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Answer Set Programming

v

Term coined by Vladimir Lifschitz.
Roots: KR, logic programming, nonmonotonic reasoning.

. Based on some formal system with semantics that assigns
Introduction to ASP a theory a collection of answer sets (models).
An ASP solver: computes answer sets for a theory.

Solving a problem in ASP:
Encode the problem as a theory such that solutions to the
problem are given by answer sets of the theory.

Part |

v

v

v

v

School of Science School of Science

A' Aalto University Niemela/ECAI 2010 Tutorial on ASP A' Aalto University Niemel&/ECAI 2010 Tutorial on ASP
B and Technology 3/88 B and Technology 4/88



ASP—cont'd Example. k-coloring problem
» Given a graph (V, E) find an assignment of one of k colors
to each vertex such that no two adjacent vertices share a

» Solving a problem using ASP color.
Problem Theory [ ASP Models » Encoding 3-coloring usmg propositional logic
SN Encoding | —— solver SN » For each vertex v € V include the clauses:
. . ViV Ww Vv
instance (Solutions)
—ViV-aw
=V Vv
. —Vo V Vg
g POSS'bI?.formal S.yStem Models . » and for each edge (v, u) € E the clauses:
Propositional logic Truth assignments VRV
CSP Variable assignments VoVl
Logic programs Stable models V3 V U
Model expansion First-order structures , .
» 3-colorings of a graph (V, E) and models of the encoding
correspond: vertex v colored with color 7 iff v; true in a
model.
A! 555%55;}:%}3%%:9 Niemelé‘l/ECAI2010Tu|eria|on::: A! :S\EE%;[{C%}:{%zgice Niemelé/ECAlZOIDTutarialon:;F
ASP Using Logic Programs Coloring Problem (Uniform Encoding)
» Uniform encoding: % Problem encoding
separate problem specification and data 1 { colored(V,C):color(C) } 1 :- vtx(V).
» Compact, easily maintainable representation :- edge(V,U), color(C), colored(V,C), colored(U,C).
» Integrating KR, DB, and search techniques % Data
» Handling dynamic, knowledge intensive applications: \;tx(a) .
data, frame axioms, exceptions, defaults, closures edge(a,b).
color(r). color(g).
Problem  ExGoDING | Th ASP | Model i i
N eory odels 1> Legal colorings of the graph given as data and stable
Data ENGODING > | solver Sof 7 models of the problem encoding and data correspond:
— (Solutions) a vertex v colored with a color c iff colored(v, ¢) holds in a
stable model.
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What is ASP Good for? ASP Using Logic Programs

Knowledge intensive search problems:

» Constraint satisfaction » Logic programming: framework for merging KR, DB, and
» Planning, routing search

e o » PROLOG style logic programming systems not directly
» Computer-aided verification suitable for ASP:
» Security analysis » search for proofs (not models) and produce answer
» Linguistics substitL_Jtions _

» not entirely declarative
» Network management . . . .
Prod p . » In late 80s new semantical basis for “negation-as-failure” in

> Product configuration LPs based on nonmonotonic logics: Stable model
» Combinatorics semantics
» Diagnosis » Implementations of stable model semantics led to ASP

> Declarative problem solving
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LPs with Stable Models Semantics

» Consider first normal logic program rules

Part Il A« By,...,Bp,not Cyq,...,not Cy
. » Seen as constraints on an answer set (stable model):
Stable Model Semantics > if By,..., Bp are in the set and
» none of Cy,..., Cyisincluded,

then A must be included in the set

» A stable model is a set of atoms
(i) which satisfies the rules and
(i) where each atom is justified by the rules
(negation by default; CWA)
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Stable Models — cont’d

» Program: Stable model:
b— {b,f}
f < b,not eb
eb—p

» Another candidate model: {b, eb}
satisfies the rules but is not a proper stable model:
eb is included for no reason.

» Justifiability of stable models is captured by the notion of a

reduct of a program.
<> The stable model semantics [Gelfond/Lifschitz,1988].

