
A case study in formal system engineering with SysML

Iulia Dragomir1, Iulian Ober1 and David Lesens2

1IRIT - University of Toulouse

2Astrium Space Transportation

July 19, 2012

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 1 / 25

Outline

1 Full Model Driven Engineering development process

2 OMEGA SysML Profile & Toolset

3 The Automated Transfer Vehicle (ATV) case study

4 Validation results

5 Conclusions

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 2 / 25

Outline

1 Full Model Driven Engineering development process

2 OMEGA SysML Profile & Toolset

3 The Automated Transfer Vehicle (ATV) case study

4 Validation results

5 Conclusions

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 3 / 25

Full Model Driven Engineering Process

ESA / Astrium Space Transportation / Esterel Technologies / IRIT / Altran Praxis / Verimag

ERTS 2012 2 / 10

 The SysML standard is not always precise enough and leaves an important part of its semantics
undefined. The FMDE project has thus adapted the OMEGA profile (previously available for UML)
to the SysML language in order to suppress any ambiguity in the system models and to allow formal
proof. This requires the addition of new modelling constructs and the definition of a set of rules to
clarify some semantics variation points of SysML (e.g. forbidding of bidirectional ports, typing of
connectors, port behaviours). The behaviour of the system can be modelled in OMEGA SysML by
state machines and operations invoking actions. The OMEGA profile also allows the description of
timed behaviours and observers to formalise the requirements and dynamic properties of the system.
The OMEGA SysML profile is supported by a toolbox called IFx-OMEGA [11]. IFx-OMEGA
provides some features for the simulation and verification of OMEGA SysML models, relying on a
model transformation from OMEGA models to the IF language [10].

 Finally, even though Ada is well adapted for programming critical software, it still contains some
ambiguous or dangerous constructs. The FMDE project has thus proposed to use the SPARK
language [13]. The SPARK language is specifically designed to support the development of
software for systems where the correct operation of the software is essential for the safety or
security of the system. The language is based on a core subset of Ada and augmented with
annotations which describe and support the programming-by-contract approach. The SPARK
Toolset offers static verification that is unrivalled in terms of its soundness, low false-alarm rate,
depth and efficiency. The tools also generate evidence for correctness that can be used to build an
assurance case to satisfy the requirements of industry regulators and certification bodies. The
language and tools have been successfully used in the development of many high-integrity systems
in various domains: air traffic control, on-board aircraft systems, control systems, rail systems, as
well as security applications.

o Optimisation of the successive refinement steps (from the system design to the software design and then from
the software design to the implementation code) thanks to model transformation techniques:

 Automatic generation of a skeleton of the software model in SCADE Suite from the system model
in SysML. This objective has been achieved by integrating SCADE Suite and the Papyrus SysML
modeller through the new SCADE System Designer tool. Having two interconnected meta-models
allows consistency to be kept between the system model and the software model. A model
transformation creates a SCADE node with the same interface as a system component (modelled by
a SysML block).

 Automatic generation of SPARK code from the software model in SCADE Suite by a tool
certifiable to DO178B level A. The combination of SPARK and SCADE allows the verification of
the correct integration between manual and automatically generated code, the verification of
absence of runtime errors and the verification of functional properties. In order to get maximum
benefit from this SPARK/SCADE combination, the SCADE language has been enhanced with new
basic types (int8, int16, int32, int64, uint8, uint16, uint32, uint64, float32, float64), better
management of imported types and definition of ranges (minimal and maximal bounds of a type).

The Figure 1 summarizes the process proposed in the FMDE project.

Manual+
Implementation codeImplementation code

+
Software specificationSoftware specification

Manual

Model transformation & refinement

Generated

Code generator

System designSystem design

Papyrus or RhapsodyPapyrus or Rhapsody
modellermodeller

with Omega profilewith Omega profile

Formal
proof

Formal
proof

Formal
proof

Generated

Figure 1: An engineering process based on models, formal methods and model transformation

This project has been partially funded by the European Space Agency.

