Content

A!

Aalto University
School of Science
and Technology

» Introduction to Answer Set Programming (ASP)
» Stable Model Semantics

llkka Niemela » Solving Problems with ASP

Department of Information and Computer Science » ASP Solver Technology

Aalto University, Finland

likka.Niemela@tkk.fi » Further Information: Systems, Applications, Literature
http://users.ics.tkk.fi/ini/

Answer Set Programming

Aalto University Niemeld/ECAI 2010 Tutorial on ASP
A' School of Science
H and Technology 2/88

Answer Set Programming

v

Term coined by Vladimir Lifschitz.
Roots: KR, logic programming, nonmonotonic reasoning.

. Based on some formal system with semantics that assigns
Introduction to ASP a theory a collection of answer sets (models).
An ASP solver: computes answer sets for a theory.

Solving a problem in ASP:
Encode the problem as a theory such that solutions to the
problem are given by answer sets of the theory.

Part |

v

v

v

v

School of Science School of Science

A' Aalto University Niemela/ECAI 2010 Tutorial on ASP A' Aalto University Niemel&/ECAI 2010 Tutorial on ASP
B and Technology 3/88 B and Technology 4/88

ASP—cont'd Example. k-coloring problem
» Given a graph (V, E) find an assignment of one of k colors
to each vertex such that no two adjacent vertices share a

» Solving a problem using ASP color.
Problem Theory [ASP Models » Encoding 3-coloring usmg propositional logic
SN Encoding | —— solver SN » For each vertex v € V include the clauses:
. . ViV Ww Vv
instance (Solutions)
—ViV-aw
=V Vv
. —Vo V Vg
g POSS'bI?.formal S.yStem Models . » and for each edge (v, u) € E the clauses:
Propositional logic Truth assignments VRV
CSP Variable assignments VoVl
Logic programs Stable models V3 V U
Model expansion First-order structures , .
» 3-colorings of a graph (V, E) and models of the encoding
correspond: vertex v colored with color 7 iff v; true in a
model.
A! 555%55;}:%}3%%:9 Niemelé‘l/ECAI2010Tu|eria|on::: A! :S\EE%;[{C%}:{%zgice Niemelé/ECAlZOIDTutarialon:;F
ASP Using Logic Programs Coloring Problem (Uniform Encoding)
» Uniform encoding: % Problem encoding
separate problem specification and data 1 { colored(V,C):color(C) } 1 :- vtx(V).
» Compact, easily maintainable representation :- edge(V,U), color(C), colored(V,C), colored(U,C).
» Integrating KR, DB, and search techniques % Data
» Handling dynamic, knowledge intensive applications: \;tx(a) .
data, frame axioms, exceptions, defaults, closures edge(a,b).
color(r). color(g).
Problem ExGoDING | Th ASP | Model i i
N eory odels 1> Legal colorings of the graph given as data and stable
Data ENGODING > | solver Sof 7 models of the problem encoding and data correspond:
— (Solutions) a vertex v colored with a color c iff colored(v, ¢) holds in a
stable model.

Aalto University Niemela/ECAI 2010 Tutorial on ASP Aalto University Niemel&/ECAI 2010 Tutorial on ASP
School of Science School of Science
L] L]

and Technology 7188 and Technology 8/88

What is ASP Good for? ASP Using Logic Programs

Knowledge intensive search problems:

» Constraint satisfaction » Logic programming: framework for merging KR, DB, and
» Planning, routing search

e o » PROLOG style logic programming systems not directly
» Computer-aided verification suitable for ASP:
» Security analysis » search for proofs (not models) and produce answer
» Linguistics substitL_Jtions _

» not entirely declarative
» Network management
Prod p . » In late 80s new semantical basis for “negation-as-failure” in

> Product configuration LPs based on nonmonotonic logics: Stable model
» Combinatorics semantics
» Diagnosis » Implementations of stable model semantics led to ASP

> Declarative problem solving

Aalto University Niemela/ECAI 2010 Tutorial on ASP Aalto University Niemel&/ECAI 2010 Tutorial on ASP
A' School of Science School of Science
L] L]

and Technology 9/88 and Technology 10/88

LPs with Stable Models Semantics

» Consider first normal logic program rules

Part Il A« By,...,Bp,not Cyq,...,not Cy
. » Seen as constraints on an answer set (stable model):
Stable Model Semantics > if By,..., Bp are in the set and
» none of Cy,..., Cyisincluded,

then A must be included in the set

» A stable model is a set of atoms
(i) which satisfies the rules and
(i) where each atom is justified by the rules
(negation by default; CWA)

Aalto University Niemela/ECAI 2010 Tutorial on ASP Aalto University Niemel&/ECAI 2010 Tutorial on ASP
A' School of Science School of Science
L] L]

and Technology 11/88 and Technology 12/88

Stable Models — cont’d

» Program: Stable model:
b— {b,f}
f < b,not eb
eb—p

» Another candidate model: {b, eb}
satisfies the rules but is not a proper stable model:
eb is included for no reason.

