
Answer Set Programming

Ilkka Niemelä

Department of Information and Computer Science

Aalto University, Finland

Ilkka.Niemela@tkk.fi

 !!"#$$%&'(&)*+&)!,,)-*$*.*$

Niemelä/ECAI 2010 Tutorial on ASP

2/88

Content

◮ Introduction to Answer Set Programming (ASP)

◮ Stable Model Semantics

◮ Solving Problems with ASP

◮ ASP Solver Technology

◮ Further Information: Systems, Applications, Literature

Niemelä/ECAI 2010 Tutorial on ASP

3/88

Part I

Introduction to ASP

Niemelä/ECAI 2010 Tutorial on ASP

4/88

Answer Set Programming

◮ Term coined by Vladimir Lifschitz.

◮ Roots: KR, logic programming, nonmonotonic reasoning.

◮ Based on some formal system with semantics that assigns

a theory a collection of answer sets (models).

◮ An ASP solver: computes answer sets for a theory.

◮ Solving a problem in ASP:

Encode the problem as a theory such that solutions to the

problem are given by answer sets of the theory.

Niemelä/ECAI 2010 Tutorial on ASP

5/88

ASP—cont’d

◮ Solving a problem using ASP

Problem

−→
instance

Encoding

Theory

−→
ASP

solver

Models

−→
(Solutions)

◮ Possible formal system Models

Propositional logic Truth assignments

CSP Variable assignments

Logic programs Stable models

Model expansion First-order structures

Niemelä/ECAI 2010 Tutorial on ASP

6/88

Example. k -coloring problem
◮ Given a graph (V , E) find an assignment of one of k colors

to each vertex such that no two adjacent vertices share a

color.

◮ Encoding 3-coloring using propositional logic
◮ For each vertex v ∈ V include the clauses:

v1 ∨ v2 ∨ v3
¬v1 ∨ ¬v2
¬v1 ∨ ¬v3
¬v2 ∨ ¬v3

◮ and for each edge (v , u) ∈ E the clauses:
¬v1 ∨ ¬u1
¬v2 ∨ ¬u2
¬v3 ∨ ¬u3

◮ 3-colorings of a graph (V , E) and models of the encoding
correspond: vertex v colored with color i iff vi true in a

model.

Niemelä/ECAI 2010 Tutorial on ASP

7/88

ASP Using Logic Programs

◮ Uniform encoding:

separate problem specification and data

◮ Compact, easily maintainable representation

◮ Integrating KR, DB, and search techniques

◮ Handling dynamic, knowledge intensive applications:

data, frame axioms, exceptions, defaults, closures

Problem

−→ ENCODING

Data

−→ ENCODING

Theory

−→
ASP

solver

Models

−→
(Solutions)

Niemelä/ECAI 2010 Tutorial on ASP

8/88

Coloring Problem (Uniform Encoding)

 !"#$%&' &()#*+(,

- .)#%#"&*/01234)#%#"/23 5 - 46 789/03:

46 &*,&/01;31)#%#"/231)#%#"&*/01231)#%#"&*/;123:

 <=8=

789/=3: :::

&*,&/=1$3: :::

)#%#"/"3:)#%#"/,3: :::

+ Legal colorings of the graph given as data and stable

models of the problem encoding and data correspond:

a vertex v colored with a color c iff)#%#"&*(v , c) holds in a

stable model.

Niemelä/ECAI 2010 Tutorial on ASP

9/88

What is ASP Good for?

Knowledge intensive search problems:

◮ Constraint satisfaction

◮ Planning, routing

◮ Computer-aided verification

◮ Security analysis

◮ Linguistics

◮ Network management

◮ Product configuration

◮ Combinatorics

◮ Diagnosis

+ Declarative problem solving

Niemelä/ECAI 2010 Tutorial on ASP

10/88

ASP Using Logic Programs

◮ Logic programming: framework for merging KR, DB, and

search

◮ PROLOG style logic programming systems not directly
suitable for ASP:

◮ search for proofs (not models) and produce answer

substitutions
◮ not entirely declarative

◮ In late 80s new semantical basis for “negation-as-failure” in

LPs based on nonmonotonic logics: Stable model

semantics

◮ Implementations of stable model semantics led to ASP

Niemelä/ECAI 2010 Tutorial on ASP

11/88

Part II

Stable Model Semantics

Niemelä/ECAI 2010 Tutorial on ASP

12/88

LPs with Stable Models Semantics

◮ Consider first normal logic program rules

A← B1, . . . , Bm,not C1, . . . ,not Cn

◮ Seen as constraints on an answer set (stable model):
◮ if B1, . . . , Bm are in the set and
◮ none of C1, . . . , Cn is included,

then A must be included in the set

◮ A stable model is a set of atoms

(i) which satisfies the rules and

(ii) where each atom is justified by the rules

(negation by default; CWA)

Niemelä/ECAI 2010 Tutorial on ASP

13/88

Stable Models — cont’d

◮ Program:

b ←
f ← b,not eb

eb ← p

Stable model:

{b, f}

◮ Another candidate model: {b, eb}
satisfies the rules but is not a proper stable model:

eb is included for no reason.

