Answer Set Programming

m Term coined by Vladimir Lifschitz

m Roots: KR, logic programming, nonmonotonic
reasoning

Bounded Model Checking, Answer
Set Programmlng, and Fixed Points m Based on some formal system with semantics that

likka Niemela assigns a theory a collection of answer sets
Il kka. Ni enel a@kk.fi, http://ww. tcs.hut.fi/~ini/ (models).

Laboratory for Theoretical Computer Science m An ASP solver : computes answer sets for a theory

Helsinki University of Technology m Solving a problem in ASP:

Finland Encode the problem as a theory such that solutions
to the problem are given by answer sets of the
theory.

“ :H“{,M‘\JTI \; \|J\\I,K\\Ir‘ ‘H“' *“i'“:y““““ Bounded Model Checking, Answer Set Programming, and Fixgat®— 1/51 \ :H“{,M‘\JTI \; \|J\\I,K\\Ir‘ ‘H“' *“i'“:y“”““ Bounded Model Checking, Answer Set Programming, and Fixgat®— 3/51
7
Contents ASP—cont'd
m Answer set programming m Solving a problem using ASP
m ASP solvers and applications Problem Theory | ASP Models
m BMC using ASP — | Encoding | — |solver | —
instance (Solutions)

m Possible formal system Models

Propositional logic Truth assignments
CSP Variable assignments
Logic programs Stable models

\ HELSINKI UNIVERSITY OF TECHNOLOGY Bounded Model Checking, Answer Set Programming, and Fixgdt® — 2/51 \ HELSINKI UNIVERSITY OF TECHNOLOGY Bounded Model Checking, Answer Set Programming, and Fixgot® — 4/51
Laboratory for Theoretical Computer Science Laboratory for Theoretical Computer Science

http://www.tcs.hut.fi/~ini/

Example. Bounded Model Checking Applying ASP

BMC uses a SAT-based ASP approach: m Uniform encoding:
= The behavior of the separate problem specification and data
system is unfolded up to a ™ m Compact, easily maintainable representation
bounded number (n) of vi(0) | --- | wk(0) — m Integrating KR, DB, and search techniques
steps (formula S | | _ _ . . .
_ :} m Handling dynamic, knowledge intensive applications:
= Negation of the = w W@ data, frame axioms, exceptions, defaults, closures
requirement R (formula R) 1 K
m SARis satisfiable iff the ; Problem
: ENCODING | Th ASP Model
system has an execution | V() |-+~ | k(n) — > sory oces
(of length at most n) SAR Data > | solver ’
violating the requirement ENCODING (Solutions)
R ?
\ HELSINKI UNIVE ‘N"‘ OF *“““}““‘“ Bounded Model Checking, Answer Set Programming, and Fixgat®— 5/51 \ HELSINKI UNIVE ‘N"‘ OF *“““}““‘“ Bounded Model Checking, Answer Set Programming, and Fixgat®— 7/51
What is ASP Good for? ASP Using Logic Programs
Search problems: m Logic programming: framework for merging KR, DB,

m Constraint satisfaction and search

= Planning, routing m PROLOG style logic programming systems not
’ directly suitable for ASP:

= Computer-aided verification m search for proofs (not models) and produce

m Security analysis answer substitutions

m Product configuration m not entirely declarative

m Combinatorics m In late 80s new semantical basis for

" Diagnosis ogias: Stable model semanticn.
[] peclarative problem solving m Implementations of stable model semantics led to

ASP

\ HELSINKI UNIVERSITY OF TECHNOLOGY Bounded Model Checking, Answer Set Programming, and Fixgot® — 6/51 \ HELSINKI UNIVERSITY OF TECHNOLOGY Bounded Model Checking, Answer Set Programming, and Fixgot® — 8/51

Laboratory for Theoretical Computer Science Laboratory for Theoretical Computer Science

Example. 3-coloring Stable Models — contd

Problem : clrd(V,1) < notclrd(V,2),notclrd(V, 3),vtx(V) m Program: Stable model:
clrd(V,2) < notclrd(V, 1), notclrd(V, 3),vtx(V) b« {b,f}
clrd(V,3) < notclrd(V, 1), notclrd(V, 2), vtx(V) f «— b,noteb
— edge(V,U),clrd(V,C),clrd(U,C) eb«—p
m Another candidate model: {b,eb}
Data: vtx(v) vtx(u) fe satisfies the rules but is not a proper stable model:
edge(v,u) edge(u,w) ... eb is included for no reason.

