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Safety Contracts for Timed Reactive Components in SysML

Abstract

A variety of system design and architecture description languages, such as
SysML, UML or AADL, allows the decomposition of complex system de-
signs into communicating timed components. In this paper we consider the
contract-based specification of such components. A contract is a pair formed
of an assumption, which is an abstraction of the component’s environment,
and a guarantee, which is an abstraction of the component’s behavior given
that the environment behaves according to the assumption. Thus, a contract
concentrates on a specific aspect of the component’s functionality and on a
subset of its interface, which makes it relatively simpler to specify. Con-
tracts may be used as an aid for hierarchical decomposition during design
or for verification of properties of composites. This paper defines contracts
for components formalized as a variant of timed input/output automata, in-
troduces compositional results allowing to reason with contracts and shows
how contracts can be used in a high-level modeling language (SysML) for
specification and verification, based on an example extracted from a real-life
system.

Keywords

component, timed input-output automata, contract, V&V, compositional rea-
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Safety Contracts for Timed Reactive Components in SysML

1 Motivation and approach

The development of safety critical real-time embedded systems is a complex and costly process,
and the early validation of design models is of paramount importance for satisfying qualification
requirements, reducing overall costs and increasing quality. Design models are validated using
a variety of techniques, including design reviews [31], simulation and model-checking [24, 32].
In all these activities system requirements play a central role; for this reason processes-oriented
standards such as the DO-178C [29] emphasize the necessity to model requirements at various
levels of abstraction and ensure their traceability from high-level down to detailed design and
coding.

Since the vast majority of systems are designed with a component-based approach, the map-
ping of requirements is often difficult: a requirement is in general satisfied by the collaboration of
a set of components and each component is involved in satisfying several requirements. A way to
tackle this problem is to have partial and abstract component specifications which concentrate on
specifying how a particular component collaborates in realizing a particular requirement; such a
specification is called a contract. A contract is defined as a pair formed of an assumption, which
is an abstraction of the component’s environment, and a guarantee, which is an abstraction of the
component’s behavior given that the environment behaves according to the assumption.

The justification for using contracts is therefore manyfold: support for requirement specifi-
cation and decomposition, mapping and tracing requirements to components and even for model
reviews. Last but not least, contracts can support formal verification of properties through model-
checking since, given the right composability properties, they can be used to restructure the verifi-
cation of a property by splitting it in two steps: (1) verify that each component satisfies its contract
and (2) verify that the network of contracts correctly assembles and satisfies the property. Thus,
one only needs to reason on abstractions when verifying a property, which potentially induces an
important reduction of the combinatorial explosion problem.

Our interest in contracts is driven by potential applications in system engineering using SysML
[30], in particular in the verification of complex industrial-scale designs for which we have reached
the limits of our tools [22]. In SysML one can describe various types of communicating timed reac-
tive components; for most of these, their semantics can be given in a variant of Timed Input/Output
Automata (TIOA) [27]. For this reason, in this paper we concentrate on defining a contract frame-
work for TIOA. The SysML layer is partially explored: we show how contracts can be used for
requirement verification without providing details about the language aspects that are subject of a
different paper [23].

Paper structure. In §2 we present the contract framework described in [33]. §3 introduces the
formal notation for system models and their semantics. In §4 we define the contract framework and
we specify the verification relations to be used and their properties, while applying the contract-
based theory on a toy-example. In §5 we apply the verification mechanism on an industrial-scale
system model, while §6 presents other related approaches, before concluding.

2 A meta-theory for Contract-based Reasoning

Our contract theory is an instance of the meta-theory proposed in [34] and later detailed in [33],
which formalizes the relations that come into play in a contract theory and the properties that these
relations have to satisfy in order to support reasoning with contracts. The term meta-theory refers
to the fact that [33] does not fix the formalism used for component specification, nor the exact
nature of certain relations defined on specifications (conformance, refinement under context). In
order to obtain a concrete contract theory for a particular specification formalism one has to define
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Figure 1: Contract-based reasoning for a subsystem containing three components ([33]).

these relationships such that certain properties, pre-required by the meta-theory, are satisfied. In
return, [33] provides a ready-to-use contract-based reasoning methodology, described below.

The purpose of the methodology (illustrated in Figure 1) is to support reasoning with contracts
in a system obtained by hierarchical composition of components. At each level of the hierarchy,
n components K1, ...,Kn are combined to form a composite component K1 ‖ ... ‖ Kn, where ‖
denotes the usual parallel composition operator. Then verifying that the the composite satisfies a
global property ϕ runs down to checking that the contracts implemented by K1, · · · ,Kn combine
together correctly to ensure ϕ. This avoids the need to directly model-check the composite to
establish ϕ and, so, alleviates the combinatorial explosion of the state space. The contracts being
specified by more abstract automata, one can assume that their composition will be reduced.

The reasoning proceeds as follows: for each component Ki, a contract Ci is given which
consists of an abstraction Ai of the behavior of Ki’s environment, and an abstraction Gi that
describes the expected behavior of Ki given that the environment acts as Ai. Figure 1 presents
three components K1, K2 and K3 and a corresponding set of contracts C1, respectively C2 and
C3. Step 1 of the reasoning is to verify that each component is a correct implementation of the
contract, i.e. the component satisfies its contract.

Step 2 of the reasoning consists in defining a contract C = (A,G) for the composition K1 ‖
... ‖ Kn and proving that the set of contracts {C1, C2, ..., Cn} impliesC. To do so, the meta-theory
of [33] introduces a hierarchy relation between contracts called dominance based on an idea first
introduced in [28]: a set of contracts {C1, C2, ..., Cn} dominates a contract C if and only if the
composition of any valid implementations of C1, C2, ..., Cn is an implementation of C. As we
will see later, to prove dominance one will have to verify certain conditions on compositions of
assumptions and guarantees. In a multi-level hierarchy, the second step can be applied recursively
up to a top-level contract, i.e. a contract for the whole (sub)system.

Finally, in the third step one has to prove that the top contract C = (A,G) implies the specifi-
cation ϕ. This is done by verifying that A ‖ G � ϕ, where � is a conformance relation. This step
is sufficient for proving that the whole system satisfies ϕ if and only if either the assumption A is
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empty as it is the case when the property is defined for the entire closed modeled system or A is
a correct abstraction of the environment E with which S communicates given that S behaves like
G, i.e. E satisfies the “mirror” contract C−1 = (G,A).

The reasoning strategy presented here assumes that the system designer defines all the con-
tracts necessary for verifying a particular requirement ϕ. How these contracts are produced is
an interesting question but it is outside the scope of this paper. A possible approach is to ap-
ply contracts not only a posteriori for verification but also during design, in a top-down manner:
considering that we want to design a system S that satisfies a requirement ϕ, we define a closed
contract which conforms to ϕ then we refine the contract until correct implementations can be
modeled while verifying at each step that dominance is satisfied. For a posteriori construction of
contracts, another possibility is to concentrate on the guarantees and automatically generate the
weakest assumptions needed for a component to satisfy a guarantee.

Contributions. The theoretical contribution of this paper is the instantiation of this meta-theory
for a variant of Timed Input/Output Automata [27], which further required choosing the appropri-
ate refinement relations and proving that they satisfy certain properties needed for the meta-theory
to be applied. Concretely, this involved defining refinement under context and conformance rela-
tions and proving the composability properties required by the meta-theory, all of which can be
found in §4.

The practical contribution of this paper is the application of the contract framework to a case
study modeled in SysML, which can be found in §5. Due to space limitations we skip the syntactic
details of how contracts are expressed in SysML and we concentrate on describing the example,
the property of interest and the contracts involved in proving it. The relatively complex SysML
language aspects are detailed in [23].

3 Timed Input/Output Automata

Many mathematical formalisms have been proposed in the literature for modelling communicat-
ing timed reactive components. We choose to build our framework based on a variant of Timed
Input/Output Automata of [27] since it is one of the most general formalisms, thoroughly defined
and for which several interesting compositionality results are already available.

Definition 1 (Timed Input/Output Automaton). A timed input/output automaton A is a tuple
(X,Clk,Q, θ, I, O, V,H,D, T ) where

• X is a finite set of discrete variables andClk is a finite set of clocks. We denote Y = X∪Clk
the set of internal variables.

• Q ⊆ val(Y ) is a set of states where val(Y ) is the set of valuations for Y . A valuation is a
function that associates with each variable from Y a value from its domain.

• θ ∈ Q is the start state.

• I is a set of input actions, O a set of output actions and V a set of visible actions. We denote
E = I ∪ O ∪ V . Input actions are represented by ? before their name and output actions
are represented by ! before their name.

• H is a set of internal actions. We denote A = E ∪H .

• I/O, V and H are pairwise disjoint.

• D ⊆ Q×A×Q is the set of discrete transitions. We denote by x a−→ x′ any (x, a, x′) ∈ D.
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• T is the set of trajectories. Each trajectory is a function τ : Jτ → Q, where Jτ is a real
interval of type [0, t] or [0,∞) with t ∈ R+.

The difference between the TIOA of [27] and our variant is that in addition to inputs and
outputs, we allow for another type of visible actions; this is because, in [27], when composing two
automata, an output of one matched by an input of the other becomes an output of the composite,
which does not correspond to our needs when using the TIOA for defining the semantics of usual
modelling languages like SysML. As we will show, in order for contract dominance to work, we
still need the resulting action to be visible in traces, hence the necessity for an additional type of
actions.

Moreover, note that in the following we will limit our attention to trajectories that are constant
functions for discrete variables, and linear functions with derivative equal to 1 for clocks, while
[27] allows more general functions to be used as trajectories. This restriction makes the model
expressiveness equivalent to that of Alur-Dill timed automata [2], and will be important later on as
it opens the possibility to automatically verify simulation relations between automata (simulation
is undecidable for the TIOA of [27]). It also simplifies the presentation of examples, since trajec-
tories are then fully determined by their domain, so we simply use the interval J to represent the
trajectory. However, this hypothesis is not needed for proving the compositionality results in §4,
and so we did not integrate it to the definition to preserve generality. Furthermore, to simplify the
presentation, we limit the domain of a trajectory to closed intervals of type [0, t] with t ∈ R+ or
open intervals of type [0,∞).

For a trajectory τ we denote τ.ltime to be the supremum of its domain. A trajectory is closed
if the domain is a closed interval.

A timed input/output automaton has to satisfy the following axioms:

A0) (Existence of point trajectories)
∀x ∈ Q, γ(x) ∈ T where γ(x) : [0, 0]→ x maps 0 to x.

A1) (Prefix closure)
∀τ ∈ T , ∀τ ′ a prefix of τ (i.e. τ ′ obtained by restricting τ to [0, t] with t ∈ Jτ ), τ ′ ∈ T .

A2) (Suffix closure)
∀τ ∈ T , ∀τ ′ a suffix of τ , τ ′ ∈ T . τ ′ is a suffix if ∃t ∈ Jτ such that τ ′ : [0, τ.ltime−t]→ Q
if τ is closed, τ ′ : [0,∞) → Q if τ is open, and τ ′(u) = τ(t + u) (i.e. τ ′ obtained by
restricting τ to Jτ ∩ [t,∞) and left-shifting it such that Jτ ′ starts in 0).

A3) (Concatenation closure)
Let τ0τ1τ2 · · · be a (finite or countably infinite) sequence of trajectories in T such that, for
each nonfinal index i, τi is closed and τi(τi.ltime) = τi+1(0). Then τ0

aτ1
aτ2

a · · · ∈ T ,
where a denotes the concatenation operator (i.e. the union between a first closed trajectory
and a second one right-shifted such that its start time coincides to the limit time of the first
one).

A4) (Input actions enabling)
∀x ∈ Q, ∀a ∈ I , ∃x′ ∈ Q such that x ?a−→ x′.

A5) (Time-passage enabling)
∀x ∈ Q, ∃τ ∈ T such that τ(0) = x and either

1. τ.ltime =∞, or

2. τ is closed and some l ∈ H ∪ V ∪O is enabled in τ(τ.ltime).
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3.1 Notation and running example

For compactness and understandability, in this paper we use a graphical notation, only intended
for informally representing TIOA examples, which implicitly defines states, actions, transitions
and trajectories (in the sense of the TIOA definition). An example is shown in Figure 2.

We are interested in automata communicating by asynchronous messages. An automaton is
contained within a frame, arrows between frames represent messages that are output by one au-
tomaton and input by the other. It is assumed that each automaton has an implicit variable queue
which stores the incoming messages. The input-enabledness axiom (A4) of TIOA is well suited
here: in any state, the automaton can input a message and store it in the queue. These input
transitions are not represented.

It is assumed that each automaton has a location variable which ranges in a finite domain, with
values represented by black dots. Other variables can be used; in the example we only use integers
(i, j) and clocks (x, y).

An arc between a dot s1 and a dot s2 is a template representing a set of discrete transitions
(in the sense of the TIOA definition) between states q1 and q2 such that q1.location = s1 and
q2.location = s2. On an arc we may represent several information:

• A guard condition between brackets: the meaning is that the TIOA transition exists only if
the condition is satisfied in the starting state q1.

• A message consumption guard, denoted ↓m: the meaning is that the TIOA transition exists
only if in q1 the message queue begins with a message m. The queue of q2 must then be
equal to the tail of the q1 queue. Note: ↓m is not an input action in the sense of TIOA. As
mentioned, input actions are not explicitly represented since TIOAs are input-complete.

• An output action for a message m denoted !m

• A sequence of assignments of discrete and clock variables: the meaning is that the TIOA
transition exists only if q2 can be obtained from q1 by applying these assignments.

• An urgency label, which implicitly constrains the set of trajectories starting in q1. We use
the notion of urgency defined for Timed Automata in [7]. This means that, by default, in
any state, any trajectory with an arbitrary domain [0, j] or [0,∞) is allowed. This set of
trajectory is restricted by the urgency labels of transitions outgoing from q1 as follows:

– lazy transitions do not add any restrictions.

– eager transitions with no clock guard restrict the set of trajectories to point trajectories
only. Eager transitions with a clock guard restrict the set of trajectories so that they
end in the smallest j where the guard is true.

The subsystem K of the running example (Figure 2) contains three components K1, K2 and
K3 represented as timed input/output automata: K1 sends a message a to the environment and a
message p to K2, then awaits a message q from K2. If q is received before a deadline (constant
δ1), K1 emits a again (the q-a cycle represented in red), otherwise it goes back to the initial state
when q is received. In addition, K1 counts the number of a’s emitted (in i), and can answer a
message m with a message n(i) in any state (the m-n cycle represented with green).

K2 waits for p then sends a message b to the environment. After that, it waits for δ2 time units
and sends q to K1; if p is received during this time, b is emitted again (the p-b cycle represented
in red). K2 counts the number of b’s emitted (in j), and can answer a message u with a message
v(j) in any state (the u-v cycle represented with blue).
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Figure 2: Running example containing three components that interchange p, q, m, n, u and v
messages and send to the environment sequences of a and b.