◮ Justifiability of stable models is captured by the notion of a

reduct of a program.

+ The stable model semantics [Gelfond/Lifschitz,1988].

Niemelä/ECAI 2010 Tutorial on ASP

14/88

Definite Programs

◮ For the reduct we need to consider first definite programs,

i.e. normal programs without negation (not).

◮ Such a program P has a unique least model LM(P)
satisfying the rules.

◮ LM(P) can be constructed, e.g., by forward chaining.

Examples.

P1 :

p ←
q ← p

LM(P1) = {p, q}

P2 :

p ← q

q ← p

LM(P2) = {}

P3 :

p ← q

q ← p

p ←

LM(P2) = {p, q}

Niemelä/ECAI 2010 Tutorial on ASP

15/88

Stable Models — cont’d

◮ Consider the propositional (variable free) case:

P — ground program

S — set of ground atoms

◮ Reduct PS (Gelfond-Lifschitz)
◮ delete each rule having a body literal not C with C ∈ S
◮ remove all negative body literals from the remaining rules

◮ PS is a definite program (and has a unique least model

LM(PS))

◮ S is a stable model of P iff S = LM(PS).

Niemelä/ECAI 2010 Tutorial on ASP

16/88

Example. Stable models

S P PS LM(PS)

{b, f} b ← b ← {b, f}
f ← b,not eb f ← b

eb ← p eb ← p

{b, eb} b ← b ← {b}
f ← b,not eb

eb ← p eb ← p

◮ The set {b, eb} is not a stable model of P but

{b, f} is the (unique) stable model of P

Niemelä/ECAI 2010 Tutorial on ASP

17/88

Example. Stable models

◮ A program can have none, one, or multiple stable models.

◮ Program:

p ← not q

q ← not p

Two stable models:

{p}
{q}

◮ Program:

p ← not p

No stable models

Niemelä/ECAI 2010 Tutorial on ASP

18/88

Programs with variables

◮ Variables are needed for uniform encodings

◮ Semantics: Herbrand models

◮ A rule is seen as a shorthand for the set of its ground

instantiations over the Herbrand universe of the program

◮ The Herbrand universe is the set of terms built from the

constants and functions in the program

Example. For the program P:

 !" #$%&'(

 !" #$%)'(

 !" #&%*'(

+,-.#/%0' 12 !" #/%0'(

+,-.#/%0' 12 !" #/%3'% +,-.#3%0'(

The Herbrand universe is { $%&%)%* }.

Niemelä/ECAI 2010 Tutorial on ASP

19/88

Programs with variables

◮ Hence, the rule +,-.#/%0' 12 !" #/%0'(in P

represents:

+,-.#$%$' 12 !" #$%$'(

+,-.#$%&' 12 !" #$%&'(

+,-.#&%$' 12 !" #&%$'(

+,-.#&%&' 12 !" #&%&'(

+,-.#$%)' 12 !" #$%)'(

(((

◮ The Herbrand base of a program is the set ground atoms

built from the predicates and the Herbrand universe of the

program.

◮ For P the Herbrand base is

{ +,-.#$%$'% !" #$%$'% +,-.#$%&'% . . . }

◮ A Herbrand model is a subset of the Herbrand base.

Niemelä/ECAI 2010 Tutorial on ASP

20/88

Programs with variables

◮ The grounding of a program P yields:
◮ a propositional logic program
◮ built of atoms from the Herbrand base of P, HB(P)
◮ denoted grnd(P).

◮ M ⊆ HB(P) is a stable model of P if M is a stable model of

grnd(P).

Niemelä/ECAI 2010 Tutorial on ASP

21/88

Example: Rules with Exceptions

◮ Consider the program

 !"#$%&' () *"+,%&'- ./0 #123*"+,%&'4

*"+,%05##06'4

"+,%/*'4

◮ It has a single stable model:

7*"+,%*/*'- *"+,%05##06'- !"#$%*/*'- !"#$%05##06'8

◮ If we add an exception:

*"+,%&' () 9#.:;".%&'4

#123*"+,%&' () 9#.:;".%&'4

9#.:;".%*/*'4

◮ Then the extended program has a new unique stable

model:

7*"+,%*/*'- *"+,%05##06'- !"#$%05##06'-

9#.:;".%*/*'- #123*"+,%*/*'8

Niemelä/ECAI 2010 Tutorial on ASP

22/88

Stable Models — cont’d

◮ A stratified program (no recursion through negation) has a

unique stable model (canonical model).

◮ It is linear time to check whether a set of atoms is a

stable model of a ground program.

◮ It is NP-complete to decide whether a ground program

has a stable model.

◮ Normal programs (without function symbols) give a

uniform encoding to every NP search problem.

Niemelä/ECAI 2010 Tutorial on ASP

23/88

Extensions to Normal Programs

◮ An integrity constraint is a rule without a head:

← B1, . . . , Bm,not C1, . . . ,not Cn

◮ It can be seen as a shorthand for

F ← not F , B1, . . . , Bm,not C1, . . . ,not Cn

◮ and it eliminates stable models where the body

B1, . . . , Bm,not C1, . . . ,not Cn is satisfied.