» Justifiability of stable models is captured by the notion of a

reduct of a program.
<> The stable model semantics [Gelfond/Lifschitz,1988].

Aalto University
School of Science
L]

and Technology

Stable Models — cont’d

v

Consider the propositional (variable free) case:
P — ground program
S — set of ground atoms
Reduct PS (Gelfond-Lifschitz)
» delete each rule having a body literal not C with C € S
» remove all negative body literals from the remaining rules
PS is a definite program (and has a unique least model
LM(PS))
S is a stable model of P iff S = LM(PS).

v

v

v

Niemela/ECAI 2010 Tutorial on ASP

13/88

Aalto University
School of Science
B and Technology

Niemela/ECAI 2010 Tutorial on ASP

15/88

Definite Programs

» For the reduct we need to consider first definite programs,
i.e. normal programs without negation (not).

» Such a program P has a unique least model LM(P)
satisfying the rules.

» LM(P) can be constructed, e.g., by forward chaining.

Examples.

P1Z Pg: P3Z
P — p—q p—q
q—p q—p q—p

LM(P1) = {p, q} LM(P2) = {} p—

LM(Pz) = {p, q}

Niemeld/ECAI 2010 Tutorial on ASP

Aalto University
School of Science
H and Technology 14/88

Example. Stable models

S P PS LM(PS)
{b,f} b« b — {b, f}
f—bnoteb f—>b
eb—p eb—p
{b,eb} b« b— {b}
f — b,not eb
eb—p eb—p

» The set {b, eb} is not a stable model of P but
{b, f} is the (unique) stable model of P

Aalto University Niemel4/ECAI 2010 Tutorial on ASP
School of Science
® and Technology 16/88

Example. Stable models

» A program can have none, one, or multiple stable models.

Programs with variables

» Variables are needed for uniform encodings

» Semantics: Herbrand models

» A rule is seen as a shorthand for the set of its ground
instantiations over the Herbrand universe of the program

» The Herbrand universe is the set of terms built from the

constants and functions in the program

Example. For the program P:

edge(1,2).
edge(1,3).
edge(2,4).

path(X,Y)
path(X,Y)

:- edge(X,Y).
:- edge(X,Z), path(Z,Y).

The Herbrand universeis { 1,2,3,4 }.

» Program: Two stable models:
p < not q {p}
g < notp {a}
» Program: No stable models
p«—notp
Al S

Programs with variables

» Hence, the rule path(X,Y) :- edge(X,Y).inP
represents:

path(1,1) :- edge(1,1).
edge(1,2).
edge(2,1).
edge(2,2).
edge(1,3).

path(1,2)
path(2,1)
path(2,2)
path(1,3)

The Herbrand base of a program is the set ground atoms
built from the predicates and the Herbrand universe of the

program.

» For P the Herbrand base is

{ path(1,1), edge(1,1), path(1,2), ...}

» A Herbrand model is a subset of the Herbrand base.

Aalto University
School of Science
B and Technology

» The grounding of a program P yields:

Programs with variables

» a propositional logic program

» built of atoms from the Herbrand base of P, HB(P)

» denoted grnd(P).

» M C HB(P) is a stable model of P if M is a stable model of
grnd(P).

Niemeld/ECAI 2010 Tutorial on ASP

18/88

A!

Aalto University
School of Science
and Technology

Niemela/ECAI 2010 Tutorial on ASP

19/88

Aalto University
School of Science
B and Technology

Niemel4/ECAI 2010 Tutorial on ASP

20/88

Example: Rules with Exceptions

» Consider the program
flies(X) :- bird(X), not exc_bird(X).
bird(tweety).
bird(bob) .
» It has a single stable model:
{bird(bob), bird(tweety), flies(bob), flies(tweety)l}
» If we add an exception:
bird(X) :- penguin(X).
exc_bird(X) :- penguin(X).
penguin(bob) .
» Then the extended program has a new unique stable
model:
{bird(bob), bird(tweety), flies(tweety),
penguin(bob), exc_bird(bob)?

School of Science

A' Aalto University Niemela/ECAI 2010 Tutorial on ASP
® and Technology 21/88

Extensions to Normal Programs
» An integrity constraint is a rule without a head:

«— By,...,Bn,not Cy,...,not C,

» |t can be seen as a shorthand for
F «— not F,B17...,Bm,not C17...,not Cn

» and it eliminates stable models where the body
By,...,Bm,not Cy,...,not C, is satisfied.

» Classical negation
can be handled by normal programs (renaming):

p < not —p corresponds to p «— not p/
/
— P, P
' Aalto University Niemel4a/ECAI 2010 Tutorial on ASP
Al sireaierscer. =

Stable Models — cont’d

» A stratified program (no recursion through negation) has a
unigue stable model (canonical model).