K3 sporadically sends m (represented in green) and u (represented in blue) to K1 respectively
K2. The purpose of componentK3 is to show how signature refinement is taken into consideration
when contracts are defined and refinement is checked.

The interesting property of this system is that, if δ1 < δ2, then the composition emits a se-
quence alternating a’s and b’s. This safety requirement is modelled in Figure 3. We use it as a
running example to show how this can be proved using contracts.

Figure 3: The requirement that the running example has to satisfy.

3.2 TIOA behaviour and composition

The behaviour of a timed input/output automaton is given by sets of execution fragments. An ex-
ecution fragment records what happens during a particular run of an automaton including discrete
changes of states and changes that occur during time passage (trajectories).

Definition 2 (Execution fragment). An execution fragment of a timed input-output automaton A
is a (possibly infinite) sequence α = τ0a1τ1a2τ2 · · · where (1) each ai is an action inAA, (2) each
τi is a trajectory in T , (3) all τi are closed except the last trajectory which can be either open or
closed and (4) if τi is not the last trajectory in α then τi(τi.ltime)

ai+1−→ τi+1(0).

An execution fragment is closed if it is a finite sequence and its final trajectory is closed. For
the timed input-output automatonK1, an execution fragment isα = [0, 0] !a [0, 0] !p [0, δ1] ε [0, δ2−
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δ1] ?q [0, 0] ↓q [0, 0], where ε denotes the silent transition of clock comparison and ?q the input of
message q. Note that we represent trajectories by their domain.

A trace is a projection of an execution fragment which preserves only the external actions and
the time elapse intervals. To define it, we use an operator for restricting an execution trace α of
A on a pair (A, Y ) where A ⊆ AA is a subset of actions and Y ⊆ YA a subset of variables. The
restriction, denoted αd(A, Y ), is computed as follows: project all trajectories of α on the variables
in Y (i.e. only the evolution of variables in Y is followed by the trajectory, denoted τidY ), remove
the actions not contained in A and concatenate all adjacent trajectories. The formalization and
properties of this operator can be found in [27].

Definition 3 (Trace). Let α an execution fragment. Then trace(α) is the restriction of α to
(EA, ∅), denoted trace(α) = αd(EA, ∅) (i.e. ai is an action in EA and τi : Jτi → ∅, Jτi ⊆ R+,
records only the length of the time-passage).

We denote by tracesA the set of traces of the automaton A. The trace for the previously
presented execution fragment is trace(α) = [0, 0] !a [0, 0] !p [0, δ2] ?q [0, 0].

The following definitions present the conditions which have to be satisfied in order for two
automata to compose and the parallel composition operator.

Definition 4 (Composition compatibility). Two timed input-output automataK1 andK2 are com-
patible if for i 6= j, Yi ∩ Yj = Hi ∩ Aj = Vi ∩ Aj = Oi ∩ Oj = Ii ∩ Ij = ∅.

Syntactically, the parallel composition operator models the output-input synchronization and
interleaving of all non-matched actions including internal and visible actions of the components
involved.

Definition 5 (Parallel composition). If K1 and K2 are two compatible timed input-output au-
tomata then their composition K1 ‖ K2 is defined to be the tuple (X,Clk,Q, θ, I, O, V,H,D, T )
where

• X = X1 ∪X2 and Clk = Clk1 ∪ Clk2

• Q = {x1 ∪ x2|x1 ∈ Q1, x2 ∈ Q2}. Note that x1 ∪ x2, which denotes the set union of
functions x1 and x2, is well defined since the domains of x1 and x2 are disjoint.

• θ = θ1 ∪ θ2.

• I = (I1\O2)∪(I2\O1),O = (O1\I2)∪(O2\I1) and V = V1∪V2∪(I1∩O2)∪(O1∩I2).

• H = H1 ∪H2.

• D is the set of discrete transitions where for each x = x1 ∪ x2, x
′ = x′1 ∪ x′2 ∈ Q and each

a ∈ A, x a−→ x′ if and only if for i ∈ {1, 2}, either

1. a ∈ Ai and xi
a−→ x′i, or

2. a 6∈ Ai and xi = x′i.

• T is given by τ ∈ T ⇔ τdXi ∈ Ti, i ∈ {1, 2}.

The only difference with respect to the parallel composition operator defined in [27] is related
to the interface of the composite timed input/output automata: the input and output sets of the
composite are given by thos actions not matched between components, while all matched input-
output pairs become visible actions.

Theorem 1. The parallel composition operator is commutative and associative.
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Proof. Let K1, K2 and K3 be three timed input/output automata.
1) Commutativity: K1 ‖ K2 = K2 ‖ K1 is true since the composition operator doesn’t take into
account the order of composition.
2) Associativity: (K1 ‖ K2) ‖ K3 = K1 ‖ (K2 ‖ K3)

By applying the composition operator definition, one can verify that (K1 ‖ K2) ‖ K3 = K1 ‖
(K2 ‖ K3) = (X,Clk,Q, θ, I, O, V,H,D, T ) where

• X = XK1 ∪XK2 ∪XK3 .

• Clk = ClkK1 ∪ ClkK2 ∪ ClkK3 .

• Q = {x1 ∪ x2 ∪ x3|x1 ∈ QK1 , x2 ∈ QK2 and x3 ∈ QK3}.

• θ = θ1 ∪ θ2 ∪ θ3.

• I = (IK1 \ (OK2 ∪OK3)) ∪ (IK2 \ (OK1 ∪OK3)) ∪ (IK3 \ (OK1 ∪OK2)).

• O = (OK1 \ (IK2 ∪ IK3)) ∪ (OK2 \ (IK1 ∪ IK3)) ∪ (OK3 \ (IK1 ∪ IK2)).

• V = VK1 ∪VK2 ∪VK3 ∪(OK1 ∩(IK2 ∪IK3))∪(OK2 ∩(IK1 ∪IK3))∪(OK3 ∩(IK1 ∪IK2)).

• H = HK1 ∪HK2 ∪HK3 .

• D is the set of discrete transitions where for each x = x1 ∪ x2 ∪ x3 and x′ = x′1 ∪ x′2 ∪ x′3
∈ Q and each a ∈ A, x a−→ x′ if and only if for i ∈ {1, 2, 3}, either

1. a ∈ AKi and xi
a−→ x′i or

2. a 6∈ AKi and xi = x′i.

• T ⊆ trajs(Q) is given by τ ∈ T ⇔ τdXKi ∈ Ti, i ∈ {1, 2, 3}.

The complete proof on the sets I , O and V of actions can be found in the Appendix A.

4 Contracts for Timed Input/Output Automata

In this section we formalize contracts for TIOA and the relations described in §2 and we list the
properties that have been proved upon these and that make contract-based reasoning possible.

Definition 6 (Component). A component K is a timed input-output automaton.

Definition 7 (Environment). Let K be a component. An environment E for the component K is
a timed input/output automaton comptible with K for which the following hold: IE ⊆ OK and
OE ⊆ IK .

Definition 8 (Closed/open component). A component K is closed if IK = OK = ∅. A component
is open if it not closed.

Closed components result from the composition of components with complementary inter-
faces.

Definition 9 (Contract). A contract for a componentK is a pair (A,G) of TIOA such that IA = OG
and IG = OA (i.e. the composition pair A ‖ G defines a closed component) and IG ⊆ IK and
OG ⊆ OK (i.e. the interface of G is a subset of that of K). A is called the assumption over the
environment of the component and G is called the guarantee. The interface of a contract is the set
of actions of its guarantee.

12
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Figure 4 presents a set of contracts for the two componentsK1 andK2 of the running example.
In the case ofK1, the assumption over the environment sends a q after at least δ1 time units since a
p is received and the component guarantees that consecutive a’s are triggered by a message q from
the environment. For K2, the environment guarantees that it will wait for a q between sending two
consecutive p’s and the component guarantees that it waits for a p before sending a b and then for
a delay of δ2 time units before a q. Recall that the property we want to verify (Figure 3) is defined
on the subset {a, b} of actions. Thus K3 whose action set is {m,n, u, v} does not contribute to
the interface of the subsystem K and neither to the satisfaction of this property. Its contract for
this requirement is given by two empty timed input/output automata (i.e. the sets of variables and
actions of the automaton are empty, and all trajectories up to∞ are admitted). For each property
that we want to verify, a set of contracts has to modelled by the user.

Figure 4: Contracts for the components K1 and K2 of the running example.

The first step of the verification, as presented in §2, is to prove that the modelled components
are an implementation of the given contracts. For this we specify the notions of conformance and
refinement under context introduced in [33], notions that both need to be preorder relations in order
to establish compositional reasoning results.

As in [27], we use trace inclusion to check the refinement relation between components:

Definition 10 (Comparable components). Two components K1 and K2 are comparable if they
have the same external interface, i.e. EK1 = EK2 .

Definition 11 (Conformance). Let K1 and K2 be two comparable components. K1 conforms to
K2, denoted K1 � K2, if tracesK1 ⊆ tracesK2 .

This relation is also used for verifying the satisfaction of the system’s properties by the top
contract: A ‖ G � ϕ, where A ‖ G and ϕ have the same interface. It can be easily shown
that conformance is a preorder. The following useful compositional result, presented in the TIOA
theory of [27], can be easily extended to our variant of TIOA:

13
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Theorem 2 (Composability theorem 8.5 of [27]). Let K1 and K2 be two comparable components
with K1 � K2 and E a component compatible with both K1 and K2. Then K1 ‖ E � K2 ‖ E.

The refinement under context relation formalizes that, given an environment compatible with
two components, one is a refinement of the other in the specified context. We define this relation
based on conformance. Since we want to take into account interface refinement between com-
ponents and conformance imposes comparability, we have to compose each member of the con-
formance relation obtained from refinement under context with an additional timed input/output
automaton such that they both define closed comparable systems.

Definition 12 (Refinement under context). Let K1 and K2 be two components such that IK2 ⊆
IK1 ∪ VK1 , OK2 ⊆ OK1 ∪ VK1 and VK2 ⊆ VK1 . Let E be an environment for K1 compatible with
both K1 and K2. We say that K1 refines K2 in the context of E, denoted K1 vE K2, if

K1 ‖ E ‖ E′ � K2 ‖ E ‖ K ′ ‖ E′

whereK ′ andE′ are defined such that both members of the conformance relation are comparable,
as follows:

• E′ = (∅, {tE′}, {φ}, φ, (OK1 \ IE), (IK1 \ OE), ∅, ∅, DE′ , TE′) where φ is the function
∅ 7→ ∅, tE′ the unique clock of E′, DE′ = {(φ, a, φ)|∀a ∈ EE′} and TE′ = {[0, t]|t ∈
R+} ∪ {[0,∞)} contains all possible trajectories,

• K ′ = (∅, {tK′}, {φ}, φ, ((IK1 \IK2)∪ (VK1 ∩OK2)), ((OK1 \OK2)∪ (VK1 ∩IK2)), (VK1 \
EK2), ∅, DK′ , TK′) where φ is the function ∅ 7→ ∅, tK′ the unique clock of K ′, DK′ =
{(φ, a, φ)|∀a ∈ EK′} and TK′ = {[0, t]|t ∈ R+} ∪ {[0,∞)}.

Informally,K ′ is an automaton that contains the actions defined by the interface of the concrete
component K1 and not present in its abstraction, the component K2, such that K1 and K2 ‖ K ′
are comparable. The automaton E′ is defined to close the composition K1 ‖ E and K2 ‖ E ‖ K ′,
since an environment may be defined on a subset of the component’s interface. So, the interface of
E′ is given by the actions of K1 and K2 ‖ K ′ not matched by E at composition and with reversed
directionality.

The particular inclusion relations between the interfaces of K1 and K2 in the previous def-
inition is due to the fact that both K1 and K2 can be components obtained from composition:
K1 = K ′1 ‖ K3 and K2 = K ′2 ‖ K3, where IK′

2
⊆ IK′

1
, OK′

2
⊆ OK′

1
and VK′

2
⊆ VK′

1
. This

happens in particular when K ′2 is a contract guarantee for K ′1. Then, by composition, actions of
K3 may be matched by actions of K ′1 but have no input/output correspondent in K ′2. This case
also imposes the term VK1 ∩ OK2 for the inputs of K ′, since the additional outputs of K2 may
belong to a different component, and the term VK1 ∩ IK2 for the outputs of K ′.

Notation. In the following we use ∆⇔ to express that by definition the left-hand side and right-hand
side terms are equivalent. We denote the partition of intervals on R+ having 0 as left end-point by
2

[R+]
0 , i.e. the set {[0, t]|t ∈ R+} ∪ {[0,∞)}.

Theorem 3. Given a set K of comparable components and a fixed environment E for that inter-
face, the refinement under context relation vE is a preorder over K.

Proof. 1) Reflexivity: K vE K ⇔ K ‖ E � K ‖ E which is true from the definition of
conformance relation.
2) Transitivity: K1 vE K2 ∧K2 vE K3 =⇒ K1 vE K3.

K1 vE K2
∆⇔ K1 ‖ E ‖ E′ � K2 ‖ E ‖ K ′2 ‖ E′ (1)

We write the automaton E′ = E1 ‖ E2 where

14
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• E1 = (∅, {φ}, φ, ((OK1 ∩OK2) \ IE), ((IK1 ∩ IK2) \OE), ∅, ∅, DE1 , 2
[R+]
0 )

• E2 = (∅, {φ}, φ, ((OK1 \OK2) \ IE), ((IK1 \ IK2) \OE), ∅, ∅, DE2 , 2
[R+]
0 )

One can remark that the sets of input and output actions are pairwise disjoint for E1 and E2.

We write the automaton K ′2 = K ′′2 ‖ E3 where

• K ′′2 = (∅, {φ}, φ, (IK1 \ IK2), (OK1 \OK2), (VK1 \ EK2), ∅, DK′′
2
, 2

[R+]
0 )

• E3 = (∅, {φ}, φ, (VK1 ∩OK2), (VK1 ∩ IK2), ∅, ∅, DE3 , 2
[R+]
0 )

Similarly, the sets of input, output and visible actions are pairwise disjoint for K ′′2 and E3.

