Answer Set Programming
Ilkka Niemelä
Department of Information and Computer Science
Aalto University, Finland
Ilkka.Niemela@tkk.fi
http://users.ics.tkk.fi/ini/

Part I
Introduction to ASP

Content

- Introduction to Answer Set Programming (ASP)
- Stable Model Semantics
- Solving Problems with ASP
- ASP Solver Technology
- Further Information: Systems, Applications, Literature

Answer Set Programming

- Term coined by Vladimir Lifschitz.
- Roots: KR, logic programming, nonmonotonic reasoning.
- Based on some formal system with semantics that assigns a theory a collection of answer sets (models).
- An **ASP solver**: computes answer sets for a theory.
- Solving a problem in ASP:
 Encode the problem as a theory such that **solutions** to the problem are given by **answer sets** of the theory.
ASP—cont’d

▷ Solving a problem using ASP

| Problem instance | Encoding | Theory | ASP solver | Models (Solutions) |

▷ Possible formal system Models

<table>
<thead>
<tr>
<th>Propositional logic</th>
<th>Truth assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSP</td>
<td>Variable assignments</td>
</tr>
<tr>
<td>Logic programs</td>
<td>Stable models</td>
</tr>
<tr>
<td>Model expansion</td>
<td>First-order structures</td>
</tr>
</tbody>
</table>

Example. k-coloring problem

▷ Given a graph \((V, E)\) find an assignment of one of \(k\) colors to each vertex such that no two adjacent vertices share a color.

▷ Encoding 3-coloring using propositional logic

▷ For each vertex \(v \in V\) include the clauses:

\[
\neg v_1 \lor \neg v_2 \lor \neg v_3 \\
\neg v_1 \lor \neg v_2 \\
\neg v_1 \lor \neg v_3 \\
\neg v_2 \lor \neg v_3
\]

▷ and for each edge \((v, u) \in E\) the clauses:

\[
\neg v_1 \lor \neg u_1 \\
\neg v_2 \lor \neg u_2 \\
\neg v_3 \lor \neg u_3
\]

▷ 3-colorings of a graph \((V, E)\) and models of the encoding correspond: vertex \(v\) colored with color \(i\) iff \(v_i\) true in a model.

ASP Using Logic Programs

▷ Uniform encoding:

 separate problem specification and data

▷ Compact, easily maintainable representation

▷ Integrating KR, DB, and search techniques

▷ Handling dynamic, knowledge intensive applications:

 data, frame axioms, exceptions, defaults, closures

Coloring Problem (Uniform Encoding)

% Problem encoding

1 { colored(V,C).color(C) } 1 :- vtx(V).

:- edge(V,U), color(C), colored(V,C), colored(U,C).

% Data

vtx(a) . . .
edge(a,b) . . .
color(r) . color(g) . . .

Legal colorings of the graph given as data and stable models of the problem encoding and data correspond: a vertex \(v\) colored with a color \(c\) iff \(\text{colored}(v, c)\) holds in a stable model.
What is ASP Good for?

Knowledge intensive search problems:
- Constraint satisfaction
- Planning, routing
- Computer-aided verification
- Security analysis
- Linguistics
- Network management
- Product configuration
- Combinatorics
- Diagnosis

Declarative problem solving

ASP Using Logic Programs

- Logic programming: framework for merging KR, DB, and search
- PROLOG style logic programming systems not directly suitable for ASP:
 - search for proofs (not models) and produce answer substitutions
 - not entirely declarative
- In late 80s new semantical basis for “negation-as-failure” in LPs based on nonmonotonic logics: Stable model semantics
- Implementations of stable model semantics led to ASP

LPs with Stable Models Semantics

- Consider first normal logic program rules
 \[A \leftarrow B_1, \ldots, B_m, \neg C_1, \ldots, \neg C_n \]
- Seen as constraints on an answer set (stable model):
 - If \(B_1, \ldots, B_m \) are in the set and
 - none of \(C_1, \ldots, C_n \) is included,
 then \(A \) must be included in the set
- A stable model is a set of atoms
 (i) which satisfies the rules and
 (ii) where each atom is justified by the rules
 (negation by default; CWA)
Stable Models — cont’d

- Program:
 \[
 b \leftarrow \\
 f \leftarrow b, \text{not} \ eb \\
 eb \leftarrow p
 \]

- Another candidate model: \(\{ b, eb \} \) satisfies the rules but is not a proper stable model: \(eb \) is included for no reason.

