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Abstract. A variety of system design and architecture description lan-
guages, such as SysML, UML or AADL, rely on the decomposition of
complex system designs into communicating timed components. In this
paper we consider the contract-based specification of such components.
A contract is a pair formed of an assumption, which is an abstraction
of the component’s environment, and a guarantee, which is an abstrac-
tion of the component’s behaviour given that the environment behaves
according to the assumption. Thus, a contract concentrates on a specific
aspect of the component’s functionality and on a subset of its interface,
which makes it relatively simpler to specify. Contracts may be used as
an aid for hierarchical decomposition during design or for verification of
properties of composites. This paper defines contracts for components
formalized as a variant of timed input/output automata and introduces
compositional results allowing to reason with contracts

1 Introduction

The development of safety critical real-time embedded systems is a complex and
costly process, and the early validation of design models is of paramount impor-
tance for satisfying qualification requirements, reducing overall costs and increas-
ing quality. Design models are validated using a variety of techniques, including
design reviews [10], simulation and model-checking [4,11]. In all these activities
system requirements play a central role; for this reason processes-oriented stan-
dards such as the DO-178C [7] emphasize the necessity to model requirements at
various levels of abstraction and ensure their traceability from high-level down
to detailed design and coding.

Since the vast majority of systems are designed with a component-based ap-
proach, the mapping of requirements is often difficult: a requirement is in general
satisfied by the collaboration of a set of components and each component is in-
volved in satisfying several requirements. A way to tackle this problem is to have
partial and abstract component specifications which concentrate on specifying
how a particular component collaborates in realizing a particular requirement;
such a specification is called a contract. A contract is defined as a pair formed of
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an assumption, which is an abstraction of the component’s environment, and a
guarantee, which is an abstraction of the component’s behaviour given that the
environment behaves according to the assumption.

The justification for using contracts is therefore manyfold: they support re-
quirement specification and decomposition, mapping and tracing requirements to
components and can be used in model reviews. Last but not least, contracts can
support formal verification of properties through model-checking since, given the
right composability properties, they can be used to restructure the verification
of a property by splitting it in two steps: (1) verify that the components satisfy
their corresponding contract and (2) the network of contracts correctly assem-
bles and satisfies the property. Thus, one only needs to reason on abstractions
when verifying a property, which potentially induces an important reduction of
the combinatorial explosion problem.

Contracts have been introduced in object-oriented programming languages [8]
and related concepts have since been defined for other component-based for-
malisms. Our contract framework is an instance of the generic framework pro-
posed in [13,12], which formalizes the relations that come into play in such a
framework and the properties that these relations have to satisfy in order to
support reasoning with contracts.

Our interest in contracts is driven by potential applications in system engi-
neering using SysML [9], in particular in the verification of complex industrial-
scale designs for which we have reached the limits of our tools [3]. In SysML
one can describe various types of communicating timed reactive components; for
most of these, their semantics can be given in a variant of Timed Input/Output
Automata (TIOA [5]). For this reason, this work concentrates on defining a
contract framework for TIOA. The SysML layer, describing how contracts are
defined and used in SysML, is left aside for space and complexity reasons and is
subject to future work.

2 Contract-based Reasoning for Timed Reactive Systems

Being able to specify a contract for a component and to verify its satisfaction is an
important step, but it is not sufficient to render the use of contracts interesting in
a system design process. One also needs mechanisms for reasoning with contracts,
i.e. check that the contracts for a set of components combine together to ensure
the satisfaction of a global requirement on the composition of these components.
Our framework follows a generic scheme for reasoning with contracts proposed
by Quinton et. al. in [13,12].

In this scheme (illustrated in Figure 1), a system design is a hierarchical
composition of components, these being Timed Input/Output Automata in our
case. At each level of the hierarchy, n components K1, ...,Kn are combined to
form a composite component K1 ‖ ... ‖ Kn. The purpose of reasoning with
contracts is to show that the composite satisfies a global property ϕ based on the
contracts of K1, ...,Kn, and avoiding the need to verify the property directly by
model-checking the composite component, since this often leads to combinatorial



Fig. 1: Contract-based reasoning for a subsystem containing three components as pre-
sented in [12].

explosion. The contracts being specified by more abstract automata, one can
assume that their composition will be less subject to explosion.

The reasoning proceeds as follows: for each component Ki, a contract Ci is
given which consists of an abstraction Ai of the behaviour of Ki’s environment,
and an abstraction Gi that describes the expected behaviour of Ki given that
the environment acts as Ai. Figure 1 presents three components K1, K2 and K3

and a corresponding set of contracts C1, respectively C2 and C3. Step 1 of the
reasoning is to verify that each component is a correct implementation of the
contract, i.e. the component satisfies its contract.

