasoning with Contracts

3 Theoretical Contributions
Integrating Contracts in SysML
Modeling Components: a Timed Input/Output Automata Flavour
A Formal Contract Theory for TIOA
Automated Verification with Model-Checking
Evaluation and Related Work

4 Practical Contributions

5 Conclusion and Perspectives

28/52

Automated verification of proof obligations

Timed trace inclusion is undecidable.

⇒ Verify the generated proof obligations by model-checking.

1 Transform the deterministic safety property into a timed property automaton
(i.e. observer) by negating the formalized property.

2 Compute the observer composition ./ between the component under study
and the timed property automaton.

3 Apply reachability analysis for the error state π.

28/52

Automated verification of proof obligations

Timed trace inclusion is undecidable.

⇒ Verify the generated proof obligations by model-checking.

1 Transform the deterministic safety property into a timed property automaton
(i.e. observer) by negating the formalized property.

2 Compute the observer composition ./ between the component under study
and the timed property automaton.

3 Apply reachability analysis for the error state π.

29/52

Outline

1 Context and Problematics

2 A Method for Reasoning with Contracts

3 Theoretical Contributions
Integrating Contracts in SysML
Modeling Components: a Timed Input/Output Automata Flavour
A Formal Contract Theory for TIOA
Automated Verification with Model-Checking
Evaluation and Related Work

4 Practical Contributions

5 Conclusion and Perspectives

30/52

Evaluation of our approach: expressiveness of contracts

1 The component playing the role of the guarantee is a safety property.

the automaton is non-Zeno
all internal transitions are eager
all outputs/visible actions are lazy

⇒ the execution of an output/visible action cannot be guaranteed
... yet, if an output/visible action is executed, the execution can be
performed before or after a deadline

2 The safety property must be deterministic for applying automatic verification.
⇒ assumptions must satisfy this condition for automatically proving contract
dominance

30/52

Evaluation of our approach: expressiveness of contracts

1 The component playing the role of the guarantee is a safety property.

the automaton is non-Zeno
all internal transitions are eager
all outputs/visible actions are lazy

⇒ the execution of an output/visible action cannot be guaranteed
... yet, if an output/visible action is executed, the execution can be
performed before or after a deadline

2 The safety property must be deterministic for applying automatic verification.
⇒ assumptions must satisfy this condition for automatically proving contract
dominance

30/52

Evaluation of our approach: expressiveness of contracts

1 The component playing the role of the guarantee is a safety property.

the automaton is non-Zeno
all internal transitions are eager
all outputs/visible actions are lazy

⇒ the execution of an output/visible action cannot be guaranteed
... yet, if an output/visible action is executed, the execution can be
performed before or after a deadline

2 The safety property must be deterministic for applying automatic verification.
⇒ assumptions must satisfy this condition for automatically proving contract
dominance

30/52

Evaluation of our approach: expressiveness of contracts

1 The component playing the role of the guarantee is a safety property.

the automaton is non-Zeno
all internal transitions are eager
all outputs/visible actions are lazy

⇒ the execution of an output/visible action cannot be guaranteed
... yet, if an output/visible action is executed, the execution can be
performed before or after a deadline

2 The safety property must be deterministic for applying automatic verification.
⇒ assumptions must satisfy this condition for automatically proving contract
dominance

31/52

Related work

Contracts in UML/SysML:

Provided/required interfaces for typing components: T Weiss et al. (UML

2001), ...

OCL (pre,post) conditions for operations: M Kriegger et al. (GPCE 2010),

P André et al. (IDM 2011, WCSI 2010), E Cariou et al. (ECMFA 2011), ...

State machine on connectors for describing component compatibility:
R Payne et al. (2011)

Formal contract-based theories:

Specification theories defining quotient, logical conjunction, ...