- Justifiability of stable models is captured by the notion of a reduct of a program. The stable model semantics [Gelfond/Lifschitz,1988].

Definite Programs

- For the reduct we need to consider first definite programs, i.e. normal programs without negation (not).
- Such a program \(P \) has a unique least model \(LM(P) \) satisfying the rules.
- \(LM(P) \) can be constructed, e.g., by forward chaining.

Examples.

\[
\begin{align*}
P_1 : & \quad p \leftarrow q \quad q \leftarrow p \\
LM(P_1) = \{ p, q \} & \\

\end{align*}
\]

\[
\begin{align*}
P_2 : & \quad p \leftarrow q \quad q \leftarrow p \\
LM(P_2) = \{ \} & \\

\end{align*}
\]

\[
\begin{align*}
P_3 : & \quad p \leftarrow q \\
LM(P_3) = \{ p, q \} & \\

\end{align*}
\]

Example. Stable models

- Consider the propositional (variable free) case:
 \(P \) — ground program
 \(S \) — set of ground atoms
- Reduct \(P^S \) (Gelfond-Lifschitz)
 - delete each rule having a body literal \(\text{not} \ C \) with \(C \in S \)
 - remove all negative body literals from the remaining rules
- \(P^S \) is a definite program (and has a unique least model \(LM(P^S) \))

- \(S \) is a stable model of \(P \) iff \(S = LM(P^S) \).
Example. Stable models

- A program can have none, one, or multiple stable models.
- Program:
 - Two stable models:
 - \(p \leftarrow \text{not } q \) \(\{p\} \)
 - \(q \leftarrow \text{not } p \) \(\{q\} \)
- Program: No stable models
 - \(p \leftarrow \text{not } p \)

Programs with variables

- Variables are needed for uniform encodings
- Semantics: **Herbrand models**
 - A rule is seen as a shorthand for the set of its ground instantiations over the Herbrand universe of the program
 - The **Herbrand universe** is the set of terms built from the constants and functions in the program

Example. For the program \(P \):

\[
\begin{align*}
\text{edge}(1,2). \\
\text{edge}(1,3). \\
\text{edge}(2,4). \\
\text{path}(X,Y) :&= \text{edge}(X,Y). \\
\text{path}(X,Y) :&= \text{edge}(X,Z), \text{path}(Z,Y).
\end{align*}
\]

The Herbrand universe is \(\{1, 2, 3, 4\} \).
Example: Rules with Exceptions

- Consider the program

 \[
 \text{flies}(X) : - \text{bird}(X), \text{not exc_bird}(X).
 \]

 \[
 \text{bird}(\text{tweety}).
 \]

 \[
 \text{bird}(\text{bob}).
 \]

 - It has a single stable model:

 \[
 \{\text{bird}(\text{bob}), \text{bird}(\text{tweety}), \text{flies}(\text{bob}), \text{flies}(\text{tweety})\}
 \]

- If we add an exception:

 \[
 \text{bird}(X) : - \text{penguin}(X).
 \]

 \[
 \text{exc_bird}(X) : - \text{penguin}(X).
 \]

 \[
 \text{penguin}(\text{bob}).
 \]

 - Then the extended program has a new unique stable model:

 \[
 \{\text{bird}(\text{bob}), \text{bird}(\text{tweety}), \text{flies}(\text{tweety}), \text{penguin}(\text{bob}), \text{exc_bird}(\text{bob})\}
 \]

Stable Models — cont’d

- A stratified program (no recursion through negation) has a unique stable model (canonical model).
- It is **linear time to check** whether a set of atoms is a stable model of a ground program.
- It is **NP-complete to decide** whether a ground program has a stable model.
- Normal programs (without function symbols) give a **uniform encoding** to every NP search problem.