Aalto University
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Stable Models — cont’d

v

Consider the propositional (variable free) case:
P — ground program
S — set of ground atoms
Reduct PS (Gelfond-Lifschitz)
» delete each rule having a body literal not C with C € S
» remove all negative body literals from the remaining rules
PS is a definite program (and has a unique least model
LM(PS))
S is a stable model of P iff S = LM(PS).

v

v

v
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Definite Programs

» For the reduct we need to consider first definite programs,
i.e. normal programs without negation (not ).

» Such a program P has a unique least model LM(P)
satisfying the rules.

» LM(P) can be constructed, e.g., by forward chaining.

Examples.

P1Z Pg: P3Z
P — p—q p—q
q—p q—p q—p

LM(P1) = {p, q} LM(P2) = {} p—

LM(Pz) = {p, q}

Niemeld/ECAI 2010 Tutorial on ASP
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Example. Stable models

S P PS LM(PS)
{b,f} b« b — {b, f}
f—bnoteb f—>b
eb—p eb—p
{b,eb} b« b— {b}
f — b,not eb
eb—p eb—p

» The set {b, eb} is not a stable model of P but
{b, f} is the (unique) stable model of P

Aalto University Niemel4/ECAI 2010 Tutorial on ASP
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Example. Stable models

» A program can have none, one, or multiple stable models.

Programs with variables

» Variables are needed for uniform encodings

» Semantics: Herbrand models

» A rule is seen as a shorthand for the set of its ground
instantiations over the Herbrand universe of the program

» The Herbrand universe is the set of terms built from the

constants and functions in the program

Example. For the program P:

edge(1,2).
edge(1,3).
edge(2,4).

path(X,Y)
path(X,Y)

:- edge(X,Y).
:- edge(X,Z), path(Z,Y).

The Herbrand universeis { 1,2,3,4 }.

» Program: Two stable models:
p < not q {p}
g < notp {a}
» Program: No stable models
p«—notp
Al S

Programs with variables

» Hence, the rule path(X,Y) :- edge(X,Y).inP
represents:

path(1,1) :- edge(1,1).
edge(1,2).
edge(2,1).
edge(2,2).
edge(1,3).

path(1,2)
path(2,1)
path(2,2)
path(1,3)

The Herbrand base of a program is the set ground atoms
built from the predicates and the Herbrand universe of the

program.

» For P the Herbrand base is

{ path(1,1), edge(1,1), path(1,2), ...}

» A Herbrand model is a subset of the Herbrand base.

Aalto University
School of Science
B and Technology

» The grounding of a program P yields:

Programs with variables

» a propositional logic program

» built of atoms from the Herbrand base of P, HB(P)

» denoted grnd(P).

» M C HB(P) is a stable model of P if M is a stable model of
grnd(P).
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Example: Rules with Exceptions

» Consider the program
flies(X) :- bird(X), not exc_bird(X).
bird(tweety).
bird(bob) .
» It has a single stable model:
{bird(bob), bird(tweety), flies(bob), flies(tweety)l}
» If we add an exception:
bird(X) :- penguin(X).
exc_bird(X) :- penguin(X).
penguin(bob) .
» Then the extended program has a new unique stable
model:
{bird(bob), bird(tweety), flies(tweety),
penguin(bob), exc_bird(bob)?

School of Science
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Extensions to Normal Programs
» An integrity constraint is a rule without a head:

«— By,...,Bn,not Cy,...,not C,

» |t can be seen as a shorthand for
F «— not F,B17...,Bm,not C17...,not Cn

» and it eliminates stable models where the body
By,...,Bm,not Cy,...,not C, is satisfied.

» Classical negation
can be handled by normal programs (renaming):

p < not —p corresponds to p «— not p/
/
— P, P
' Aalto University Niemel4a/ECAI 2010 Tutorial on ASP
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Stable Models — cont’d

» A stratified program (no recursion through negation) has a
unigue stable model (canonical model).

» ltis linear time to check whether a set of atoms is a
stable model of a ground program.

» It is NP-complete to decide whether a ground program
has a stable model.

» Normal programs (without function symbols) give a
uniform encoding to every NP search problem.