m Justifiability of stable models is captured by the
notion of a reduct of a program

spond: v colored i iff clrd(v,i) in the model. [] The stable model semantics
[Gelfond/Lifschitz,1988].

|:| 3-colorings and stable models of the encoding corre-

\ HELSINKI UNIVE ‘N"‘ OF “‘ "“f“* OGY Bounded Model Checking, Answer Set Programming, and Fixgat®— 9/51 \ HELSINKI UNIVE ‘N"‘ OF “‘ "“f“* OGY Bounded Model Checking, Answer Set Programming, and Fixgat®— 11/51
LPs with Stable Models Semantics Stable Models — cont'd
m Consider normal logic program rules m Consider the propositional (variable free) case:
P — ground program
A<+ Ba,...,Bm,notCy,...,notC, S— set of ground atoms

m Seen as constraints on an answer set (stable model): m Reduct PS (Gelfond-Lifschitz)

m if B1,...,Bmare in the set and m delete each rule having a body literal notC with

= none of Cq, ...,Cp is included, CesS

then A must be included in the set m remove all negative body literals from the

) remaining rules
m A stable model is a set of atoms 9

(i) which satisfies the rules and m PSis a definite program with unique least model
(i) where each atom is justified by the rules. LM(PS)

m Sis a stable model of P iff S= LM(PS).

\ HELSINKI UNIVERSITY OF TECHNOLOGY Bounded Model Checking, Answer Set Programming, and Fixgdt® — 10/51 \ HELSINKI UNIVERSITY OF TECHNOLOGY Bounded Model Checking, Answer Set Programming, and Fixgat® — 12/51

Laboratory for Theoretical Computer Science Laboratory for Theoretical Computer Science

Example. Stable models

S P PS LM (PS)
{b,f} b« b«— {b,f}
f<—b,noteb f—Db
eb—p eb—p
{b,eb} b« b« {b}
f «— b,noteb
eb—p eb—p

m The set {b,eb} is not a stable model of P but
{b,f} is the (unique) stable model of P

Bounded Model Checking, Answer Set Programming, and Fixgat®— 13/51

Example. Stable models

m A program can have none, one, or multiple stable

models.
m Program: Stable models:
p < notq {p}
g+« notp {a}
m Program: Stable models:
p < notq None
q<«— notp
—notp
< notq

Bounded Model Checking, Answer Set Programming, and Fixgalt® — 14/51

Variables

m Variables are needed for uniform encodings

Program:
clrd(V,1) < notclrd(V, 2),notclrd(
clrd(V,2) < notclrd(V, 1), notclrd(
clrd(V,3) < notclrd(V,1),notclrd(
— edge(V,U),clrd(V,C),clrd(U,C)
Data:

VEX(V) vix(u)

edge(v,u) edge(u,w)

V,3), vtx(V)
V,3),vtx(V)
V,2),vix(V)

Bounded Model Checking, Answer Set Programming, and Fixgat®— 15/51

Variables — cont'd

m Semantics: Herbrand models

m Arule is seen as a shorthand for the set of its ground
instantiations.

Example.
clrd(V,1) < notclrd(V, 2),notclrd(V, 3),vtx(V)

is a shorthand for

clrd(v,1) < notclrd(v,2),notclrd(v, 3), vix(v)
clrd(u,1) < notclrd(u, 2),notclrd(u, 3), vtx(u)
clrd(1,1) « notclrd(1,2),notclrd(1,3),vtx(1)

S R > Bounded Model Checking, Answer Set Programming, and Fixgat®— 16/51
Laboratory for Theoretical Computer Science

Stable Models — cont'd

m A stratified program has a unique stable model
(canonical model).

m ltis linear time to check whether a set of atoms is a
stable model of a ground program.

Problem Encoding with ASP
m It is NP-complete to decide whether a ground
program has a stable model.

m Normal programs (without function symbols) give a
uniform encoding to every NP search problem.