Extensions to Normal Programs

- An **integrity constraint** is a rule without a head:

 \[
 \leftarrow B_1, \ldots, B_m, \text{not } C_1, \ldots, \text{not } C_n
 \]

 - It can be seen as a shorthand for

 \[
 F \leftarrow \text{not } F, B_1, \ldots, B_m, \text{not } C_1, \ldots, \text{not } C_n
 \]

 - and it eliminates stable models where the body \(B_1, \ldots, B_m, \text{not } C_1, \ldots, \text{not } C_n\) is satisfied.

- Classical negation

 can be handled by normal programs (renaming):

 \[
 p \leftarrow \text{not } \neg p
 \]

 corresponds to

 \[
 p \leftarrow \text{not } p' \leftarrow p, p'
 \]

Extensions to Normal Programs

- Encoding of choices

 - A key point in ASP

 - Choices can be encoded using normal rules with unstratified negation

 \[
 a \leftarrow \text{not } a', b, \text{not } c
 \]

 \[
 a' \leftarrow \text{not } a
 \]

 - **Choice rules**, however, provide a much more intuitive encoding:

 \[
 \{a\} \leftarrow b, \text{not } c
 \]

 - Disjunctive rules: \(a \lor a' \leftarrow b, \text{not } c\)

 - Higher expressivity and complexity (\(\Sigma_p^2\))

 - Special purpose implementations (dlv, claspp)

 - Can be implemented also using an ASP solver for normal programs as the **core engine** (GnT)
Extensions — cont’d

- Many extensions implemented using an ASP solver as the core engine:
 - preferences
 - nested logic programs
 - circumscription, planning, diagnosis, …
 - HEX-programs
 - DL-programs
- Aggregates
 - count
 Example: choose 2–4 hard disks
 - sum
 Example: the total capacity of the chosen hard disks must be at least 200 GB.
- Built-in support for aggregates in the search procedures

Example. Rules in lparse

- Cardinality constraints
 2 { hd_1,...,hd_n } 4
- Weight constraints
 200 [hd_1 = 60,...,hd_n = 130]
 A.k.a. pseudo-Boolean constraints:
 \[60hd_1 + \cdots + 130hd_n \geq 200]\

- Optimization
 minimize [hd_1 = 100,...,hd_n = 180].
- Conditional literals:
 expressing sets in cardinality and weight constraints
 1 {colored(V,C):color(C)} 1 :- vtx(V).

Part III
Solving Problems using ASP
Programming Methodology

- Uniform encodings: separate data and problem encoding
- Basic methodology: generate and test
 - Generator rules: provide candidate answer sets (typically encoded using choice constructs)
 - Tester rules: eliminate non-valid candidates (typically encoded using integrity constraints)
 - Optimization statements: Criteria for preferred answer sets (typically using cost functions)

Example: Coloring

% Problem encoding

% Generator rule
1 {colored(V,C):color(C)} 1 :- vtx(V).

% Tester rule
:- edge(V,U), color(C), colored(V,C), colored(U,C).

% Optimization statement
minimize {colored(V,4):vtx(V)}.

% Data
vtx(a). ...
edge(a,b). ...
color(r). color(g). ...

Generator Rules

- The idea is to define the potential answer sets
- Typically encoded using choice rules.
- Example. Choice on a given b:
 \{a\} :- b.
- Example. Choice on a subset of \{a_1, \ldots, a_n\} given b:
 \{a_1, \ldots, a_n\} :- b.
 The program with the fact b. and this rule alone has 2^n stable models: \{b\}, \{b, a_1\}, \ldots, \{b, a_1, \ldots, a_n\}
- Example. Choice on a cardinality limited subset of \{a_1, \ldots, a_n\} given b:
 2 \{a_1, \ldots, a_n\} 3 :- b.
- Typically rules with variables used
 1 {colored(V,C):color(C)} 1 :- vtx(V).
 Given a vertex v, choose exactly one ground atom colored(v,c) such that color(c) holds.