School of Science
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Extensions to Normal Programs

» Encoding of choices

» A key pointin ASP
» Choices can be encoded using normal rules with
unstratified negation

a+ nota,b,notc
a «—nota

» Choice rules, however, provide a much more intuitive
encoding:
{a} < b,not c

» Disjunctive rules: av & « b,not ¢
» Higher expressivity and complexity (£5)
» Special purpose implementations (d1v,claspD)
» Can be implemented also using an ASP solver for normal
programs as the core engine (GnT)

Aalto University Niemel4/ECAI 2010 Tutorial on ASP
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Extensions — cont’d Extensions — cont’d

» Optimization
» Many extensions implemented using an ASP solver as the Example: prefer the cheapest set of hard disks
core engine:
» preferences
nested logic programs
circumscription, planning, diagnosis, . .. i~ By, ..., Bm,not Cy,...,not Cp[w : /]
HEX-programs
DL-programs

» Aggregates

» Weak constraints with weight and priority levels

v

vYyy

(built-in support in d1v)
» Function symbols
» Stable model semantics is highly undecidable if arbitrary

g Emmt o ch H <k function symbols are allowed.
N xample: choose 2-4 hard disks » (Safety) restrictions needed to guaranteeing decidability:
sum
Example: the total capacity of the chosen hard disks must d_edge(t(V),t(U)) < edge(V, U), not edge(U, V)
be at least 200 GB.
» Built-in support for aggregates in the search procedures » Built-in predicates and functions:
nextstate(Y,X) :- time(X), time(Y), Y =X + 1.
A! ggg%olllr:;}vse%‘ls;‘yce Niemelé‘l/ECAI2010Tu|cria|or;5/-\:: A! Q:E;rolfl%}vse%?:nyce Niemelé/ECAlZOIDTutarianr;GA;F

Example. Rules in 1parse

» Cardinality constraints
2 {hd_1,...,hd_n } 4
» Weight constraints
200 [ hd_1 = 60,...,hd_n = 130] Part Il

A.k.a. pseudo-Boolean constraints:

Solving Problems using ASP
60hd; + - - -+ 130hd, > 200

» Optimization
minimize [ hd_1 = 100,...,hd_n = 180 ].

» Conditional literals:
expressing sets in cardinality and weight constraints

1 {colored(V,C):color(C)} 1 :- vtx(V).
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Programming Methodology Example: Coloring

% Problem encoding

% Generator rule
» Uniform encodings: separate data and problem encoding 1 {colored(V,C):color(C)} 1 :- vtx(V).

» Basic methodology: generate and test

» Generator rules: provide candidate answer sets % Tester rule
(typically encoded using choice constructs) :- edge(V,U), color(C), colored(V,C), colored(U,C).
» Tester rules: eliminate non-valid candidates
(typically encoded using integrity constraints) % Optimization statement
» Optimization statements: Criteria for preferred answer minimize {colored(V,4):vtx(V)}.
sets (typically using cost functions)
% Data
vtx(a).
edge(a,b).

color(r). color(g).

School of Science School of Science
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Generator Rules Tester Rules

» The idea is to define the potential answer sets
» Typically encoded using choice rules.
» Example. Choice on a given b:
{a} :- b. » Integrity constraints
» Example. Choice on a subset of {a_1,...,a_n} given b:
{a_1,...,a_n} :- b.
The program with the fact b. and this rule alone has 2"
stable models: {v},{b, a_1},....,{b, a_1,...,a_n} » Then S is a stable model of P U IC iff:
» Example. Choice on a cardinality limited subset of » Sis a stable model of P, and
{a_1,...,a_n} given b: » S satisfies all ICs
2 {a_1,...,a_n} 3 :- b.
» Typically rules with variables used
1 {colored(V,C):color(C)} 1 :- vtx(V).
Given a vertex v, choose exactly one ground atom
colored(v,c) such that color(c) holds.