Defined for:

TIOA (ECDAR): S Bauer et al. (FASE 2012, FACS 2012), A David et al.
(STTT 2012), ...
timed logical specifications (i.e. sets of traces): C Chilton et al. (FACS 2012,
FORMATS 2012, Sci. Comp. Prog. 2014)

Differences wrt:

the modeling of contracts
the reasoning method with contracts

31/52

Related work

Contracts in UML/SysML:

Provided/required interfaces for typing components: T Weiss et al. (UML

2001), ...

OCL (pre,post) conditions for operations: M Kriegger et al. (GPCE 2010),

P André et al. (IDM 2011, WCSI 2010), E Cariou et al. (ECMFA 2011), ...

State machine on connectors for describing component compatibility:
R Payne et al. (2011)

Formal contract-based theories:

Specification theories defining quotient, logical conjunction, ...

Defined for:

TIOA (ECDAR): S Bauer et al. (FASE 2012, FACS 2012), A David et al.
(STTT 2012), ...
timed logical specifications (i.e. sets of traces): C Chilton et al. (FACS 2012,
FORMATS 2012, Sci. Comp. Prog. 2014)

Differences wrt:

the modeling of contracts
the reasoning method with contracts

32/52

Outline

1 Context and Problematics

2 A Method for Reasoning with Contracts

3 Theoretical Contributions

4 Practical Contributions
Profile Well-Formedness Rules
Implementation of the SysML to TIOA Transformation
The ATV SGS Case Study

5 Conclusion and Perspectives

32/52

Outline

1 Context and Problematics

2 A Method for Reasoning with Contracts

3 Theoretical Contributions

4 Practical Contributions
Profile Well-Formedness Rules
Implementation of the SysML to TIOA Transformation
The ATV SGS Case Study

5 Conclusion and Perspectives

33/52

OCL formalization of profile’s set of well-formedness rules

Well-formedness rules tackling:

the meta-model’s conformance to the meta-theory

a model’s conformance to the meta-model

signature refinement of contracts for requirement-driven design

 formalized with OCL in order to automatically verify the static typing of a
model extended with contracts (with Topcased1)

20 rules

480 lines of code

1http://polarsys.org/

34/52

Outline

1 Context and Problematics

2 A Method for Reasoning with Contracts

3 Theoretical Contributions

4 Practical Contributions
Profile Well-Formedness Rules
Implementation of the SysML to TIOA Transformation
The ATV SGS Case Study

5 Conclusion and Perspectives

35/52

Implementation in the IFx2 toolset2

Goal: Early model validation and debugging

Functionalities:

Simulation

Static analysis: dead code/variable
elimination, ...

Model-checking: observers, state
graph minimization, ...

Implementation details:

Proprietary compiler which takes as input an (OMEGA) SysML model (in
XMI 2.0 format) and produces the TIOA model (in the IF language)

Adapted for IBM Rhapsody and Papyrus

Several compiling options available: uml/sysml, rhapsody/papyrus, rhplang,
eager, ...

Used technologies: Java, Eclipse UML 2.3, Eclipse EMF

∼ 13000 lines of code
2www.irit.fr/ifx/

36/52

Outline

1 Context and Problematics

2 A Method for Reasoning with Contracts

3 Theoretical Contributions

4 Practical Contributions
Profile Well-Formedness Rules
Implementation of the SysML to TIOA Transformation
The ATV SGS Case Study

5 Conclusion and Perspectives

37/52

The Solar Generation System (SGS)

BL_ATV
«block,root»

MVM:MVM1

SGS:SGS1

SOFTWARE:SOFTWARE1
HARDWARE:HARDWARE1

WING1:WING1

WING2:WING1

WING3:WING1

WING4:WING1

CU:CU1

Reverse engineered from the actual system by Airbus Defence and Space:

4-level architecture, 20 blocks and 95 block instances

661 port and 504 connector instances

1-fault tolerant

62 possible hardware failures

Requirement ϕ: At the end of the deployment sequence, all 4 WINGs are deployed.