◮ Classical negation

can be handled by normal programs (renaming):

p ← not ¬p corresponds to p ← not p′

← p, p′

Niemelä/ECAI 2010 Tutorial on ASP

24/88

Extensions to Normal Programs

◮ Encoding of choices

◮ A key point in ASP
◮ Choices can be encoded using normal rules with

unstratified negation

a← not a′
, b,not c

a′ ← not a

◮ Choice rules, however, provide a much more intuitive

encoding:

{a} ← b,not c

◮ Disjunctive rules: a ∨ a′ ← b,not c
◮ Higher expressivity and complexity (Σ

p
2)

◮ Special purpose implementations (!",#!$%&')
◮ Can be implemented also using an ASP solver for normal

programs as the core engine (()*)

Niemelä/ECAI 2010 Tutorial on ASP

25/88

Extensions — cont’d

◮ Many extensions implemented using an ASP solver as the
core engine:

◮ preferences
◮ nested logic programs
◮ circumscription, planning, diagnosis, . . .
◮ HEX-programs
◮ DL-programs

◮ Aggregates
◮

 !"#$

Example: choose 2–4 hard disks
◮

%"&

Example: the total capacity of the chosen hard disks must

be at least 200 GB.
◮ Built-in support for aggregates in the search procedures

Niemelä/ECAI 2010 Tutorial on ASP

26/88

Extensions — cont’d

◮ Optimization

Example: prefer the cheapest set of hard disks

◮ Weak constraints with weight and priority levels

:∼ B1, . . . , Bm,not C1, . . . ,not Cn[w : l]

(built-in support in !")

◮ Function symbols
◮ Stable model semantics is highly undecidable if arbitrary

function symbols are allowed.
◮ (Safety) restrictions needed to guaranteeing decidability:

d_edge(t(V), t(U))← edge(V , U),not edge(U, V)

◮ Built-in predicates and functions:

#$%&'&(&$)*+,- ./ &01$),-+ &01$)*-+ * 2 , 3 45

Niemelä/ECAI 2010 Tutorial on ASP

27/88

Example. Rules in !"#$%

◮ Cardinality constraints

6 7 8 94+555+8 9# : ;

◮ Weight constraints

6<< = 8 94 2 ><+555+8 9# 2 4?<@

A.k.a. pseudo-Boolean constraints:

60hd1 + · · ·+ 130hdn ≥ 200

◮ Optimization

10#010A$ = 8 94 2 4<<+555+8 9# 2 4B< @5

◮ Conditional literals:

expressing sets in cardinality and weight constraints

4 7CD!DE$)F+G-.CD!DE)G-: 4 ./ "&%)F-5

Niemelä/ECAI 2010 Tutorial on ASP

28/88

Part III

Solving Problems using ASP

Niemelä/ECAI 2010 Tutorial on ASP

29/88

Programming Methodology

◮ Uniform encodings: separate data and problem encoding

◮ Basic methodology: generate and test

◮ Generator rules: provide candidate answer sets

(typically encoded using choice constructs)
◮ Tester rules: eliminate non-valid candidates

(typically encoded using integrity constraints)
◮ Optimization statements: Criteria for preferred answer

sets (typically using cost functions)

Niemelä/ECAI 2010 Tutorial on ASP

30/88

Example: Coloring

 !"#$%&' &()#*+(,

 -&(&"./#" "0%&

1 2)#%#"&*345678)#%#"3679 1 8: ;/<347=

 >&?/&" "0%&

8: &*,&345@75)#%#"3675)#%#"&*345675)#%#"&*3@567=

 AB/+'+C./+#(?/./&'&(/

'+(+'+C& 2)#%#"&*345D78;/<3479=

 E./.

;/<3.7= ===

&*,&3.5$7= ===

)#%#"3"7=)#%#"3,7= ===

Niemelä/ECAI 2010 Tutorial on ASP

31/88

Generator Rules
◮ The idea is to define the potential answer sets

◮ Typically encoded using choice rules.

◮ Example. Choice on . given $:

2.9 8: $=

◮ Example. Choice on a subset of 2.F15===5.F(9 given $:

2.F15===5.F(9 8: $=

The program with the fact $= and this rule alone has 2n

stable models: 2$952$5 .F195====52$5 .F15===5.F(9

◮ Example. Choice on a cardinality limited subset of

2.F15===5.F(9 given $:

G 2.F15===5.F(9 H 8: $=

◮ Typically rules with variables used

1 2)#%#"&*345678)#%#"3679 1 8: ;/<347=

Given a vertex ;, choose exactly one ground atom

)#%#"&*3;5)7 such that)#%#"3)7 holds.

Niemelä/ECAI 2010 Tutorial on ASP

32/88

Tester Rules

◮ Integrity constraints

◮
8: .15===5 .(5 (#/ $15===5 (#/ $'=

◮ eliminate stable models but cannot introduce new ones:
◮ Let P be a program and IC a set of integrity constraints
◮ Then S is a stable model of P ∪ IC iff:

◮ S is a stable model of P, and
◮ S satisfies all ICs

Niemelä/ECAI 2010 Tutorial on ASP

33/88

“Define Part”

◮ Often the tester and generator rules need auxiliary

conditions.