Then (1)⇔ K1 ‖ E ‖ E1 ‖ E2 � K2 ‖ E ‖ K ′′2 ‖ E3 ‖ E1 ‖ E2 (2)

K2 vE K3
∆⇔ K2 ‖ E ‖ E′′ � K3 ‖ E ‖ K ′3 ‖ E′′ (3)

With the previous notations we have that E′′ = E1 ‖ E3.
Then (3)⇔ K2 ‖ E ‖ E1 ‖ E3 � K3 ‖ E ‖ K ′3 ‖ E1 ‖ E3 (4)

Composing (4) with K ′′2 ‖ E2 and from Theorem 2 we get

K2 ‖ E ‖ E1 ‖ E3 ‖ K ′′2 ‖ E2 � K3 ‖ E ‖ K ′3 ‖ E1 ‖ E3 ‖ K ′′2 ‖ E2 ⇔

⇔ K2 ‖ E ‖ K ′′2 ‖ E3 ‖ E1 ‖ E2 � K3 ‖ E ‖ K ′3 ‖ K ′2 ‖ E1 ‖ E2

(2)K1 ‖ E ‖ E1 ‖ E2 � K2 ‖ E ‖ K ′′2 ‖ E3 ‖ E1 ‖ E2

}
Transitivity

=⇒

=⇒ K1 ‖ E ‖ E1 ‖ E2 � K3 ‖ E ‖ K ′3 ‖ K ′2 ‖ E1 ‖ E2 ⇔
⇔ K1 ‖ E ‖ E′ � K3 ‖ E ‖ K ′2 ‖ K ′3 ‖ E′

By denoting K ′ = K ′2 ‖ K ′3 we have:

K1 ‖ E ‖ E′ � K3 ‖ E ‖ K ′ ‖ E′
∆⇔ K1 vE K3

The last step consists in proving thatK ′ is the automaton generated by the refinement under context
relation. Since K ′2 and K ′3 are built from the hypothesis by the refinement under context relation,
by composition they define the correct structure for K ′. Moreover IK′ = (IK1 \ IK3) ∪ (VK1 ∩
OK3), OK′ = (OK1 \OK3)∪ (VK1 ∩IK3) and VK = VK1 \EK3 . The proofs on the sets of actions
are detailed in Appendix A.

The following results, required to allow reasoning with contracts as shown in [33], hold in our
framework:

Theorem 4 (Compositionality). Let K1 and K2 be two components and E an environment com-
patible with both K1 and K2 such that E = E1 ‖ E2. K1 vE1‖E2

K2 ⇔ K1 ‖ E1 vE2 K2 ‖ E1.

Proof. K1 vE1‖E2
K2

∆⇔ K1 ‖ E1 ‖ E2 ‖ E′ � K2 ‖ E1 ‖ E2 ‖ K ′ ‖ E′ (1)
with

• E′ = (∅, {φ}, φ, (OK1 \ IE1‖E2
), (IK1 \OE1‖E2

, ∅, ∅, DE′ , 2
[R+]
0 ),

• K ′ = (∅, {φ}, φ, ((IK1 \ IK2) ∪ (VK1 ∩ OK2)), ((OK1 \ OK2) ∪ (VK1 ∩ IK2)), (VK1 \
EK2), ∅, DK′ , 2

[R+]
0 ).

K1 ‖ E1 vE2 K2 ‖ E1
∆⇔ K1 ‖ E1 ‖ E2 ‖ E′′ � K2 ‖ E1 ‖ E2 ‖ K ′′ ‖ E′′ (2)

with
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• E′′ = (∅, {φ}, φ, (OK1‖E1
\ IE2), (IK1‖E1

\OE2), ∅, ∅, DE′′ , 2
[R+]
0 ),

• K ′′ = (∅, {φ}, φ, ((IK1‖E1
\IK2‖E1

)∪(VK1‖E1
∩OK2‖E1

)), ((OK1‖E1
\OK2‖E1

)∪(VK1‖E1
∩

IK2‖E1
)), (VK1‖E1

\ EK2‖E1
), ∅, DK′′ , 2

[R+]
0 ).

We prove the equivalence of relations (1) and (2) by showing the equality between the additional
generated timed input/output automata involved in the composition: E′ = E′′ and K ′ = K ′′.

E′ = E′′ = (∅, {φ}, φ, (OK1 \ (IE1 ∪ IE2), (IK1 \ (OE1 ∪OE2)), ∅, ∅, DE′ , 2
[R+]
0 )

K ′ = K ′′ = (∅, {φ}, φ, ((IK1 \ IK2) ∪ (VK1 ∩ OK2)), ((OK1 \ OK2) ∪ (VK1 ∩ IK1)), VK1 \
EK2 , ∅, DK′ , 2

[R+]
0 )

The equality between the sets of actions is shown in Appendix A.

Theorem 5 (Soundness of circular reasoning). Let K be a component, E its environment and
C = (A,G) the contract for K such that K and G are compatible with each of E and A. If

1. tracesG is closed under limits,

2. tracesG is closed under time-extension,

3. K vA G and

4. E vG A

then K vE G.

Proof. K vA G
∆⇔ K ‖ A ‖ A∗ � G ‖ A ‖ G∗ ‖ A∗

We write A∗ = A1 ‖ A2 with

• A1 = (∅, {φ}, φ, (OK \ IE), (IK \OE), ∅, ∅, DA1 , 2
[R+]
0 ),

• A2 = (∅, {φ}, φ, (IE \ IA), (OE \OA), ∅, ∅, DA2 , 2
[R+]
0 ).

This partition of the sets of interfaces is complete due to the relation between the interfaces of the
components AG = AA ⊆ AE ⊆ AK obtained from the definitions of contract and environment.

Similarly, we write G∗ = G1 ‖ G2 with

• G1 = (∅, {φ}, φ, (IK \OE), (OK \ IE), (VK \ EG), ∅, DG1 , 2
[R+]
0 ),

• G2 = (∅, {φ}, φ, (OE \ IG), (IE \OG), ∅, ∅, DG2 , 2
[R+]
0 ).

Then
3) ∆⇔ K ‖ A ‖ A1 ‖ A2 � G ‖ A ‖ G1 ‖ G2 ‖ A1 ‖ A2

4) ∆⇔ E ‖ G ‖ G2 � A ‖ G ‖ A2 ‖ A3 ‖ G2

with A3 = (∅, {φ}, φ, ∅, ∅, (VE \ EA), ∅, DA3 , 2
[R+]
0 ).

With this notation the conclusion becomes: K ‖ E ‖ A1 � G ‖ E ‖ G1 ‖ G2 ‖ A1.

We prove this relation in two steps: every closed trace of K ‖ E ‖ A1 is a trace of G ‖ E ‖ G1 ‖
G2 ‖ A1 and every non-closed trace of K ‖ E ‖ A1 is a trace of G ‖ E ‖ G1 ‖ G2 ‖ A1. Let β
be a trace. By βd(B, ∅) we denote the projection of β on the set of actions B.

1) Every closed trace ofK ‖ E ‖ A1 is also a trace ofG ‖ E ‖ G1 ‖ G2 ‖ A1. Proof by induction.

Step 1) Let β ∈ trajs(∅) a trace of K ‖ E ‖ A1. From axiom A0) we have that ∃τα a point
trajectory of G such that α.ltime = 0. Since tracesG are closed under time-extension⇒ α_β =
β ∈ tracesG (1)
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From the definition of G1 and G2 we can similarly deduce that β ∈ tracesG1 (2) and β ∈
tracesG2 (3)

From hypothesis we have that β ∈ tracesK‖E‖A1
which implies that β ∈ tracesE‖A1

(4)
(1), (2), (3) and (4) =⇒ β ∈ tracesG‖E‖G1‖G2‖A

Step 2) Let β′ a trace of K ‖ E ‖ A1 and G ‖ E ‖ G1 ‖ G2 ‖ A1. Let β = β′_β′′ a trace of
K ‖ E ‖ A1.
?β ∈ tracesG‖E‖G1‖G2‖A1

a) β = β′aτ where a is an output action of K and τ a point trajectory.
From hypothesis we have that β′ ∈ tracesG‖E‖G1‖G2‖A1

⇒

β′ ∈ tracesE‖G‖G2

E ‖ G ‖ G2 � A ‖ G ‖ A2 ‖ A3 ‖ G2

}
⇒ β′ ∈ tracesA‖G‖A2‖A3‖G2

⇒ β′d(EA, ∅) ∈ tracesA and β′d(EA2 , ∅) ∈ tracesA2 .
IE ∪ IA1 = OK . We have two cases:

i) a ∈ IA1 . From hypothesis we have β ∈ tracesK‖E‖A1
⇒ β′d(EK‖A1

, ∅) ∈ tracesK‖A1
.

a 6∈ IA ⇒ βd(EA, ∅) = β′d(EA, ∅) ∈ tracesA.
a 6∈ IA2 ⇒ βd(EA2 , ∅) = β′d(EA2 , ∅) ∈ tracesA2

⇒ β ∈ tracesK‖A‖A1‖A2

K ‖ A ‖ A1 ‖ A2 � G ‖ A ‖ G1 ‖ G2 ‖ A1 ‖ A2

}
⇒

⇒ β ∈ tracesG‖A‖G1‖G2‖A1‖A2
⇒ βd(EG‖G1‖G2

, ∅) ∈ tracesG‖G1‖G2
(5)

β ∈ tracesK‖E‖A1
⇒ βd(EE‖A1

, ∅) ∈ tracesE‖A1
(6)

(5) and (6)⇒ β ∈ tracesG‖E‖G1‖G2‖A1

ii) a ∈ IE , IE = IA ∪ IA2 . We have two cases:
ii.1) a ∈ IA. Let α an execution of A such that trace(α) = β′d(EA, ∅). From the axiom
A4) we have that ∃x′ state such that (α(α.ltime), a, x′) discrete transition⇒
⇒ β′d(EA, ∅)_ad(EA, ∅)_τd(EA, ∅) = βd(EA, ∅) ∈ tracesA.
a 6∈ IA2 ⇒ βd(EA2 , ∅) = β′d(EA2 , ∅) ∈ tracesA2

From hypothesis we have β ∈ tracesK‖E‖A1
⇒ βd(EK‖A1

, ∅) ∈ tracesK‖A1

⇒ β ∈ tracesK‖A‖A1‖A2

K ‖ A ‖ A1 ‖ A2 � G ‖ A ‖ G1 ‖ G2 ‖ A1 ‖ A2

}
⇒

⇒ β ∈ tracesG‖A‖G1‖G2‖A1‖A2
⇒ βd(EG‖G1‖G2

, ∅) ∈ tracesG‖G1‖G2
(7)

(6) and (7)⇒ β ∈ tracesG‖E‖G1‖G2‖A1

ii.2) a ∈ IA2 . Let α an execution of A2 such that trace(α) = β′d(EA2 , ∅). From
the axiom A4) we have that ∃x′ state such that (α(α.ltime), a, x′) discrete transition ⇒
β′d(EA2 , ∅)_ad(EA2 , ∅)_τd(EA2 , ∅) = βd(EA2 , ∅) ∈ tracesA2 .
a 6∈ IA ⇒ βd(EA, ∅) = β′d(EA, ∅) ∈ tracesA
From hypothesis we have β ∈ tracesK‖E‖A1

⇒ βd(EK‖A1
, ∅) ∈ tracesK‖A1

⇒ β ∈ tracesK‖A‖A1‖A2

K ‖ A ‖ A1 ‖ A2 � G ‖ A ‖ G1 ‖ G2 ‖ A1 ‖ A2

}
⇒
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⇒ β ∈ tracesG‖A‖G1‖G2‖A1‖A2
⇒ βd(EG‖G1‖G2

, ∅) ∈ tracesG‖G1‖G2
(8)

(6) and (8)⇒ β ∈ tracesG‖E‖G1‖G2‖A1

b) β = β′aτ where a is an output action of K and τ a point trajectory.
β′ ∈ tracesG‖E‖G1‖G2‖A1

⇒ β′d(EG, ∅) ∈ tracesG, β′d(EG1 , ∅) ∈ tracesG1 and β′d(EG2 , ∅) ∈
tracesG2

IG ∪ IG2 = OE . We have two cases:

i) a ∈ IG. Let α be an execution of G such that trace(α) = β′d(EG, ∅).
From axiom A4) we have that ∃x′ state with (α(α.ltime), a, x′) discrete transition ⇒
β′d(EG, ∅)_ad(EG, ∅)_τd(EG, ∅) = βd(EG, ∅) ∈ tracesG (9)
a 6∈ IG2 ⇒ βd(EG2 , ∅) = β′d(EG2 , ∅) ∈ tracesG2 (10)
a 6∈ IG1 ⇒ βd(EG1 , ∅) = β′d(EG1 , ∅) ∈ tracesG1 (11)

(6), (9), (10) and (11)⇒ β ∈ tracesG‖E‖G1‖G2‖A1

ii) a ∈ IG2 . Let α be an execution of G such that trace(α) = β′d(EG2 , ∅).
From axiom A4) we have that ∃x′ state with (α(α.ltime), a, x′) discrete transition ⇒
β′d(EG2 , ∅)_ad(EG2 , ∅)_τd(EG2 , ∅) = βd(EG2 , ∅) ∈ tracesG2 (12)
a 6∈ IG ⇒ βd(EG, ∅) = β′d(EG, ∅) ∈ tracesG (13)
a 6∈ IG1 ⇒ βd(EG1 , ∅) = β′d(EG1 , ∅) ∈ tracesG1 (14)

(6), (12), (13) and (14)⇒ β ∈ tracesG‖E‖G1‖G2‖A1

c) β = β′aτ where a is an output action of A1 and τ is a point trajectory.
β′ ∈ tracesG‖E‖G1‖G2‖A1

⇒ β′d(EG, ∅) ∈ tracesG, β′d(EG1 , ∅) ∈ tracesG1 and β′d(EG2 , ∅) ∈
tracesG2

a 6∈ IG ⇒ βd(EG, ∅) = β′d(EG, ∅) ∈ tracesG (15)
a ∈ IG1(= OA1). Let α an execution of G1 such that trace(α) = β′d(EG1 , ∅). From the axiom
A4) we have that ∃x′ state such that (α(α.ltime), a, x′) discrete transition⇒
⇒ β′d(EG1 , ∅)_ad(EG1 , ∅)_τd(EG1 , ∅) = βd(EG1 , ∅) ∈ tracesG1 (16)
a 6∈ IG2 ⇒ βd(EG2 , ∅) = β′d(EG2 , ∅) ∈ tracesG2 (17)
(6), (15), (16) and (17)⇒ β ∈ tracesG‖E‖G1‖G2‖A1

d) β = β′aτ where a is a visible action of K and τ is a point trajectory.
β ∈ tracesK‖E‖A1

⇒ βd(EK , ∅) ∈ tracesK
a ∈ VK ⇒ a 6∈ EA, a 6∈ EA1 and a 6∈ EA2 and from hypothesis β′d(EA‖A1‖A2

, ∅) ∈
tracesA‖A1‖A2

⇒ βd(EA‖A1‖A2
, ∅) ∈ tracesA‖A1‖A2

⇒ β ∈ tracesK‖A‖A1‖A2

K ‖ A ‖ A1 ‖ A2 � G ‖ A ‖ G1 ‖ G2 ‖ A1 ‖ A2

}
⇒

⇒ β ∈ tracesG‖A‖G1‖G2‖A1‖A2
⇒ βd(EG‖G1‖G2

, ∅) ∈ tracesG‖G1‖G2
(18)

(6) and (18)⇒ β ∈ tracesG‖E‖G1‖G2‖A1

e) β = β′aτ where a is a visible action of E and τ is a point trajectory.
β′ ∈ tracesG‖E‖G1‖G2

⇒ β′d(EG‖G1‖G2
, ∅) ∈ tracesG‖G1‖G2

Since a ∈ VE ⇒ a 6∈ EG, a 6∈ EG1 and a 6∈ EG2 ⇒ βd(EG‖G1‖G2
, ∅) = β′d(EG‖G1‖G2

, ∅) ∈
tracesG‖G1‖G2

(19)
(6) and (19)⇒ β ∈ tracesG‖E‖G1‖G2‖A1

2) Every non-closed trace of K ‖ E ‖ A1 is also a trace of G ‖ E ‖ G1 ‖ G2 ‖ A1. Let
β be a non-closed trace of K ‖ E ‖ A1. Then β is the limit of a sequence β1β2 · · · of closed
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traces of K ‖ E ‖ A1. We have shown that ∀i βi closed trace of K ‖ E ‖ A1 is also a trace of
G ‖ E ‖ G1 ‖ G2 ‖ A1.