Tester Rules

- Integrity constraints
 - :- a_1, \ldots, a_n, not b_1, \ldots, not b_m.
- eliminate stable models but cannot introduce new ones:
 - Let P be a program and IC a set of integrity constraints
 - Then S is a stable model of P ∪ IC iff:
 - S is a stable model of P, and
 - S satisfies all ICs
“Define Part”

- Often the tester and generator rules need auxiliary conditions.
- This part of the encoding looks often similar to a Prolog program.
- As ASP has Prolog style rules with a similar semantics, Prolog style programming techniques can be used here for handling, e.g., database operations (unions, joins, projections).
- Example: Join: \(P(X,Y) :- Q(X,Z), R(Z,Y)\).
- Example: The largest score \(S\) from a relation \(score(P,S)\)
 \[\text{has}_\text{larger}(S) :- score(P,S), score(P1,S1), S < S1. \]
 \[\text{max}_\text{score}(S) :- score(P,S), not \text{has}_\text{larger}(S).\]

Example: Review assignment

- % Data
 reviewer(r1), ... paper(p1), ...
 classA(r1,p1), ... % Preferred papers
 classB(r1,p2), ... % Doable papers
 coi(r1,p3), ... % Conflicts of interest

- % Problem encoding
- % Generator rule
 % Each paper is assigned 3 reviewers
 3 { assigned(P,R): reviewer(R) } 3 :- paper(P).

Review Assignment — cont’d

- % Tester rules
- % No paper assigned to a reviewer with coi
 :- assigned(P,R), coi(R,P).
- % No reviewer has an unwanted paper.
 :- paper(P), reviewer(R),
 assigned(P,R), not classA(R,P), not classB(R,P).
- % No reviewer has more than 8 papers
 :- 9 { assigned(P,R): paper(P) }, reviewer(R).
- % Each reviewer has at least 7 papers
 :- { assigned(P,R): paper(P) } 6, reviewer(R).
- % No reviewer has more than 2 classB papers
 :- 3 { assignedB(P1,R): paper(P1) }, reviewer(R).
 assignedB(P,R) :- classB(R,P), assigned(P,R).
- % Minimize the number of classB papers
 minimize [assignedB(P,R):paper(P):reviewer(R)].

Example: Satisfiability

- Given a formula, solutions to the satisfiability problem are propositional models, i.e., sets of atoms.
- Candidate answer sets.
- Generator
 - For each atom \(a_i\) in the formula, introduce a choice rule
 \{ \(a_i\) \}.
 - For the program:
 \[
 \begin{align*}
 &2^n \text{ stable models:} \\
 &\{ \(a_1\) \} \\
 &\ldots \\
 &\ldots \\
 &\{ a_n \} \\
 &\{ a_1,\ldots,a_n \}
 \end{align*}
 \]
Satisfiability — cont’d

- Satisfiability testers for formulas illustrate how to encode complicated logical conditions using ASP.
- For a clause \(a_1 \lor \cdots \lor a_n \lor \neg b_1 \lor \cdots \lor \neg b_m \) a satisfiability tester can be given as an integrity constraint:

\[
:- \text{not } a_1, \ldots, \text{not } a_n, \text{not } b_1, \ldots, \text{not } b_m.
\]

- Example.
 - Clauses \(T \)
 - Program \(P_T \)
 - Stable model

<table>
<thead>
<tr>
<th>Clauses (T)</th>
<th>Program (P_T)</th>
<th>Stable model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a \lor \neg b)</td>
<td>(:- \text{not } a, b.)</td>
<td>{ a }</td>
</tr>
<tr>
<td>(\neg b \lor \neg a)</td>
<td>(:- a, b.)</td>
<td>{ a }. { b }.</td>
</tr>
<tr>
<td>(b \lor a)</td>
<td>(:- \text{not } a, \text{not } b.)</td>
<td>{ a }. { b }.</td>
</tr>
</tbody>
</table>

- Models of \(T \) and stable models of \(P_T \) correspond

Satisfiability — cont’d

- For more involved testers consider general formulas. For example, \((a \lor \neg b) \land (\neg a \leftrightarrow b) \).
- Generator: for each atom \(x \), rule \(\{ x \} \).

\[
\{ a \}. \{ b \}.
\]