◮ This part of the encoding looks often similar to a Prolog

program

◮ As ASP has Prolog style rules with a similar semantics,

Prolog style programming techniques can be used here for

handling, e.g., data base operations (unions, joins,

projections).

◮ Example. Join: !"#$% &' (!"#)%# *!)#$%+

◮ Example. The largest score , from a relation -./01! #,%

23-4530610!,% &' -./01! #,%# -./01! 7#,7%# , 8 ,7+

93:4-./01!,% &' -./01! #,%# ;/< 23-4530610!,%+

Niemelä/ECAI 2010 Tutorial on ASP

34/88

Example: Review assignment

= >3<3

01?@1A10!07%#+++

B3B10!B7%# +++

.53--C!07#B7%# +++ = 01D1001E B3B10-

.53--F!07#BG%# +++ = >/3H51 B3B10-

./@!07#BI%# +++ = J/;D5@.<- /D @;<101-<

= 0/H519 1;./E@;6

= K1;103</0 0L51

= M3.2 B3B10 @- 3--@6;1E I 01?@1A10-

I N 3--@6;1E! #*%&01?@1A10!*% O I &' B3B10! %+

Niemelä/ECAI 2010 Tutorial on ASP

35/88

Review Assignment — cont’d

 !"#$"% %&'"#

 () *+*"% +##,-."/ $) + %"0,"1"% 1,$2 3),

45 +##,-."/6789:8 3),6987:;

 () %"0,"1"% 2+# +. &.1+.$"/ *+*"%;

45 *+*"%67:8 %"0,"1"%69:8

+##,-."/6789:8 .)$ 3'+##<6987:8 .)$ 3'+##=6987:;

 () %"0,"1"% 2+# >)%" $2+. ? *+*"%#

45 @ A +##,-."/6789:4 *+*"%67: B8 %"0,"1"%69:;

 C+32 %"0,"1"% 2+# +$ '"+#$ D *+*"%#

45 A +##,-."/6789:4 *+*"%67: B E8 %"0,"1"%69:;

 () %"0,"1"% 2+# >)%" $2+. F 3'+##= *+*"%#

45 G A +##,-."/=67H89:4 *+*"%67H: B8 %"0,"1"%69:;

+##,-."/=6789: 45 3'+##=6987:8 +##,-."/6789:;

 I,.,>,J" $2" .&>K"%)L 3'+##= *+*"%#

>,.,>,J" M +##,-."/=6789:4*+*"%67:4%"0,"1"%69: N;

Niemelä/ECAI 2010 Tutorial on ASP

36/88

Example: Satisfiability

◮ Given a formula, solutions to the satisfiability problem are

propositional models, i.e., sets of atoms.

+ Candidate answer sets.

◮ Generator
◮ For each atom +O, in the formula, introduce a choice rule

A +O, B;

◮ For the program:

A +OH B;

. . .

A +O. B;

2n stable models:

A B

. . .

A +OH8;;;8+O. B

Niemelä/ECAI 2010 Tutorial on ASP

37/88

Satisfiability — cont’d

◮ Satisfiability testers for formulas illustrate how to encode

complicated logical conditions using ASP.

◮ For a clause a1 ∨ · · · ∨ an ∨ ¬b1 ∨ · · · ∨ ¬bm a satisfiability

tester can be given as an integrity constraint:

 ! "#$ %&'(((' "#$ %"')&'(((')*(

◮ Example.

Clauses T

a ∨ ¬b

¬b ∨ ¬a

b ∨ a

Program PT

 ! "#$ %')(

 ! %')(

 ! "#$ %' "#$)(

+ % ,(+) ,(

Stable model

+ % ,

◮ Models of T and stable models of PT correspond

Niemelä/ECAI 2010 Tutorial on ASP

38/88

Satisfiability — cont’d

◮ For more involved testers consider general formulas.

For example, (a ∨ ¬b) ∧ (¬a↔ b).

◮ Generator: for each atom -, rule + - ,(

+ % ,(

+) ,(

Niemelä/ECAI 2010 Tutorial on ASP

39/88

Satisfiability — cont’d

◮ Tester — evaluates a formula q recursively

◮ For each subformula:
◮ the conditions under which it is true are given
◮ false cases by default: it is false unless otherwise stated

◮ A satisfying truth assignment: a stable model satisfying

 ! "#$.(

Niemelä/ECAI 2010 Tutorial on ASP

40/88

Satisfiability — cont’d

◮ Tester

encoding

Subformula p Rules

l1 ∧ · · · ∧ ln p ← pl1 , . . . , pln

l1 ∨ · · · ∨ ln p ← pl1

. . .

p ← pln

¬l p ← not pl

l1 ↔ l2 p ← pl1 , pl2

p ← not pl1 ,not pl2

Niemelä/ECAI 2010 Tutorial on ASP

41/88

Satisfiability — cont’d

◮ For the formula p1: (a ∨ ¬b)
︸ ︷︷ ︸

p2

∧ (¬a↔ b)
︸ ︷︷ ︸

p3

◮ Program:

 ! "#$ %&'

%& ! %() %*'

%(! +'

%(! "#$,'

%* ! +) "#$,'

%* ! "#$ +) ,'

- + .' - , .'