38/52

Formalizing the requirement

BL_ATV
«block,root»

MVM:MVM1

SGS:SGS1

HARDWARE:HARDWARE1

WING1:WING1

WING3:WING1

WING4:WING1

WING2:WING1

CU:CU1

SOFTWARE:SOFTWARE1

38/52

Formalizing the requirement

BL_ATV
«block,root»

MVM:MVM1

SGS:SGS1

HARDWARE:HARDWARE1

WING1:WING1

WING3:WING1

WING4:WING1

WING2:WING1

CU:CU1

SOFTWARE:SOFTWARE1

Property
«block,observer»

38/52

Formalizing the requirement
Behavior of Property (ϕ)

SYSTEM_IS_ON

VERIFY_DEPLOYMENT

/match send SGS_DEPLOY_WING_STATUS //

[SGS_DEPLOY_WING_STATUS.STATUS ==
 T_SGS_DEPLOY_WING_STS::LOCKED_DEPLOYED]

NO_DEPLOYMENT
«error»

[SGS_DEPLOY_WING_STATUS.STATUS !=
 T_SGS_DEPLOY_WING_STS::LOCKED_DEPLOYED]

StatechartDiagram

Page 1 of 1

39/52

Preliminary V&V

Simulation

Scenario length: 2400 steps and one minute execution
Discovered modeling errors: unexpected message receptions

Model-checking

Subject to the combinatorial state space explosion problem

39/52

Preliminary V&V

Simulation

Scenario length: 2400 steps and one minute execution
Discovered modeling errors: unexpected message receptions

Model-checking

Subject to the combinatorial state space explosion problem

MVM0

manager67

FSM0

PCDU0

manager44 manager68

POWER3 POWER6

PCDU1

manager36 manager76

POWER2 POWER7

PCDU2

manager29manager51

POWER1POWER4

PCDU3

manager21manager59

POWER0POWER5

CMU10

manager13

manager30

manager4

manager45manager60

manager66

manager77

BEHAVIOUR3

LOCKING0

BEHAVIOUR0

LOCKING1LOCKING2

DEPLOYMENT0

LOCKING3

CMU20

manager10 manager7

BEHAVIOUR2 BEHAVIOUR1

manager5manager6

SADG0SADG1

manager8 manager9

SADG2 SADG3

manager11 manager12

SADG4 SADG5

manager14manager15

SADG6SADG7

manager16

manager83

AP0

manager1

manager17manager18manager19

manager2

manager20

manager24manager26 manager34 manager35manager23 manager25manager28manager33

KNIFE0 KNIFE2KNIFE4KNIFE5 KNIFE1KNIFE3 KNIFE6 KNIFE7

manager22manager27 manager32 manager31

HDRS0HDRS1 HDRS3 HDRS2

manager39 manager41manager49 manager50 manager38manager40 manager43manager48

KNIFE9 KNIFE11KNIFE14 KNIFE15KNIFE8 KNIFE10 KNIFE12KNIFE13

manager37manager42 manager47 manager46

HDRS4HDRS5 HDRS7 HDRS6

manager53 manager55manager58 manager63 manager54manager56manager64 manager65

KNIFE16 KNIFE18KNIFE20 KNIFE21 KNIFE17KNIFE19KNIFE22 KNIFE23

manager52 manager57manager62manager61

HDRS8 HDRS9HDRS11HDRS10

manager70manager72 manager75manager80manager71 manager73manager81 manager82

KNIFE24 KNIFE26 KNIFE28KNIFE29KNIFE25 KNIFE27KNIFE30 KNIFE31

manager69 manager74 manager79 manager78

HDRS12 HDRS13 HDRS15 HDRS14

Mission Management

Software instances

Hardware instances

Wing 1 instances Wing 2 instances Wing 3 instances Wing 4 instances

!!!!!!!!!Command Unit instances

40/52

Applying contract-based reasoning

BL_ATV
«block,root»

MVM:MVM1

SGS:SGS1

SOFTWARE:SOFTWARE1
HARDWARE:HARDWARE1

WING1:WING1

WING2:WING1

WING3:WING1

WING4:WING1

CU:CU1

ϕ: At the end of the
deployment sequence, all 4
WINGs are deployed.