Tester encoding

<table>
<thead>
<tr>
<th>Subformula (p)</th>
<th>Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l_1 \land \cdots \land l_n)</td>
<td>(p \leftarrow p_{l_1}, \ldots, p_{l_n})</td>
</tr>
<tr>
<td>(l_1 \lor \cdots \lor l_n)</td>
<td>(p \leftarrow p_{l_1})</td>
</tr>
<tr>
<td>(\cdots)</td>
<td>(p \leftarrow p_{l_n})</td>
</tr>
<tr>
<td>(\neg l)</td>
<td>(p \leftarrow \text{not } p_l)</td>
</tr>
<tr>
<td>(l_1 \leftrightarrow l_2)</td>
<td>(p \leftarrow p_{l_1}, p_{l_2})</td>
</tr>
<tr>
<td>(p \leftarrow \text{not } p_{l_1}, \text{not } p_{l_2})</td>
<td></td>
</tr>
</tbody>
</table>
Satisfiability — cont’d

- For the formula \(p_1: (a \lor \neg b) \land (\neg a \iff b) \):

- Program:

  ```
  p1 :- not p1.
  p1 :- p2, p3.
  p2 :- a.
  p2 :- not b.
  p3 :- a, not b.
  p3 :- not a, b.
  { a }. { b }.
  ```

- Stable models: \(\{ a, p1, p2, p3 \} \)

- Satisfying truth assignments for \(p_1 \) and the stable models of the program correspond

Fixed Points

- The stable model semantics captures inherently minimal fixed points enabling compact encodings of closures

- Example. Reachability from node \(s \):

 \[
 \begin{align*}
 r(s). \\
 r(V) & :- \text{edge}(U,V), r(U). \\
 \text{edge}(a,b). \\& \ldots
 \end{align*}
 \]

- Example. Transitive closure of a relation \(q(X,Y) \):

 \[
 \begin{align*}
 t(X,Y) & :- q(X,Y). \\
 t(X,Y) & :- q(X,Z), t(Z,Y).
 \end{align*}
 \]

Example — Hamiltonian cycles

- A Hamiltonian cycle: a closed path that visits all vertices of the graph exactly once.

- Input: a graph

 - \(\text{vtx}(a), \ldots \)
 - \(\text{edge}(a,b), \ldots \)
 - \(\text{initialvtx}(a_0), \text{for some vertex } a_0 \)

Hamiltonian cycles — cont’d

- Candidate answer sets: subsets of edges.

- Generator:

  ```
  \{ hc(X,Y) \} :- \text{edge}(X,Y).
  ```

- Stable models of the generator given a graph:

 - input graph +
 - a subset of the ground facts \(hc(a,b) \)
 for which there is an input fact \(\text{edge}(a,b) \).
Hamiltonian cycles — cont’d

Tester (i):
Each vertex has at most one chosen incoming edge and one outgoing edge.
\[-\text{hc}(X,Y), \text{hc}(X,Z), \text{edge}(X,Y), \text{edge}(X,Z), Y \neq Z.\]
\[-\text{hc}(Y,X), \text{hc}(Z,X), \text{edge}(Y,X), \text{edge}(Z,X), Y \neq Z.\]

Only subsets of chosen edges \(\text{hc}(v,u)\) forming paths (possibly closed) pass the test.

Hamiltonian cycles — cont’d

Tester (ii):
Every vertex is reachable from a given initial vertex through chosen \(\text{hc}(v,u)\) edges:
\[-\text{vtx}(X), \text{not r}(X).\]
\[r(Y) :\text{hc}(X,Y), \text{edge}(X,Y), \text{initialvtx}(X).\]
\[r(Y) :\text{hc}(X,Y), \text{edge}(X,Y), r(X).\]

Only Hamiltonian cycles pass the tests (i–ii).

Hamiltonian cycles — cont’d

Given:
- the graph, the generator rule, and the tester rules (i–ii)
 Hamiltonian cycles and stable models correspond.
- A Hamiltonian cycle: atoms \(\text{hc}(v,u)\) in a stable model.

Hamiltonian cycles — cont’d

Cardinality constraints enable an even more compact encoding.

