Answer Set Programming: A Declarative Approach to Solving Challenging Search Problems

Ilkka Niemelä

Department of Information and Computer Science
School of Science
Aalto University
Ilkka.Niemela@aalto.fi
Answer Set Programming (ASP)

- Basic principles outlined in the late 1990s
- Now well represented at research conferences and workshops (IJCAI, AAAI, ECAI, KR, ...)
- Competitive implementations available
- Growing number of applications
- An approach to modeling and solving knowledge intensive search problems with defaults, exceptions, definitions:
 planning, configuration, model checking, network management, linguistics, bioinformatics, combinatorics, ...
Content

- Introduction to Answer Set Programming (ASP)
- Stable Model Semantics
- Solving Problems with ASP
- ASP Solver Technology
- Systems, Applications, Literature
Part I

Introduction to ASP
Answer Set Programming

- Term coined by Vladimir Lifschitz in the late 1990s.
- Roots: KR, logic programming, nonmonotonic reasoning.
- Based on some formal system with semantics that assigns a theory a collection of answer sets (models).
- An **ASP solver**: computes answer sets for a theory.
- Solving a problem in ASP:
 Encode the problem as a theory such that solutions to the problem are given by **answer sets** of the theory.
ASP—cont’d

- Solving a problem using ASP

- Possible formal systemModels
 - Propositional logic: Truth assignments
 - CSP: Variable assignments
 - Logic programs: Stable models
 - Model expansion: First-order structures
Example. k-coloring problem with SAT

- Given a graph (V, E) find an assignment of one of k colors to each vertex such that no two adjacent vertices share a color.

- Encoding 3-coloring using propositional logic
 - For each vertex $v \in V$ include the clauses:
 - $v_1 \lor v_2 \lor v_3$
 - $\neg v_1 \lor \neg v_2$
 - $\neg v_1 \lor \neg v_3$
 - $\neg v_2 \lor \neg v_3$
 - and for each edge $(v, u) \in E$ the clauses:
 - $\neg v_1 \lor \neg u_1$
 - $\neg v_2 \lor \neg u_2$
 - $\neg v_3 \lor \neg u_3$

- 3-colorings of a graph (V, E) and models of the encoding correspond: vertex v colored with color i iff v_i true in a model.
ASP Using Logic Programs

- Uniform encoding:
 separate problem specification and data
- Compact, easily maintainable representation
- Integrating KR, DB, and search techniques
- Handling dynamic, knowledge intensive applications: data, frame axioms, exceptions, defaults, closures, inductive definitions
Coloring Problem (Uniform Encoding)

% Problem encoding
1 { colored(V,C):color(C) } 1 :- vtx(V).
:- edge(V,U), color(C), colored(V,C), colored(U,C).

% Data
vtx(a). ...
edge(a,b). ...
color(r). color(g). ...

Legal colorings of the graph given as data and stable models of the problem encoding and data correspond: a vertex \(v \) colored with a color \(c \) iff \(\text{colored}(v, c) \) holds in a stable model.
What is ASP Good for?

Knowledge intensive search problems with defaults, exceptions, inductive definitions:

- Constraint satisfaction
- Planning, routing
- Computer-aided verification
- Security analysis
- Linguistics
- Network management
- Product configuration
- Combinatorics
- Diagnosis
Roots of ASP

- Logic programming: framework for merging KR, DB, and search
- PROLOG style logic programming systems not directly suitable for ASP:
 - search for proofs (not models) and produce answer substitutions
 - not entirely declarative
- In late 80s new semantical basis for “negation-as-failure” in LPs based on nonmonotonic logics: **Stable model semantics** [Gelfond and Lifschitz 1988]
Roots of ASP

- Implementations of stable model semantics led to ASP
 - Smodels [N. and Simons 1996]
- Basic ASP principles
- The term ASP coined by V. Lifschitz in 1999
Part II

Stable Model Semantics
Consider first normal logic program rules

\[A \leftarrow B_1, \ldots, B_m, \text{not } C_1, \ldots, \text{not } C_n \]

Seen as constraints on an answer set (stable model):

- if \(B_1, \ldots, B_m \) are in the set and
- none of \(C_1, \ldots, C_n \) is included,
then \(A \) must be included in the set

A stable model is a set of atoms
(i) which satisfies the rules and
(ii) where each atom is justified by the rules
(negation by default; CWA)
Stable Models — cont’d

- Program:

 \[
 \begin{align*}
 b & \leftarrow \\
 f & \leftarrow b, \text{ not } eb \\
 eb & \leftarrow p
 \end{align*}
 \]

- Stable model:
 \[
 \{ b, f \}
 \]

- Another candidate model: \(\{ b, eb \} \)
satisfies the rules but is not a proper stable model:
\(eb \) is included for no reason.