βi ∈ tracesG‖E‖G1‖G2‖A1
⇒ βid(EG, ∅) ∈ tracesG, ∀i

restriction is a continuous operation

}
⇒

⇒ βd(EG, ∅) = limiβid(EG, ∅)
tracesG are closed under limits

}
⇒ βd(EG, ∅) ∈ tracesG(20)

Similarly, βd(EG1 , ∅) ∈ tracesG1 (21) and βd(EG2 , ∅) ∈ tracesG2 (22)
(6), (20), (21) and (22)⇒ β ∈ tracesG‖E‖G1‖G2‖A1

Note. This theorem is similar to Theorem 8.8 from [27]. While we prove that K vE G, Theorem
8.8 states that K ‖ E � G ‖ A. Even if the latter is a stronger result with respect to state space
reduction at verification, it doesn’t guarantee the circular reasoning property needed for contract
refinement. The proof follows the same reasoning as for Theorem 8.8.

The definitions of closure under limits and closure under time-extension for a set of traces are
those given in [27]. Closure under limits informally means that any infinite sequence whose finite
prefixes are traces ofG is also an trace ofG (a property satisfied by all automata occurring in prac-
tical examples), while closure under time-extension denotes that any trace can be extended with
time passage to infinity. By making these hypotheses on G, G can only express safety properties
on K and cannot impose stronger constraints on time passage than K.

We derive the satisfaction relation from refinement under context.

Definition 13 (Contract satisfaction). A component K satisfies (implements) a contract C =
(A,G), denoted K |= C, if and only if K vA G.

One can easily verify that the three components K1 (Step 1.1), K2 (Step 1.2) and K3 (Step
1.3) satisfy their contracts presented in Figure 4. We remark that the empty timed input/output
automaton is the weakest component that refinement under context always satisfies.

We have introduced the notions and relations in order to verify that a component is a correct
implementation of a contract. The second step of our contract-based verification consists in defin-
ing a refinement relation between contracts in order to discard implementations from now on. This
is realized with the help of the dominance:

Definition 14 (Contract dominance [33]). Let C be a contract with the interface P and {Ci}ni=1

a set of contracts with the interface {Pi}ni=1 and P ⊆
⋃n
i=1 Pi. Then {Ci}ni=1 dominates C if and

only if for any set of components {Ki}ni=1 such that ∀i, Ki |= Ci, we have (K1 ‖ K2 ‖ · · · ‖
Kn) |= C.

Figure 5 contains a top contract for the subsystem K in the running example that contains
three components K1, K2 and K3. This contract guarantees that if an a message followed by a b
message are sent to the environment then at least a δ2 delay will elapse between 2 cycles. We have
to prove that {C1, C2, C3} dominates C.

Based on theorems 3, 4 and 5, the following theorem which is a variant of Theorem 2.3.5 from
[33] holds:

Theorem 6 (Sufficient condition for dominance). {Ci}ni=1 dominatesC if, ∀i, tracesAi , tracesGi ,
tracesA and traceG are closed under limits and under time-extension and

{
G1 ‖ ... ‖ Gn vA G
A ‖ G1 ‖ ... ‖ Gi−1 ‖ Gi+1 ‖ ... ‖ Gn vGi Ai, ∀i
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Figure 5: Contract C for the component K which is dominated by the three contracts C1, C2 and
C3.

Proof. Let Ki, i = 1, n, a set of components such that:
H1) Ki vAi Gi
H2) G1 ‖ G2 ‖ · · · ‖ Gn vA G
H3) A ‖ G1 ‖ · · · ‖ Gi−1 ‖ Gi+1 ‖ · · · ‖ Gn vGi Ai, ∀i

We have to prove that K1 ‖ K2 ‖ · · · ‖ Kn vA G
Proof by induction on j where j = 0, n is the number of guarantees replaced by their correspond-
ing component:

Base step.
j = 0. Then the conclusion becomes G1 ‖ G2 ‖ · · ·Gn vA G which is H2) thus true.

j = 1.

From H1)⇒ K1 vA1 G1

From H3)⇒ A ‖ G2 ‖ · · · ‖ Gn vG1 A1

}
Theorem 5⇒

⇒ K1 vA‖G2‖···‖Gn
G1 (1)

(1)
Theorem 4⇒ K1 ‖ G2 ‖ · · · ‖ Gn vA G1 ‖ G2 ‖ · · · ‖ Gn

From H2)⇒ G1 ‖ · · · ‖ Gn vA G

}
Transitivity⇒

⇒ K1 ‖ G2 ‖ · · · ‖ Gn vA G (2)

(1)
Theorem 4⇒ A ‖ K1 ‖ G2 ‖ · · ·Gi−1 ‖ Gi+1 ‖ · · · ‖ Gn vGi A ‖

‖ G1 ‖ G2 ‖ · · ·Gi−1 ‖ Gi+1 ‖ · · · ‖ Gn, ∀i > 1

From H3) A ‖ G1 ‖ · · ·Gi−1 ‖ Gi+1 ‖ · · · ‖ Gn vGi Ai, ∀i

 Transitivity⇒

⇒ A ‖ K1 ‖ G2 ‖ · · ·Gi−1 ‖ Gi+1 ‖ · · · ‖ Gn vGi Ai, ∀i > 1 (3)

j = 2.

From H1)⇒ K2 vA2 G2

From (3) for j = 2⇒ A ‖ K1 ‖ G3 ‖ · · · ‖ Gn vG2 A2

}
Theorem 5⇒

⇒ K2 vA‖K1‖G3‖···‖Gn
G2 (4)

(4)
Theorem 4⇒ K1 ‖ K2 ‖ G3 ‖ · · · ‖ Gn vA K1 ‖ G2 ‖ · · · ‖ Gn

From (2) K1 ‖ G2 ‖ · · · ‖ Gn vA G

}
Transitivity⇒
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⇒ K1 ‖ K2 ‖ G3 ‖ · · · ‖ Gn vA G (5)

(4)
Theorem 4⇒ A ‖ K1 ‖ K2 ‖ G3 ‖ · · ·Gi−1 ‖ Gi+1 ‖ · · · ‖ Gn vGi A ‖

‖ K1 ‖ G2 ‖ G3 ‖ · · · ‖ Gi−1 ‖ Gi+1 ‖ · · · ‖ Gn, ∀i > 2

From (3)⇒ A ‖ K1 ‖ G2 ‖ · · ·Gi−1 ‖ Gi+1 ‖ · · · ‖ Gn vGi Ai, ∀i > 1

 Transitivity⇒

⇒ A ‖ K1 ‖ K2 ‖ G3 ‖ · · · ‖ Gi−1 ‖ Gi+1 ‖ · · · ‖ Gn vGi Ai, ∀i > 2 (5)

Induction step. Let j be fixed. Then the hypotheses are
K1 ‖ K2 ‖ · · · ‖ Kj ‖ Gj+1 ‖ · · · ‖ Gn vA G (6)
A ‖ K1 ‖ K2 ‖ · · · ‖ Kj ‖ Gj+1 ‖ · · · ‖ Gi−1 ‖ Gi+1 ‖ Gn vGi Ai, ∀i > j (7)

The conclusion for j + 1 is:
(8) K1 ‖ · · · ‖ Kj ‖ Kj+1 ‖ Gj+2 ‖ Gn vA G and
(9) A ‖ K1 ‖ · · · ‖ Kj+1 ‖ Gj+2 ‖ · · · ‖ Gi−1 ‖ Gi+1 ‖ · · · ‖ Gn vGi Ai,∀i > j + 1.

From H1)⇒ Kj+1 vAj+1 Gj+1

From (7)⇒ A ‖ K1 ‖ K2 ‖ · · · ‖ Kj ‖ Gj+2 ‖ · · · ‖ Gn vGj+1 Aj+1

}
Theorem 5⇒

⇒ Kj+1 vA‖K1‖···‖Kj‖Gj+2‖···‖Gn
Gj+1 (10)

(10)
Theorem 4⇒ K1 ‖ · · · ‖ Kj ‖ Kj+1 ‖ Gj+2 ‖ · · · ‖ Gn vA K1 ‖ · · · ‖ Kj ‖

‖ Gj+1 ‖ Gj+2 ‖ · · · ‖ Gn
From (6) K1 ‖ · · · ‖ Kj ‖ Gj+1 ‖ · · · ‖ Gn vA G

 Transitivity⇒

⇒ K1 ‖ · · · ‖ Kj ‖ Kj+1 ‖ Gj+2 ‖ Gn vA G, which is (8).

(10)
Theorem 4⇒ A ‖ K1 ‖ · · · ‖ Kj+1 ‖ Gj+2 ‖ · · · ‖ Gi−1 ‖ Gi+1 ‖ · · · ‖ Gn vGi A ‖

‖ K1 ‖ · · · ‖ Kj ‖ Gj+1 ‖ · · · ‖ Gi−1 ‖ Gi+1 ‖ · · · ‖ Gn, ∀i > j + 1

From (7) for i = j + 1 ⇒ A ‖ K1 ‖ · · · ‖ Kj ‖ Gj+1 ‖ · · · ‖ Gi−1 ‖
‖ Gi+1 ‖ · · · ‖ Gn vGi Ai, ∀i > j + 1


Transitivity⇒

⇒ A ‖ K1 ‖ · · · ‖ Kj+1 ‖ Gj+2 ‖ · · · ‖ Gi−1 ‖ Gi+1 ‖ · · · ‖ Gn vGi Ai,∀i > j + 1, which is
(9)

Conclusion. Thus for j = n we have the dominance relation: K1 ‖ K2 ‖ · · · ‖ Kn vA G

Note. This theorem is a particular case of Theorem 2.3.5 from [33] where a more general compo-
sition operator (i.e. glue) between components is used and which demands that circular reasoning
is sound. The previous proof is similar to that of Theorem 2.3.5 by adapting it to our notation and
taking into consideration the compositional results of theorems 3, 4 and 5.

Verifying dominance consists in checking several refinement under context relations on ab-
stract timed input/output automata that are easier to handle. In our running example we prove
dominance between {C1, C2, C3} and C by checking the following conditions of Step 2:

(2.1) G1 ‖ G2 vA G,

(2.2) A ‖ G1 vG2 A2 and

(2.3) A ‖ G2 vG1 A1.
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Mono-
Step 1 Step 2

Step 3
lithic 1.1 1.2 1.3 2.1 2.2 2.3

max(i) =
max(j) =

5

Number of
states

41504 364 3372 -2 158 148 231 51

Number of
transitions

79249 604 5070 - 239 229 422 65

Time (sec) 6.86 0.1 0.42 - 0.04 0.04 0.03 0.02

max(i) =
max(j) =

10

Number of
states

400711 364 10702 - 158 148 231 51

Number of
transitions

827591 604 15925 - 239 229 422 65

Time (sec) 78.84 0.1 1.21 - 0.04 0.04 0.03 0.02

max(i) =
max(j) =

100

Number of
states

∞ 364 809542 - 158 148 231 51

Number of
transitions

∞ 604 1190290 - 239 229 422 65

Time (sec) ∞ 0.1 123.39 - 0.04 0.04 0.03 0.02

Table 1: Verification results for without/with the contract-based methodology.

We have dropped A3 and G3, since they are the empty components and do not impact component
composition.

The last step (Step 3) in the verification of a system model is to prove that the top contract
satisfies the global property, i.e. A ‖ G � ϕ, which is true for the running example.

Table 1 presents some quantitative measures (number of transitions and of states explored
and time needed for verification in seconds) for each verification step of the running example
after bounding the counters i and j and the queue from the additional defined environment to the
component (i.e. such a queue has a maximal length of 1)1. The first column corresponds to the
verification of the property on the whole system without contracts. For steps 1 to 3, verification of
refinement is performed using observer simulation, details are given in the following section. It is
interesting to note that the longest verification step with contracts is an order of magnitude smaller
than the monolithic verification in this case, the explosion being caused by messages exchanged
with K3 which are abstracted away from the contracts.

5 Application to a SysML model: the ATV Solar Wing Generation
System case study

The contract-based reasoning method previously described is partially supported by the OMEGA-
IFx Toolset [9] for SysML models. The details of the SysML language extended with contracts
are left aside for space reasons and can be found in [23]. In the following we present a case study
extracted from the industrial-grade system model of the Automated Transfer Vehicle (ATV) and we
show how contracts can be used for property verification. The ATV, developed by Astrium Space
Transportation for the European Space Agency, is a spacecraft put into orbit by the European
heavy launcher Ariane-5 with the aim of supplying the International Space Station. This case

1We were using a IA64 computing server with 16GB of memory.
2Since an empty timed input/output automaton is the weakest component always satisfied, this verification step has

not been performed.
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Page 1 of 1

Figure 6: Architecture of the SGS system including contracts (simplified view).

study consists of the Solar Wing Generation System (SGS) [22] responsible for the deployment
and management of the solar wings of the vehicle. The SysML model used in the following,
provided by Astrium Space Transportation, was obtained by reverse engineering the actual SGS
system for the purpose of this study.

The ATV system model illustrated in Figure 6 summarizes the three main components in-
volved in the case study and the bidirectional communications between them: the mission and
vehicle management (MVM) part that initiates the two functionalities of the SGS (wing deploy-
ment and rotation), the SOFTWARE part of the SGS that based on commands received from the
MVM executes the corresponding procedures and the HARDWARE part that consists of the four
wings. We focus here on the wing deployment mode on which we want to verify the following
property ϕ:

Property ϕ: After 10 minutes from system start-up, all four wings are deployed.