» ltis linear time to check whether a set of atoms is a
stable model of a ground program.

» It is NP-complete to decide whether a ground program
has a stable model.

» Normal programs (without function symbols) give a
uniform encoding to every NP search problem.

School of Science

A' Aalto University Niemeld/ECAI 2010 Tutorial on ASP
m and Technology 22/88

Extensions to Normal Programs

» Encoding of choices

» A key pointin ASP
» Choices can be encoded using normal rules with
unstratified negation

a+ nota,b,notc
a «—nota

» Choice rules, however, provide a much more intuitive
encoding:
{a} < b,not c

» Disjunctive rules: av & « b,not ¢
» Higher expressivity and complexity (£5)
» Special purpose implementations (d1v,claspD)
» Can be implemented also using an ASP solver for normal
programs as the core engine (GnT)

Aalto University Niemel4/ECAI 2010 Tutorial on ASP
School of Science
® and Technology 24/88

Extensions — cont’d Extensions — cont’d

» Optimization
» Many extensions implemented using an ASP solver as the Example: prefer the cheapest set of hard disks
core engine:
» preferences
nested logic programs
circumscription, planning, diagnosis, . .. i~ By, ..., Bm,not Cy,...,not Cp[w : /]
HEX-programs
DL-programs

» Aggregates

» Weak constraints with weight and priority levels

v

vYyy

(built-in support in d1v)
» Function symbols
» Stable model semantics is highly undecidable if arbitrary

g Emmt o ch H <k function symbols are allowed.
N xample: choose 2-4 hard disks » (Safety) restrictions needed to guaranteeing decidability:
sum
Example: the total capacity of the chosen hard disks must d_edge(t(V),t(U)) < edge(V, U), not edge(U, V)
be at least 200 GB.
» Built-in support for aggregates in the search procedures » Built-in predicates and functions:
nextstate(Y,X) :- time(X), time(Y), Y =X + 1.
A! ggg%olllr:;}vse%‘ls;‘yce Niemelé‘l/ECAI2010Tu|cria|or;5/-\:: A! Q:E;rolfl%}vse%?:nyce Niemelé/ECAlZOIDTutarianr;GA;F

Example. Rules in 1parse

» Cardinality constraints
2 {hd_1,...,hd_n } 4
» Weight constraints
200 [hd_1 = 60,...,hd_n = 130] Part Il

A.k.a. pseudo-Boolean constraints:

Solving Problems using ASP
60hd; + - - -+ 130hd, > 200

» Optimization
minimize [hd_1 = 100,...,hd_n = 180].

» Conditional literals:
expressing sets in cardinality and weight constraints

1 {colored(V,C):color(C)} 1 :- vtx(V).

Aalto University Niemela/ECAI 2010 Tutorial on ASP Aalto University Niemel&/ECAI 2010 Tutorial on ASP
School of Science School of Science
L] L]

and Technology 27/88 and Technology 28/88

Programming Methodology Example: Coloring

% Problem encoding

% Generator rule
» Uniform encodings: separate data and problem encoding 1 {colored(V,C):color(C)} 1 :- vtx(V).

» Basic methodology: generate and test

» Generator rules: provide candidate answer sets % Tester rule
(typically encoded using choice constructs) :- edge(V,U), color(C), colored(V,C), colored(U,C).
» Tester rules: eliminate non-valid candidates
(typically encoded using integrity constraints) % Optimization statement
» Optimization statements: Criteria for preferred answer minimize {colored(V,4):vtx(V)}.
sets (typically using cost functions)
% Data
vtx(a).
edge(a,b).

color(r). color(g).

School of Science School of Science

A' Aalto University Niemela/ECAI 2010 Tutorial on ASP A' Aalto University Niemel&/ECAI 2010 Tutorial on ASP
B and Technology 29/88 B and Technology 30/88

Generator Rules Tester Rules

» The idea is to define the potential answer sets
» Typically encoded using choice rules.
» Example. Choice on a given b:
{a} :- b. » Integrity constraints
» Example. Choice on a subset of {a_1,...,a_n} given b:
{a_1,...,a_n} :- b.
The program with the fact b. and this rule alone has 2"
stable models: {v},{b, a_1},....,{b, a_1,...,a_n} » Then S is a stable model of P U IC iff:
» Example. Choice on a cardinality limited subset of » Sis a stable model of P, and
{a_1,...,a_n} given b: » S satisfies all ICs
2 {a_1,...,a_n} 3 :- b.
» Typically rules with variables used
1 {colored(V,C):color(C)} 1 :- vtx(V).
Given a vertex v, choose exactly one ground atom
colored(v,c) such that color(c) holds.