» :- al,..., an, not bl,..., not bm.
» eliminate stable models but cannot introduce new ones:
» Let P be a program and /C a set of integrity constraints

Aalto University Niemela/ECAI 2010 Tutorial on ASP Aalto University Niemel&/ECAI 2010 Tutorial on ASP
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“Define Part”

» Often the tester and generator rules need auxiliary
conditions.

» This part of the encoding looks often similar to a Prolog
program

» As ASP has Prolog style rules with a similar semantics,
Prolog style programming techniques can be used here for
handling, e.g., data base operations (unions, joins,
projections).

» Example. Join: P(X,Y) :- Q(X,Z), R(Z,Y).

» Example. The largest score S from a relation score(P,S)
has_larger(S) :- score(P,S), score(P1,81), S < S1.
max_score(S) :- score(P,S), not has_larger(S).

Aalto University Niemela/ECAI 2010 Tutorial on ASP
School of Science

® and Technology 33/88

Review Assighment — cont’d

% Tester rules

% No paper assigned to a reviewer with coi
:- assigned(P,R), coi(R,P).
% No reviewer has an unwanted paper.
:- paper(P), reviewer(R),
assigned(P,R), not classA(R,P), not classB(R,P).
% No reviewer has more than 8 papers
:- 9 { assigned(P,R): paper(P) }, reviewer(R).
% Each reviewer has at least 7 papers
:- { assigned(P,R): paper(P) } 6, reviewer(R).
% No reviewer has more than 2 classB papers
:-~ 3 { assignedB(P1,R): paper(P1) }, reviewer(R).
assignedB(P,R) :- classB(R,P), assigned(P,R).
% Minimize the number of classB papers
minimize [ assignedB(P,R):paper(P):reviewer(R) ].

Aalto University Niemela/ECAI 2010 Tutorial on ASP
School of Science

®  and Technology 35/88

Example: Review assignment

% Data

reviewer(rl),...

paper(pl),

classA(rl,pl), ... % Preferred papers
classB(r1,p2), ... % Doable papers
coi(ril,p3), % Conflicts of interest

% Problem encoding
% Generator rule

% Each paper is assigned 3 reviewers
3 { assigned(P,R):reviewer(R) } 3 :- paper(P).

A
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Example: Satisfiability

» Given a formula, solutions to the satisfiability problem are
propositional models, i.e., sets of atoms.
> Candidate answer sets.

» Generator
» For each atom a_i in the formula, introduce a choice rule

{a.i?l.

» For the program: 2" stable models:
{a_1}. {3
{“a_n }. {“a_l,...,a_n }

A
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Satisfiability — cont'd

» Satisfiability testers for formulas illustrate how to encode
complicated logical conditions using ASP.

» Foraclause al v---vanv-blVv...v-bm a satisfiability
tester can be given as an integrity constraint:

:- not al,..., not an, bl,..., bm.

» Example.
Clauses T Program Py Stable model
av-b :- not a, b. {a}
-bV -a :- a, b.
bva :- not a, not b.

{al} {Db}.
» Models of T and stable models of Py correspond

Aalto University Niemela/ECAI 2010 Tutorial on ASP
School of Science
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Satisfiability — cont'd

» Tester — evaluates a formula g recursively
» For each subformula:

» the conditions under which it is true are given
» false cases by default: it is false unless otherwise stated

» A satisfying truth assignment: a stable model satisfying

:- not q.

Aalto University Niemela/ECAI 2010 Tutorial on ASP
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Satisfiability — cont'd

» For more involved testers consider general formulas.

For example, (aV —b) A (—a < b).

» Generator: for each atom x, rule { x }.

{a}.
{b?.