Step 2 of the reasoning consists in proving that the set of contracts {C1, C2, ...,
Cn} imply that the composite K1 ‖ ... ‖ Kn satisfies a contract C = (A,G). To
do so, [6] introduces a hierarchy relation between contracts, later called domi-
nance in [12]: a set of contracts {C1, C2, ..., Cn} dominates a contract C if and
only if the composition of any valid implementations of C1, C2, ..., Cn (hence,
also K1 ‖ ... ‖ Kn) is an implementation of C. As we will see later, to prove
dominance one will have to verify certain conditions on compositions of assump-
tions and guarantees. In a multi-level hierarchy, the second step can be applied
recursively up to a top-level contract (i.e. a contract for the whole system).

Finally, in the third step one has to prove that the system given by the top
contract conforms to the specification ϕ (i.e. the property is satisfied): A ‖ G �
ϕ, where ‖ denotes the usual parallel composition operator and � a conformance
relation which in our case is TIOA language inclusion, ϕ also being specified as
a TIOA.



The reasoning strategy presented here assumes that the system designer de-
fines all the contracts necessary for verifying a particular requirement ϕ. How
these contracts are produced is an interesting question but is outside the scope
of this paper.

3 Timed Input/Output Automata

Many mathematical formalisms have been proposed in the literature for mod-
elling communicating timed reactive components. We chose to build our frame-
work based on a variant of Timed Input/Output Automata of [5] since it is
one of the most general formalisms, thoroughly defined and for which several
interesting compositionality results are already available.

The state space of a TIOA is defined as a set of possible valuations of a set
of variables with arbitrary types. The state evolves either by discrete transitions
or by trajectories. A discrete transition instantly changes the state (i.e. variable
valuations) and is labelled with an action that may be internal, an input or an
outputs. Trajectories change the state continuously during a time interval. The
behaviour of a TIOA is described by an execution fragment which is a finite
or infinite sequence alternating trajectories and discrete transitions. The visible
behaviour of a TIOA is described by a trace, which is a projection of an execution
trace onto visible actions (inputs and outputs) and in which, from trajectories,
only the information about the elapsed time is kept, and information about the
variable valuations is abstracted away. For full definitions of all these notions,
the reader is referred to [5].

There are two main differences between the TIOA of [5] and our variant:

– [5] allows general functions to be used as trajectories. We restrict ourselves
to the identity function for clocks, and to the constant functions for dis-
crete variables. This restriction makes the model expressiveness equivalent
to that of Alur-Dill timed automata [1], and will be important later on as
it opens the possibility to automatically verify simulation relations between
automata (simulation is undecidable for the TIOA of [5]). It also simplifies
the presentation of examples, since trajectories are then fully determined by
their domain, so we simply use the interval J to represent the trajectory.
However, this hypothesis is not needed for proving the compositionality re-
sults in section 4.

– In addition to inputs and outputs, we allow for another type of visible actions;
this is because, in [5], when composing two automata, an output of one
matched by an input of the other become an output of the composite, which
does not correspond to our needs when using the TIOA for defining the
semantics of usual modelling languages like SysML. As we will show, in
order for contract dominance to work, we still need the resulting action to
be visible in traces, hence the necessity for an additional type of actions.

In the following, for a TIOA A, we denote IA its set of inputs, OA its out-
puts, VA its visible actions, HA its internal actions, EA = IA ∪ OA ∪ VA and



AA = EA ∪HA. The parallel composition operator for TIOA, defined similarly
to [5], is denoted by ‖. We sometimes use the term component instead of TIOA,
interchangeably.

As in [5], we will use trace inclusion as the refinement relation between com-
ponents:

Definition 1 (Comparable components). Two components K1 and K2 are
comparable if they have the same external interface, i.e. EK1

= EK2
.

Definition 2 (Conformance). Let K1 and K2 be two comparable components.
K1 conforms to K2, denoted K1 � K2, if tracesK1 ⊆ tracesK2 .

The conformance relation is used in the definition of refinement under context
and for verifying the satisfaction of the system’s properties by the top contract:
A ‖ G � ϕ, where A ‖ G and ϕ have the same interface. It can be easily shown
that conformance is a preorder. The following useful compositionality result,
presented in the Timed Input/Output Automata theory of [5], can be easily
extended to our variant of TIOA:

Theorem 1 (Composability theorem 8.5 of [5]). Let I and S be two com-
parable components with I � S and E a component compatible with both I and
S. Then I ‖ E � S ‖ E.

4 Contracts for Timed Input/Output Automata

In this section we provide the definitions for TIOA contracts and the relations
described in Section 2, and we list the properties that have been proved upon
these and that make contract-based reasoning possible.

Definition 3 (Environment). Let K be a component. An environment E for
the component K is a timed input/output automaton for which the following
hold: IE ⊆ OK and OE ⊆ IK .