» :- al,..., an, not bl,..., not bm.
» eliminate stable models but cannot introduce new ones:
» Let P be a program and /C a set of integrity constraints

Aalto University Niemela/ECAI 2010 Tutorial on ASP Aalto University Niemel&/ECAI 2010 Tutorial on ASP
A' School of Science School of Science
B and Technology 31/88 B and Technology 32/88

“Define Part”

» Often the tester and generator rules need auxiliary
conditions.

» This part of the encoding looks often similar to a Prolog
program

» As ASP has Prolog style rules with a similar semantics,
Prolog style programming techniques can be used here for
handling, e.g., data base operations (unions, joins,
projections).

» Example. Join: P(X,Y) :- Q(X,Z), R(Z,Y).

» Example. The largest score S from a relation score(P,S)
has_larger(S) :- score(P,S), score(P1,81), S < S1.
max_score(S) :- score(P,S), not has_larger(S).

Aalto University Niemela/ECAI 2010 Tutorial on ASP
School of Science

® and Technology 33/88

Review Assighment — cont’d

% Tester rules

% No paper assigned to a reviewer with coi
:- assigned(P,R), coi(R,P).
% No reviewer has an unwanted paper.
:- paper(P), reviewer(R),
assigned(P,R), not classA(R,P), not classB(R,P).
% No reviewer has more than 8 papers
:- 9 { assigned(P,R): paper(P) }, reviewer(R).
% Each reviewer has at least 7 papers
:- { assigned(P,R): paper(P) } 6, reviewer(R).
% No reviewer has more than 2 classB papers
:-~ 3 { assignedB(P1,R): paper(P1) }, reviewer(R).
assignedB(P,R) :- classB(R,P), assigned(P,R).
% Minimize the number of classB papers
minimize [assignedB(P,R):paper(P):reviewer(R)].

Aalto University Niemela/ECAI 2010 Tutorial on ASP
School of Science

® and Technology 35/88

Example: Review assignment

% Data

reviewer(rl),...

paper(pl),

classA(rl,pl), ... % Preferred papers
classB(r1,p2), ... % Doable papers
coi(ril,p3), % Conflicts of interest

% Problem encoding
% Generator rule

% Each paper is assigned 3 reviewers
3 { assigned(P,R):reviewer(R) } 3 :- paper(P).

A

Aalto University Niemel&/ECAI 2010 Tutorial on ASP
School of Science

m and Technology 34/88

Example: Satisfiability

» Given a formula, solutions to the satisfiability problem are
propositional models, i.e., sets of atoms.
> Candidate answer sets.

» Generator
» For each atom a_i in the formula, introduce a choice rule

{a.i?l.

» For the program: 2" stable models:
{a_1}. {3
{“a_n }. {“a_l,...,a_n }

A

Aalto University Niemel&/ECAI 2010 Tutorial on ASP
School of Science

® and Technology 36/88

Satisfiability — cont'd

» Satisfiability testers for formulas illustrate how to encode
complicated logical conditions using ASP.

» Foraclause al v---vanv-blVv...v-bm a satisfiability
tester can be given as an integrity constraint:

:- not al,..., not an, bl,..., bm.

» Example.
Clauses T Program Py Stable model
av-b :- not a, b. {a}
-bV -a :- a, b.
bva :- not a, not b.

{al} {Db}.
» Models of T and stable models of Py correspond

Aalto University Niemela/ECAI 2010 Tutorial on ASP
School of Science
u

and Technology

Satisfiability — cont'd

» Tester — evaluates a formula g recursively
» For each subformula:

» the conditions under which it is true are given
» false cases by default: it is false unless otherwise stated

» A satisfying truth assignment: a stable model satisfying

:- not q.

Aalto University Niemela/ECAI 2010 Tutorial on ASP
School of Science
u

and Technology

Satisfiability — cont'd

» For more involved testers consider general formulas.

For example, (aV —b) A (—a < b).

» Generator: for each atom x, rule { x }.

{a}.
{b?.

Aalto University
School of Science
L]

and Technology

Satisfiability — cont'd

Niemeld/ECAI 2010 Tutorial on ASP

» Tester Subformula p | Rules
encoding WA ANl P<—Pl,-- Pl
hv---Vi P py
P — P,
=l p < not p;
h <k P < Py, Py

p < not p;,, not p,,

38/88

Aalto University
School of Science
L]

and Technology

Niemel4/ECAI 2010 Tutorial on ASP

40/88

Satisfiability — cont'd

» For the formula ps: (aV =b) A (—a < b)
~——

———
P2 P3
» Program: Stable models:
:- not pl. {a,pl,p2,p3}
pl:- p2, p3.
p2:- a.
p2:- not b.

p3:- a, not b.
p3:- not a, b.
{al} {1v}.
» Satisfying truth assignments for p; and the stable models
of the program correspond

Aalto University Niemela/ECAI 2010 Tutorial on ASP
School of Science
u

and Technology 41/88

Example — Hamiltonian cycles

» A Hamiltonian cycle: a closed path that visits all vertices of
the graph exactly once.
» Input: a graph
> vtx(a),...
> edge(a,b),...
» initialvtx(a0), for some vertex a0

Aalto University Niemela/ECAI 2010 Tutorial on ASP
School of Science
u

and Technology 43/88

Fixed Points

» The stable model semantics captures inherently minimal
fixed points enabling compact encodings of closures

» Example. Reachability from node s.

r(s).
r(V) :- edge(U,V), r(U).
edge(a,b).