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 4 / 25

Outline

1 Full Model Driven Engineering development process

2 OMEGA SysML Profile & Toolset

3 The Automated Transfer Vehicle (ATV) case study

4 Validation results

5 Conclusions

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 5 / 25

The OMEGA Language

SysML Profile for the specification and verification of real-time
embedded systems

Consists of:
A large subset of SysML

+
Model coherence constraints

+
A formal operational semantics

+
Real-time & verification extensions

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 6 / 25

The OMEGA Profile

Structure
SysML Block Definition Diagrams & Internal Block Diagrams
Blocks with properties, operations and state machines, interconnection
elements and relationships
Structured data types and signals

bdd [Project] ATM_sysml [block definition diagram_2]

CashDispenser
«block»

Attributes
t:Timer

Operations
releaseMoney(amount:int)

ICashDispenserController

CD2CTR

IControllerCashDispenser

CTR4CD

ICashDispenserController

CD2CTR

IControllerCashDispenser

CTR4CD

block definition diagram_2

Page 1 of 1

ibd [«root» block] System [System_structure]

System
«block,root»

atm:ATM1

IUserATM, IUserConsole, IVerifyPin, IUserTransaction, ICardReader

User2ATM
IConsoleUser, IConsole, IControllerConsole

ATM2User

IBankController

Bank2ATM

IControllerBank
ATM2Bank

bank:Bank1 itsController

user:User1

itsATM

User2ATM

IUserATM, IUserConsole, IVerifyPin, IUserTransaction, ICardReader

IConsoleUser, IConsole, IControllerConsole
ATM2User

Bank2ATM

IBankController

ATM2Bank
IControllerBank

System_structure

Page 1 of 1

Discrete behaviour
State machines
Asynchronous communication through operations and signals

Real time
Clocks, time guards and transition urgency
Discrete or continuous specified by the user

Observers
Objects monitoring the system (state and events) and giving verdicts
about a safety property

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 7 / 25

The OMEGA Profile

Structure
SysML Block Definition Diagrams & Internal Block Diagrams
Blocks with properties, operations and state machines, interconnection
elements and relationships
Structured data types and signals

Discrete behaviour
State machines
Asynchronous communication through operations and signalsstm [block] CashDispenser [StatechartOfCashDispenser]

Idle

InUse

releaseMoney/t.set(3)

/timeout(t) //
begin
 CD2CTR ! done() ;
 t.reset()
end

StatechartDiagram

Page 1 of 1

Real time
Clocks, time guards and transition urgency
Discrete or continuous specified by the user

Observers
Objects monitoring the system (state and events) and giving verdicts
about a safety property

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 7 / 25

The OMEGA Profile

Structure
SysML Block Definition Diagrams & Internal Block Diagrams
Blocks with properties, operations and state machines, interconnection
elements and relationships
Structured data types and signals

Discrete behaviour
State machines
Asynchronous communication through operations and signals

Real time
Clocks, time guards and transition urgency
Discrete or continuous specified by the user

Observers
Objects monitoring the system (state and events) and giving verdicts
about a safety property

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 7 / 25

The OMEGA Profile

Structure
SysML Block Definition Diagrams & Internal Block Diagrams
Blocks with properties, operations and state machines, interconnection
elements and relationships
Structured data types and signals

Discrete behaviour
State machines
Asynchronous communication through operations and signals

Real time
Clocks, time guards and transition urgency
Discrete or continuous specified by the user

Observers
Objects monitoring the system (state and events) and giving verdicts
about a safety property

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 7 / 25

The IFx Toolset

Goal: Early model validation and debugging

Principle: Transforming to communicating extended timed automata
(IF Language)

Functionalities

Simulation
Static analysis: dead
code/variable elimination,
slicing, ...
Model-checking: observers,
state graph minimization,
µ-calculus, ...

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 8 / 25

Outline

1 Full Model Driven Engineering development process

2 OMEGA SysML Profile & Toolset

3 The Automated Transfer Vehicle (ATV) case study

4 Validation results

5 Conclusions

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 9 / 25

The ATV Solar Generation System

The ATV has been developed by Astrium Space Transportation for ESA.

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 10 / 25

The Solar Generation System Architecture

Full Model Driven Development for On-Board Software - David LESENS 5

Th
is

 d
oc

um
en

t i
s

th
e

pr
op

er
ty

 o
f A

st
riu

m
. I

t s
ha

ll
no

t b
e

co
m

m
un

ic
at

ed
 to

 th
ird

 p
ar

tie
s

w
ith

ou
t p

rio
r w

rit
te

n
ag

re
em

en
t.