- Justifiability of stable models is captured by the notion of a **reduct** of a program.

 The stable model semantics [Gelfond/Lifschitz, 1988].
Definite Programs

- For the reduct we need to consider first definite programs, i.e. normal programs without negation (not).
- Such a program P has a unique least model $LM(P)$ satisfying the rules.
- $LM(P)$ can be constructed, e.g., by forward chaining.

Examples.

\[
\begin{align*}
P_1 : & \\
p & \leftarrow \\
qu & \leftarrow p \\
LM(P_1) &= \{p, q\}
\end{align*}
\]

\[
\begin{align*}
P_2 : & \\
p & \leftarrow q \\
q & \leftarrow p \\
LM(P_2) &= \{\}
\end{align*}
\]

\[
\begin{align*}
P_3 : & \\
p & \leftarrow q \\
q & \leftarrow p \\
p & \leftarrow \\
LM(P_2) &= \{p, q\}
\end{align*}
\]
Consider the propositional (variable free) case:
- \(P\) — ground program
- \(S\) — set of ground atoms

Reduct \(P^S\) (Gelfond-Lifschitz)
- delete each rule having a body literal \(\text{not } C\) with \(C \in S\)
- remove all negative body literals from the remaining rules

\(P^S\) is a definite program (and has a unique least model \(LM(P^S)\))

\(S\) is a stable model of \(P\) iff \(S = LM(P^S)\).
Example. Stable models

<table>
<thead>
<tr>
<th>S</th>
<th>P</th>
<th>P^S</th>
<th>$LM(P^S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${b, f}$</td>
<td>$b \leftarrow$</td>
<td>$b \leftarrow$</td>
<td>${b, f}$</td>
</tr>
<tr>
<td></td>
<td>$f \leftarrow b, \text{not } eb$</td>
<td>$f \leftarrow b$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$eb \leftarrow p$</td>
<td>$eb \leftarrow p$</td>
<td></td>
</tr>
<tr>
<td>${b, eb}$</td>
<td>$b \leftarrow$</td>
<td>$b \leftarrow$</td>
<td>${b}$</td>
</tr>
<tr>
<td></td>
<td>$f \leftarrow b, \text{not } eb$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$eb \leftarrow p$</td>
<td>$eb \leftarrow p$</td>
<td></td>
</tr>
</tbody>
</table>

- The set $\{b, eb\}$ is not a stable model of P but $\{b, f\}$ is the (unique) stable model of P
Example. Stable models

- A program can have **none**, one, or **multiple** stable models.

- Program:
 \[
 p \leftarrow \text{not } q \\
 q \leftarrow \text{not } p
 \]
 Two stable models:
 \[
 \{p\} \\
 \{q\}
 \]

- Program:
 \[
 p \leftarrow \text{not } p
 \]
 No stable models
Programs with variables

- Variables are needed for uniform encodings
- Semantics: **Herbrand models**
- A rule is seen as a shorthand for the set of its ground instantiations over the Herbrand universe of the program
- The **Herbrand universe** is the set of terms built from the constants and functions in the program
Example. Programs with variables

- For the program P:

 $\text{edge}(1,2)$.
 $\text{edge}(1,3)$.
 $\text{edge}(2,4)$.
 $\text{path}(X,Y) : \text{edge}(X,Y)$.
 $\text{path}(X,Y) : \text{edge}(X,Z), \text{path}(Z,Y)$.

 The Herbrand universe is \{1, 2, 3, 4\}.

- Hence, the rule $\text{path}(X,Y) : \text{edge}(X,Y)$ in P represents the set of ground instantiations:

 $\text{path}(1,1) : \text{edge}(1,1)$.
 $\text{path}(1,2) : \text{edge}(1,2)$.
 $\text{path}(2,1) : \text{edge}(2,1)$.
 $\text{path}(2,2) : \text{edge}(2,2)$.
 $\text{path}(1,3) : \text{edge}(1,3)$.
 ...

Stable Models — cont’d

- A stratified program (no recursion through negation) has a unique stable model (canonical model).
- It is **linear time to check** whether a set of atoms is a stable model of a ground program.
- It is **NP-complete to decide** whether a ground program has a stable model.
- Normal programs (without function symbols) give a **uniform encoding** to every NP search problem.
Extensions to Normal Programs

- An integrity constraint is a rule without a head:

\[\leftarrow B_1, \ldots, B_m, \text{not } C_1, \ldots, \text{not } C_n \]

- It can be seen as a shorthand for

\[F \leftarrow \text{not } F, B_1, \ldots, B_m, \text{not } C_1, \ldots, \text{not } C_n \]

- and it eliminates stable models where the body

\[B_1, \ldots, B_m, \text{not } C_1, \ldots, \text{not } C_n \]

is satisfied.