» The program captures reachability:
it has a unique stable model S s.t. v is reachable from s iff
r(v) € S.
» Example. Transitive closure of a relation q(X, Y)
t(X,Y) :- q(X,V).
t(X,Y) :- q(X,2), t(Z,Y).

Aalto University Niemel&/ECAI 2010 Tutorial on ASP
School of Science
u

and Technology 42/88

Hamiltonian cycles — cont'd

» Candidate answer sets: subsets of edges.

» Generator:
{ he(X,Y) } :- edge(X,Y).
» Stable models of the generator given a graph:
» input graph +
» a subset of the ground facts hc(a,b)
for which there is an input fact edge(a,b) .

Aalto University Niemel&/ECAI 2010 Tutorial on ASP
School of Science
u

and Technology 44/88

Hamiltonian cycles — cont’'d

» Tester (i):
Each vertex has at most one chosen incoming edge and
one outgoing edge.

:-he(X,Y), he(X,Z), edge(X,Y), edge(X,Z), Y!=Z.
:-hc(Y,X), hc(Z,X), edge(Y,X), edge(Z,X), Y!=Z.

» Only subsets of chosen edges hc(v,u) forming paths
(possibly closed) pass the test.

Aalto University Niemela/ECAI 2010 Tutorial on ASP
School of Science
® and Technology 45/88

Hamiltonian cycles — cont’'d

» Given:
» the graph, the generator rule, and the tester rules (i—ii)
Hamiltonian cycles and stable models correspond.

» A Hamiltonian cycle: atoms hc(v,u) in a stable model.

Aalto University Niemela/ECAI 2010 Tutorial on ASP
School of Science
u

and Technology 47/88

Hamiltonian cycles — cont'd

» Tester (ii):
Every vertex is reachable from a given initial vertex through
chosen hc(v,u) edges:

:- vtx(X), not r(X).
r(Y) :- hc(X,Y), edge(X,Y), initialvtx(X).
r(Y) :- hc(X,Y), edge(X,Y), r(X).

» Only Hamiltonian cycles pass the tests (iii).

A!

Aalto University
School of Science
and Technology

Hamiltonian cycles — cont'd

» Cardinality constraints enable an even more compact
encoding.

» Tester (i) using 2 variables:

:- 2 { he(X,Y):edge(X,Y) }, vtx(X).
:- 2 { he(X,Y):edge(X,Y) }, vtx(Y).

Niemeld/ECAI 2010 Tutorial on ASP

46/88

A!

Aalto University
School of Science
and Technology

Niemel4/ECAI 2010 Tutorial on ASP

48/88

Example: planning

» Given:
» a set of operators
» initial situation and goal

» find a sequence of operator instances leading from initial to
goal situation.

Aalto University Niemela/ECAI 2010 Tutorial on ASP
School of Science

® and Technology 49/88

Block-world planning

(operator moveop
(params (<X> OBJECT) (<Y> OBJECT))
(preconds (clear <X>) (clear <Y>))
(effects (on <X> <Y>) (clear <X>)))

u solution:

a moveop(a,table,0),
b a| moveop(c,a,1),
initial situation goal moveop(b,c,2)
Aalto University Niemeld/ECAI 2010 Tutorial on ASP
Al S o

Planning — cont’d

» Planning is PSPACE-complete.
» Planning with:

» deterministic operators
» complete knowledge about the initial situation, and with
» an upper bound on the length of the plan

is NP-complete.

Aalto University Niemeld/ECAI 2010 Tutorial on ASP
School of Science
m and Technology 50/88

Mapping planning to rules

» Devise a logic program such that stable models
correspond to plans:
» of length at most n
» that are valid
» and that reach the goal

Aalto University Niemel&/ECAI 2010 Tutorial on ASP
School of Science

® and Technology 52/88

Mapping planning to rules

» Candidate answer sets: valid execution sequences (of
length < n) of operator instances from the initial conditions.