The system S is given by HARDWARE which contains the WINGs.

The environment E is given by MVM ‖ SOFTWARE ‖ CU.

40/52

Applying contract-based reasoning

BL_ATV
«block,root»

MVM:MVM1

SGS:SGS1

SOFTWARE:SOFTWARE1
HARDWARE:HARDWARE1

WING1:WING1

WING2:WING1

WING3:WING1

WING4:WING1

CU:CU1

ϕ: At the end of the
deployment sequence, all 4
WINGs are deployed.

The system S is given by HARDWARE which contains the WINGs.

The environment E is given by MVM ‖ SOFTWARE ‖ CU.

40/52

Applying contract-based reasoning

BL_ATV
«block,root»

MVM:MVM1

SGS:SGS1

SOFTWARE:SOFTWARE1
HARDWARE:HARDWARE1

WING1:WING1

WING2:WING1

WING3:WING1

WING4:WING1

CU:CU1

ϕ: At the end of the
deployment sequence, all 4
WINGs are deployed.

The system S is given by HARDWARE which contains the WINGs.

The environment E is given by MVM ‖ SOFTWARE ‖ CU.

41/52

Individual contracts for wings
Modeling contract satisfaction

BL_ATV
«block,root»

MVM:MVM1

SGS:SGS1

HARDWARE:HARDWARE1

WING1:WING1

WING3:WING1

WING4:WING1

WING2:WING1

CU:CU1

SOFTWARE:SOFTWARE1

Property
«block,observer»

41/52

Individual contracts for wings
Modeling contract satisfaction

BL_ATV
«block,root»

MVM:MVM1

SGS:SGS1

HARDWARE:HARDWARE1

WING1:WING1

WING3:WING1

WING4:WING1

WING2:WING1

CU:CU1

SOFTWARE:SOFTWARE1

C_W1
«block,contract»

«contractUse»

C_W2
«block,contract»

«contractUse»

C_W3
«block,contract»

«contractUse»

C_W4
«block,contract»

«contractUse»

Property
«block,observer»

reqTarget:Class=Property
«Tag»

41/52

Individual contracts for wings
Contract architecture

C_W1
«block,contract»