Stable models:

-+)%&)%()%*.

◮ Satisfying truth assignments for p1 and the stable models

of the program correspond

Niemelä/ECAI 2010 Tutorial on ASP

42/88

Fixed Points

◮ The stable model semantics captures inherently minimal

fixed points enabling compact encodings of closures

◮ Example. Reachability from node s.

/012'

/032 ! 456407)32) /072'

45640+),2' '''

◮ The program captures reachability:

it has a unique stable model S s.t. v is reachable from s iff

r(v) ∈ S.

◮ Example. Transitive closure of a relation q(X , Y)

$08)92 ! :08)92'

$08)92 ! :08);2) $0;)92'

Niemelä/ECAI 2010 Tutorial on ASP

43/88

Example — Hamiltonian cycles

◮ A Hamiltonian cycle: a closed path that visits all vertices of

the graph exactly once.

◮ Input: a graph
◮

 !"#$%,...
◮

&'(&#$)*%,...
◮

+,+!+$- !"#$.%, for some vertex $.

Niemelä/ECAI 2010 Tutorial on ASP

44/88

Hamiltonian cycles — cont’d

◮ Candidate answer sets: subsets of edges.

◮ Generator:

- <=08)92 . ! 456408)92'

◮ Stable models of the generator given a graph:
◮ input graph +
◮ a subset of the ground facts /0#$)*%

for which there is an input fact &'(&#$)*%1

Niemelä/ECAI 2010 Tutorial on ASP

45/88

Hamiltonian cycles — cont’d

◮ Tester (i):

Each vertex has at most one chosen incoming edge and

one outgoing edge.

 !"#$%&'(& "#$%&)(& *+,*$%&'(& *+,*$%&)(& '-.)/

 !"#$'&%(& "#$)&%(& *+,*$'&%(& *+,*$)&%(& '-.)/

◮ Only subsets of chosen edges "#$0&1(forming paths

(possibly closed) pass the test.

Niemelä/ECAI 2010 Tutorial on ASP

46/88

Hamiltonian cycles — cont’d

◮ Tester (ii):

Every vertex is reachable from a given initial vertex through

chosen "#$0&1(edges:

 ! 023$%(& 452 6$%(/

6$'(! "#$%&'(& *+,*$%&'(& 7472789023$%(/

6$'(! "#$%&'(& *+,*$%&'(& 6$%(/

◮ Only Hamiltonian cycles pass the tests (i–ii).

Niemelä/ECAI 2010 Tutorial on ASP

47/88

Hamiltonian cycles — cont’d

◮ Given:
◮ the graph, the generator rule, and the tester rules (i–ii)

Hamiltonian cycles and stable models correspond.

◮ A Hamiltonian cycle: atoms "#$0&1(in a stable model.

Niemelä/ECAI 2010 Tutorial on ASP

48/88

Hamiltonian cycles — cont’d

◮ Cardinality constraints enable an even more compact

encoding.

◮ Tester (i) using 2 variables:

 ! : ; "#$%&'(*+,*$%&'(<& 023$%(/

 ! : ; "#$%&'(*+,*$%&'(<& 023$'(/

Niemelä/ECAI 2010 Tutorial on ASP

49/88

Example: planning

◮ Given:
◮ a set of operators
◮ initial situation and goal

◮ find a sequence of operator instances leading from initial to

goal situation.

Niemelä/ECAI 2010 Tutorial on ASP

50/88

Planning — cont’d

◮ Planning is PSPACE-complete.

◮ Planning with:
◮ deterministic operators
◮ complete knowledge about the initial situation, and with
◮ an upper bound on the length of the plan

is NP-complete.

Niemelä/ECAI 2010 Tutorial on ASP

51/88

Block-world planning

 !"#$%&!$ '!(#!"

 "%$%') *+, -./0123 *4, -./0123 3

 "$#5!67) 58#%$ *+,3 58#%$ *4,33

 #99#5&) !6 *+, *4,3 58#%$ *+,333

a

b c

initial situation

b

c

a

goal

solution:

moveop(a,table,0),

moveop(c,a,1),

moveop(b,c,2)

Niemelä/ECAI 2010 Tutorial on ASP

52/88

Mapping planning to rules

◮ Devise a logic program such that stable models
correspond to plans:

◮ of length at most n
◮ that are valid
◮ and that reach the goal

Niemelä/ECAI 2010 Tutorial on ASP

53/88

Mapping planning to rules

◮ Candidate answer sets: valid execution sequences (of

length ≤ n) of operator instances from the initial conditions.

◮ Tester: eliminates those sequences that do not reach the

goal.

Niemelä/ECAI 2010 Tutorial on ASP

54/88

Planning — cont’d

◮ Preliminaries
◮ Add to each predicate a situation argument
◮

 !"#$%$&': X is on Y in T
◮

()* +"#$%$&': X is moved onto Y in T
◮ Length bound n: ,-(*".//!'/
◮

!*0,1,2,*"%$#' 34 ,-(*"#'$,-(*"%'$

% 5 # 6 7/

Niemelä/ECAI 2010 Tutorial on ASP

55/88

Planning — cont’d

◮ Available blocks: !"#$%&'(

 !"#$% '(

 !"#$%#'(

◮ Initial conditions: ")%&* *+'(

")% *,& !-*+'(

")%#*,& !-*+'(

Niemelä/ECAI 2010 Tutorial on ASP

56/88

Planning — cont’d

◮ Auxiliary concepts make encoding easier.