Tester (i) using 2 variables:
\[-2 \{ \text{hc}(X,Y) : \text{edge}(X,Y) \}, \text{vtx}(X).\]
\[-2 \{ \text{hc}(X,Y) : \text{edge}(X,Y) \}, \text{vtx}(Y).\]
Example: planning

Given:
- a set of operators
- initial situation and goal
- find a sequence of operator instances leading from initial to goal situation.

Planning — cont’d

Planning is PSPACE-complete.
Planning with:
- deterministic operators
- complete knowledge about the initial situation, and with
- an upper bound on the length of the plan is NP-complete.

Block-world planning

(operator moveop
 (params (<X> OBJECT) (<Y> OBJECT))
 (preconds (clear <X>) (clear <Y>))
 (effects (on <X> <Y>) (clear <X>)))

solution:
moveop(a,table,0),
moveop(c,a,1),
moveop(b,c,2)

Mapping planning to rules

Devise a logic program such that stable models correspond to plans:
- of length at most \(n \)
- that are valid
- and that reach the goal
Mapping planning to rules

- Candidate answer sets: valid execution sequences (of length \(\leq n \)) of operator instances from the initial conditions.
- Tester: eliminates those sequences that do not reach the goal.

Planning — cont’d

- Preliminaries
 - Add to each predicate a situation argument
 - on\((X,Y,T)\): X is on Y in T
 - moveop\((X,Y,T)\): X is moved onto Y in T
 - Length bound \(n \): time\((0..n)\).
 - nextstate\((Y,X) \):- time\((X)\), time\((Y)\), \(Y = X + 1 \).

Planning — cont’d

- Available blocks: block\((a)\).
 block\((b)\).
 block\((c)\).
- Initial conditions: on\((a,b,0)\).
 on\((b,table,0)\).
 on\((c,table,0)\).

Planning — cont’d

- Auxiliary concepts make encoding easier.
- Rules make it straightforward to define auxiliary predicates:
 - object\((table)\).
 - object\((X) \):- block\((X)\).
 - covered\((X,T) \):- block\((Z)\), block\((X)\), time\((T)\), on\((Z,X,T)\).
Further predicates:

- \texttt{on_something(X,T) :- block(X), object(Z), time(T), on(X,Z,T).}
- \texttt{available(table,T) :- time(T).}
- \texttt{available(X,T) :- block(X), time(T), on_something(X,T).}

Generator: execution sequences of operators.

- An operator \texttt{can} be applied if preconditions hold:

\[
\{ \texttt{moveop(X,Y,T)} \} :- \\
\texttt{time(T), block(X), object(Y), X \neq Y, on_something(X,T), available(Y,T), not covered(X,T), not covered(Y,T).}
\]

Operator effects:

- \texttt{on(X,Y,T2) :- block(X), object(Y), nextstate(T2,T1), moveop(X,Y,T1).}

Frame axioms (as rules with exceptions):

- \texttt{on(X,Y,T2) :- block(X), object(Y), nextstate(T2,T1), on(X,Y,T1), not moving(X,T1).}

% the exceptions

- \texttt{moving(X,T) :- time(T), block(X), object(Y), moveop(X,Y,T).}
In addition, rules for blocking conflicting operator instances are needed. This set depends on how much concurrency in the search of a plan is allowed. Computationally advantageous to allow concurrency to decrease search space explosion due to interleavings of independent operators.

Blocking conditions for \texttt{moveop} (no concurrent actions):
\begin{verbatim}
:- 2 \{ moveop(X,Y,T):block(X):object(Y) \}, time(T).
\end{verbatim}

Blocking conditions for \texttt{moveop} (with concurrent actions) I–II:
\begin{verbatim}
% A block cannot be moved to two destination
:- 2 \{ moveop(X,Y,T):object(Y) \},
 block(X), time(T).
% The destination cannot be moving
:- block(X), object(Y), time(T),
 moveop(X,Y,T), moving(Y,T).
\end{verbatim}

Blocking conditions for \texttt{moveop} (with concurrent actions) III:
\begin{verbatim}
% No two blocks moved onto the same block
:- 2 \{ moveop(X,Y,T):block(X) \}, block(Y), time(T).
\end{verbatim}
Tester: excludes models where the goal has not been reached.

\[
\text{:- not goal.}
\]
\[
\text{goal :- time(T), goal(T).}
\]
\[
\text{goal(T2) :- nextstate(T2,T1), goal(T1).}
\]

% Actual goal conditions
\[
\text{goal(T) :- time(T), on(b,c,T), on(c,a,T).}
\]

Plans correspond to stable models:

- there is a stable model iff there is a valid sequence of moves that leads to goal and can be executed concurrently in at most \(n \) steps.