Definition 4 (Contract). A contract for a component K is a pair (A,G) of
TIOA such that IA = OG and IG = OA (i.e. the composition pair A ‖ G defines
a closed system) and IG ⊆ IK and OG ⊆ OK (i.e. the interface of G is a subset
of that of K). A is called the assumption over the environment of the component
and G is called the guarantee.

Definition 5 (Closed/open component). A component K is closed if IK =
OK = ∅. A component is open if it is not closed.

In the following, closed components result from the composition open com-
ponents with complementary interfaces.

The refinement under context relation verifies that, given an environment
compatible with two components, one component is a refinement of the other in
the specified environment. We define this relation with respect to conformance.
Since we want to take into account interface refinement between the components



and conformance imposes comparability, we have to compose each member of
the conformance relation with an additional timed input/output automaton such
that they both define closed comparable systems.

Definition 6 (Refinement under context). Let K1 and K2 be two compo-
nents such that IK2

⊆ IK1
∪ VK1

, OK2
⊆ OK1

∪ VK1
and VK2

⊆ VK1
. Let E be

an environment for K1 compatible with both K1 and K2. We say that K1 refines
K2 in the context of E, denoted K1 vE K2, if

K1 ‖ E ‖ E′ � K2 ‖ E ‖ K ′ ‖ E′

where

– E′ is a TIOA defined such that the composition K1 ‖ E ‖ E′ is closed. E′

consumes all outputs of K1 not matched by E and may emit all inputs of K1

not appearing as outputs of E.
– K ′ is a TIOA defined similarly to E′ such that the composition K2 ‖ E ‖
K ′ ‖ E′ is closed and comparable to K1 ‖ E ‖ E′.

The complete formal definition of E′ and K ′ appears in the extended version of
this paper.

The particular relationship required between the interfaces of K1 and K2 in
the above definition is due to the fact that both K1 and K2 can be components
obtained from composition, e.g. K1 = K ′1 ‖ K3 and K2 = K ′2 ‖ K3, where
IK′

2
⊆ IK′

1
, OK′

2
⊆ OK′

1
and VK′

2
⊆ VK′

1
(this happens in particular when K ′2

is a contract guarantee for K ′1). Then, by composition, actions of K3 may be
matched by action of K ′1 but have no input/output correspondent in K ′2. This
case also imposes the term VK1 ∩OK2 for the inputs of K ′, since the additional
outputs of K2 may belong to a different component, and the term VK1

∩ IK2
for

the outputs of K ′.

Theorem 2. Given a set K of comparable components, and given a fixed con-
text E for that interface, refinement under context vE is a preorder over K.

The following, required to allow reasoning with contracts, as shown in [12],
hold in our framework:

Theorem 3 (Compositionality of refinement under context). Let K1 and
K2 be two components and E an environment compatible with both K1 and K2

such that E = E1 ‖ E2. If K1 vE1‖E2
K2 then K1 ‖ E1 vE2 K2 ‖ E1.

Theorem 4 (Soundness of circular reasoning). Let K be a component, E
its environment and C = (A,G) the contract for K such that K and G are
compatible with each of E and A. If tracesG is closed under limits and closed
under time-extension, K vA G and E vG A then K vE G.

The definitions of closure under limits and closure under time extension for
a set of traces are those given in [5]. Closure under time extension informally
means that any trace can be extended with time passage to infinity. By making
these hypotheses on G, G can only express safety properties on K and cannot
impose stronger constraints on time passage than K.

We define contract satisfaction based on refinement under context:



Definition 7 (Contract satisfaction). A component K satisfies (implements)
a contract C = (A,G), denoted K |= C, if and only if K vA G.

Definition 8 (Contract dominance). Let C be a contract with the interface
P and {Ci}ni=1 a set of contracts with the interface {Pi}ni=1 and P ⊆

⋃n
i=1 Pi.

Then {Ci}ni=1 dominates C if and only if for any set of components {Ki}ni=1

such that ∀i, Ki |= Ci, we have that (K1 ‖ K2 ‖ · · · ‖ Kn) |= C

Based on theorems 2, 3 and 4, the following theorem, which is a variant of
Theorem 2.3.5 from [12] holds:

Theorem 5 (Sufficient condition for dominance). {Ci}ni=1 dominates C
if tracesA, tracesG, tracesAi

and tracesGi
are closed under limits and under

time-extension and

{
G1 ‖ ... ‖ Gn vA G
∀0 ≤ i ≤ n. A ‖ (G1 ‖ ... ‖ Gi−1 ‖ Gi+1 ‖ ... ‖ Gn) vGi

Ai,

The above theorem specifies the proof obligations that need to be discharged
in order to be able to infer dominance in Step 2 of the verification methodology
described in §2.