◮ Rules make it straightforward to define auxiliary predicates:

" .-#,%,& !-'(

" .-#,%/' 01 !"#$%/'(

#"2-3-4%/*5' 01 !"#$%6'* !"#$%/'* ,78-%5'*

")%6*/*5'(

Niemelä/ECAI 2010 Tutorial on ASP

57/88

Planning — cont’d

◮ Further predicates:

 !"# $%&'(!)*+,-. /0

12 34*+., 15%3&*6., &($%*-.,

 !*+,6,-.7

898(2812%*&812%,-. /0 &($%*-.7

898(2812%*+,-. /0 12 34*+., &($%*-.,

 !"# $%&'(!)*+,-.7

Niemelä/ECAI 2010 Tutorial on ASP

58/88

Planning — cont’d

◮ Generator: execution sequences of operators.

◮ An operator can be applied if preconditions hold:

: $ 9% ;*+,<,-. =/0

&($%*-., 12 34*+., 15%3&*<.,

+ >? <, !"# $%&'(!)*+,-.,

898(2812%*<,-.,

! & 3 9%@%A*+,-.,

! & 3 9%@%A*<,-.7

Niemelä/ECAI 2010 Tutorial on ASP

59/88

Planning — cont’d

◮ Operator effects:

 !*+,<,-B. /0 12 34*+., 15%3&*<.,

!%C&#&8&%*-B,-D.,

$ 9% ;*+,<,-D.7

Niemelä/ECAI 2010 Tutorial on ASP

60/88

Planning — cont’d

◮ Frame axioms (as rules with exceptions):

 !*+,<,-B. /0 12 34*+., 15%3&*<.,

!%C&#&8&%*-B,-D.,

 !*+,<,-D.,

! & $ 9(!)*+,-D.7

E &'% %C3%;&(!#

$ 9(!)*+,-. /0 &($%*-., 12 34*+., 15%3&*<.,

$ 9% ;*+,<,-.7

Niemelä/ECAI 2010 Tutorial on ASP

61/88

Planning — cont’d

◮ In addition, rules for blocking conflicting operator instances

are needed.

◮ This set depends on how much concurrency in the search

of a plan is allowed.

◮ Computationally advantageous to allow concurrency to

decrease search space explosion due to interleavings of

independent operators.

Niemelä/ECAI 2010 Tutorial on ASP

62/88

Planning — cont’d

◮ Blocking conditions for !"#!$

(no concurrent actions):

%& ' (!"#!$)*+,+-.%/0!12)*.%!/3#14),. 5+

46 #)-.7

Niemelä/ECAI 2010 Tutorial on ASP

63/88

Planning — cont’d

◮ Blocking conditions for !"#!$

(with concurrent actions) I–II:

8 9 /0!12 1:;;!4 /# !"#< 4! 4=! <#>46;:46!;

%& ' (!"#!$)*+,+-.%!/3#14),. 5+

/0!12)*.+ 46 #)-.7

8 -?# <#>46;:46!; 1:;;!4 /# !"6;@

%& /0!12)*.+ !/3#14),.+ 46 #)-.+

 !"#!$)*+,+-.+

 !"6;@),+-.7

Niemelä/ECAI 2010 Tutorial on ASP

64/88

Planning — cont’d

◮ Blocking conditions for !"#!$

(with concurrent actions) III:

8 A! 4=! /0!12> !"#< !;4! 4?# >: # /0!12

%& ' (!"#!$)*+,+-.%/0!12)*. 5+

/0!12),.+ 46 #)-.7

Niemelä/ECAI 2010 Tutorial on ASP

65/88

Planning — cont’d

◮ Tester: excludes models where the goal has not been

reached.

 ! "#$ %#&'(

%#&' ! $)*+,-./ %#&',-.(

%#&',-0. ! "+1$2$&$+,-0/-3./ %#&',-3.(

4 56$7&' %#&' 6#"8)$)#"2

%#&',-. ! $)*+,-./

#",9/6/-./

#",6/&/-.(

Niemelä/ECAI 2010 Tutorial on ASP

66/88

Planning — cont’d

◮ Plans correspond to stable models:
◮ there is a stable model iff there is a valid sequence of

moves that leads to goal and can be executed concurrently

in at most n steps.

◮ A valid plan
◮ facts !"#!$%&'(')* in a model

ordered by the argument) where facts with the same) can

be taken in any linear order.