The system explicitly models the redundancy of the hardware equipments which aims to ensure
fault tolerance. There are 56 possible failures (14 per wing) grouped in 3 classes depending on
their target (thermal knives, hold-down and release system and solar array driving group). The
following hypothesis is made: throughout any execution of the system, at most one hardware fault
may occur (1-fault tolerance). We are interested in verifying ϕ by taking into consideration this
hypothesis. But applying model-checking directly on the system leads to combinatorial explosion
and the verification does not finish. To give an idea about the complexity of the model at runtime,
the system contains 96 objects that communicate through 661 port instances and 504 connectors.
We proceed in the following to prove property ϕ with contract-based reasoning.

Since the property ϕ is expressed with respect to the behavior of the four wings that are con-
tained in the HARDWARE block, with regard to the methodology of Figure 1, the subsystem S
can be identified in our case study with HARDWARE and the components Ki are represented by
WINGi, i = 1, 4. The environment of the subsystem is given by the parts with which it communi-
cates: bidirectional communication is directly established between SOFTWARE and HARDWARE,
while SOFTWARE depends on the behavior of MVM. So, the environment E of Figure 1 is repre-
sented here by the composition of MVM and SOFTWARE.

The first step of the methodology consists in defining a contractCi = (Ai, Gi) for each WINGi,
and next proving that WINGi satisfies Ci, i = 1, 4. This step checks the validity of the dependency
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relations illustrated in blue in Figure 6 between the wings and their corresponding contracts. In
order to model a contract, first we need to identify the environment of the component to which
the contract is associated and to build an abstraction from the point of view of the component.
Thus, for WINGi the environment is given by the environment of the subsystem HARDWARE and
all WINGj with j 6= i. We propose the following abstraction WAj for WINGj: the wing has a not
deployed status for at most 400 seconds and a deployed status after 130 seconds, while all other
received requests are consumed. The assumption Ai is then given by the parallel composition
of MVM, SOFTWARE and WAj with j 6= i. This abstraction of the environment is sufficient to
drastically reduce the state space of the verification model, since the exponential explosion in the
original model is mainly due to the parallelism of the hardware pieces which are abstracted to the
three leaf parts WAj. We want to guarantee that even if WINGi exhibits a failure it ends up being
deployed after 400 seconds.

Contract Ci = (Ai, Gi) where

• Ai = MVM ‖ SOFTWARE ‖ (‖j 6=iWAj).

• Gi: the wing answers to requests about its status with not deployed from startup up to 400
seconds or with deployed after 130 seconds and ignores all other requests. Between 130 and
400 seconds it can answer either, non-deterministically.

Since Ai is partially given by the concrete environment (MVM ‖ SOFTWARE) and Ci has to
define a closed system, we have to manually model the behavior of Gi for all received requests.
This constraint imposes to add as consuming transitions in every state all requests corresponding
to wing deployment process. Furthermore, one can remark that this guarantee is stronger than the
projection of the property ϕ on WINGi. The abstraction WAj can also be subject to one failure
since this case was not excluded from its behavior. Then the fault tolerance property that we verify
via contracts is stronger than the initial hypothesis: we guarantee that the system is 4-fault tolerant
if faults occur in separate wings.

The second step consists in defining a global contract C = (A,G) for HARDWARE and prov-
ing that the contract is dominated by {C1, C2, C3, C4}. In Figure 6 it is represented by the red
dependency relations between contracts. We use as assumption A the concrete environment of
HARDWARE. The guarantee G is the composition of the four Gi within one component. All Ai,
Gi, A and G as defined satisfy the conditions needed to apply Theorem 6.

Contract C = (A, G) where

• A = MVM ‖ SOFTWARE

• G : for each wing status interrogation it answers as not deployed for at most 400 seconds
and as deployed after at least 130 seconds, while all other requests are ignored.

The last step consists in verifying that the composition A ‖ G conforms to ϕ, illustrated by
the green dependency in Figure 6. Verifying that the environment satisfies the “mirror” contract is
trivial since the assumption A is the environment itself.

The proofs of all three steps have been automatically verified within the OMEGA-IFx Toolset
which translates SysML models in communicating timed automata [9]. Since trace inclusion is
undecidable, we use a stronger relation named observer simulation whose satisfaction implies the
satisfaction of trace inclusion. So, the components that play the role of guarantees are transformed
into observers and we verify that error states (from which no more actions can be performed) are
not reached during model-checking. The observer verification algorithm is implemented in IFx
Toolset. For the time being, the transformation of guarantees into observers is done manually, but
an automated tool is under development.
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Table 2: Average verification time for each contract Ci per induced failure group.

Average Verification Time (s)
Type of induced Failure Wing 1 Wing 2 Wing 3 Wing 4

Thermal Knife 13993 6869 18842 11412
Hold-down and release system 12672 6516 16578 9980

Solar array driving group 11527 5432 13548 6807

For each step of the verification methodology we have manually modeled the contracts: as-
sumptions as blocks that we had to connect via ports with the other components and guarantees
as observers. The first step gave 4 possible configurations with one concrete wing and 3 abstract
ones that were each verified with respect to all 14 possible failures. The average time in seconds
needed for the verification of the satisfaction relation for each contract with respect to each class
of failures is presented in Table 2. Even thought the system model looks symmetrical, however
some hardware pieces not represented here do not have a symmetrical behavior and due to their
interconnections with the wings the state space of system’s abstraction forWING1 andWING3
is greater than the one of WING2 and WING4. For the second step, only one model is created
on which we verified all 5 proof obligations given by Theorem 6: the automatic validation of the
global guarantee G and the automatic validation of assumptions Ai. Modeling the assumptions Ai
as observers shows the symmetry of the MVM and SOFTWARE behavior. This means that only
one verification is in fact sufficient for proving all 4 relations, verification that was realized in 9
seconds. The verification of the guarantee G needed 1 second. Finally, the same model was used
for verifying ϕ that took 1 second.

6 Related work

Contract-based specification and reasoning for communicating components has been subject to
intensive research recently. As mentioned in the beginning, our contract theory for TIOA is an
instance of the meta-theory of [33], which has previously been applied for a number of other
specification formalisms: Labelled Transition Systems (with priorities) [33], Modal Transition
Systems [34], BIP framework [3, 33] which is seen as a generalization for Input/Output Automata
and Heterogeneous Rich Components [6]. To the best of our knowledge, this is the first application
to Timed Input/Output Automata.

An alternative meta-theory is described in [5], similar in many points with [33]. The main
differences concern (1) the stronger pre-requirements that are placed upon the specification theory
on which it is instantiated and (2) the method for specifying and reasoning with contracts. Regard-
ing item (1), [5] requires the specification theory to support, in addition to a parallel composition
operator and a refinement operator, also a logical conjunction operator and a quotient operator.
Such a specification theory was previously defined by the same authors for a variant of TIOA in
[17, 18, 16] and implemented in the ECDAR tool [19]. However, several aspects of this theory
make it unsuitable for representing the semantics of timed components described in SysML or
UML. The synchronization between an input of one component and an output of another compo-
nent becomes an output of the composite, which equates to considering outputs as broadcasts and
which is not consistent with the UML/SysML semantics. Moreover, the formalism forbids non-
determinism due to the timed game semantics [8] and does not handle silent transitions, which is
problematic for representing the semantics of complex components performing internal computa-
tion steps.

Regarding the definition of contracts, the framework of [5] does not support signature refine-
ment, i.e. the ability of a contract to concentrate only on some of the inputs/outputs of the compo-
nent while abstracting away the others, which is explicitly handled in our framework. Regarding
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the method for reasoning with contracts, it relies on a (derived) contract composition operator,
which can be used to compute the “strongest” contract C1 � C2 satisfied by the composition of
two components that satisfy C1 and respectively C2. Since the contracts of [5] require an environ-
ment to refine the contract assumption regardless of how the component behaves, the method does
not support circular arguments. Moreover, the contract composition operator is partial (i.e. it can
be undefined for certain pairs of contracts) since it is based on the quotient operator which is itself
partial. This case is not explicitly discussed in [5] and it is not clear how a user can identify the
cause and mitigate it. In contrast to this, in the method proposed by [33], one of the proof obliga-
tions which constitute the sufficient condition for dominance of Step 2 may also be falsified, but
when this happens it can be used to identify the cause and correct the contracts or the components.
On a more general note, we consider that the reasoning methodology, explicitly described in [33],
is an important asset in the application of the meta-theory to concrete domains.

A partial solution for the signature refinement of contracts is provided by the meta-theory of
[4]: a port is defined on a subset of the component’s signature and contracts are defined on ports.
However contracts are not to be used individually at design: a specification consists of a set of port
contracts and a component such that the union of port contracts signatures is equal to the signature
of the component. Thus, the set of port contracts are not dissociated between them and from
the component, all elements being carried at each design step. Even more, refinement signature
between port contracts is not possible, contrary to the meta-theory of [33]. As for the previous
meta-theory, the method for reasoning with contracts relies on a specification composition operator
that implies the composition of component. Component composition is partial and, depending on
the level of abstraction, may lead to combinatorial explosion. This meta-theory does not support
circular arguments and does not provide a mechanism for formalizing and proving requirement
satisfaction directly on contracts.

A related line of research concerns specification theories, some of which are based on earlier
work around interface theories [20, 21, 28, 12]. The aim is to provide a specification algebra com-
plete with powerful operators for logical composition of specifications, for synthesis of missing
components (quotient), the final goal being to provide substitutability results allowing for com-
positional verification. Some of the specification theories developed in this context are based on
variants of TIOA close to the one that we are using, like in the case of [14, 16]. As mentioned
above, a contract-based framework uses a specification theory as starting point; the notion of
contract added on top serves essentially two purposes which are not tackled by specification theo-
ries: to separate assumptions from guarantees (in specification or interface theories these two are
merged) and to support (possibly circular) assume-guarantee reasoning.

Assume-guarantee reasoning is another long-standing line of research, although classical ap-
proaches deal with logical specifications [15, 25, 1]. The more recent approach of [13] deals with
specifications in the form of sets of I/O traces, and also deals with the problem of signature re-
finement which allows a contract to concentrate on a subset of the component’s actions (although
for untimed specifications). The reasoning approach is similar with the one proposed in [5], in
particular with regard to contract composition. As such, the remarks made above with respect to
the reasoning methodology remain valid for [13].

In addition, contracts in UML/SysML have until now been explored for the specification of
composition compatibility of components via interfaces [35] and for the verification of pre/post
conditions of operations as presented by [26]. Recent work covers the use of pre/post condition
contracts for modeling transformation of models [11] and for modeling the execution semantics of
UML elements [10]. To the best of our knowledge, our work is the first on using assume/guarantee
behavioral contracts for the verification of UML/SysML model requirements.
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7 Conclusions

We have presented a contract framework for Timed Input/Output Automata and results which allow
contract-based reasoning for verifying timed safety properties of systems of TIOA components.
We have illustrated the method on a case study extracted from an industrial-scale system model
and we have showed how contract-based reasoning can alleviate the problem of combinatorial
explosion for the verification of large systems.

The present work is a step further towards introducing contracts in SysML and providing a
full solution to that problem. In [23] we defined a suitable syntax for contracts in SysML and a
set of well-formedness rules that system models must satisfy for reasoning with contracts. For the
moment, some steps of the method applied on SysML remain manual like modeling individual
systems for each contract satisfaction relation or for each dominance obligation proof. Future
work includes: (1) formalizing the semantic mapping between SysML components and contracts
and their TIOA counterparts and (2) providing means for automatic verification by automated
generation of proof obligations.
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A Proofs

For proofs on the sets of actions we use the following theorems from the algebra of sets:

1. A \A = ∅

2. A \ ∅ = A

3. ∅ \A = ∅

4. B \ (A \B) = B

5. (A \B) \A = ∅

6. A \ (A \B) = A ∩B

7. (A \B) \B = A \B

8. (A \B) \ C = A \ (B ∪ C)

9. A \ (B \ C) = (A \B) ∪ (A ∩ C)

10. A \ (B ∩ C) = (A \B) ∪ (A \ C)

11. A \ (B ∪ C) = (A \B) ∩ (A \ C)

12. (A ∪B) \ C = (A \ C) ∪ (B \ C)

13. (A ∩B) \ C = A ∩ (B \ C) = (A \ C) ∩B

14. (A \B) ∪ C = (A ∪ C) \ (B \ C)

15. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

16. A ∪ (A ∩B) = A

17. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

18. A ∩ (A ∪B) = A

where A, B and C are sets.

Theorem 1. The parallel composition operator is commutative and associative.

Proof. In the following we give the proofs (computations) for the input, output and visible sets of
actions.

I(K1‖K2)‖K3
= (IK1‖K2

\OK3)∪ (IK3 \OK1‖K2
) = (((IK1 \OK2)∪ (IK2 \OK1)) \OK3)∪

(IK3 \((OK1 \IK2)∪(OK2 \IK1) = ((IK1 \OK2)\OK3)∪((IK2 \OK1)\OK3)∪((IK3 \(OK1 \
IK2))∩ (IK3 \ (OK2 \ IK1))) = (IK1 \ (OK2 ∪OK3))∪ (IK2 \ (OK1 ∪OK3))∪ (((IK3 ∩ IK2)∪
(IK3 \OK1))∩ ((IK3 ∩ IK1)∪ (IK3 \OK2))) = (IK1 \ (OK2 ∪OK3))∪ (IK2 \ (OK1 ∪OK3))∪
((IK3 \OK1)∩(IK3 \OK2)) = (IK1 \(OK2∪OK3))∪(IK2 \(OK1∪OK3))∪(IK3 \(OK1∪OK2))

IK1‖(K2‖K3) = (IK1 \OK2‖K3
)∪ (IK2‖K3

\OK1) = (IK1 \ ((OK2 \ IK3)∪ (OK3 \ IK2)))∪
(((IK2\OK3)∪(IK3\OK2))\OK1) = ((IK1\(OK2\IK3))∩(IK1\(OK3\IK2)))∪(((IK2\OK3)\
OK1)∪ ((IK3 \OK2) \OK1)) = (((IK1 ∩ IK3)∪ (IK1 \OK2))∩ ((IK1 ∩ IK2)∪ (IK1 \OK3)))∪
((IK2 \ (OK1 ∪OK3))∪ ((IK3 \ (OK1 ∪OK2))) = ((IK1 \OK2)∩ (IK1 \OK3))∪ ((IK2 \ (OK1 ∪
OK3))∪((IK3\(OK1∪OK2))) = (IK1\(OK2∪OK3))∪(IK2\(OK1∪OK3))∪(IK3\(OK1∪OK2))

O(K1‖K2)‖K3
= (OK1‖K2

\ IK3)∪ (OK3 \ IK1‖K2
) = (((OK1 \ IK2)∪ (OK2 \ IK1)) \ IK3)∪

(OK3 \ ((IK1 \OK2)∪ (IK2 \OK1) = ((OK1 \IK2)\IK3)∪ ((OK2 \IK1)\IK3)∪ ((OK3 \ (IK1 \
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OK2))∩ (OK3 \ (IK2 \OK1))) = (OK1 \ (IK2 ∪ IK3))∪ (OK2 \ (IK1 ∪ IK3))∪ (((OK3 ∩OK2)∪
(OK3 \ IK1))∩ ((OK3 ∩OK1)∪ (OK3 \ IK2))) = (OK1 \ (IK2 ∪ IK3))∪ (OK2 \ (IK1 ∪ IK3))∪
((OK3 \IK1)∩ (OK3 \IK2)) = (OK1 \ (IK2 ∪IK3))∪ (OK2 \ (IK1 ∪IK3))∪ (OK3 \ (IK1 ∪IK2))