- Classical negation can be handled by normal programs (renaming):

\[p \leftarrow \text{not } \neg p \]

corresponds to

\[p \leftarrow \text{not } p' \]

\[\leftarrow p, p' \]
Extensions to Normal Programs

- Encoding of choices
 - A key point in ASP
 - Choices can be encoded using normal rules with unstratified negation

 \[a \leftarrow \neg a', b, \neg c\]
 \[a' \leftarrow \neg a\]

- Choice rules, however, provide a much more intuitive encoding:

 \[\{a\} \leftarrow b, \neg c\]

- Disjunctive rules: \[a \lor a' \leftarrow b, \neg c\]
 - Higher expressivity and complexity (\(\Sigma^p_2\))
 - Special purpose implementations (dlv, claspD)
 - Can be implemented also using an ASP solver for normal programs as the core engine (GnT)
Extensions — cont’d

- Many extensions implemented using an ASP solver as the **core engine**:
 - preferences
 - nested logic programs
 - circumscription, planning, diagnosis, …
 - HEX-programs
 - DL-programs

- Aggregates (count, sum, …)
- Optimization
- Function symbols
- Built-in predicates and functions:

  ```prolog
  nextstate(Y,X) :- time(X), time(Y), Y = X + 1.
  ```
Example. Rules in lparse

- Cardinality constraints
 \[2 \{ \text{hd}_1, \ldots, \text{hd}_n \} 4 \]

- Weight constraints
 \[200 \left[\text{hd}_1 = 60, \ldots, \text{hd}_n = 130 \right] \]

A.k.a. **pseudo-Boolean constraints**:

\[60\text{hd}_1 + \cdots + 130\text{hd}_n \geq 200 \]

- Optimization
 minimize \[\left[\text{hd}_1 = 100, \ldots, \text{hd}_n = 180 \right] \]

- Conditional literals:
 expressing sets in cardinality and weight constraints

\[1 \{\text{colored}(V,C):\text{color}(C)\} 1 :- \text{vtx}(V). \]
Part III

Solving Problems using ASP
Programming Methodology

- Uniform encodings: separate data and problem encoding
- Basic methodology: *generate and test*
 - **Generator rules**: provide candidate answer sets (typically encoded using choice constructs)
 - **Tester rules**: eliminate non-valid candidates (typically encoded using integrity constraints)
 - **Optimization statements**: Criteria for preferred answer sets (typically using cost functions)
Example: Coloring

% Problem encoding

% Generator rule
1 {colored(V,C):color(C)} 1 :- vtx(V).

% Tester rule
:- edge(V,U), color(C), colored(V,C), colored(U,C).

% Optimization statement
minimize {colored(V,r):vtx(V)}.

% Data
vtx(a). ...
edge(a,b). ...
color(r). color(g). ...
Example: Review assignment

% Data
reviewer(r1), ...
paper(p1), ...
classA(r1,p1), ... % Preferred papers
classB(r1,p2), ... % Doable papers
coi(r1,p3), ... % Conflicts of interest

% Problem encoding

% Generator rule
% Each paper is assigned 3 reviewers
3 { assigned(P,R):reviewer(R) } 3 :- paper(P).
% Tester rules
% No paper assigned to a reviewer with coi
:- assigned(P,R), coi(R,P).
% No reviewer has an unwanted paper.
:- paper(P), reviewer(R),
 assigned(P,R), not classA(R,P), not classB(R,P).
% No reviewer has more than 8 papers
:- 9 { assigned(P,R): paper(P) }, reviewer(R).
% Each reviewer has at least 7 papers
:- { assigned(P,R): paper(P) } 6, reviewer(R).
% No reviewer has more than 2 classB papers
:- 3 { assignedB(P1,R): paper(P1) }, reviewer(R).
assignedB(P,R) :- classB(R,P), assigned(P,R).
% Minimize the number of classB papers
minimize [assignedB(P,R):paper(P):reviewer(R)].
Fixed Points

- The stable model semantics captures inherently **minimal fixed points** enabling compact encodings of **closures and inductive definitions**

- **Example.** Reachability from node s.

 $r(s)$.
 $r(V) :\text{-} \text{edge}(U,V), r(U)$.
 $\text{edge}(a,b)$. ...