A_W1:A_W11

MVM:MVM1

SGS:SGS1

SOFTWARE:SOFTWARE1

CU:CU1

IF_WING_2_CU

pWING_in

IF_CU_2_WING

pWING4_out

IF_CU_2_WING

pWING3_out

IF_CU_2_WING

pWING2_out

IF_CU_2_WING

pWING1_out

HARDWARE:HARDWARE1

WING2:G_W1

IF_WING_2_CU

pWING_out

IF_CU_2_WING

pWING_in

WING3:G_W1

IF_WING_2_CU

pWING_out

IF_CU_2_WING

pWING_in

WING4:G_W1

IF_WING_2_CU

pWING_out

IF_CU_2_WING

pWING_in

IF_CU_2_WING

pWING4_in

IF_CU_2_WING

pWING3_in

IF_WING_2_CU

pWING_out

IF_CU_2_WING

pWING2_in

IF_WING_2_CU

pWING_in
IF_CU_2_WING

pWING1_out
G_W1:G_W1

IF_WING_2_CU

pWING_out

IF_CU_2_WING

pWING_in

pWING_in

IF_WING_2_CU

IF_CU_2_WING

pWING4_out

IF_CU_2_WING

pWING3_out

IF_CU_2_WING

pWING2_out

IF_CU_2_WING

pWING1_out

IF_WING_2_CU

pWING_out

IF_CU_2_WING

pWING_in

pWING_out

IF_WING_2_CU
pWING_in

IF_CU_2_WING
pWING_out

IF_WING_2_CU

IF_CU_2_WING

pWING_in

IF_CU_2_WING

pWING4_in

IF_CU_2_WING

pWING3_in

pWING_out

IF_WING_2_CU

IF_CU_2_WING

pWING2_in

IF_WING_2_CU

pWING_in

pWING1_out

IF_CU_2_WING

IF_WING_2_CU

pWING_out

pWING_in

IF_CU_2_WING

internal block diagram_2

Page 1 of 1

41/52

Individual contracts for wings
Behavior of the guarantee

IDLE

SGS_TCUi_SADG1_CMD

SGS_TCUi_SADG2_CMD

TCU_SAD_ESB_DSARM_CMD

TCU_SAD_ESB_ARM_CMD

ACTIVATE_TK

DEACTIVATE_TK

FAILURE

SGS_DEPLOY_WING_STATUS(params->j, ::PredefinedTypes_ATV::T_SGS_DEPLOY_WING_STS::LOCKED_DEPLOYED)

SGS_REQUEST_DEPLOY_WING_STATUS

StatechartDiagram

Page 1 of 1

42/52

Contract satisfaction
Generated proof obligations

WING1 vMVM‖SOFTWARE‖CU‖WING2‖WING3‖WING4 G W1
where WINGi, i ∈ 2..4, is of type G W

WING2 vMVM‖SOFTWARE‖CU‖WING1‖WING3‖WING4 G W2

WING3 vMVM‖SOFTWARE‖CU‖WING1‖WING2‖WING4 G W3

WING4 vMVM‖SOFTWARE‖CU‖WING1‖WING2‖WING3 G W4

43/52

Top contract for the system

BL_ATV
«block,root»

MVM:MVM1

SGS:SGS1

HARDWARE:HARDWARE1

WING1:WING1

WING3:WING1

WING4:WING1

WING2:WING1

CU:CU1

SOFTWARE:SOFTWARE1

C_W1
«block,contract»

«contractUse»

C_W2
«block,contract»

«contractUse»

C_W3
«block,contract»

«contractUse»

C_W4
«block,contract»

«contractUse»

Property
«block,observer»

reqTarget:Class=Property
«Tag»

43/52

Top contract for the system

BL_ATV
«block,root»

MVM:MVM1

SGS:SGS1

HARDWARE:HARDWARE1

WING1:WING1

WING3:WING1

WING4:WING1

WING2:WING1

CU:CU1

SOFTWARE:SOFTWARE1

C_W1
«block,contract»

«contractUse»

C_W2
«block,contract»

«contractUse»

C_W3
«block,contract»

«contractUse»

C_W4
«block,contract»

«contractUse»

C_HW
«block,contract»

«contractUse»

Property
«block,observer»

reqTarget:Class=Property
«Tag»

43/52

Top contract for the system
Contract architecture

C_HW
«block,contract»