» Tester: eliminates those sequences that do not reach the

Aalto University Niemela/ECAI 2010 Tutorial on ASP
School of Science
B and Technology 53/88

Planning — cont’d

» Available blocks: block(a).

block(b).
block(c).
» Initial conditions: on(a,b,0).
on(b,table,0).
on(c,table,0).
A' Sehoolof Seiance NemeIECAIZIND Tutoial on ASP
B and Technology 55/88

Planning — cont’d

» Preliminaries
» Add to each predicate a situation argument

» on(X,Y,T): XisonYinT
» moveop(X,Y,T): Xismovedonto Yin T
» Length bound n: time (0. .n).
» nextstate(Y,X) :- time(X), time(Y),
Y=X+ 1.
A' IS\alhlo lf“ifvser's“y Niemel4/ECAI 2010 Tutorial on ASP
® and Technology sases

Planning — cont’d

» Auxiliary concepts make encoding easier.
» Rules make it straightforward to define auxiliary predicates:

object(table).

object(X) :- block(X).

covered(X,T) :- block(Z), block(X), time(T),
on(Z,X,T).

Aalto University Niemel&/ECAI 2010 Tutorial on ASP
School of Science
B and Technology 56/88

Planning — cont’d

» Further predicates:

on_something(X,T) :-
block(X), object(Z), time(T),

on(X,Z,T).
available(table,T) :- time(T).
available(X,T) :- block(X), time(T),

on_something (X,T).

Planning — cont’d

» Generator: execution sequences of operators.
» An operator can be applied if preconditions hold:
{ moveop(X,Y,T) }:-
time (T), block(X), object(Y),
X !=Y, on_something(X,T),
available(Y,T),
not covered(X,T),
not covered(Y,T).

Aalto University
School of Science

® and Technology

Planning — cont’d

» Operator effects:
on(X,Y,T2) :- block(X), objeCt(Y),
nextstate(T2,T1),
moveop(X,Y,T1).

Niemela/ECAI 2010 Tutorial on ASP A' Aalto University Niemel&/ECAI 2010 Tutorial on ASP

School of Science

m and Technology 58/88

57/88

Planning — cont’d

» Frame axioms (as rules with exceptions):

on(X,Y,T2) :- block(X), object(Y),
nextstate(T2,T1),
on(X,Y,T1),
not moving(X,T1).

% the exceptions

Aalto University
School of Science

® and Technology

moving(X,T) :- time(T), block(X), object(Y),
moveop(X,Y,T).
Niemeld/ECAI 2010 Tutorial on ASP Aalto University Niemel&/ECAI 2010 Tutorial on ASP
A' School of Science
59/88 B and Technology 60/88

Planning — cont’d

» In addition, rules for blocking conflicting operator instances
are needed.

» This set depends on how much concurrency in the search
of a plan is allowed.

» Computationally advantageous to allow concurrency to
decrease search space explosion due to interleavings of
independent operators.

Aalto University Niemela/ECAI 2010 Tutorial on ASP
School of Science
61/88

® and Technology

Planning — cont’d

» Blocking conditions for moveop
(with concurrent actions) I-lI:
% A block cannot be moved to two destination
:- 2 { moveop(X,Y,T):object(Y) },
block(X), time(T).
% The destination cannot be moving
:- block(X), object(Y), time(T),
moveop(X,Y,T),
moving(Y,T).

Niemela/ECAI 2010 Tutorial on ASP

Aalto University
School of Science
63/88

® and Technology

Planning — cont’d

» Blocking conditions for moveop
(no concurrent actions):
:- 2 { moveop(X,Y,T) :block(X):object(Y) },
time (T).

Aalto University Niemel&/ECAI 2010 Tutorial on ASP
School of Science
62/88

m and Technology

Planning — cont’d

» Blocking conditions for moveop
(with concurrent actions) lll:
% No two blocks moved onto the same block
:- 2 { moveop(X,Y,T):block(X) },
block(Y), time(T).

Aalto University Niemel&/ECAI 2010 Tutorial on ASP
School of Science
64/88

® and Technology

Planning — cont’d

» Tester: excludes models where the goal has not been
reached.

:- not goal.
goal :- time(T), goal(T).
goal(T2) :- nextstate(T2,T1), goal(T1).
% Actual goal conditions
goal(T) :- time(T),
on(b,c,T),
on(c,a,T).

Aalto University Niemela/ECAI 2010 Tutorial on ASP
School of Science
® and Technology 65/88

Planning — cont’d

» Easy to add optimizations:

% Stop when the goal has been reached
:- block(X), object(Y), time(T),
moveop(X,Y,T),
goal(T).

Aalto University Niemela/ECAI 2010 Tutorial on ASP
School of Science
® and Technology 67/88

Planning — cont’d

» Plans correspond to stable models:

» there is a stable model iff there is a valid sequence of
moves that leads to goal and can be executed concurrently
in at most n steps.

» A valid plan

» facts moveop (x,y,t) in a model
ordered by the argument t where facts with the same t can
be taken in any linear order.

School of Science

A' Aalto University Niemeld/ECAI 2010 Tutorial on ASP
m and Technology 66/88

Planning — cont’d

» Further optimizations (pruning rules):
% No move from table to table
:- block(X), time(T),
moveop(X,table,T), on(X,table,T).