OK1‖(K2‖K3) = (OK1 \ IK2‖K3
)∪ (OK2‖K3

\ IK1) = (OK1 \ ((IK2 \OK3)∪ (IK3 \OK2)))∪
(((OK2 \IK3)∪ (OK3 \IK2))\IK1) = ((IOK1 \ (IK2 \OK3))∩ (OK1 \ (IK3 \OK2)))∪ (((OK2 \
IK3)\IK1)∪((OK3\IK2)\IK1)) = (((OK1∩OK3)∪(OK1\IK2))∩((OK1∩OK2)∪(OK1\IK3)))∪
((OK2 \ (IK1 ∪ IK3))∪ ((OK3 \ (IK1 ∪ IK2))) = ((OK1 \ IK2)∩ (OK1 \ IK3))∪ ((OK2 \ (IK1 ∪
IK3))∪((OK3 \(IK1∪IK2))) = (OK1 \(IK2∪IK3))∪(OK2 \(IK1∪IK3))∪(OK3 \(IK1∪IK2))

V(K1‖K2)‖K3
= VK1‖K2

∪VK3∪(OK1‖K2
∩IK3)∪(IK1‖K2

∩OK3) = VK1∪VK2∪VK3∪(OK1∩
IK2)∪(OK2∩IK1)∪(((OK1 \IK2)∪(OK2 \IK1))∩IK3)∪(((IK1 \OK2)∪(IK2 \OK1))∩OK3) =
VK1 ∪ VK2 ∪ VK3 ∪ (OK1 ∩ IK2)∪ (OK2 ∩ IK1)∪ ((OK1 \ IK2)∩ IK3)∪ ((OK2 \ IK1)∩ IK3)∪
((IK1 \OK2)∩OK3)∪ ((IK2 \OK1)∩OK3) = VK1 ∪VK2 ∪VK3 ∪ (OK1 ∩ IK2)∪ (OK2 ∩ IK1)∪
(OK1 ∩ (IK3 \ IK2)) ∪ (OK2 ∩ (IK3 \ IK1)) ∪ (IK1 ∩ (OK3 \OK2)) ∪ (IK2 ∩ (OK3 \OK1)) =
VK1∪VK2∪VK3∪(OK1∩IK2)∪(OK2∩IK1)∪(OK1∩IK3)∪(OK2∩IK3)∪(IK1∩OK3)∪(IK2∩
OK3) = VK1 ∪VK2 ∪VK3 ∪ (OK1 ∩ (IK2 ∪ IK3))∪ (OK2 ∩ (IK1 ∪ IK3))∪ (OK3 ∩ (IK1 ∪ IK2))

VK1‖(K2‖K3) = VK1 ∪ VK2‖K3
∪ ((OK1 ∩ IK2‖K3

)∪ (OK2‖K3
∩ IK1)) = VK1 ∪ VK2 ∪ VK3 ∪

(OK2∩IK3)∪(IK2∩OK3)∪(((IK2 \OK3)∪(IK3 \OK2))∩OK1)∪(((OK2 \IK3)∪(OK3 \IK2))∩
IK1) = VK1 ∪VK2 ∪VK3 ∪ (OK2 ∩ IK3)∪ (IK2 ∩OK3)∪ ((IK2 \OK3)∩OK1)∪ ((IK3 \OK2)∩
OK1)∪ ((OK2 \ IK3)∩ IK1)∪ ((OK3 \ IK2)∩ IK1) = VK1 ∪VK2 ∪VK3 ∪ (OK2 ∩ IK3)∪ (IK2 ∩
OK3)∪(IK2∩(OK1 \OK3))∪(IK3∩(OK1 \OK2))∪(OK2∩(IK1 \IK3))∪(OK3∩(IK1 \IK2)) =
VK1∪VK2∪VK3∪(OK2∩IK3)∪(IK2∩OK3)∪(IK2∩OK1)∪(IK3∩OK1)∪(OK2∩IK1)∪(OK3∩
IK1) = VK1 ∪ VK2 ∪ VK3 ∪ (OK1 ∩ (IK2 ∪ IK3))∪ (OK2 ∩ (IK1 ∪ IK3))∪ (OK3 ∩ (IK1 ∪ IK2))

Theorem 3. Given a setK of comparable components and a fixed environmentE for that interface,
the refinement under context relation vE is a preorder over K.

Proof. E′′ = E1 ‖ E3:
IE′′ = ((OK1 ∩OK2) \ IE)∪ (VK1 ∩OK2) = ((OK1 ∩OK2)∪ (VK1 ∩OK2)) \ (IE \ (VK1 ∩

OK2)) = ((VK1 ∪OK1) ∩OK2) \ IE = OK2 \ IE
OE′′ = ((IK1∩IK2)\OE)∪(VK1∩IK2) = ((IK1∩IK2)∪(VK1∩IK2))\(OE\(VK1∩IK2)) =

((VK1 ∪ IK1) ∩ IK2) \OE = IK2 \OE
VE′′ = ∅

K ′ = K ′2 ‖ K ′3:
IK′ = IK′

2‖K′
3
= (IK′

2
\OK′

3
) ∪ (IK′

3
\OK′

2
)

= (((IK1 \ IK2) ∪ (VK1 ∩ OK2)) \ ((OK2 \ OK3) ∪ (VK2 ∩ IK3))) ∪ (((IK2 \ IK3) ∪ (VK2 ∩
OK3)) \ ((OK1 \OK2) ∪ (VK1 ∩ IK2)))
= ((((IK1 \ IK2) \ (OK2) \ OK3)) ∩ ((IK1 \ IK2) \ (VK2 ∩ IK3))) ∪ (((VK1 ∩ OK2) \ (OK2 \
OK3))∩ ((VK1 ∩OK2) \ (VK2 ∩ IK3))))∪ ((((IK2 \ IK3) \ (OK1 \OK2))∩ ((IK2 \ IK3) \ (VK1 ∩
IK2))) ∪ (((VK2 ∩OK3) \ (OK1 \OK2)) ∩ ((VK2 ∩OK3) \ (VK1 ∩ IK2))))
= (((((IK1 \ IK2)\OK2)∪ ((IK1 \ IK2)∩OK3))∩ (((IK1 \ IK2)\VK2)∪ ((IK1 \ IK2)\ IK3)))∪
((VK1 ∩ (OK2 \ (OK2 \OK3))) ∩ (((VK1 ∩OK2) \ VK2) ∪ ((VK1 ∩OK2) \ IK3)))) ∪ (((((IK2 \
IK3 \ OK1) ∪ ((IK2 \ IK3) ∩ OK2)) ∩ (((IK2 \ IK3) \ VK1) ∪ ((IK2 \ IK3) \ IK2))) ∪ ((OK3 ∩
(VK2 \ (OK1 \OK2))) ∩ (((VK1 ∩OK3) \ VK1) ∪ ((VK2 ∩OK3) \ IK2))))
= ((((IK1 \ (IK2 ∪OK2))∪ ((IK1 ∩OK3)\IK2))∩ ((IK1 \ (IK2 ∪VK2))∪ ((IK1 \IK2)\IK3)))∪
((VK1 ∩ OK2 ∩ OK3) ∩ ((VK1 ∩ (OK2 \ VK2)) ∪ (VK1 ∩ (OK2 \ IK3))))) ∪ ((((IK2 \ (IK3 ∪
OK1)) ∪ ((IK2 ∩OK2) \ IK3)) ∩ ((IK2 \ (IK3 ∪ VK1)) ∪ ∅)) ∪ ((OK3 ∩ ((VK2 \OK1) ∪ (VK2 ∩
OK2))) ∩ ((VK1 \ VK1) ∩OK3) ∪ ((VK2 \ IK2) ∩OK3))))
= (((((IK1 \ IK2)∩ (IK1 \OK2))∪\)∩ (((IK1 \ VK2) \ IK2)∪ (IK1 \ (IK2 ∪ IK3))))∪ ((VK1 ∩
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OK2 ∩OK3)∩ ((VK1 ∩OK2)∪ (VK1 ∩OK2))))∪ (((((IK2 \ IK3)∩ (IK2 \OK1))∪ ∅)∩ ((IK2 \
IK3) \ VK1)) ∪ ((OK3 ∩ (VK2 \OK1)) ∩ (∅ ∪ (VK2 ∩OK3))))
= (((((IK1 \IK2)∩IK1)∪∅)∩((IK1 \IK2)∪(IK1 \(IK2∪IK3))))∪((VK1∩OK2∩OK3)∩(VK1∩
OK2)))∪ ((((IK2 \ IK3)∩ IK2)∩ ((IK2 \ IK3) \VK1))∪ ((VK2 ∩ (OK3 \OK1))∩ (VK2 ∩OK3)))
= (((IK1 \ IK3)∩ ((IK1 \ IK2)∪ (IK1 \ (IK2 ∪ IK3))))∪ ((VK1 ∩OK2 ∩OK3)∩ (VK1 ∩OK2)))∪
(((IK2 \ IK3) ∩ ((IK2 \ IK3) \ VK1)) ∪ ((VK2 ∩ (OK3 \OK1)) ∩ (VK2 ∩OK3)))
= ((((IK1 \ IK2)∩ (IK1 \ IK2))∪ ((IK1 \ IK2)∩ ((IK1 \ IK2) \ IK3)))∪ (VK1 ∩OK2 ∩OK3))∪
(((IK2 \ IK3) ∩ ((IK2 \ IK3) \ VK1)) ∪ (((VK2 ∩OK3) \OK1) ∩ (VK2 ∩OK3)))
= (((IK1 \ IK2)∪ ((IK1 \ IK2) \ IK3))∪ (VK1 ∩OK2 ∩OK3))∪ (((IK2 \ IK3) \ VK1)∪ ((VK2 ∩
OK3) \OK1))
= (((IK1 \ IK2) \ (IK3 \ (IK1 \ IK2))) ∪ (VK1 ∩OK2 ∩OK3)) ∪ (((IK2 \ IK3) \ VK1) ∪ (VK2 ∩
(OK3 \OK1)))
= ((IK1 \ IK2) ∪ (VK1 ∩OK2 ∩OK3)) ∪ (((IK2 \ IK3) \ VK1) ∪ (VK2 ∩ (OK3 \OK1)))
= (IK1 \ IK2) ∪ ((IK2 \ IK3) \ VK1) ∪ (VK1 ∩OK2 ∩OK3) ∪ (VK2 ∩ (OK3 \OK1))
= ((IK1 ∪ ((IK2 \VK1)\ IK3))\ (IK2 \ ((IK2 \VK1)\ IK3)))∪ (((VK1 ∩OK3)∩OK2)∪ ((VK2 ∩
OK3) \OK1))
= (((IK1 ∪ (IK2 \VK1))\ (IK3 \ IK1))\ ((IK2 ∩ IK3)∪ (IK2 \ (IK2 \VK1))))∪ (((VK1 ∩OK3)∪
((VK1 ∩OK3) ∩OK2)) \ (OK1 \ ((VK1 ∩OK3) ∩OK2)))
= ((((IK1 ∪ IK2) \ (VK1 \ IK1)) \ (IK3 \ IK1)) \ ((IK2 ∩ IK3) ∪ (IK2 ∩ VK1))) ∪ ((((VK1 ∩
OK3) ∪ (VK2 ∩OK3)) ∩ ((VK2 ∩OK3) ∪OK2))) \ ((OK1 \ (VK1 ∩OK3) ∪ (OK1 \OK2)))
= ((((IK1 ∪ IK2)\VK1)\ (IK3 \ IK1)\ (IK2 ∩ (IK3 ∪VK1)))∪ ((((VK1 ∪VK2)∩OK3)∩ ((VK2 ∩
OK3) ∪OK2))) \ (OK1 ∪ (OK1 \OK2)))
= ((IK1 \ (IK3 \ IK1))\ (IK2 ∩ (IK3 ∪VK1)))∪ (((VK1 ∩OK3)∩ ((VK2 ∩OK3)∪OK2))\ (OK1 \
(OK2 \OK1)))
= (IK1 \ (IK2 ∩ (IK3 ∪ VK1))) ∪ (((VK1 ∩OK3 ∩ VK2) ∪ (VK1 ∩OK3 ∩OK2)) \OK1)
= ((IK1 \ IK2)∪ (IK1 \ (IK3 ∪VK1)))∪ (((VK1 ∩ (VK2 ∩OK3))∪ (VK1 ∩ (OK2 ∩OK3)) \OK1)
= ((IK1 \ IK2)∪ ((IK1 \ IK3)∩ (IK1 \VK1)))∪ ((VK1 ∩ ((VK2 ∩OK3)∪ (OK2 ∩OK3))) \OK1)
= ((IK1 \ IK2) ∪ ((IK1 \ IK3) ∩ IK1)) ∪ ((VK1 ∩ (OK3 ∩ (OK2 ∪ VK2))) \OK1)
= ((IK1 \ IK2) ∪ (IK1 \ IK3)) ∪ ((VK1 ∩OK3) \OK1)
= (IK1 \ IK3) ∪ ((VK1 \OK1) ∩OK3)
= (IK1 \ IK3) ∪ (VK1 ∩OK3)

OK′ = OK′
2‖K′

3
= (OK′

2
\ IK′

3
) ∪ (OK′

3
\ IK′

2
)