Aalto University
School of Science
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Satisfiability — cont'd

Niemeld/ECAI 2010 Tutorial on ASP

» Tester Subformula p | Rules
encoding WA ANl P<—Pl,-- Pl
hv---Vi P py
P — P,
=l p < not p;
h <k P < Py, Py

p < not p;,, not p,,
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Satisfiability — cont'd

» For the formula ps: (aV =b) A (—a < b)
~——

———
P2 P3
» Program: Stable models:
:- not pl. {a,pl,p2,p3}
pl:- p2, p3.
p2:- a.
p2:- not b.

p3:- a, not b.
p3:- not a, b.
{al} {1v}.
» Satisfying truth assignments for p; and the stable models
of the program correspond

Aalto University Niemela/ECAI 2010 Tutorial on ASP
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Example — Hamiltonian cycles

» A Hamiltonian cycle: a closed path that visits all vertices of
the graph exactly once.
» Input: a graph
> vtx(a),...
> edge(a,b),...
» initialvtx(a0), for some vertex a0

Aalto University Niemela/ECAI 2010 Tutorial on ASP
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Fixed Points

» The stable model semantics captures inherently minimal
fixed points enabling compact encodings of closures

» Example. Reachability from node s.

r(s).
r(V) :- edge(U,V), r(U).
edge(a,b).

» The program captures reachability:
it has a unique stable model S s.t. v is reachable from s iff
r(v) € S.
» Example. Transitive closure of a relation q(X, Y)
t(X,Y) :- q(X,V).
t(X,Y) :- q(X,2), t(Z,Y).

Aalto University Niemel&/ECAI 2010 Tutorial on ASP
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Hamiltonian cycles — cont'd

» Candidate answer sets: subsets of edges.

» Generator:
{ he(X,Y) } :- edge(X,Y).
» Stable models of the generator given a graph:
» input graph +
» a subset of the ground facts hc(a,b)
for which there is an input fact edge(a,b) .
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Hamiltonian cycles — cont’'d

» Tester (i):
Each vertex has at most one chosen incoming edge and
one outgoing edge.

:-he(X,Y), he(X,Z), edge(X,Y), edge(X,Z), Y!=Z.
:-hc(Y,X), hc(Z,X), edge(Y,X), edge(Z,X), Y!=Z.

» Only subsets of chosen edges hc(v,u) forming paths
(possibly closed) pass the test.

Aalto University Niemela/ECAI 2010 Tutorial on ASP
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Hamiltonian cycles — cont’'d

» Given:
» the graph, the generator rule, and the tester rules (i—ii)
Hamiltonian cycles and stable models correspond.

» A Hamiltonian cycle: atoms hc(v,u) in a stable model.

Aalto University Niemela/ECAI 2010 Tutorial on ASP
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Hamiltonian cycles — cont'd

» Tester (ii):
Every vertex is reachable from a given initial vertex through
chosen hc(v,u) edges:

:- vtx(X), not r(X).
r(Y) :- hc(X,Y), edge(X,Y), initialvtx(X).
r(Y) :- hc(X,Y), edge(X,Y), r(X).

» Only Hamiltonian cycles pass the tests (iii).

A!
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Hamiltonian cycles — cont'd

» Cardinality constraints enable an even more compact
encoding.

» Tester (i) using 2 variables:

:- 2 { he(X,Y):edge(X,Y) }, vtx(X).
:- 2 { he(X,Y):edge(X,Y) }, vtx(Y).

Niemeld/ECAI 2010 Tutorial on ASP
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Example: planning

» Given:
» a set of operators
» initial situation and goal

» find a sequence of operator instances leading from initial to
goal situation.

Aalto University Niemela/ECAI 2010 Tutorial on ASP
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Block-world planning

(operator moveop
(params (<X> OBJECT) (<Y> OBJECT) )
(preconds (clear <X>) (clear <Y>))
(effects (on <X> <Y>) (clear <X>)))

u solution:

a moveop(a,table,0),
b a| moveop(c,a,1),
initial situation goal moveop(b,c,2)
Aalto University Niemeld/ECAI 2010 Tutorial on ASP
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Planning — cont’d

» Planning is PSPACE-complete.
» Planning with:

» deterministic operators
» complete knowledge about the initial situation, and with
» an upper bound on the length of the plan

is NP-complete.

Aalto University Niemeld/ECAI 2010 Tutorial on ASP
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Mapping planning to rules

» Devise a logic program such that stable models
correspond to plans:
» of length at most n
» that are valid
» and that reach the goal

Aalto University Niemel&/ECAI 2010 Tutorial on ASP
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Mapping planning to rules

» Candidate answer sets: valid execution sequences (of
length < n) of operator instances from the initial conditions.