- The program captures reachability:
 it has a unique stable model S s.t. v is reachable from s iff $r(v) \in S$.

- **Example.** Transitive closure of a relation $q(X, Y)$

 $t(X,Y) :\text{-} q(X,Y)$.
 $t(X,Y) :\text{-} q(X,Z), t(Z,Y)$.
ASP vs Other Approaches

- SAT, CSP, (M)IP
 - Similarities: search for models (assignments to variables) satisfying a set of constraints.
 - Differences: no logical variables, fixed points, database, DDB or KR techniques available, search space given by variable domains.

- LP, CLP:
 - Similarities: database and DDB techniques.
 - Differences: Search for proofs (not models), non-declarative features.
Part IV

ASP Solver Technology
ASP Solvers

- ASP solvers need to handle two challenging tasks
 - complex data
 - search
- The approach has been to use
 - logic programming and deductive data base techniques for the former
 - SAT/CSP related search techniques for the latter
- In the current systems: separation of concerns
 - A two level architecture
Architecture of ASP Solvers

Typically a two level architecture employed

- **Grounding** step handles complex data:
 - Given program P with variables, generate a set of ground instances of the rules which preserves the models.
 - LP and DDB techniques employed.

- **Model search** for ground programs:
 - Special-purpose search procedures
 - Exploiting SAT/SMT solver technology
Typical ASP System Tool Chain

- **Grounder:**
 - (deductive) DB techniques
 - built-in predicates/functions (e.g. arithmetic)
 - function symbols

- **Model finder:**
 - SAT technology (propagation, conflict driven clause learning)
 - Special propagation rules for rules
 - Support for cardinality and weight constraints and optimization built-in
SAT and ASP

- ASP systems have much more expressive modelling languages than SAT: variables, built-ins, aggregates, optimization
- For model finding for ground normal programs results carry over: efficient unit propagation techniques, conflict driven learning, backjumping, restarting, . . .
- ASP model finders have special (unfounded set based) propagation rules for recursive rules
- ASP model finders have built-in support for aggregates (cardinality and weight constraints) and optimization
- One pass compact translations to SAT and SMT available: progress in SAT and SMT solver technology can also be exploited directly in ASP model finding.
Part V

Systems, Applications, Literature
Some ASP Systems

Grounders:
dlv http://www.dbai.tuwien.ac.at/proj/dlv/
gringo http://potassco.sourceforge.net/
lparsel http://www.tcs.hut.fi/Software/smodels/
XASP with XSB http://xsb.sourceforge.net

Model finders (disjunctive programs):
claspD http://potassco.sourceforge.net/
dlvr http://www.dbai.tuwien.ac.at/proj/dlv/
GnT http://www.tcs.hut.fi/Software/gnt/
Some ASP Systems

Model finders (non-disjunctive programs):
- ASSAT http://assat.cs.ust.hk/
- clasp http://potassco.sourceforge.net/
- CMODELS http://userweb.cs.utexas.edu/users/tag/cmodels/
- LP2DIFF http://www.tcs.hut.fi/Software/lp2diff/
- LP2SAT http://www.tcs.hut.fi/Software/lp2sat/
- Smmodels http://www.tcs.hut.fi/Software/smodels/
- SUP http://userweb.cs.utexas.edu/users/tag/sup/

For systems, performance, benchmarks, and examples, see for instance the latest **ASP competition**:
http://dtai.cs.kuleuven.be/events/ASP-competition/
Applications

- **Planning**
 For example, USAvisor project at Texas Tech: A decision support system for the flight controllers of space shuttles

- **Product configuration**
 - Intelligent software configurator for Debian/Linux
 - WeCoTin project (Web Configuration Technology)
 - Spin-off (http://www.variantum.com/)

- **Computer-aided verification**
 - Partial order methods
 - Bounded model checking
Applications—cont’d

- Data and information Integration
- Semantic web reasoning
- Team building at Gioia Tauro Seaport
- Repairing large-scale biological networks
- ASP-based music composition system (anton-demo.wav)
- VLSI routing, planning, combinatorial problems, network management, network security, security protocol analysis, linguistics …
- WASP Showcase Collection
 http://www.kr.tuwien.ac.at/research/projects/WASP/showcase.html
Some Literature

Conclusions

ASP = KR + DB + search

- ASP emerging as a viable KR tool
- Efficient implementations under development
- Expanding functionality and ease of use
- Growing range of applications
Topics for Further Research

- Intelligent grounding
- Model computation without full grounding
- Program transformations, optimizations
- Model search
- Distributed and parallel implementation techniques
- Language extensions
- Programming methodology
- Testing techniques
- Tool support: debuggers, IDEs