5 A toy example

Figure 2 presents a small example of system composed of three communicat-
ing components. The notation is not fully detailed here but should be relatively
straightforward. The complete version of the paper provides all the missing de-
tail. We are interested in automata communicating by asynchronous messages.
An automaton is contained within a frame, arrows between frames represent mes-
sages that are output by one automaton and input by the other. It is assumed
that each automaton has an implicit variable queue which stores the incoming
messages. The input-enabledness property of TIOA is well suited here: in any
state, the automaton can input a message and store it in the queue; these input
transitions are not represented in the figure.

Outputs of a message m are denoted !m, consumption of a message m when
at the head of the queue is denoted ↓ m. i, j and integer variables while x, y
are clocks. We use urgency labels to implicitly constrains the set of trajectories
starting in a state, like in TA with urgency [2] : eager transitions with no guard
restrict the set of trajectories to point trajectories only, eager transitions with
a clock guard restrict the set of trajectories so that they end in the point where
the guard becomes true, while lazy transitions do not add any restrictions (time
may elapse indefinitely).

The systemK contains three componentsK1,K2 andK3:K1 sends a message
a to the environment and a message p to K2, then awaits for a q signal from K2.
If q is received before a deadline δ1, K1 emits a again, otherwise it goes back
to the initial state when q is received. In addition, K1 counts the number of a’s
emitted (in i), and can answer a message m with a message n(i).



Fig. 2: A system of three communicating components.

K2 waits for p then sends a signal b to the environment. After that, it waits
for δ2 time units and sends q to K1; if p is received during this time, b is emitted
again. K2 counts the number of b’s emitted (in j), and can answer a message u
with a message v(j).

K3 sporadically sends m and u to K1 respectively K2.

The interesting property of this system is that, if δ1 < δ2, then the composi-
tion emits a sequence alternating a’s and b’s, represented in Figure 3. K3 does
not play any role in this property, but hinders its verification if one tries to use
model-checking directly on K1 ‖ K2 ‖ K3 as exchanges of m,n, u, v will largely
contribute to the global combinatorial explosion.

Figure 4 presents a the contracts for the two components K1 and K2 which
can be used for proving the property.In the case of K1, the assumption over
the environment sends q after at least δ1 time units since p is received and the
component guarantees that consecutive a are separated by an input of q. For
K2, the environment guarantees that it will send p only after receiving a qand
the component guarantees a delay of δ2 time units between an output of b and
an output of q. For K3 the contract is given by two empty automata since we
don’t need any assumption/guarantee on K3 for proving ϕ.

The first step of the verification, as presented in Section 2, is to prove that
the modelled components satisfy the given contracts. Then, in the second step
we prove that the contracts {C1, C2, C3} dominate a top-level contract for the
system, C, shown in Figure 5. This contract guarantees that a’s and b’s alternate

Fig. 3: The property that our example has to satisfy.



Fig. 4: Contracts for the components K1 and K2 of the running example.

Fig. 5: Top-level contract for K.

with at least a δ2 delay between them. No assumption is made on the environ-
ment. Verifying dominance consists in verifying several refinement under context
relations: (1) G1 ‖ G2 vA G, (2) A ‖ G1 vG2

A2 and (3) A ‖ G2 vG1
A1 (note

that we dropped G3 and A3 which are empty). The compositions involved have
in principle a much smaller state space than the original system K. The last step
in the verification of a system model is to prove that the top contract satisfies
the global property, i.e. A ‖ G � ϕ, which is true for the running example.

6 Conclusions and future work

We have presented a contract framework for Timed Input/Output Automata and
results which allow contract-based reasoning for verifying timed safety properties
of systems of TIOA components. For the moment, the method is demonstrated
on a small toy example, and many steps of the method remain manual. For
example, for the sake of generality, the conformance relation used in the definition
of contract satisfaction and in the proof obligations for dominance is TIOA
trace inclusion. However, for practical systems one can verify the existence of a
simulation, which implies trace inclusion, and for which an efficient automated
procedure exists [14].

In addition to other reasons for using contracts mentioned in the introduction,
we believe that contract-based reasoning can potentially alleviate the problem
of combinatorial explosion for the verification of large systems. Actually our



motivation for exploring contracts is driven by potential applications in sys-
tem engineering using SysML [9]. In [3] we have presented a case study of an
industrial-scale system and we have sketched a proof method for a core property
of that system which would use contracts, but which remained to be done. The
present work is a first step towards introducing contracts in SysML and providing
a full solution to that problem. However, a lot of work remains to be done: define
a suitable syntax for contracts in SysML, define the semantic mapping between
the SysML components and contracts and their TIOA counterparts, provide the
automatic verification support for contract satisfaction and dominance based on
simulation checking, and finally provide quantitative evidence for the efficiency
of contract-based versus direct verification .
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