A_HW:A_HW1

MVM:MVM1 SOFTWARE:SOFTWARE1

CU:CU1

IF_WING_2_CU

pWING_in

IF_CU_2_WING

pWING4_out

IF_CU_2_WING

pWING3_out

IF_CU_2_WING

pWING2_out

IF_CU_2_WING

pWING1_out

IF_WING_2_CU

pWING_in

IF_CU_2_WING

pWING4_out

IF_CU_2_WING

pWING3_out

IF_CU_2_WING

pWING2_out

IF_CU_2_WING

pWING1_out

G_HW:G_HW1

IF_CU_2_WING

pWING4_in

IF_CU_2_WING

pWING2_in

IF_CU_2_WING

pWING1_in

IF_WING_2_CU

pWING_out

IF_CU_2_WING

pWING3_in

IF_WING_2_CU

pWING_in

IF_CU_2_WING

pWING4_out

IF_CU_2_WING

pWING3_out

pWING2_out

IF_CU_2_WING

IF_CU_2_WING

pWING1_out

pWING_in

IF_WING_2_CU

IF_CU_2_WING

pWING4_out

IF_CU_2_WING

pWING3_out

pWING2_out

IF_CU_2_WING

IF_CU_2_WING

pWING1_out

IF_CU_2_WING

pWING4_in

pWING2_in

IF_CU_2_WING

pWING1_in

IF_CU_2_WING

pWING_out

IF_WING_2_CU

IF_CU_2_WING

pWING3_in

internal block diagram_3

Page 1 of 1

43/52

Top contract for the system
Behavior of the guarantee

IDLE

SGS_TCUi_SADG1_CMD

SGS_TCUi_SADG2_CMD

TCU_SAD_ESB_DSARM_CMD

TCU_SAD_ESB_ARM_CMD

ACTIVATE_TK

DEACTIVATE_TK

FAILURE

SGS_DEPLOY_WING_STATUS(params->j, ::PredefinedTypes_ATV::T_SGS_DEPLOY_WING_STS::LOCKED_DEPLOYED)

SGS_REQUEST_DEPLOY_WING_STATUS

StatechartDiagram

Page 1 of 1

44/52

Dominance
Modeling dominance

BL_ATV
«block,root»

MVM:MVM1

SGS:SGS1

HARDWARE:HARDWARE1

WING1:WING1

WING3:WING1

WING4:WING1

WING2:WING1

CU:CU1

SOFTWARE:SOFTWARE1

C_W1
«block,contract»

«contractUse»

C_W2
«block,contract»

«contractUse»

C_W3
«block,contract»

«contractUse»

C_W4
«block,contract»

«contractUse»

C_HW
«block,contract»

«contractUse»

Property
«block,observer»

reqTarget:Class=Property
«Tag»

44/52

Dominance
Modeling dominance

BL_ATV
«block,root»

MVM:MVM1

SGS:SGS1

HARDWARE:HARDWARE1

WING1:WING1

WING3:WING1

WING4:WING1

WING2:WING1

CU:CU1

SOFTWARE:SOFTWARE1

C_W1
«block,contract»

«contractUse»

C_W2
«block,contract»

«contractUse»

C_W3
«block,contract»

«contractUse»

C_W4
«block,contract»

«contractUse»

C_HW
«block,contract»

«contractUse»

Property
«block,observer»

reqTarget:Class=Property
«Tag»

refTarget:Class=C_HW
«Tag»

44/52

Dominance
Generated proof obligations

1 G W1 ‖ G W2 ‖ G W3 ‖ G W4 vMVM‖SOFTWARE‖CU G HW

2 (MVM ‖ SOFTWARE ‖ CU) ‖ G W2 ‖ G W3 ‖ G W4 vG W1

MVM ‖ SOFTWARE ‖ CU ‖ G W2 ‖ G W3 ‖ G W4

3 (MVM ‖ SOFTWARE ‖ CU) ‖ G W1 ‖ G W3 ‖ G W4 vG W2

MVM ‖ SOFTWARE ‖ CU ‖ G W1 ‖ G W3 ‖ G W4

4 (MVM ‖ SOFTWARE ‖ CU) ‖ G W1 ‖ G W2 ‖ G W4 vG W3

MVM ‖ SOFTWARE ‖ CU ‖ G W1 ‖ G W2 ‖ G W4

5 (MVM ‖ SOFTWARE ‖ CU) ‖ G W1 ‖ G W2 ‖ G W3 vG W4

MVM ‖ SOFTWARE ‖ CU ‖ G W1 ‖ G W2 ‖ G W3

45/52

Top “mirror” contract satisfaction

BL_ATV
«block,root»

MVM:MVM1

SGS:SGS1

HARDWARE:HARDWARE1

WING1:WING1

WING3:WING1

WING4:WING1

WING2:WING1

CU:CU1

SOFTWARE:SOFTWARE1

C_W1
«block,contract»

«contractUse»

C_W2
«block,contract»

«contractUse»

C_W3
«block,contract»

«contractUse»

C_W4
«block,contract»

«contractUse»

C_HW
«block,contract»

«contractUse»