= (((OK1 \ OK2) ∪ (VK1 ∩ IK2)) \ ((IK2 \ IK3) ∪ (VK2 ∩ OK3))) ∪ (((OK2 \ OK3) ∪ (VK2 ∩
IK3)) \ ((IK1 \ IK2) ∪ (VK1 ∩OK2)))
= ((((OK1 \ OK2) \ (IK2) \ IK3)) ∩ ((OK1 \ OK2) \ (VK2 ∩ OK3))) ∪ (((VK1 ∩ IK2) \ (IK2 \
IK3))∩ ((VK1 ∩ IK2)\ (VK2 ∩OK3))))∪ ((((OK2 \OK3)\ (IK1 \ IK2))∩ ((OK2 \OK3)\ (VK1 ∩
OK2))) ∪ (((VK2 ∩ IK3) \ (IK1 \ IK2)) ∩ ((VK2 ∩ IK3) \ (VK1 ∩OK2))))
= (((((OK1 \OK2) \ IK2) ∪ ((OK1 \OK2) ∩ IK3)) ∩ (((OK1 \OK2) \ VK2) ∪ ((OK1 \OK2) \
OK3))) ∪ ((VK1 ∩ (IK2 \ (IK2 \ IK3))) ∩ (((VK1 ∩ IK2) \ VK2) ∪ ((VK1 ∩ IK2) \ OK3)))) ∪
(((((OK2 \ OK3 \ IK1) ∪ ((OK2 \ OK3) ∩ IK2)) ∩ (((OK2 \ OK3) \ VK1) ∪ ((OK2 \ OK3) \
OK2))) ∪ ((IK3 ∩ (VK2 \ (IK1 \ IK2))) ∩ (((VK1 ∩ IK3) \ VK1) ∪ ((VK2 ∩ IK3) \OK2))))
= ((((OK1 \ (OK2 ∪ IK2)) ∪ ((OK1 ∩ IK3) \OK2)) ∩ ((OK1 \ (OK2 ∪ VK2)) ∪ ((OK1 \OK2) \
OK3))) ∪ ((VK1 ∩ IK2 ∩ IK3) ∩ ((VK1 ∩ (IK2 \ VK2)) ∪ (VK1 ∩ (IK2 \ OK3))))) ∪ ((((OK2 \
(OK3 ∪ IK1)) ∪ ((OK2 ∩ IK2) \OK3)) ∩ ((OK2 \ (OK3 ∪ VK1)) ∪ ∅)) ∪ ((IK3 ∩ ((VK2 \ IK1) ∪
(VK2 ∩ IK2))) ∩ ((VK1 \ VK1) ∩ IK3) ∪ ((VK2 \OK2) ∩ IK3))))
= (((((OK1 \ OK2) ∩ (OK1 \ IK2)) ∪ \) ∩ (((OK1 \ VK2) \ OK2) ∪ (OK1 \ (OK2 ∪ OK3)))) ∪
((VK1 ∩ IK2 ∩ IK3)∩ ((VK1 ∩ IK2)∪ (VK1 ∩ IK2))))∪ (((((OK2 \OK3)∩ (OK2 \ IK1))∪ ∅)∩
((OK2 \OK3) \ VK1)) ∪ ((IK3 ∩ (VK2 \ IK1)) ∩ (∅ ∪ (VK2 ∩ IK3))))
= (((((OK1 \OK2)∩OK1)∪∅)∩ ((OK1 \OK2)∪ (OK1 \ (OK2 ∪OK3))))∪ ((VK1 ∩IK2 ∩IK3)∩
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(VK1∩IK2)))∪((((OK2\OK3)∩OK2)∩((OK2\OK3)\VK1))∪((VK2∩(IK3\IK1))∩(VK2∩IK3)))
= (((OK1 \ OK3) ∩ ((OK1 \ OK2) ∪ (OK1 \ (OK2 ∪ OK3)))) ∪ ((VK1 ∩ IK2 ∩ IK3) ∩ (VK1 ∩
IK2))) ∪ (((OK2 \OK3) ∩ ((OK2 \OK3) \ VK1)) ∪ ((VK2 ∩ (IK3 \ IK1)) ∩ (VK2 ∩ IK3)))
= ((((OK1 \OK2) ∩ (OK1 \OK2)) ∪ ((OK1 \OK2) ∩ ((OK1 \OK2) \OK3))) ∪ (VK1 ∩ IK2 ∩
IK3)) ∪ (((OK2 \OK3) ∩ ((OK2 \OK3) \ VK1)) ∪ (((VK2 ∩ IK3) \ IK1) ∩ (VK2 ∩ IK3)))
= (((OK1 \ OK2) ∪ ((OK1 \ OK2) \ OK3)) ∪ (VK1 ∩ IK2 ∩ IK3)) ∪ (((OK2 \ OK3) \ VK1) ∪
((VK2 ∩ IK3) \ IK1))
= (((OK1 \OK2)\ (OK3 \ (OK1 \OK2)))∪ (VK1 ∩ IK2 ∩ IK3))∪ (((OK2 \OK3)\VK1)∪ (VK2 ∩
(IK3 \ IK1)))
= ((OK1 \OK2) ∪ (VK1 ∩ IK2 ∩ IK3)) ∪ (((OK2 \OK3) \ VK1) ∪ (VK2 ∩ (IK3 \ IK1)))
= (OK1 \OK2) ∪ ((OK2 \OK3) \ VK1) ∪ (VK1 ∩ IK2 ∩ IK3) ∪ (VK2 ∩ (IK3 \ IK1))
= ((OK1 ∪ ((OK2 \ VK1) \ OK3)) \ (OK2 \ ((OK2 \ VK1) \ OK3))) ∪ (((VK1 ∩ IK3) ∩ IK2) ∪
((VK2 ∩ IK3) \ IK1))
= (((OK1 ∪ (OK2 \ VK1)) \ (OK3 \OK1)) \ ((OK2 ∩OK3)∪ (OK2 \ (OK2 \ VK1))))∪ (((VK1 ∩
IK3) ∪ ((VK1 ∩ IK3) ∩ IK2)) \ (IK1 \ ((VK1 ∩ IK3) ∩ IK2)))
= ((((OK1 ∪OK2) \ (VK1 \OK1)) \ (OK3 \OK1)) \ ((OK2 ∩OK3)∪ (OK2 ∩VK1)))∪ ((((VK1 ∩
IK3) ∪ (VK2 ∩ IK3)) ∩ ((VK2 ∩ IK3) ∪ IK2))) \ ((IK1 \ (VK1 ∩ IK3) ∪ (IK1 \ IK2)))
= ((((OK1 ∪OK2) \ VK1) \ (OK3 \OK1) \ (OK2 ∩ (OK3 ∪ VK1))) ∪ ((((VK1 ∪ VK2) ∩ IK3) ∩
((VK2 ∩ IK3) ∪ IK2))) \ (IK1 ∪ (IK1 \ IK2)))
= ((OK1 \ (OK3 \ OK1)) \ (OK2 ∩ (OK3 ∪ VK1))) ∪ (((VK1 ∩ IK3) ∩ ((VK2 ∩ IK3) ∪ IK2)) \
(IK1 \ (IK2 \ IK1)))
= (OK1 \ (OK2 ∩ (OK3 ∪ VK1))) ∪ (((VK1 ∩ IK3 ∩ VK2) ∪ (VK1 ∩ IK3 ∩ IK2)) \ IK1)
= ((OK1 \OK2)∪ (OK1 \ (OK3 ∪VK1)))∪ (((VK1 ∩ (VK2 ∩ IK3))∪ (VK1 ∩ (IK2 ∩ IK3)) \ IK1)
= ((OK1 \OK2)∪ ((OK1 \OK3)∩ (OK1 \VK1)))∪ ((VK1 ∩ ((VK2 ∩ IK3)∪ (IK2 ∩ IK3)))\ IK1)
= ((OK1 \OK2) ∪ ((OK1 \OK3) ∩OK1)) ∪ ((VK1 ∩ (IK3 ∩ (IK2 ∪ VK2))) \ IK1)
= ((OK1 \OK2) ∪ (OK1 \OK3)) ∪ ((VK1 ∩ IK3) \ IK1)
= (OK1 \OK3) ∪ ((VK1 \ IK1) ∩ IK3)
= (OK1 \OK3) ∪ (VK1 ∩ IK3)

VK′ = VK′
2‖K′

3
= VK′

2
∪ VK′

3
∪ (OK′

2
∩ IK′

3
) ∪ (IK′

2
∩OK′

3
)

= VK′
2
∪VK′

3
∪ (((OK1 \OK2)∪ (VK1 ∩ IK2))∩ ((IK2 \ IK3)∪ (VK2 ∩OK3)))∪ (((IK1 \ IK2)∪

(VK1 ∩OK2)) ∩ ((OK2 \OK3) ∪ (VK2 ∩ IK3)))
= VK′

2
∪ VK′

3
∪ (((OK1 \OK2)∩ (IK2 \ IK3))∪ ((VK1 ∩ IK2)∩ (IK2 \ IK3))∪ ((OK1 \OK2)∪

(VK2 ∩OK3))∪ ((VK1 ∩ IK2)∩ (VK2 ∩OK3)))∪ (((IK1 \ IK2)∩ (OK2 \OK3))∪ ((VK1 ∩OK2)∩
(OK2 \OK3)) ∪ ((IK1 \ IK2) ∩ VK2 ∩ IK3)) ∪ ((VK1 ∩OK2) ∩ (VK2 ∩ IK3)))
= VK′

2
∪ VK′

3
∪ (∅ ∪ (((VK1 ∩ IK2) ∩ IK2) \ IK3) ∪ ((OK1 ∩ VK2 ∩ OK3) \ OK2) ∪ ∅) ∪ (∅ ∪

(((VK1 ∩OK2) ∩OK2) \OK3) ∪ ((VK2 ∩ IK1 ∩ IK3) \ IK2) ∪ ∅)
= VK′

2
∪ VK′

3
∪ (((VK1 ∩ IK2) \ IK3) ∪ ∅) ∪ (((VK1 ∩OK2) \OK3) ∪ ∅)

= VK′
2
∪ VK′

3
∪ (VK1 ∩ (IK2 \ IK3)) ∪ (VK1 ∩ (OK2 \OK3))

= VK′
2
∪ VK′

3
∪ (VK1 ∩ ((IK2 \ IK3) ∪ (OK2 \OK3)))

= VK′
2
∪ VK′

3
∪ (VK1 ∩ ((IK2 ∪ (OK2 \OK3)) \ (IK3 \ (OK2 \OK3))))

= VK′
2
∪ VK′

3
∪ (VK1 ∩ ((IK2 ∪OK2) \ (OK3) \ IK2)) \ IK3)))

= VK′
2
∪ VK′

3
∪ (VK1 ∩ (((IK2 ∪OK2) \OK3) \ IK3))

= VK′
2
∪ VK′

3
∪ (VK1 ∩ ((IK2 ∪OK2) \ (IK3 ∪OK3)))

= VK′
2
∪ VK′

3
∪ (VK1 ∩ ((EK2 \ VK2) \ (EK3 \ VK3)))

= VK′
2
∪ VK′

3
∪ ((VK1 ∩ (EK2 \ VK2)) \ (EK3 \ VK3))

= VK′
2
∪ VK′

3
∪ (((VK1 ∩ EK2) \ VK2) \ (EK3 \ VK3))

= VK′
2
∪ VK′

3
∪ ((VK1 ∩ EK2) \ (VK2 ∪ (EK3 \ VK3)))

= VK′
2
∪ VK′

3
∪ ((VK1 ∩ EK2) \ ((VK2 ∪ EK3) \ (VK3 \ VK2)))

= VK′
2
∪ VK′

3
∪ ((VK1 ∩ EK2) \ ((VK2 ∪ EK3) \ ∅))
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= VK′
2
∪ VK′

3
∪ ((VK1 ∩ EK2) ∩ (VK2 ∪ EK3))

= VK′
2
∪ VK′

3
∪ (((VK1 ∩ EK2) \ VK2) ∩ ((VK1 ∩ EK2) \ EK3))

= VK′
2
∪ VK′

3
∪ ((VK1 ∩ (EK2 \ VK2) ∩ ((VK1 \ EK3) ∩ EK2))

= VK′
2
∪ VK′

3
∪ (VK1 ∩ (VK1 \ EK3) ∩ EK2 ∩ (EK2 \ VK2))

= VK′
2
∪ VK′

3
∪ ((VK1 \ EK3) ∩ (EK2 \ VK2))

= (VK′
2
∪ VK′

3
∪ (VK1 \ EK3)) ∩ (VK′

2
∪ VK′

3
∪ (EK2 \ VK2))

= ((VK1 \EK2) ∪ (VK2 \EK3) ∪ (VK1 \EK3)) ∩ ((VK1 \EK2) ∪ (EK2 \ VK2) ∪ (VK2 \EK3))
= ((VK1\(EK2∩EK3))∪(VK2\EK3))∩(((VK1∪(EK2\VK2))\(EK2\(EK2\VK2))∪(VK2\EK3))
= ((VK1 \ EK3) ∪ (VK2 \ EK3)) ∩ (((VK1 ∪ (EK2 \ VK2)) \ (EK2 ∩ VK2)) ∪ (VK2 \ EK3))
= ((VK1 ∪ VK2) \ EK3) ∩ (((VK1 ∪ (EK2 \ VK2)) \ VK2) ∪ (VK2 \ EK3))
= (VK1 \ EK3) ∩ ((VK1 ∪ (EK2 \ VK2) ∪ (VK2 \ EK3)) \ (VK2 \ (VK2 \ EK3)))
= (VK1 \ EK3) ∩ ((VK1 ∪ (((EK2 \ VK2) ∪ VK2) \ (EK3 \ (EK2 \ VK2)))) \ (VK2 ∩ EK3))
= (VK1 \ EK3) ∩ (VK1 ∪ (EK2 \ ((EK3 \ EK2) ∪ (EK3 ∩ VK2)))) \ (VK2 ∩ EK3))
= (VK1 \ EK3) ∩ ((VK1 ∪ (EK2 \ (∅ ∪ (VK2 ∩ EK3))) \ (VK2 ∩ EK3))
= (VK1 \ EK3) ∩ ((VK1 ∪ (EK2 \ (EK3 ∩ VK2))) \ (EK3 ∩ VK2))
= (VK1 \ EK3) ∩ (((EK2 ∪ VK1) \ ((EK3 ∩ VK2) \ VK1))) \ (EK3 ∩ VK2))
= (VK1 \ EK3) ∩ ((EK2 ∪ VK1) \ (((EK3 ∩ VK2) \ VK1) ∪ (EK3 ∩ VK2)))
= (VK1 \ EK3) ∩ ((EK2 ∪ VK1) \ (EK3 ∩ VK2))
= ((VK1 ∪EK2)∩(VK1 \EK3))\(EK3 \VK2) = ((VK1 ∩(VK1 ∪EK2))\(EK3 \(VK1 ∪EK2)))\
(EK3 \ VK2) = (VK1 \ ((EK3 \ VK1) ∩ (EK3 \ EK2))) \ (EK3 \ VK2) = VK1 \ (EK3 \ VK2) =
(VK1 \ EK3) \ (VK2 \ VK1) = VK1 \ EK3

Theorem 4. Let K1 and K2 be two components and E an environment compatible with both K1

and K2 such that E = E1 ‖ E2. K1 vE1‖E2
K2 ⇔ K1 ‖ E1 vE2 K2 ‖ E1.