Niemelä/ECAI 2010 Tutorial on ASP

67/88

Planning — cont’d

◮ Easy to add optimizations:

4 :$#; <=+" $=+ %#&' =&2 9++" >+&6=+8

 ! 9'#6?,@./ #9A+6$,B./ $)*+,-./

*#C+#;,@/B/-./

%#&',-.(

Niemelä/ECAI 2010 Tutorial on ASP

68/88

Planning — cont’d

◮ Further optimizations (pruning rules):

4 D# *#C+ E>#* $&9'+ $# $&9'+

 ! 9'#6?,@./ $)*+,-./

*#C+#;,@/$&9'+/-./ #",@/$&9'+/-.(

4 D# *#C+ #" 2#*+$=)"% &"8 $=+" $# $&9'+

 ! "+1$2$&$+,-0/-3./ 9'#6?,@./ #9A+6$,B./

*#C+#;,@/B/-3./ *#C+#;,@/$&9'+/-0.(

Niemelä/ECAI 2010 Tutorial on ASP

69/88

ASP vs Other Approaches

◮ SAT, CSP, (M)IP
◮ Similarities: search for models (assignments to variables)

satisfying a set of constraints.
◮ Differences: no logical variables, fixed points, database,

DDB or KR techniques available, search space given by

variable domains.

◮ LP, CLP:
◮ Similarities: database and DDB techniques.
◮ Differences: Search for proofs (not models),

non-declarative features.

Niemelä/ECAI 2010 Tutorial on ASP

70/88

Part IV

ASP Solver Technology

Niemelä/ECAI 2010 Tutorial on ASP

71/88

ASP Solvers

◮ ASP solvers need to handle two challenging tasks
◮ complex data
◮ search

◮ The approach has been to use
◮ logic programming and deductive data base

techniques for the former
◮ SAT/CSP related search techniques for the latter

◮ In the current systems: separation of concerns

+ A two level architecture

Niemelä/ECAI 2010 Tutorial on ASP

72/88

Architecture of ASP Solvers

Typically a two level architecture employed

◮ Grounding step handles complex data:
◮ Given program P with variables, generate a set of ground

instances of the rules which preserves the models.
◮ LP and DDB techniques employed.

◮ Model search for ground programs:
◮ Special-purpose search procedures
◮ Exploiting SAT/SMT solver technology

Niemelä/ECAI 2010 Tutorial on ASP

73/88

Typical ASP System Tool Chain

program

(variables)
→

Grounder
→

ground

program
→

Model

finder
→

stable

models

◮ Grounder:
◮ (deductive) DB techniques
◮ built-in predicates/functions (e.g. arithmetic)
◮ function symbols

◮ Model finder:
◮ SAT technology (propagation, conflict driven clause

learning)
◮ Special propagation rules for recursive rules
◮ Support for cardinality and weight constraints and

optimization built-in

Niemelä/ECAI 2010 Tutorial on ASP

74/88

Model Search

There are two successful approaches to model computing for

ground programs

◮ Special purpose search procedures

exploiting the particular properties of stable model

semantics

◮ Translating the stable model finding problem to a

propositional satisfiability problem

exploiting state of the art SAT solvers

+ These approaches are closely related

via (Clark’s) program completion

Niemelä/ECAI 2010 Tutorial on ASP

75/88

Program Completion

◮ Program completion comp(P): a simple translation of a

logic program P to a propositional formula.

Example.

P :
a← b,not c

a← not b, d

← a,not d

comp(P) :
a↔ ((b ∧ ¬c) ∨ (¬b ∧ d))
¬b,¬c,¬d

¬(a ∧ ¬d)

◮ Supported models of a logic program and propositional

models of its completion coincide.

◮ For tight programs (no positive recursion) supported and

stable models coincide (Fages).

Niemelä/ECAI 2010 Tutorial on ASP

76/88

Program Completion — cont’d

◮ Stable models for tight programs can be computed using a
SAT solver:

◮ Form the completion and transform that to CNF (typically

with new atoms).
◮ Run a SAT solver on the CNF and translate results back.

◮ For tight (normal) programs, unit propagation on the

translated CNF and ASP propagation on the original

program coincide.

Niemelä/ECAI 2010 Tutorial on ASP

77/88

Program Completion — cont’d

◮ For non-tight programs (with positive recursion), stable

models of a program and propositional models of its

completion do not coincide.

◮ Example.
p ← q

q ← p

unique stable model: {}
vs

p ↔ q

q ↔ p

2 models: {}, {p, q}

Niemelä/ECAI 2010 Tutorial on ASP

78/88

Translations to SAT

◮ Translating non-tight LPs to SAT is challenging
◮ Modular translations not possible (Niemelä, 1999)
◮ Without new atoms exponential blow-up (Lifschitz and

Razborov, 2006)

◮ There are one pass translations to SAT
◮ Polynomial size (Ben-Eliyahu & Dechter 1994;

Lin & Zhao 2003)
◮ O(‖P‖ × log |At(P)|) size (Janhunen 2004)

◮ Also incremental translations to SAT have been developed

extending the completion dynamically with loop formulas

(Lin & Zhao 2002)

+ !!"# and $%&'()! model finders

Niemelä/ECAI 2010 Tutorial on ASP

79/88

Translations to SMT

◮ Recently a compact linear size one pass translation to

SMT/ difference logic has been devised.

+ *+,-.// (Janhunen & Niemelä 2009).

◮ Difference logic = propositional logic + linear difference

constraint of the form

xi + k ≥ xj (or equivalently xj − xi ≤ k)

where k is an arbitrary integer constant and xi , xj are

integer valued variables).