% No move on something and then to table
:- nextstate(T2,T1), block(X), object(Y),
moveop(X,Y,T1), moveop(X,table,T2).

Aalto University Niemel4/ECAI 2010 Tutorial on ASP
School of Science
® and Technology 68/88

ASP vs Other Approaches

» SAT, CSP, (M)IP
» Similarities: search for models (assignments to variables) Part IV
satisfying a set of constraints.
» Differences: no logical variables, fixed points, database,

DDB or KR techniques available, search space given by ASP Solver TeChnOIOQV
variable domains.
» LP, CLP:
» Similarities: database and DDB techniques.

» Differences: Search for proofs (not models),
non-declarative features.

School of Science School of Science

A' Aalto University Niemela/ECAI 2010 Tutorial on ASP A' Aalto University Niemel&/ECAI 2010 Tutorial on ASP
B and Technology 69/88 B and Technology 70/88

ASP Solvers Architecture of ASP Solvers

» ASP solvers need to handle two challenging tasks
» complex data
» search

» The approach has been to use

» logic programming and deductive data base
techniques for the former
» SAT/CSP related search techniques for the latter

» In the current systems: separation of concerns
<> A two level architecture

Typically a two level architecture employed
» Grounding step handles complex data:
» Given program P with variables, generate a set of ground
instances of the rules which preserves the models.
» LP and DDB techniques employed.
» Model search for ground programs:

» Special-purpose search procedures
» Exploiting SAT/SMT solver technology

School of Science School of Science

A' Aalto University Niemela/ECAI 2010 Tutorial on ASP A' Aalto University Niemel&/ECAI 2010 Tutorial on ASP
B and Technology 71/88 B and Technology 72/88

Typical ASP System Tool Chain

program Grounder _}ground . Model _ stable
(variables) program finder models
» Grounder:

» (deductive) DB techniques
» built-in predicates/functions (e.g. arithmetic)
» function symbols

» Model finder:
» SAT technology (propagation, conflict driven clause
learning)
» Special propagation rules for recursive rules
» Support for cardinality and weight constraints and
optimization built-in

Aalto University Niemela/ECAI 2010 Tutorial on ASP
School of Science
u

and Technology 73188

Program Completion

» Program completion comp(P): a simple translation of a
logic program P to a propositional formula.

Example.

P: comp(P) :

a+< b,notc a« ((bAn-c)V(=bAd))
a«~—notb, d =b, ~¢, ~d

—a,notd —(an —d)

» Supported models of a logic program and propositional
models of its completion coincide.

» For tight programs (no positive recursion) supported and
stable models coincide (Fages).

Aalto University Niemela/ECAI 2010 Tutorial on ASP
School of Science
u

and Technology 75/88

Model Search

There are two successful approaches to model computing for
ground programs
» Special purpose search procedures
exploiting the particular properties of stable model
semantics
» Translating the stable model finding problem to a
propositional satisfiability problem
exploiting state of the art SAT solvers

g These approaches are closely related
via (Clark’s) program completion

Aalto University Niemel&/ECAI 2010 Tutorial on ASP
School of Science
u

and Technology 74/88

Program Completion — cont’d

» Stable models for tight programs can be computed using a
SAT solver:
» Form the completion and transform that to CNF (typically
with new atoms).
» Run a SAT solver on the CNF and translate results back.
» For tight (normal) programs, unit propagation on the
translated CNF and ASP propagation on the original
program coincide.

Aalto University Niemel&/ECAI 2010 Tutorial on ASP
School of Science
u

and Technology 76/88

Program Completion — cont’d

» For non-tight programs (with positive recursion), stable
models of a program and propositional models of its
completion do not coincide.

» Example.
p<—aq p<q
g<—p VS q<—p

unique stable model: {} 2 models: {},{p, g}

Aalto University Niemela/ECAI 2010 Tutorial on ASP
A' School of Science
n

and Technology

Translations to SMT

» Recently a compact linear size one pass translation to
SMT/ difference logic has been devised.
<> LP2DIFF (Janhunen & Niemela 2009).

» Difference logic = propositional logic + linear difference
constraint of the form

X; + k > x; (or equivalently x; — x; < k)

where k is an arbitrary integer constant and x;, x; are
integer valued variables).

» Practically all major SMT solvers support difference logic

= Most SMT solvers can be used as ASP model finders
without modifications.