Proof. E′ = E′′ = (∅, {φ}, φ, (OK1 \ (IE1 ∪ IE2), (IK1 \ (OE1 ∪ OE2)), ∅, ∅, DE′ , 2
[R+]
0 ) from

their construction and:
IE′ = OK1 \ IE1‖E2

= OK1 \ ((IE1 \ OE1) ∪ (IE2 \ OE1)) = (OK1 \ (IE1 \ OE2)) ∩
(OK1 \ (IE2 \ OE1)) = ((OK1 ∩ OE2) ∪ (OK1 \ IE1)) ∩ ((OK1 ∩ OE1) ∪ (OK1 \ IE2)) =
(∅ ∪ (OK1 \ IE1)) ∩ (∅ ∪ (OK1 \ IE2)) = (OK1 \ IE1) ∩ (OK1 \ IE2) = OK1 \ (IE1 ∪ IE2)

IE′′ = OK1‖E1
\IE2 = ((OK1\IE1)∪(OE1\IK1))\IE2 = ((OK1\IE1)\IE2)∪((OE1\IK1)\

IE2) = (OK1 \ (IE1 ∪IE2))∪ (OE1 \ (IK1 ∪IE2)) = (OK1 \ (IE1 ∪IE2))∪∅ = OK1 \ (IE1 ∪IE2)

OE′ = IK1 \OE1‖E2
= IK1 \ ((OE1 \ IE2) ∪ (OE2 \ IE1)) = (IK1 \ (OE1 \ IE2)) ∩ (IK1 \

(OE2 \ IE1)) = ((IK1 ∩ IE2)∪ (IK1 \OE1))∩ ((IK1 ∩ IE1)∪ (IK1 \OE2)) = (∅∪ (IK1 \OE1))∩
(∅ ∪ (IK1 \OE2)) = (IK1 \OE1) ∩ (IK1 \OE2) = IK1 \ (OE1 ∪OE2)

OE′′ = IK1‖E1
\OE2 = ((IK1 \OE1)\OE2)∪ ((IE1 \OK1)\OE2) = (IK1 \ (OE1 ∪OE2))∪

(IE1 \ (OK1 ∪OE2)) = (IK1 \ (OE1 ∪OE2)) ∪ ∅ = IK1 \ (OE1 ∪OE2)

VE′ = ∅ = VE′′

K ′ = K ′′ = (∅, {φ}, φ, ((IK1 \ IK2) ∪ (VK1 ∩ OK2)), ((OK1 \ OK2) ∪ (VK1 ∩ IK1)), VK1 \
EK2 , ∅, DK′ , 2

[R+]
0 ) from the construction and:

IK′ = (IK1 \ IK2) ∪ (VK1 ∩OK2)

IK′′ = (IK1‖E1
\ IK2‖E1

) ∪ (VK1‖E1
∩OK2‖E1

)
= (((IK1 \OE1)∪ (IE1 \OK1)) \ ((IK2 \OE1)∪ (IE1 \OK2)))∪ ((VK1 ∪ VE1 ∪ (OK1 ∩ IE1)∪
(IK1 ∩OE1)) ∩OK2‖E1

)
= (((IK1 \OE1) \ (IK2 \OE1))∩ ((IK1 \OE1) \ (IE1 \OK2)))∪ (((IE1 \OK1) \ (IK2 \OE1))∩
((IE1 \OK1) \ (IE1 \OK2)))∪ (VK1 ∩OK2‖E1

)∪ (VE1 ∩OK2‖E1
)∪ ((OK1 ∩ IE1)∩OK2‖E1

)∪
((IK1 ∩OE1) ∩OK2‖E1

= ((IK1 \ (OE1 ∪ (IK2 \OE1)))∩ (IK1 \ (OE1 ∪ (IE1 \OK2))))∪ ((IE1 \ (OK2 ∪ (IK2 \OE1)))∩
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(IE1 \(OK1∪(IE1 \OK2))))∪(VK1∩((OK2 \IE1)∪(OE1 \IK2)))∪(VE1∩((OK2 \IE1)∪(OE1 \
IK2)))∪((OK1∩IE1∩((OK2 \IE1)∪(OE1 \IK2)))∪((OE1∩IK1)∩((OK2 \IE1)∪(OE1 \IK2)))
= ((IK1 \((OE1 ∪IK2)\ (OE1 \OE1)))∩ (IK1 \ ((OE1 ∪IE1)\ (OK2 \OE1))))∪ ((IE1 \ ((OK2 ∪
IK2) \ (OE1 \OK2)))∩ (IE1 \ ((OK1 ∪ IE1) \ (OK2 \OK1))))∪ (VK1 ∩ (OK2 \ IE1))∪ (VK1 ∩
(OE1 \ IK2))∪∅∪ ((OK1 ∩ IE1)∩ (OK2 \ IE1))∪ ((OK1 ∩ IE1)∩ (OE1 \ IK2))∪ ((OE1 ∩ IK1)∩
(OK2 \ IE1)) ∪ ((OE1 ∩ IK1) ∩ (OE1 \ IK1))
= ((IK1 \ (OE1 ∪ IK2))∩ (IK1 \ ((OE1 ∪ IE1) \OK2)))∪ ((IE1 \ ((OK2 ∪ IK2) \OE1))∩ (IE1 \
((OK1 ∪ IE1) \ (OK2 \OK1))))∪ (VK1 ∩OK2)∪∅∪ ((OK1 ∩ IE1 ∩OK2) \ IE1)∪ ((OK1 ∩ IE1 ∩
OE1) \ IK2) ∪ ((OE1 ∩ IK1 ∩OK2) \ IK2) ∪ ((OE1 ∩ IK1 ∩OE1) \ IK2

= ((IK1 \ (OE1 ∪ IK2))∩ ((IK1 ∩OK2)∪ (IK1 \ (OE1 ∪ IE1))))∪ (((IE1 ∩OE1)∪ (IE1 \ (OK2 ∪
IK2)))∩((IE1∩((OK2\OK1))∪(IE1\(OK1∪IE1))))∪(VK1∩OK2)∪∅∪∅∪∅∪((OE1∩IK1)\IK2)
= ((IK1 \ IK2)\OE1)∩ (∅∪ ((IK1 \OE1)∩ (IK1 \ IE1))))∪ ((∅∪ ((IE1 \OK2)∩ (IE1 \ IK2)))∩
((IE1 ∩ (OK2 \OK1)) ∪ ((IE1 \OK1) ∩ (IE1 \ IE1)))) ∪ (VK1 ∩OK2) ∪ ((IK1 \ IK2) ∩OE1)
= (((IK1 \ IK2) \OE1)∩ ((IK1 \OE1)∩ IK1))∪ (((IE1 \OK2)∩ IE1)∩ ((IE1 ∩ (OK2 \OK1))∪
((IE1 \OK1) ∩ ∅))) ∪ (VK1 ∩OK2) ∪ ((IK1 \ IK2) ∩OE1)
= (((IK1 \ IK2) \OE1)∩ (IK1 \OE1))∪ ((IE1 \OK2)∩ (IE1 ∩ (OK2 \OK1)))∪ (VK1 ∩OK2)∪
((IK1 \ IK2) ∩OE1)
= ((((IK1 \ IK2) \OE1) ∩ IK1) \OE1) ∪ ((IE1 ∩ (OK2 \OK1) ∩ IE1) \OK2) ∪ (VK1 ∩OK2) ∪
((IK1 \ IK2) ∩OE1)
= ((((IK1 \ IK2)∩ IK1) \OE1) \OE1)∪ ((IE1 ∩ (OK2 \OK1)) \OK2)∪ (VK1 ∩OK2)∪ ((IK1 \
IK2) ∩OE1)
= ((IK1 \ IK2) \OE1) ∪ (IE1 ∩ ((OK2 \OK1) \OK2))) ∪ (VK1 ∩OK2) ∪ ((IK1 \ IK2) ∩OE1)
= ((IK1 \ IK2) \OE1) ∪ (IE1 ∩ ∅) ∪ (VK1 ∩OK2) ∪ ((IK1 \ IK2) ∩OE1)
= ((IK1 \ IK2) \OE1) ∪ ((IK1 \ IK2) ∩OE1) ∪ (VK1 ∩OK2) = (IK1 \ IK2) ∪ (VK1 ∩OK2)

OK′ = (OK1 \OK2) ∪ (VK1 ∩ IK1)

OK′′ = (OK1‖E1
\OK2‖E1

) ∪ (VK1‖E1
∩ IK2‖E1

= (((OK1 \ IE1)∪ (OE1 \ IK1)) \ ((OK2 \ IE1)∪ (OE1 \ IK2)))∪ ((VK1 ∪ VE1 ∪ (IK1 ∩OE1)∪
(OK1 ∩ IE1)) ∩ IK2‖E1

)
= (((OK1 \ IE1) \ (OK2 \ IE1))∩ ((OK1 \ IE1) \ (OE1 \ IK2)))∪ (((OE1 \ IK1) \ (OK2 \ IE1))∩
((OE1 \ IK1) \ (OE1 \ IK2))) ∪ (VK1 ∩ IK2‖E1

) ∪ (VE1 ∩ IK2‖E1
) ∪ ((IK1 ∩OE1) ∩ IK2‖E1

) ∪
((OK1 ∩ IE1) ∩ IK2‖E1

= ((OK1 \ (IE1 ∪ (OK2 \ IE1)))∩ (OK1 \ (IE1 ∪ (OE1 \ IK2))))∪ ((OE1 \ (IK2 ∪ (OK2 \ IE1)))∩
(OE1 \(IK1∪(OE1 \IK2))))∪(VK1∩((IK2 \OE1)∪(IE1 \OK2)))∪(VE1∩((IK2 \OE1)∪(IE1 \
OK2)))∪((IK1∩OE1∩((IK2 \OE1)∪(IE1 \OK2)))∪((IE1∩OK1)∩((IK2 \OE1)∪(IE1 \OK2)))
= ((OK1 \ ((IE1 ∪OK2)\ (IE1 \ IE1)))∩ (OK1 \ ((IE1 ∪OE1)\ (IK2 \ IE1))))∪ ((OE1 \ ((IK2 ∪
OK2) \ (IE1 \ IK2))) ∩ (OE1 \ ((IK1 ∪OE1) \ (IK2 \ IK1)))) ∪ (VK1 ∩ (IK2 \OE1)) ∪ (VK1 ∩
(IE1 \OK2))∪∅∪ ((IK1 ∩OE1)∩ (IK2 \OE1))∪ ((IK1 ∩OE1)∩ (IE1 \OK2))∪ ((IE1 ∩OK1)∩
(IK2 \OE1)) ∪ ((IE1 ∩OK1) ∩ (IE1 \OK1))
= ((OK1 \ (IE1 ∪OK2))∩ (OK1 \ ((IE1 ∪OE1)\ IK2)))∪ ((OE1 \ ((IK2 ∪OK2)\ IE1))∩ (OE1 \
((IK1 ∪OE1) \ (IK2 \ IK1))))∪ (VK1 ∩ IK2)∪ ∅ ∪ ((IK1 ∩OE1 ∩ IK2) \OE1)∪ ((IK1 ∩OE1 ∩
IE1) \OK2) ∪ ((IE1 ∩OK1 ∩ IK2) \OK2) ∪ ((IE1 ∩OK1 ∩ IE1) \OK2

= ((OK1 \ (IE1 ∪OK2))∩ ((OK1 ∩IK2)∪ (OK1 \ (IE1 ∪OE1))))∪ (((OE1 ∩IE1)∪ (OE1 \ (IK2 ∪
OK2)))∩((OE1∩((IK2\IK1))∪(OE1\(IK1∪OE1))))∪(VK1∩IK2)∪∅∪∅∪∅∪((IE1∩OK1)\OK2)
= ((OK1 \OK2)\IE1)∩(∅∪((OK1 \IE1)∩(OK1 \OE1))))∪((∅∪((OE1 \IK2)∩(OE1 \OK2)))∩
((OE1 ∩ (IK2 \ IK1)) ∪ ((OE1 \ IK1) ∩ (OE1 \OE1)))) ∪ (VK1 ∩ IK2) ∪ ((OK1 \OK2) ∩ IE1)
= (((OK1 \OK2)\IE1)∩ ((OK1 \IE1)∩OK1))∪ (((OE1 \IK2)∩OE1)∩ ((OE1 ∩ (IK2 \IK1))∪
((OE1 \ IK1) ∩ ∅))) ∪ (VK1 ∩ IK2) ∪ ((OK1 \OK2) ∩ IE1)
= (((OK1 \OK2) \ IE1)∩ (OK1 \ IE1))∪ ((OE1 \ IK2)∩ (OE1 ∩ (IK2 \ IK1)))∪ (VK1 ∩ IK2)∪
((OK1 \OK2) ∩ IE1)
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= ((((OK1 \OK2) \ IE1) ∩OK1) \ IE1) ∪ ((OE1 ∩ (IK2 \ IK1) ∩OE1) \ IK2) ∪ (VK1 ∩ IK2) ∪
((OK1 \OK2) ∩ IE1)
= ((((OK1 \OK2)∩OK1) \ IE1) \ IE1)∪ ((OE1 ∩ (IK2 \ IK1)) \ IK2)∪ (VK1 ∩ IK2)∪ ((OK1 \
OK2) ∩ IE1)
= ((OK1 \OK2) \ IE1) ∪ (OE1 ∩ ((IK2 \ IK1) \ IK2))) ∪ (VK1 ∩ IK2) ∪ ((OK1 \OK2) ∩ IE1)
= ((OK1 \OK2) \ IE1) ∪ (OE1 ∩ ∅) ∪ (VK1 ∩ IK2) ∪ ((OK1 \OK2) ∩ IE1)
= ((OK1 \OK2) \ IE1) ∪ ((OK1 \OK2) ∩ IE1) ∪ (VK1 ∩ IK2) = (OK1 \OK2) ∪ (VK1 ∩ IK2)

VK′ = VK1 \ EK2

VK′′ = VK1‖E1
\ EK2‖E1

= (VK1 ∪ VE1 ∪ (IK1 ∩ OE1) ∪ (IE1 ∩ OK1)) \ (EK2 ∪ EE1) =
(VK1 \ (EK2 ∪EE1)) ∪ (VE1 \ (EK2 ∪EE1)) ∪ ((IK1 ∩OE1) \ (EK2 ∪EE1)) ∪ ((OK1 ∩ IE1) \
(EK2 ∪ EE1)) = ((VK1 \ EK2) \ EE1) ∪ ∅ ∪ ∅ ∪ ∅ = VK1 \ EK2
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ABSTRACT

A variety of system design and architecture description languages, such as
SysML, UML or AADL, allows the decomposition of complex system de-
signs into communicating timed components. In this paper we consider the
contract-based specification of such components. A contract is a pair formed
of an assumption, which is an abstraction of the component’s environment,
and a guarantee, which is an abstraction of the component’s behavior given
that the environment behaves according to the assumption. Thus, a contract
concentrates on a specific aspect of the component’s functionality and on a
subset of its interface, which makes it relatively simpler to specify. Con-
tracts may be used as an aid for hierarchical decomposition during design
or for verification of properties of composites. This paper defines contracts
for components formalized as a variant of timed input/output automata, in-
troduces compositional results allowing to reason with contracts and shows
how contracts can be used in a high-level modeling language (SysML) for
specification and verification, based on an example extracted from a real-life
system.