◮ Practically all major SMT solvers support difference logic

+ Most SMT solvers can be used as ASP model finders

without modifications.

Niemelä/ECAI 2010 Tutorial on ASP

80/88

SAT and ASP

◮ ASP systems have much more expressive modelling

languages than SAT: variables, built-ins, aggregates,

optimization

◮ For model finding for ground normal programs results carry

over: efficient unit propagation techniques, conflict driven

learning, backjumping, restarting, . . .

◮ ASP model finders have special (unfounded set based)

propagation rules for recursive rules

◮ ASP model finders have built-in support for aggregates

(cardinality and weight constraints) and optimization

◮ One pass compact translations to SAT and SMT available:

progress in SAT and SMT solver technology can also be

exploited directly in ASP model finding.

Niemelä/ECAI 2010 Tutorial on ASP

81/88

Part V

Further Information: Systems,

Applications, Literature

Niemelä/ECAI 2010 Tutorial on ASP

82/88

Some ASP Systems

Grounders:
 !" #$$%&''((() *+,)$-(,./)+0)+$'%123' !"'

41,/42 #$$%&''%2$+5502)52-10.6214.)/.$'

!%+15. #$$%&''((()$05)#-$)6,'726$(+1.'582 .!5'

9:7; with XSB #$$%&''<5*)52-10.6214.)/.$

Model finders (disjunctive programs):
0!+5%= #$$%&''%2$+5502)52-10.6214.)/.$'

 !" #$$%&''((() *+,)$-(,./)+0)+$'%123' !"'

>/? #$$%&''((()$05)#-$)6,'726$(+1.'4/$'

Niemelä/ECAI 2010 Tutorial on ASP

83/88

Some ASP Systems

Model finders (non-disjunctive programs):
:77:? #$$%&''+55+$)05)-5$)#@'

0!+5% #$$%&''%2$+5502)52-10.6214.)/.$'

ABC=DE7 #$$%&''-5.1(.*)05)-$.<+5). -'-5.15'$+4'082 .!5'

E;F=GHH #$$%&''((()$05)#-$)6,'726$(+1.'!%F ,66'

E;F7:? #$$%&''((()$05)#-$)6,'726$(+1.'!%F5+$'

782 .!5 #$$%&''((()$05)#-$)6,'726$(+1.'582 .!5'

7I; #$$%&''-5.1(.*)05)-$.<+5). -'-5.15'$+4'5-%'

◮ For systems, performance, benchmarks, and examples,

see for instance the latest ASP competition:

#$$%&'' $+,)05)@-!.-"./)*.'."./$5':7;J028%.$,$,2/'

Niemelä/ECAI 2010 Tutorial on ASP

84/88

Applications

◮ Planning

For example, USAdvisor project at Texas Tech:

A decision support system for the flight controllers of space

shuttles

◮ Product configuration

–Intelligent software configurator for Debian/Linux

–WeCoTin project (Web Configuration Technology)

–Spin-off (#$$%&''((()"+1,+/$-8)028')

◮ Computer-aided verification

–Partial order methods

–Bounded model checking

Niemelä/ECAI 2010 Tutorial on ASP

85/88

Applications—cont’d

◮ Data and Information Integration

◮ Semantic web reasoning

◮ VLSI routing, planning, combinatorial problems, network

management, network security, security protocol analysis,

linguistics . . .

◮ WASP Showcase Collection

 !!"#$$%%%&'(&!)%*+,&-.&-!$(+/+-(. $"(01+.!/$2345$

/ 0%.-/+& !67

◮ Applying ASP
◮ as a stand alone system
◮ as an embedded solver

Niemelä/ECAI 2010 Tutorial on ASP

86/88

Some Literature

◮ C. Baral. Knowledge Representation, Reasoning and

Declarative Problem Solving. Cambridge University Press,

2003.

◮ V. Lifschitz. Foundations of Logic Programming.

 !!"#

$$)/+(%+8&./&)!+9-/&+:)$)/+(/$;7$6<"-"+(/$=7"&"/

◮ V. Lifschitz. Introduction to Answer Set Programming.

 !!"#$$)/+(%+8&./&)!+9-/&+:)$)/+(/$;7$6<"-"+(/$

+//77*&"/

◮ T. Eiter, G. Ianni, and T. Krennwallner. A Primer on Answer

Set Programming. !!"#$$%%%&'(&!)%*+,&-.&-!$/!-==$

!'(+,$")8$>??@$(%>??@A-/"&":=

Niemelä/ECAI 2010 Tutorial on ASP

87/88

Conclusions

ASP = KR + DB + search

◮ ASP emerging as a viable KR tool

◮ Efficient implementations under development

◮ Expanding functionality and ease of use

◮ Growing range of applications

Niemelä/ECAI 2010 Tutorial on ASP

88/88

Topics for Further Research

◮ Intelligent grounding

◮ Model computation without full grounding

◮ Program transformations, optimizations

◮ Model search

◮ Distributed and parallel implementation techniques

◮ Language extensions

◮ Programming methodology

◮ Testing techniques

◮ Tool support: debuggers, IDEs