A valid plan

- facts \(\text{moveop(x,y,t)} \) in a model ordered by the argument \(t \) where facts with the same \(t \) can be taken in any linear order.

Easy to add optimizations:

% Stop when the goal has been reached
\[
\text{:- block(X), object(Y), time(T), moveop(X,Y,T), goal(T).}
\]

Further optimizations (pruning rules):

% No move from table to table
\[
\text{:- block(X), time(T), moveop(X,table,T), on(X,table,T).}
\]

% No move on something and then to table
\[
\text{:- nextstate(T2,T1), block(X), object(Y), moveop(X,Y,T1), moveop(X,table,T2).}
\]
ASP vs Other Approaches

- SAT, CSP, (M)IP
 - Similarities: search for models (assignments to variables) satisfying a set of constraints.
 - Differences: no logical variables, fixed points, database, DDB or KR techniques available, search space given by variable domains.
- LP, CLP:
 - Similarities: database and DDB techniques.
 - Differences: Search for proofs (not models), non-declarative features.

Part IV
ASP Solver Technology

ASP Solvers

- ASP solvers need to handle two challenging tasks
 - complex data
 - search
- The approach has been to use
 - logic programming and deductive data base techniques for the former
 - SAT/CSP related search techniques for the latter
- In the current systems: separation of concerns
 - A two level architecture

Architecture of ASP Solvers

Typically a two level architecture employed

- **Grounding** step handles complex data:
 - Given program P with variables, generate a set of ground instances of the rules which preserves the models.
 - LP and DDB techniques employed.
- **Model search** for ground programs:
 - Special-purpose search procedures
 - Exploiting SAT/SMT solver technology
Typical ASP System Tool Chain

- **Grounder:**
 - (deductive) DB techniques
 - built-in predicates/functions (e.g. arithmetic)
 - function symbols

- **Model finder:**
 - SAT technology (propagation, conflict driven clause learning)
 - Special propagation rules for recursive rules
 - Support for cardinality and weight constraints and optimization built-in

Model Search

There are two successful approaches to model computing for ground programs:

- Special purpose search procedures exploiting the particular properties of stable model semantics
- Translating the stable model finding problem to a propositional satisfiability problem exploiting state of the art SAT solvers

> These approaches are closely related via (Clark’s) program completion

Program Completion

- Program completion \(\text{comp}(P) \): a simple translation of a logic program \(P \) to a propositional formula.

 Example.
 \[
 \begin{align*}
 P & : & \text{comp}(P) & : \\
 a \leftarrow b, \text{not } c & \quad a \leftarrow (b \land \neg c) \lor (\neg b \land d) \\
 a \leftarrow \text{not } b, d & \quad -b, -c, -d \\
 \leftarrow a, \text{not } d & \quad -(a \land -d)
 \end{align*}
 \]

- **Supported models** of a logic program and propositional models of its completion coincide.

- For **tight programs** (no positive recursion) supported and stable models coincide (Fages).

Program Completion — cont’d

- **Stable models** for tight programs can be computed using a SAT solver:
 - Form the completion and transform that to CNF (typically with new atoms).
 - Run a SAT solver on the CNF and translate results back.

- For tight (normal) programs, unit propagation on the translated CNF and ASP propagation on the original program coincide.
Program Completion — cont’d

- For non-tight programs (with positive recursion), stable models of a program and propositional models of its completion do not coincide.