Its
 c

on
te

nt
 s

ha
ll

no
t b

e
di

sc
lo

se
d.

Full Model Driven Development forFull Model Driven Development for
OnOn--Board SoftwareBoard Software

MainMain
processorprocessor

The Solar Generation System Architecture

WING
TK HDRSTKTK HDRSTKTK HDRSTKTK HDRSTK

PCDUPCDUPCDUPCDU

SADMSADM

CMUCMU

TCUTCUTCUTCU

SADESADE

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 11 / 25

The system model

Reverse engineered from the actual system for the purpose of
FullMDE

4-layer architecture

20 block types - HW, SW, MM - and 95 block instances

348 (661) ports (instances) and 372 (504) connectors (instances)

18 interfaces for port types

1-fault tolerant

62 possible hardware failures

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 12 / 25

The system model

Reverse engineered from the actual system for the purpose of
FullMDE

4-layer architecture

20 block types - HW, SW, MM - and 95 block instances

348 (661) ports (instances) and 372 (504) connectors (instances)

18 interfaces for port types

1-fault tolerant

62 possible hardware failures

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 12 / 25

The system model

Reverse engineered from the actual system for the purpose of
FullMDE

4-layer architecture

20 block types - HW, SW, MM - and 95 block instances

348 (661) ports (instances) and 372 (504) connectors (instances)

18 interfaces for port types

1-fault tolerant

62 possible hardware failures

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 12 / 25

Formal system requirement

Property

After 10 minutes since SGS start-up, all 4 wings are deployed and the
Mission and Vehicle Management is aware of it.

SYSTEM_IS_OFF

Reactions
deployment_duration = 600000

SYSTEM_IS_ON

/match informal "initialized" by ATV //
clock.set(deployment_duration)

NOT_DEPLOYED
«error»[clock>=0]/clock.reset()

MISSION_EVENT
«success» DEPLOYED

[(ATV.SGS.WING1.LOCKING @ DEPLOYED) and
(ATV.SGS.WING2.LOCKING @ DEPLOYED) and
(ATV.SGS.WING3.LOCKING @ DEPLOYED) and
(ATV.SGS.WING4.LOCKING @ DEPLOYED)]

[ATV.MVM @ END]/
clock.reset()

NO_MISSION_EVENT
«error»[clock>=0]/clock.reset()

StatechartDiagram

Page 1 of 1

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 13 / 25

Formal system requirement

Property

After 10 minutes since SGS start-up, all 4 wings are deployed and the
Mission and Vehicle Management is aware of it.

SYSTEM_IS_OFF

Reactions
deployment_duration = 600000

SYSTEM_IS_ON

/match informal "initialized" by ATV //
clock.set(deployment_duration)

NOT_DEPLOYED
«error»[clock>=0]/clock.reset()

MISSION_EVENT
«success» DEPLOYED

[(ATV.SGS.WING1.LOCKING @ DEPLOYED) and
(ATV.SGS.WING2.LOCKING @ DEPLOYED) and
(ATV.SGS.WING3.LOCKING @ DEPLOYED) and
(ATV.SGS.WING4.LOCKING @ DEPLOYED)]

[ATV.MVM @ END]/
clock.reset()

NO_MISSION_EVENT
«error»[clock>=0]/clock.reset()

StatechartDiagram

Page 1 of 1

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 13 / 25

Outline

1 Full Model Driven Engineering development process

2 OMEGA SysML Profile & Toolset

3 The ATV case study

4 Validation results

5 Conclusions

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 14 / 25

Verification by simulation

Scenario length: 2400 steps and one minute execution

Discovered modelling errors due to reverse engineering and omitted at
model review:

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 15 / 25

Verification by simulation

Scenario length: 2400 steps and one minute execution

Discovered modelling errors due to reverse engineering and omitted at
model review:

Unexpected message receptions for wing parts

TK_IS_FAILED

TK_CMD_ON to HDRS TK_CMD_OFF to HDRS
ERROR

Thermal knife commanded
when desactivated

TK_IS_HEALTHY

NON_ACTIVATED

IS_ACTIVATED

IS_OFF

IS_ON

TK_CMD_OFF to HDRS

TK_CMD_OFF

TK_CMD_ON to HDRS

TK_CMD_ON

ACTIVATE_TK

DEACTIVATE_TK

FAILURE_ON FAILURE_OFF

TK_deactivation
«Requirement»