» Tester: eliminates those sequences that do not reach the

Aalto University Niemela/ECAI 2010 Tutorial on ASP
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Planning — cont’d

» Available blocks: block(a).

block(b).
block(c).
» Initial conditions: on(a,b,0).
on(b,table,0).
on(c,table,0).
A' Sehoolof Seiance NemeIECAIZIND Tutoial on ASP
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Planning — cont’d

» Preliminaries
» Add to each predicate a situation argument

» on(X,Y,T): XisonYinT
» moveop(X,Y,T): Xismovedonto Yin T
» Length bound n: time (0. .n).
» nextstate(Y,X) :- time(X), time(Y),
Y=X+ 1.
A' IS\alhlo lf“ifvser's“y Niemel4/ECAI 2010 Tutorial on ASP
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Planning — cont’d

» Auxiliary concepts make encoding easier.
» Rules make it straightforward to define auxiliary predicates:

object(table).

object(X) :- block(X).

covered(X,T) :- block(Z), block(X), time(T),
on(Z,X,T).

Aalto University Niemel&/ECAI 2010 Tutorial on ASP
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Planning — cont’d

» Further predicates:

on_something(X,T) :-
block(X), object(Z), time(T),

on(X,Z,T).
available(table,T) :- time(T).
available(X,T) :- block(X), time(T),

on_something (X,T).

Planning — cont’d

» Generator: execution sequences of operators.
» An operator can be applied if preconditions hold:
{ moveop(X,Y,T) }:-
time (T), block(X), object(Y),
X !=Y, on_something(X,T),
available(Y,T),
not covered(X,T),
not covered(Y,T).

Aalto University
School of Science
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Planning — cont’d

» Operator effects:
on(X,Y,T2) :- block(X), objeCt(Y),
nextstate(T2,T1),
moveop(X,Y,T1).

Niemela/ECAI 2010 Tutorial on ASP A' Aalto University Niemel&/ECAI 2010 Tutorial on ASP
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Planning — cont’d

» Frame axioms (as rules with exceptions):

on(X,Y,T2) :- block(X), object(Y),
nextstate(T2,T1),
on(X,Y,T1),
not moving(X,T1).

% the exceptions

Aalto University
School of Science

®  and Technology

moving(X,T) :- time(T), block(X), object(Y),
moveop(X,Y,T).
Niemeld/ECAI 2010 Tutorial on ASP Aalto University Niemel&/ECAI 2010 Tutorial on ASP
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Planning — cont’d

» In addition, rules for blocking conflicting operator instances
are needed.

» This set depends on how much concurrency in the search
of a plan is allowed.

» Computationally advantageous to allow concurrency to
decrease search space explosion due to interleavings of
independent operators.

Aalto University Niemela/ECAI 2010 Tutorial on ASP
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Planning — cont’d

» Blocking conditions for moveop
(with concurrent actions) I-lI:
% A block cannot be moved to two destination
:- 2 { moveop(X,Y,T):object(Y) },
block(X), time(T).
% The destination cannot be moving
:- block(X), object(Y), time(T),
moveop(X,Y,T),
moving(Y,T).

Niemela/ECAI 2010 Tutorial on ASP
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Planning — cont’d

» Blocking conditions for moveop
(no concurrent actions):
:- 2 { moveop(X,Y,T) :block(X):object(Y) },
time (T).
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Planning — cont’d

» Blocking conditions for moveop
(with concurrent actions) lll:
% No two blocks moved onto the same block
:- 2 { moveop(X,Y,T):block(X) },
block(Y), time(T).
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Planning — cont’d

» Tester: excludes models where the goal has not been
reached.

:- not goal.
goal :- time(T), goal(T).
goal(T2) :- nextstate(T2,T1), goal(T1).
% Actual goal conditions
goal(T) :- time(T),
on(b,c,T),
on(c,a,T).
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Planning — cont’d

» Easy to add optimizations:

% Stop when the goal has been reached
:- block(X), object(Y), time(T),
moveop(X,Y,T),
goal(T).
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Planning — cont’d

» Plans correspond to stable models:

» there is a stable model iff there is a valid sequence of
moves that leads to goal and can be executed concurrently
in at most n steps.