Property
«block,observer»

reqTarget:Class=Property
«Tag»

refTarget:Class=C_HW
«Tag»

⇒ generates the following proof obligation:
MVM ‖ SOFTWARE ‖ CU vG HW MVM ‖ SOFTWARE ‖ CU

46/52

Conformance

BL_ATV
«block,root»

MVM:MVM1

SGS:SGS1

HARDWARE:HARDWARE1

WING1:WING1

WING3:WING1

WING4:WING1

WING2:WING1

CU:CU1

SOFTWARE:SOFTWARE1

C_W1
«block,contract»

«contractUse»

C_W2
«block,contract»

«contractUse»

C_W3
«block,contract»

«contractUse»

C_W4
«block,contract»

«contractUse»

C_HW
«block,contract»

«contractUse»

Property
«block,observer»

«contractConformance»

reqTarget:Class=Property
«Tag»

refTarget:Class=C_HW
«Tag»

⇒ generates the following proof obligation:
MVM ‖ SOFTWARE ‖ CU ‖ G HW � Property

47/52

Verification results

1 Contract satisfaction:

detected error: deployment deactivation in case of failure of disabled
components
after correction:

Average verification time (s)

Type of induced failure Wing 1 Wing 2 Wing 3 Wing 4

Thermal knife 13993 6869 18842 11412

Hold-down and release system 12672 6516 16578 9980

Solar array driving group 11527 5432 13548 6807

2 Dominance:

for G HW : < 1 second
for assumptions: trivial

3 Top “mirror” contract satisfaction: trivial

4 Conformance < 1 second

48/52

Outline

1 Context and Problematics

2 A Method for Reasoning with Contracts

3 Theoretical Contributions

4 Practical Contributions

5 Conclusion and Perspectives

49/52

Conclusion
Overview

Behavioral contract framework for the compositional design and verification of
system models in UML/SysML with respect to timed safety requirements

Features of the developed approach:

scalability in order to tackle the design and verification of very large systems,

reusability for both contracts and components.

49/52

Conclusion
Overview

Behavioral contract framework for the compositional design and verification of
system models in UML/SysML with respect to timed safety requirements

Features of the developed approach:

scalability in order to tackle the design and verification of very large systems,

reusability for both contracts and components.