StatechartDiagram

Page 1 of 1

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 15 / 25

Verification by simulation

Scenario length: 2400 steps and one minute execution

Discovered modelling errors due to reverse engineering and omitted at
model review:

Unexpected message receptions for wing parts

TK_IS_FAILED

TK_CMD_ON to HDRS TK_CMD_OFF to HDRS
ERROR

Thermal knife commanded
when desactivated

TK_IS_HEALTHY

NON_ACTIVATED

TK_CMD_ON TK_CMD_OFF

IS_ACTIVATED

IS_OFF

IS_ON

TK_CMD_OFF to HDRS

TK_CMD_OFF

TK_CMD_ON to HDRS

TK_CMD_ON

ACTIVATE_TK

DEACTIVATE_TK

FAILURE_ON FAILURE_OFF

TK_deactivation
«Requirement»

StatechartDiagram

Page 1 of 1

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 15 / 25

Verification by simulation

Scenario length: 2400 steps and one minute execution

Discovered modelling errors due to reverse engineering and omitted at
model review:

Unexpected message receptions for wing parts
Ambiguous parallel receivers for Mission and Vehicle Management

Full Model Driven Development for On-Board Software - David LESENS 37

Th
is

 d
oc

um
en

t i
s

th
e

pr
op

er
ty

 o
f A

st
riu

m
. I

t s
ha

ll
no

t b
e

co
m

m
un

ic
at

ed
 to

 th
ird

 p
ar

tie
s

w
ith

ou
t p

rio
r w

rit
te

n
ag

re
em

en
t.

Its
 c

on
te

nt
 s

ha
ll

no
t b

e
di

sc
lo

se
d.

Full Model Driven Development forFull Model Driven Development for
OnOn--Board SoftwareBoard Software

Two receivers (2/3)

S_REMOVE_SAFETY_BARRIERS_TCU1

S_REMOVE_SAFETY_BARRIERS_TCU2

SGS_EC_REMOVE_SB(TCU1) to pSGS_FSM_out

SGS_EC_REMOVE_SB(TCU2) to pSGS_FSM_out

SGS_CMD_RPT

IDLE

STEP_START

SGS_

SGS_EC_PCDU_GRP(params->ACTION) to pSGS_FSM_out

SGS_APR_DEPLOY_START/
for(j=0; j<8; j+ +)
 TK_REF [j] = params->TK_R EF[j];

SGS_CMD_RPT

Mission
management Vehicle Configuration

Management

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 15 / 25

Verification by simulation

Scenario length: 2400 steps and one minute execution

Discovered modelling errors due to reverse engineering and omitted at
model review:

Unexpected message receptions for wing parts
Ambiguous parallel receivers for Mission and Vehicle Management
Incorrect (sequences of) requests that result in deadlocks; e.g. SADE
receives deactivation before disable