\ HELSINKI UNIVE “\"” OF “"”j‘”““‘ Bounded Model Checking, Answer Set Programming, and Fixgat® — 17/51 \ HELSINKI UNIVE “\"” OF *““”j‘”““‘ Bounded Model Checking, Answer Set Programming, and Fixgat® — 19/51
Extensions Generate-and-test programming
For example in the Snodel s system: m Basic methodology:
m Choicerules: { a} :- b, not c. m Generator rules : provide candidate answer sets
m Cardinality constraints: 2 {hd_1,...,hd n } 4 (typically encoded using choice constructs)
m Tester rules : eliminate non-valid candidates

m Weight constraints: : S : :
20 [hd_1 =6,...,hd_n = 13] (typically encoded using integrity constraints)

m Optimization statements : Criteria for preferred
answer sets (typically encoded using cost
functions)

A.k.a. pseudo-Boolean constraints
20< 6hd; + - - -+ 13hdpy,

m Optimization
mnimze [hd_ 1 = 100,...,hd n = 600]

Also disjunctions, preferences, weak constraints, ...

\ HELSINKI UNIVERSITY OF TECHNOLOGY Bounded Model Checking, Answer Set Programming, and Fixgdt® — 18/51 \ HELSINKI UNIVERSITY OF TECHNOLOGY Bounded Model Checking, Answer Set Programming, and Fixgdt® — 20/51

Laboratory for Theoretical Computer Science Laboratory for Theoretical Computer Science

Example. Propositional Satisfiability

m Consider formula p1: (aV —b) A (-a <« b)
———

——
P2 P3
m Encoding:
{a}. { b}. %Choices
- not pl. % Const r ai nt
pl:- p2, p3. % Conj unction
p2.- a. % Di sj unction
p2:- not b. % Di sj unction
p3:- not a, b. % Equival ence
p3:- a, not b. % Equival ence

m Satisfying truth assignments for p1 and the stable
models of the program correspond

HELSINKI UNIVERSITY OF TECHNOLOGY

Bounded Model Checking, Answer Set Programming, and Fixgat®— 21/51
Laboratory for Theoretical Computer Science

Fixed Points

m The stable model semantics captures inherently
minimal fixed points enabling compact encodings
of closures

m Example. Reachability from node S.

r(s). % sour ce

r(v) .- r(w. % for each edge (w, V)
m The program is linear size and captures

reachability : it has a unique model Ss.t. Vis

reachable from siff r(v) € S

m Example. Transitive closure of relation q(X,Y)

tXY) ©- q(X).
t(XY) - a(X 2), t(ZY).

HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Bounded Model Checking, Answer Set Programming, and Fixgalt® — 22/51

\ 4

N

Example. Hamiltonian cycles

A Hamiltonian cycle: a closed path that visits all vertices
of the graph exactly once.

% Dat a

vix(a). ...

edge(a, b).

init_vtx(ao). % or some vertex a0
% Probl em encodi ng

{ he(XY) } :- edge(XY).

.- he(X, Y), he(X 2), Y=L

.- he(Y, X), hc(Z,X), Y'=Z

c- vitx(X), not r(X).

r(Y) :- hc(XY), init_vtx(X).

r(Y) :- hc(XY), r(X).

HELSINKI UNIVERSITY OF TECHNOLOGY

Bounded Model Checking, Answer Set Programming, and Fixgat®— 23/51
Laboratory for Theoretical Computer Science

ASP vs Other Approaches

m SAT, CSP, (M)IP
m Similarities: search for models (assignments to
variables) satisfying a set of constraints
m Differences: no logical variables, fixed points,
database or DDB techniques available, search
space given by variable domains

m LP, CLP:
m Similarities: database and DDB techniques

m Differences: Search for proofs (not models),
non-declarative features

HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Bounded Model Checking, Answer Set Programming, and Fixgalt® — 24/51

Architecture of ASP Solvers

Typically a two level architecture employed

m Grounding step handles complex data:

. - m Given program P with variables, generate a set of
ASP Solvers and Appllcatlons ground instances of the rules which preserves

the models.
m LP and DDB techniques employed

m Model search for ground programs:
m Special-purpose search procedures

m Translation to SAT
propositional models and stable models are
closely related via (Clark’s) program completion