Aalto University Niemela/ECAI 2010 Tutorial on ASP
A' School of Science
n

and Technology

Translations to SAT

» Translating non-tight LPs to SAT is challenging
» Modular translations not possible (Niemela, 1999)
» Without new atoms exponential blow-up (Lifschitz and
Razborov, 2006)
» There are one pass translations to SAT
» Polynomial size (Ben-Eliyahu & Dechter 1994;
Lin & Zhao 2003)
» O(]|P|| x log |At(P)|) size (Janhunen 2004)

» Also incremental translations to SAT have been developed
extending the completion dynamically with loop formulas
(Lin & Zhao 2002)
<> Assat and Cmodels model finders

Aalto University Niemeld/ECAI 2010 Tutorial on ASP
A' School of Science
u

and Technology 78/88

SAT and ASP

» ASP systems have much more expressive modelling
languages than SAT: variables, built-ins, aggregates,
optimization

» For model finding for ground normal programs results carry
over: efficient unit propagation techniques, conflict driven
learning, backjumping, restarting, ...

» ASP model finders have special (unfounded set based)
propagation rules for recursive rules

» ASP model finders have built-in support for aggregates
(cardinality and weight constraints) and optimization

» One pass compact translations to SAT and SMT available:
progress in SAT and SMT solver technology can also be
exploited directly in ASP model finding.

Aalto University Niemel4/ECAI 2010 Tutorial on ASP
A' School of Science
u

and Technology 80/88

Part V

Further Information: Systems,
Applications, Literature

School of Science

® and Technology

A' Aalto University Niemela/ECAI 2010 Tutorial on ASP
81/88

Some ASP Systems

Model finders (non-disjunctive programs):

ASSAT http://assat.cs.ust.hk/

clasp http://potassco.sourceforge.net/

CMODELS http://userweb.cs.utexas.edu/users/tag/cmodels/
LP2DIFF http://www.tcs.hut.fi/Software/1p2diff/

LP2SAT http://www.tcs.hut.fi/Software/lp2sat/

Smodels http://www.tcs.hut.fi/Software/smodels/

SUP http://userweb.cs.utexas.edu/users/tag/sup/

» For systems, performance, benchmarks, and examples,
see for instance the latest ASP competition:
http://dtai.cs.kuleuven.be/events/ASP-competition/

Aalto University Niemela/ECAI 2010 Tutorial on ASP
School of Science

® and Technology 83/88

Some ASP Systems

Grounders:
dlv http://www.dbai.tuwien.ac.at/proj/dlv/

gringo http://potassco.sourceforge.net/
lparse http://www.tcs.hut.fi/Software/smodels/
XASP with XSB http://xsb.sourceforge.net

Model finders (disjunctive programs):
claspD http://potassco.sourceforge.net/

dlv http://www.dbai.tuwien.ac.at/proj/dlv/

GnT http://www.tcs.hut.fi/Software/gnt/

' Aalto Univergity Niemeld/ECAI 2010 Tutorial on ASP
Al T

Applications

» Planning
For example, USAdvisor project at Texas Tech:
A decision support system for the flight controllers of space
shuttles

» Product configuration
—Intelligent software configurator for Debian/Linux
—WeCoTin project (Web Configuration Technology)
—Spin-off (http://www.variantum.com/)

» Computer-aided verification
—Partial order methods
—Bounded model checking

Aalto University Niemel&/ECAI 2010 Tutorial on ASP
School of Science

® and Technology 84/88

Applications—cont'd

» Data and Information Integration

» Semantic web reasoning

» VLSI routing, planning, combinatorial problems, network
management, network security, security protocol analysis,
linguistics .. .

» WASP Showcase Collection
http://www.kr.tuwien.ac.at/research/projects/WASP/
showcase.html

» Applying ASP

» as a stand alone system
» as an embedded solver

Aalto University
School of Science
B and Technology

Conclusions

ASP = KR + DB + search
» ASP emerging as a viable KR tool
» Efficient implementations under development
» Expanding functionality and ease of use
» Growing range of applications

Niemela/ECAI 2010 Tutorial on ASP

85/88

Some Literature

» C. Baral. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press,
2003.

» V. Lifschitz. Foundations of Logic Programming.
http:
//userweb.cs.utexas.edu/users/vl/mypapers/flp.ps

» V. Lifschitz. Introduction to Answer Set Programming.
http://userweb.cs.utexas.edu/users/vl/mypapers/
esslli.ps

» T. Eiter, G. lanni, and T. Krennwallner. A Primer on Answer

Set Programming. http://www.kr.tuwien.ac.at/staff/
tkren/pub/2009/rw2009-asp. pdf

Aalto University
School of Science
B and Technology

Topics for Further Research

Intelligent grounding

Model computation without full grounding

Program transformations, optimizations

Model search

Distributed and parallel implementation techniques
Language extensions

Programming methodology

Testing techniques

Tool support: debuggers, IDEs

vV VvV V.V V. VvV VY

Niemeld/ECAI 2010 Tutorial on ASP

Aalto University Niemela/ECAI 2010 Tutorial on ASP Aalto University Niemel&/ECAI 2010 Tutorial on ASP
School of Science School of Science
L]] 88/88

and Technology 87/88 and Technology