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 15 / 25

State space explosion and its cause

MVM0

manager67

FSM0

PCDU0

manager44 manager68

POWER3 POWER6

PCDU1

manager36 manager76

POWER2 POWER7

PCDU2

manager29manager51

POWER1POWER4

PCDU3

manager21manager59

POWER0POWER5

CMU10

manager13

manager30

manager4

manager45manager60

manager66

manager77

BEHAVIOUR3

LOCKING0

BEHAVIOUR0

LOCKING1LOCKING2

DEPLOYMENT0

LOCKING3

CMU20

manager10 manager7

BEHAVIOUR2 BEHAVIOUR1

manager5manager6

SADG0SADG1

manager8 manager9

SADG2 SADG3

manager11 manager12

SADG4 SADG5

manager14manager15

SADG6SADG7

manager16

manager83

AP0

manager1

manager17manager18manager19

manager2

manager20

manager24manager26 manager34 manager35manager23 manager25manager28manager33

KNIFE0 KNIFE2KNIFE4KNIFE5 KNIFE1KNIFE3 KNIFE6 KNIFE7

manager22manager27 manager32 manager31

HDRS0HDRS1 HDRS3 HDRS2

manager39 manager41manager49 manager50 manager38manager40 manager43manager48

KNIFE9 KNIFE11KNIFE14 KNIFE15KNIFE8 KNIFE10 KNIFE12KNIFE13

manager37manager42 manager47 manager46

HDRS4HDRS5 HDRS7 HDRS6

manager53 manager55manager58 manager63 manager54manager56manager64 manager65

KNIFE16 KNIFE18KNIFE20 KNIFE21 KNIFE17KNIFE19KNIFE22 KNIFE23

manager52 manager57manager62manager61

HDRS8 HDRS9HDRS11HDRS10

manager70manager72 manager75manager80manager71 manager73manager81 manager82

KNIFE24 KNIFE26 KNIFE28KNIFE29KNIFE25 KNIFE27KNIFE30 KNIFE31

manager69 manager74 manager79 manager78

HDRS12 HDRS13 HDRS15 HDRS14

Mission Management

Software instances

Hardware instances

Wing 1 instances Wing 2 instances Wing 3 instances Wing 4 instances

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 16 / 25

Non-exhaustive model-checking

Executed on a single thread with a predefined scheduling for parallel
actions
Still useful for discovering logical errors:

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 17 / 25

Non-exhaustive model-checking

Executed on a single thread with a predefined scheduling for parallel
actions

Still useful for discovering logical errors:

Incorrect connections between the power units and the wings

Full Model Driven Development for On-Board Software - David LESENS 56

Th
is

 d
oc

um
en

t i
s

th
e

pr
op

er
ty

 o
f A

st
riu

m
. I

t s
ha

ll
no

t b
e

co
m

m
un

ic
at

ed
 to

 th
ird

 p
ar

tie
s

w
ith

ou
t p

rio
r w

rit
te

n
ag

re
em

en
t.

Its
 c

on
te

nt
 s

ha
ll

no
t b

e
di

sc
lo

se
d.

Full Model Driven Development forFull Model Driven Development for
OnOn--Board SoftwareBoard Software