\ ‘”‘“‘\JT' L\\“' “\"” OFTE "”j‘”““‘ Bounded Model Checking, Answer Set Programming, and Fixgat® — 25/51 \ ”“J»“\JT' \\\“' “\"” OF “‘ "”j“[““‘ Bounded Model Checking, Answer Set Programming, and Fixgat® — 27/51
ASP Solvers Program Completion
m ASP solvers need to handle two challenging tasks m Program completion comp(P): a simple translation
m complex data of a logic program P to a propositional formula.
m search Example.
m The approach has been to use P comp(P):
m logic programming and deductive data base a« b, notc a— ((bA=c)v(=bnd))
techniques for the former a <« notb,d —b,—¢, —d
m SAT/CSP related search techniques for the < a,notd —(an—d)
latter m For tight programs (no positive recursion) stable
m In the current systems: separation of concerns models of a logic program and propositional

\ HELSINKI UNIVERSITY OF TECHNOLOGY Bounded Model Checking, Answer Set Programming, and Fixgat® — 28/51

Laboratory for Theoretical Computer Science

\ HELSINKI UNIVERSITY OF TECHNOLOGY Bounded Model Checking, Answer Set Programming, and Fixgat® — 26/51
Laboratory for Theoretical Computer Science

Program Completion — cont'd

m For non-tight programs (with positive recursion) there
are differences

p<—q p<q
q—p s dep
ASP solver: SAT solver:

2 models: {},{p,q}

m Approaches to extend SAT solvers

m Extend completion with loop formulas
dynamically (ASSAT, CMODELS)

= One pass compilation to SAT
O(||P|| x log|At(P)|) translation
(Janhunen, ECAI 2004)

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

unique model: {}

Bounded Model Checking, Answer Set Programming, and Fixgat®— 29/51

SAT and ASP

Due to close relationship results carry over

m Restarting has been found useful in SAT/CSP
Used for example in snodel s -restart

m Modern SAT solvers employ conflict driven
learning and backjumping
First ASP attempt (Ward, Schlipf, 2004)

m SAT solvers use watched literal data structures to
achieve efficient propagation for large clause sets

m ASP solvers have built-in support for aggregates
(cardinality and weight constraints)
Efficient techniques for (boolean combinations of)
pseudo-Boolean constraints

HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Bounded Model Checking, Answer Set Programming, and Fixgat®— 30/51

\ 4

N

ASP Implementations

Snodel s http://wwv. tcs. hut.fi/ Software/ snodel s/
dlv http://ww. dbai.tuw en. ac. at/proj/dlv/
GT http://ww. tcs. hut.fi/Software/gnt/
CMODELS http://wv. cs. ut exas. edu/ users/ tag/ cnodel s. ht n
ASSAT http://assat.cs. ust. hk/
nomore++ http://wwmv. cs. uni - pot sdam de/ nonor e/
XASP distributed with XSB v2.6
http://xsb. sour cef or ge. net
aspps http://ww. cs. engr. uky. edu/ ai / aspps/
ccalc http://ww. cs. ut exas. edu/ users/tag/cc/
Applications
m Planning

USAdvisor project at Texas Tech:
A decision support system for the flight controllers of
space shuttles

m Product configuration
—Intelligent software configurator for Debian/Linux
—WeCoTin project (Web Configuration Technology)
—Spin-off (ht t p: / / www. vari ant um coni)

HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Bounded Model Checking, Answer Set Programming, and Fixgalt® - 32/51

http://www.tcs.hut.fi/Software/smodels/
http://www.dbai.tuwien.ac.at/proj/dlv/
http://www.tcs.hut.fi/Software/gnt/
http://www.cs.utexas.edu/users/tag/cmodels.html
http://assat.cs.ust.hk/
http://www.cs.uni-potsdam.de/nomore/
http://xsb.sourceforge.net
http://www.cs.engr.uky.edu/ai/aspps/
http://www.cs.utexas.edu/users/tag/cc/
http://www.variantum.com/

Applications—contd

Encoding BMC Problems

m VLSI routing, planning, combinatorial problems,
network management, network security, security
protocol analysis, linguistics . ..

m WASP Showcase Collection
http://ww. kr.tuw en. ac. at/ proj ects/ WASP/ showcase. ht n

m C. Baral. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University
Press, 2003.