- **Example.**

 $$ p \leftarrow q $$

 $$ q \leftarrow p $$

 unique stable model: \{\} vs 2 models: \{\}, \{p, q\}

Translations to SAT

- Translating non-tight LPs to SAT is challenging
 - Modular translations not possible (Niemelä, 1999)
 - Without new atoms exponential blow-up (Lifschez and Razborov, 2006)
- There are one pass translations to SAT
 - Polynomial size (Ben-Eliyahu & Dechter 1994; Lin & Zhao 2003)
 - \(O(\|P\| \times \log |At(P)|)\) size (Janhunen 2004)
- Also incremental translations to SAT have been developed extending the completion dynamically with loop formulas (Lin & Zhao 2002)

Translations to SMT

- Recently a compact linear size one pass translation to SMT/difference logic has been devised.
 - LP2DIFF (Janhunen & Niemelä 2009).
- Difference logic = propositional logic + linear difference constraint of the form

 $$ x_i + k \geq x_j \quad \text{(or equivalently } x_j - x_i \leq k) $$

 where \(k\) is an arbitrary integer constant and \(x_i, x_j\) are integer valued variables.
- Practically all major SMT solvers support difference logic

 Most SMT solvers can be used as ASP model finders without modifications.

SAT and ASP

- ASP systems have much more expressive modelling languages than SAT: variables, built-ins, aggregates, optimization
- For model finding for ground normal programs results carry over: efficient unit propagation techniques, conflict driven learning, backjumping, restarting, . . .
- ASP model finders have special (unfounded set based) propagation rules for recursive rules
- ASP model finders have built-in support for aggregates (cardinality and weight constraints) and optimization
- One pass compact translations to SAT and SMT available: progress in SAT and SMT solver technology can also be exploited directly in ASP model finding.
Part V
Further Information: Systems, Applications, Literature

Some ASP Systems

Grounders:
dlv http://www.dbai.tuwien.ac.at/proj/dlv/
gringo http://potassco.sourceforge.net/
lparse http://www.tcs.hut.fi/Software/smodels/
XASP with XSB http://xsb.sourceforge.net

Model finders (disjunctive programs):
claaspD http://potassco.sourceforge.net/
dlv http://www.dbai.tuwien.ac.at/proj/dlv/
GnT http://www.tcs.hut.fi/Software/gnt/

Model finders (non-disjunctive programs):
ASSAT http://assat.cs.ust.hk/
clasp http://potassco.sourceforge.net/
CMODELS http://userweb.cs.utexas.edu/users/tag/cmodels/
LP2DIFF http://www.tcs.hut.fi/Software/lp2diff/
LP2SAT http://www.tcs.hut.fi/Software/lp2sat/
Smodels http://www.tcs.hut.fi/Software/smodels/
SUP http://userweb.cs.utexas.edu/users/tag/sup/

Applications

Planning
For example, USAdvisor project at Texas Tech:
A decision support system for the flight controllers of space shuttles

Product configuration
– Intelligent software configurator for Debian/Linux
– WeCoTin project (Web Configuration Technology)
– Spin-off (http://www.variantum.com/)

Computer-aided verification
– Partial order methods
– Bounded model checking

◮ For systems, performance, benchmarks, and examples, see for instance the latest ASP competition:
 http://dtaic.kuleuven.be/events/ASP-competition/
Applications—cont’d

- Data and Information Integration
- Semantic web reasoning
- VLSI routing, planning, combinatorial problems, network management, network security, security protocol analysis, linguistics...
- WASP Showcase Collection
 [Link](http://www.kr.tuwien.ac.at/research/projects/WASP/showcase.html)
- Applying ASP
 - as a stand alone system
 - as an embedded solver

Some Literature

- V. Lifschitz. Introduction to Answer Set Programming. [Link](http://userweb.cs.utexas.edu/users/vl/mypapers/esslli.ps)

Conclusions

ASP = KR + DB + search
- ASP emerging as a viable KR tool
- Efficient implementations under development
- Expanding functionality and ease of use
- Growing range of applications

Topics for Further Research

- Intelligent grounding
- Model computation without full grounding
- Program transformations, optimizations
- Model search
- Distributed and parallel implementation techniques
- Language extensions
- Programming methodology
- Testing techniques
- Tool support: debuggers, IDEs