PCDU11

IF_ PCD U_2 _WG _PW

pWING_R_out

IF_PCDU_2_WG_PW

pWING_N_out

IF_SGS_2_PCDU

pS GS_ in

PCDU21

IF_ PCD U_2 _WG _PW

pWING_R_out

IF_PCDU_2_WG_PW

pWING_N_out

IF_SGS_2_PCDU

pSGS_ in

IF_PCDU_2_WG_PW

pWING2_R_out

IF_PCDU_2_WG_PW

pWING1_R_out

IF_ SGS _2_ PCD U

pS GS_ PCD U2_ in

IF_SGS_2_PCDU

pSGS_PCDU1_in

IF_PCDU_2_WG_PW

pWING2_N_out

IF_PCDU_2_WG_PW

pWING1_N_out
WING11

IF_PCDU_2_WG_PW

pP CDU _R_ in

IF_PCDU_2_WG_PW

pP CDU _N_ in

WING21

IF_PCDU_2_WG_PW

pP CDU _R_ in

IF_PCDU_2_WG_PW

pP CDU _N_ in

IF_ PCD U_2 _WG _PW

pPCDU2_R_in

IF_ PCD U_2 _WG _PW

pPCDU1_R_in

IF_ PCD U_2 _WG _PW

pPCDU2_N_in

IF_ PCD U_2 _WG _PW

pPCDU1_N_in

IF_ SGS _2_ PCD U

pPCDU2_out

IF_ SGS _2_ PCD U

pPCDU1_out

pWING_R_out

IF_ PCD U_2 _WG _PW

pWING_N_out

IF_PCDU_2_WG_PW

pS GS_ in

IF_SGS_2_PCDU

pWING_R_out

IF_ PCD U_2 _WG _PW

IF_PCDU_2_WG_PW

pWING_N_out

pSGS_ in

IF_SGS_2_PCDU

IF_PCDU_2_WG_PW

pWING2_R_out

pWING1_R_out

IF_PCDU_2_WG_PW

IF_ SGS _2_ PCD U

pS GS_ PCD U2_ in

IF_SGS_2_PCDU

pSGS_PCDU1_in

IF_PCDU_2_WG_PW

pWING2_N_out

pWING1_N_out

IF_PCDU_2_WG_PW

IF_PCDU_2_WG_PW

pP CDU _R_ in

pP CDU _N_ in

IF_PCDU_2_WG_PW

IF_PCDU_2_WG_PW

pP CDU _R_ in

pP CDU _N_ in

IF_PCDU_2_WG_PW

pPCDU2_R_in

IF_ PCD U_2 _WG _PW

IF_ PCD U_2 _WG _PW

pPCDU1_R_in

pPCDU2_N_in

IF_ PCD U_2 _WG _PW

IF_ PCD U_2 _WG _PW

pPCDU1_N_in

IF_ SGS _2_ PCD U

pPCDU2_out

pPCDU1_out

IF_ SGS _2_ PCD U

Behaviour in case of failure

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 17 / 25

Non-exhaustive model-checking

Executed on a single thread with a predefined scheduling for parallel
actions

Still useful for discovering logical errors:

Incorrect connections between the power units and the wings

Full Model Driven Development for On-Board Software - David LESENS 57

Th
is

 d
oc

um
en

t i
s

th
e

pr
op

er
ty

 o
f A

st
riu

m
. I

t s
ha

ll
no

t b
e

co
m

m
un

ic
at

ed
 to

 th
ird

 p
ar

tie
s

w
ith

ou
t p

rio
r w

rit
te

n
ag

re
em

en
t.

Its
 c

on
te

nt
 s

ha
ll

no
t b

e
di

sc
lo

se
d.

Full Model Driven Development forFull Model Driven Development for
OnOn--Board SoftwareBoard Software

Behaviour in case of failure

PCDU11

IF_ PCD U_2 _WG _PW

pWING_R_out

IF_PCDU_2_WG_PW

pWING_N_out

IF_SGS_2_PCDU

pS GS_ in

PCDU21

IF_ PCD U_2 _WG _PW

pWING_R_out

IF_PCDU_2_WG_PW

pWING_N_out

IF_SGS_2_PCDU

pSGS_ in

IF_PCDU_2_WG_PW

pWING2_R_out

IF_PCDU_2_WG_PW

pWING1_R_out

IF_ SGS _2_ PCD U

pS GS_ PCD U2_ in

IF_SGS_2_PCDU

pSGS_PCDU1_in

IF_PCDU_2_WG_PW

pWING2_N_out

IF_PCDU_2_WG_PW

pWING1_N_out
WING11

IF_PCDU_2_WG_PW

pP CDU _R_ in

IF_PCDU_2_WG_PW

pP CDU _N_ in

WING21

IF_PCDU_2_WG_PW

pP CDU _R_ in

IF_PCDU_2_WG_PW

pP CDU _N_ in

IF_ PCD U_2 _WG _PW

pPCDU2_R_in

IF_ PCD U_2 _WG _PW

pPCDU1_R_in

IF_ PCD U_2 _WG _PW

pPCDU2_N_in

IF_ PCD U_2 _WG _PW

pPCDU1_N_in

IF_ SGS _2_ PCD U

pPCDU2_out

IF_ SGS _2_ PCD U

pPCDU1_out

pWING_R_out

IF_ PCD U_2 _WG _PW

pWING_N_out

IF_PCDU_2_WG_PW

pS GS_ in

IF_SGS_2_PCDU

pWING_R_out

IF_ PCD U_2 _WG _PW

IF_PCDU_2_WG_PW

pWING_N_out

pSGS_ in

IF_SGS_2_PCDU

IF_PCDU_2_WG_PW

pWING2_R_out

pWING1_R_out

IF_PCDU_2_WG_PW

IF_ SGS _2_ PCD U

pS GS_ PCD U2_ in

IF_SGS_2_PCDU

pSGS_PCDU1_in

IF_PCDU_2_WG_PW

pWING2_N_out

pWING1_N_out

IF_PCDU_2_WG_PW

IF_PCDU_2_WG_PW

pP CDU _R_ in

pP CDU _N_ in

IF_PCDU_2_WG_PW

IF_PCDU_2_WG_PW

pP CDU _R_ in

pP CDU _N_ in

IF_PCDU_2_WG_PW

pPCDU2_R_in

IF_ PCD U_2 _WG _PW

IF_ PCD U_2 _WG _PW

pPCDU1_R_in

pPCDU2_N_in

IF_ PCD U_2 _WG _PW

IF_ PCD U_2 _WG _PW

pPCDU1_N_in

IF_ SGS _2_ PCD U

pPCDU2_out

pPCDU1_out

IF_ SGS _2_ PCD U

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 17 / 25

Non-exhaustive model-checking

Executed on a single thread with a predefined scheduling for parallel
actions

Still useful for discovering logical errors:

Incorrect connections between the power units and the wings
Unhandled received requests by the hold-down and release systems

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 17 / 25

Non-exhaustive model-checking

Executed on a single thread with a predefined scheduling for parallel
actions

Still useful for discovering logical errors:

Incorrect connections between the power units and the wings
Unhandled received requests by the hold-down and release systems
Control and monitoring unit is already 1-fault tolerant, which makes
this type of failure incorrect and removed from the set of verifiable
errors

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 17 / 25

Verification using abstractions

Abstraction

One wing structure that does not experience any hardware fault is replaced
by a block with a simpler behaviour: it ends up by being deployed.

MVM0

manager67

FSM0

PCDU0

manager44 manager68

POWER3 POWER6

PCDU1

manager36 manager76

POWER2 POWER7

PCDU2

manager29manager51

POWER1POWER4

PCDU3

manager21manager59

POWER0POWER5

CMU10

manager13

manager30

manager4

manager45manager60

manager66

manager77

BEHAVIOUR3

LOCKING0

BEHAVIOUR0

LOCKING1LOCKING2

DEPLOYMENT0

LOCKING3

CMU20

manager10 manager7

BEHAVIOUR2 BEHAVIOUR1

manager5manager6

SADG0SADG1

manager8 manager9

SADG2 SADG3

manager11 manager12

SADG4 SADG5

manager14manager15

SADG6SADG7

manager16

manager83

AP0

manager1

manager17manager18manager19

manager2

manager20

manager24manager26 manager34 manager35manager23 manager25manager28manager33

KNIFE0 KNIFE2KNIFE4KNIFE5 KNIFE1KNIFE3 KNIFE6 KNIFE7

manager22manager27 manager32 manager31

HDRS0HDRS1 HDRS3 HDRS2

manager39 manager41manager49 manager50 manager38manager40 manager43manager48

KNIFE9 KNIFE11KNIFE14 KNIFE15KNIFE8 KNIFE10 KNIFE12KNIFE13

manager37manager42 manager47 manager46

HDRS4HDRS5 HDRS7 HDRS6

manager53 manager55manager58 manager63 manager54manager56manager64 manager65

KNIFE16 KNIFE18KNIFE20 KNIFE21 KNIFE17KNIFE19KNIFE22 KNIFE23

manager52 manager57manager62manager61

HDRS8 HDRS9HDRS11HDRS10

manager70manager72 manager75manager80manager71 manager73manager81 manager82

KNIFE24 KNIFE26 KNIFE28KNIFE29KNIFE25 KNIFE27KNIFE30 KNIFE31

manager69 manager74 manager79 manager78

HDRS12 HDRS13 HDRS15 HDRS14

Mission Management

Software instances

Hardware instances

Wing 1 instances Wing 2 instances Wing 3 instances Wing 4 instances
Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 18 / 25

Verification using abstractions

Abstraction

One wing structure that does not experience any hardware fault is replaced
by a block with a simpler behaviour: it ends up by being deployed.

System configuration: 1 extended wing and 3 abstract ones

4 configurations, each being manually modelled
The total number of instances is reduced by 55%
Separate verification for each 60 possible failures for each
configuration
Error detected: failure of the redundant thermal knife while the
nominal one is enabled leads to a not deployed wing

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 19 / 25

Abstract communication graph

MVM0

manager22

FSM0

PCDU0

manager0manager6

WING0 WING1 WING2TCU0POWER0

PCDU1

manager14

POWER1

PCDU2PCDU3

CMU10

manager21

manager9

DEPLOYMENT0

LOCKING0

CMU20

manager3

BEHAVIOUR0

SADG0

manager1

manager2

SADG1

manager28

manager13 manager15manager16 manager5

KNIFE4 KNIFE5KNIFE6 KNIFE0

manager20

manager23

AP0

manager24manager25

manager26manager27manager29

manager12 manager17manager7manager8

KNIFE3 KNIFE7KNIFE1KNIFE2

manager19manager11manager18 manager10

HDRS3HDRS1HDRS2 HDRS0

Mission Management

Software instances

Hardware instances

Wing 1 instances

TCU &
Wing 3

TCU_Wing 2
TCU_Wing 4

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 20 / 25

Verification using abstractions

Abstraction

One wing structure that does not experience any hardware fault is replaced
by a block with a simpler behaviour: it ends up by being deployed.