» A valid plan

» facts moveop (x,y,t) in a model
ordered by the argument t where facts with the same t can
be taken in any linear order.
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Planning — cont’d

» Further optimizations (pruning rules):
% No move from table to table
:- block(X), time(T),
moveop(X,table,T), on(X,table,T).

% No move on something and then to table
:- nextstate(T2,T1), block(X), object(Y),
moveop(X,Y,T1), moveop(X,table,T2).
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ASP vs Other Approaches

» SAT, CSP, (M)IP
» Similarities: search for models (assignments to variables) Part IV
satisfying a set of constraints.
» Differences: no logical variables, fixed points, database,

DDB or KR techniques available, search space given by ASP Solver TeChnOIOQV
variable domains.
» LP, CLP:
» Similarities: database and DDB techniques.

» Differences: Search for proofs (not models),
non-declarative features.

School of Science School of Science
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ASP Solvers Architecture of ASP Solvers

» ASP solvers need to handle two challenging tasks
» complex data
» search

» The approach has been to use

» logic programming and deductive data base
techniques for the former
» SAT/CSP related search techniques for the latter

» In the current systems: separation of concerns
<> A two level architecture

Typically a two level architecture employed
» Grounding step handles complex data:
» Given program P with variables, generate a set of ground
instances of the rules which preserves the models.
» LP and DDB techniques employed.
» Model search for ground programs:

» Special-purpose search procedures
» Exploiting SAT/SMT solver technology

School of Science School of Science
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Typical ASP System Tool Chain

program Grounder _}ground . Model _ stable
(variables) program finder models
» Grounder:

» (deductive) DB techniques
» built-in predicates/functions (e.g. arithmetic)
» function symbols

» Model finder:
» SAT technology (propagation, conflict driven clause
learning)
» Special propagation rules for recursive rules
» Support for cardinality and weight constraints and
optimization built-in
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Program Completion

» Program completion comp(P): a simple translation of a
logic program P to a propositional formula.

Example.

P: comp(P) :

a+< b,notc a« ((bAn-c)V(=bAd))
a«~—notb, d =b, ~¢, ~d

—a,notd —(an —d)

» Supported models of a logic program and propositional
models of its completion coincide.

» For tight programs (no positive recursion) supported and
stable models coincide (Fages).

Aalto University Niemela/ECAI 2010 Tutorial on ASP
School of Science
u

and Technology 75/88

Model Search

There are two successful approaches to model computing for
ground programs
» Special purpose search procedures
exploiting the particular properties of stable model
semantics
» Translating the stable model finding problem to a
propositional satisfiability problem
exploiting state of the art SAT solvers

g These approaches are closely related
via (Clark’s) program completion
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Program Completion — cont’d

» Stable models for tight programs can be computed using a
SAT solver:
» Form the completion and transform that to CNF (typically
with new atoms).
» Run a SAT solver on the CNF and translate results back.
» For tight (normal) programs, unit propagation on the
translated CNF and ASP propagation on the original
program coincide.
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Program Completion — cont’d

» For non-tight programs (with positive recursion), stable
models of a program and propositional models of its
completion do not coincide.

» Example.
p<—aq p<q
g<—p VS q<—p

unique stable model: {} 2 models: {},{p, g}
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Translations to SMT

» Recently a compact linear size one pass translation to
SMT/ difference logic has been devised.
<> LP2DIFF (Janhunen & Niemela 2009).

» Difference logic = propositional logic + linear difference
constraint of the form

X; + k > x; (or equivalently x; — x; < k)

where k is an arbitrary integer constant and x;, x; are
integer valued variables).