50/52

Conclusion
Contributions

1 An extension for modeling contracts in UML/SysML amenable to
compositional verification

2 Ensured compliance with the methodology for reasoning with contracts

3 Formalization of the UML/SysML component and contract language with a
variant of Timed Input/Output Automata

4 A partial implementation in the IFx2 verification tool

5 A contract theory for Timed Input/Output Automata supporting the
verification of general safety properties

6 Automated model-checking for verification of contract satisfaction and
deterministic safety properties

7 Experimental evidence that previously intractable models can be tamed

50/52

Conclusion
Contributions

1 An extension for modeling contracts in UML/SysML amenable to
compositional verification

2 Ensured compliance with the methodology for reasoning with contracts

3 Formalization of the UML/SysML component and contract language with a
variant of Timed Input/Output Automata

4 A partial implementation in the IFx2 verification tool

5 A contract theory for Timed Input/Output Automata supporting the
verification of general safety properties

6 Automated model-checking for verification of contract satisfaction and
deterministic safety properties

7 Experimental evidence that previously intractable models can be tamed

50/52

Conclusion
Contributions

1 An extension for modeling contracts in UML/SysML amenable to
compositional verification

2 Ensured compliance with the methodology for reasoning with contracts

3 Formalization of the UML/SysML component and contract language with a
variant of Timed Input/Output Automata

4 A partial implementation in the IFx2 verification tool

5 A contract theory for Timed Input/Output Automata supporting the
verification of general safety properties

6 Automated model-checking for verification of contract satisfaction and
deterministic safety properties

7 Experimental evidence that previously intractable models can be tamed

50/52

Conclusion
Contributions

1 An extension for modeling contracts in UML/SysML amenable to
compositional verification

2 Ensured compliance with the methodology for reasoning with contracts

3 Formalization of the UML/SysML component and contract language with a
variant of Timed Input/Output Automata

4 A partial implementation in the IFx2 verification tool

5 A contract theory for Timed Input/Output Automata supporting the
verification of general safety properties

6 Automated model-checking for verification of contract satisfaction and
deterministic safety properties

7 Experimental evidence that previously intractable models can be tamed

51/52

Conclusion
Publications

1. I Dragomir, I Ober, C Percebois: Safety Contracts for Timed Reactive Components in
SysML. SOFSEM 2014

2. I Dragomir, I Ober, C Percebois: Integrating Verifiable Assume/Guarantee Contracts in
UML/SysML. ACES-MB 2013

3. I Dragomir, I Ober, C Percebois: Safety contracts for reactive timed systems (extended
abstract). GDR GPL 2013

4. I Dragomir, I Ober, D Lesens: A Case Study in Formal System Engineering with SysML.
ICECCS 2012

5. E Conquet, F-X Dormoy, I Dragomir, S Graf, D Lesens, P Nienaltowski, I Ober: Formal
Model Driven Engineering for Space Onboard Software. ERTS2 2012

6. Il Ober, Iu Ober, I Dragomir, E A Aboussoror: UML/SysML semantic tunings. ISSE 2011

7. E Conquet, F-X Dormoy, I Dragomir, A Le Guennec, D Lesens, P Nienaltowski, I Ober:
Modèles système, modèles logiciel et modèles de code dans les applications spatiales. Génie
logiciel 2011

8. I Ober, I Dragomir: Unambiguous UML composite structures: the OMEGA2 experience.
SOFSEM 2011

9. I Dragomir, I Ober: Well-formedness and typing rules for UML Composite Structures.
CoRR 2010

10. I Ober, I Dragomir: OMEGA2: A new version of the profile and the tools. UML&AADL
2010

52/52

Perspectives

Short-term perspectives:

1 Extend the contract framework in order to encompass other types of
requirements, i.e. progress, etc.

2 Automate all the verification steps, provide automate assistance for building
the proof tree

Long-term perspectives:

1 Provide methods or methodological guidelines for deriving intermediate
contracts from the properties one is trying to prove

2 Automatically generate assumptions and guarantees

3 Perform error diagnostics on contracts both locally and globally in the proof
tree and bridge the gap to the semi-formal model

Thank you!

52/52

Perspectives

Short-term perspectives:

1 Extend the contract framework in order to encompass other types of
requirements, i.e. progress, etc.

2 Automate all the verification steps, provide automate assistance for building
the proof tree

Long-term perspectives:

1 Provide methods or methodological guidelines for deriving intermediate
contracts from the properties one is trying to prove

2 Automatically generate assumptions and guarantees

3 Perform error diagnostics on contracts both locally and globally in the proof
tree and bridge the gap to the semi-formal model

Thank you!

52/52

Perspectives

Short-term perspectives:

1 Extend the contract framework in order to encompass other types of
requirements, i.e. progress, etc.

2 Automate all the verification steps, provide automate assistance for building
the proof tree

Long-term perspectives:

1 Provide methods or methodological guidelines for deriving intermediate
contracts from the properties one is trying to prove

2 Automatically generate assumptions and guarantees

3 Perform error diagnostics on contracts both locally and globally in the proof
tree and bridge the gap to the semi-formal model

Thank you!

	Context and Problematics
	A Method for Reasoning with Contracts
	Theoretical Contributions
	Integrating Contracts in SysML
	Modeling Components: a Timed Input/Output Automata Flavour
	A Formal Contract Theory for TIOA
	Automated Verification with Model-Checking
	Evaluation and Related Work

	Practical Contributions
	Profile Well-Formedness Rules
	Implementation of the SysML to TIOA Transformation
	The ATV SGS Case Study

	Conclusion and Perspectives