System configuration: 1 extended wing and 3 abstract ones
4 configurations, each being manually modelled

The total number of instances is reduced by 55%
Separate verification for each 60 possible failures for each
configuration
Error detected: failure of the redundant thermal knife while the
nominal one is enabled leads to a not deployed wing

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 21 / 25

Verification using abstractions

Abstraction

One wing structure that does not experience any hardware fault is replaced
by a block with a simpler behaviour: it ends up by being deployed.

System configuration: 1 extended wing and 3 abstract ones
4 configurations, each being manually modelled
The total number of instances is reduced by 55%

Separate verification for each 60 possible failures for each
configuration
Error detected: failure of the redundant thermal knife while the
nominal one is enabled leads to a not deployed wing

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 21 / 25

Verification using abstractions

Abstraction

One wing structure that does not experience any hardware fault is replaced
by a block with a simpler behaviour: it ends up by being deployed.

System configuration: 1 extended wing and 3 abstract ones
4 configurations, each being manually modelled
The total number of instances is reduced by 55%
Separate verification for each 60 possible failures for each
configuration

Error detected: failure of the redundant thermal knife while the
nominal one is enabled leads to a not deployed wing

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 21 / 25

Verification using abstractions

Abstraction

One wing structure that does not experience any hardware fault is replaced
by a block with a simpler behaviour: it ends up by being deployed.

System configuration: 1 extended wing and 3 abstract ones
4 configurations, each being manually modelled
The total number of instances is reduced by 55%
Separate verification for each 60 possible failures for each
configuration
Error detected: failure of the redundant thermal knife while the
nominal one is enabled leads to a not deployed wing

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 21 / 25

Towards Contract-Based Reasoning

Is the used abstraction correct?

Assumption about the environment of a wing wrt the order and
timing of the sent requests

The concrete environment has to guarantee this assumption given
that the wings behave as described by the abstraction

→ Both steps have been formally verified within OMEGA-IFx

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 22 / 25

Towards Contract-Based Reasoning

Is the used abstraction correct?

Assumption about the environment of a wing wrt the order and
timing of the sent requests

The concrete environment has to guarantee this assumption given
that the wings behave as described by the abstraction

→ Both steps have been formally verified within OMEGA-IFx

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 22 / 25

Towards Contract-Based Reasoning

Is the used abstraction correct?

Assumption about the environment of a wing wrt the order and
timing of the sent requests

The concrete environment has to guarantee this assumption given
that the wings behave as described by the abstraction

→ Both steps have been formally verified within OMEGA-IFx

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 22 / 25

Towards Contract-Based Reasoning

Is the used abstraction correct?

Assumption about the environment of a wing wrt the order and
timing of the sent requests

The concrete environment has to guarantee this assumption given
that the wings behave as described by the abstraction

→ Both steps have been formally verified within OMEGA-IFx

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 22 / 25

Outline

1 Full Model Driven Engineering development process

2 OMEGA SysML Profile & Toolset

3 The Automated Transfer Vehicle (ATV) case study

4 Validation results

5 Conclusions

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 23 / 25

Conclusions

Modelling of a complex system design with OMEGA SysML

Verification & Validation by simulation and model-checking

Use of abstractions & Contract-based Reasoning

User feedback

More formal approach than the classical SysML
Early detections of errors in the model
Complexity in usage of the tool chain OMEGA-IFx
Proof limitations

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 24 / 25

Conclusions

Modelling of a complex system design with OMEGA SysML

Verification & Validation by simulation and model-checking

Use of abstractions & Contract-based Reasoning

User feedback

More formal approach than the classical SysML
Early detections of errors in the model
Complexity in usage of the tool chain OMEGA-IFx
Proof limitations

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 24 / 25

Future Work

Formal definition of contracts within OMEGA-IFx

Proof automation based on circular reasoning

Automated assumption generation

Iulia Dragomir (IRIT) A case study in formal system engineering with SysML July 19, 2012 25 / 25

	Outline
	Introduction
	Omega-IFx
	ATV
	Validation
	Conclusions