» Practically all major SMT solvers support difference logic

= Most SMT solvers can be used as ASP model finders
without modifications.
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Translations to SAT

» Translating non-tight LPs to SAT is challenging
» Modular translations not possible (Niemela, 1999)
» Without new atoms exponential blow-up (Lifschitz and
Razborov, 2006)
» There are one pass translations to SAT
» Polynomial size (Ben-Eliyahu & Dechter 1994;
Lin & Zhao 2003)
» O(]|P|| x log |At(P)|) size (Janhunen 2004)

» Also incremental translations to SAT have been developed
extending the completion dynamically with loop formulas
(Lin & Zhao 2002)
<> Assat and Cmodels model finders

Aalto University Niemeld/ECAI 2010 Tutorial on ASP
A' School of Science
u

and Technology 78/88

SAT and ASP

» ASP systems have much more expressive modelling
languages than SAT: variables, built-ins, aggregates,
optimization

» For model finding for ground normal programs results carry
over: efficient unit propagation techniques, conflict driven
learning, backjumping, restarting, ...

» ASP model finders have special (unfounded set based)
propagation rules for recursive rules

» ASP model finders have built-in support for aggregates
(cardinality and weight constraints) and optimization

» One pass compact translations to SAT and SMT available:
progress in SAT and SMT solver technology can also be
exploited directly in ASP model finding.
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Part V

Further Information: Systems,
Applications, Literature
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Some ASP Systems

Model finders (non-disjunctive programs):

ASSAT http://assat.cs.ust.hk/

clasp http://potassco.sourceforge.net/

CMODELS http://userweb.cs.utexas.edu/users/tag/cmodels/
LP2DIFF http://www.tcs.hut.fi/Software/1p2diff/

LP2SAT  http://www.tcs.hut.fi/Software/lp2sat/

Smodels http://www.tcs.hut.fi/Software/smodels/

SUP http://userweb.cs.utexas.edu/users/tag/sup/

» For systems, performance, benchmarks, and examples,
see for instance the latest ASP competition:
http://dtai.cs.kuleuven.be/events/ASP-competition/
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Some ASP Systems

Grounders:
dlv http://www.dbai.tuwien.ac.at/proj/dlv/

gringo http://potassco.sourceforge.net/
lparse http://www.tcs.hut.fi/Software/smodels/
XASP with XSB http://xsb.sourceforge.net

Model finders (disjunctive programs):
claspD http://potassco.sourceforge.net/

dlv http://www.dbai.tuwien.ac.at/proj/dlv/

GnT http://www.tcs.hut.fi/Software/gnt/
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Applications

» Planning
For example, USAdvisor project at Texas Tech:
A decision support system for the flight controllers of space
shuttles

» Product configuration
—Intelligent software configurator for Debian/Linux
—WeCoTin project (Web Configuration Technology)
—Spin-off (http://www.variantum.com/)

» Computer-aided verification
—Partial order methods
—Bounded model checking
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Applications—cont'd

» Data and Information Integration

» Semantic web reasoning

» VLSI routing, planning, combinatorial problems, network
management, network security, security protocol analysis,
linguistics .. .

» WASP Showcase Collection
http://www.kr.tuwien.ac.at/research/projects/WASP/
showcase.html

» Applying ASP

» as a stand alone system
» as an embedded solver

Aalto University
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Conclusions

ASP = KR + DB + search
» ASP emerging as a viable KR tool
» Efficient implementations under development
» Expanding functionality and ease of use
» Growing range of applications
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Some Literature

» C. Baral. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press,
2003.

» V. Lifschitz. Foundations of Logic Programming.
http:
//userweb.cs.utexas.edu/users/vl/mypapers/flp.ps

» V. Lifschitz. Introduction to Answer Set Programming.
http://userweb.cs.utexas.edu/users/vl/mypapers/
esslli.ps

» T. Eiter, G. lanni, and T. Krennwallner. A Primer on Answer

Set Programming. http://www.kr.tuwien.ac.at/staff/
tkren/pub/2009/rw2009-asp. pdf
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Topics for Further Research

Intelligent grounding

Model computation without full grounding

Program transformations, optimizations

Model search

Distributed and parallel implementation techniques
Language extensions

Programming methodology

Testing techniques

Tool support: debuggers, IDEs

vV VvV V.V V. VvV VY
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