\ HELSINKI UNIVERSITY OF TECHNOLOGY Bounded Model Checking, Answer Set Programming, and Fixgalt®— 33/51

Laboratory for Theoretical Computer Science

m BMC problem
INPUT: A system description N (with some initial
conditions Cp), a bound n, and a requirement R.
QUESTION: Is there an execution of system N of
length at most n (starting from some initial state
satisfying Cp) that violates R.

m The encoding of a BMC problem can be divided into
two (orthogonal) tasks
m encoding of executions of N of length n
m encoding of requirement R

HELSINKI UNIVERSITY OF TECHNOLOGY Bounded Model Checking, Answer Set Programming, and Fixgalt®— 35/51
Laboratory for Theoretical Computer Science

Encoding BMC problems—contd

BMC Using ASP

\ HELSINKI UNIVERSITY OF TECHNOLOGY Bounded Model Checking, Answer Set Programming, and Fixgat® — 34/51
Laboratory for Theoretical Computer Science

m Given a BMC problem we need to construct two
programs (sets of formulas)

= Exe(N,n):
a model of Exg(N, n) corresponds to an
execution of N in n steps (starting from some
initial state satisfying Co).

= Req—-Rn):
a model of Req—R, n) corresponding to an
execution of length n satisfies —R.

HELSINKI UNIVERSITY OF TECHNOLOGY Bounded Model Checking, Answer Set Programming, and Fixgat® — 36/51
Laboratory for Theoretical Computer Science

http://www.kr.tuwien.ac.at/projects/WASP/showcase.html

W

&

Encoding BMC problems—contd

m Soundness:
If Exe(N,n) UReq —R,n) has a model, then there is
an execution of N with at most n steps where R
does not hold .

m Completeness:
If there is an execution of N with at most n steps

Example

EXE(N, n) * Free initial marking

Initial conditions

where R does not hold , then
Exe(N,n) UReq —R,n) has a model .

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Bounded Model Checking, Answer Set Programming, and Fixgadt®— 37/51

Encoding the executions

We assume that executions are encoded such that

m each model | of Exe(N, n) corresponds to an
execution of N in n steps with

t t th—
Mo = M; = ...Mp_1 = Mp

where
state variable p holds in state M; iff p(i) is true in |

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Bounded Model Checking, Answer Set Programming, and Fixgat® - 38/51

{p1(0)} — = notp1(0)
. {P2(0)} — — notp2(0)

{p3(0)} —

{p4(0)} —

{p5(0)} —
Preconditions Effects Frame axioms
{t1(i)} < p3(i) pl(i+1) «— t1(i) pl(i+ 1) < p1(i),nott2(i)
{t2(i)} « p1(i), p2(i) p2(i 4+ 1) « t4(i) p2(i + 1) < p2(i),nott2(i),
{t3(i)} — p2(i) p3(i+1) «— t2(i) nott3(i), nott5(i)
{t4(i)} — p4(i) pa(i+1) —t2(i) p3(i +1) < p3(i),nottl(i)
{t5(i)} < p2(i) pa(i+1) — t3(i) p4(i + 1) — p4(i),nott4(i)

p5(i 4+ 1) — t5(i) p5(i + 1) — p5(i)
Interleaving: Idling only at start:
— 2{t1(i),t2(i),t3(i),t4(i),t5(i) } — idle(i +1),notidle(i) idle(i) < nottl(i),...,nott5(i)
NC «— idle(n—1)

Bounded Model Checking, Answer Set Programming, and Fixgat®— 39/51

Laboratory for Theoretical Computer Science

Requirements—LTL

m LTL: prop. logic + temporal operators (U,F,G, X, ...)
m LTL formula is evaluated over an infinite sequence of
states W= Mg, M1,M>, ...

m W = pUQqiff pholds until g holds in some state in w.
w = F piff for some state in w, p holds (TU p)
w = Gpiff for all states in w, p holds (=(TU—-p))

m Examples:
Safety: —(—regUack)
Liveness: G(req — Fack)
Fairness: GFen — GFex

\ HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Bounded Model Checking, Answer Set Programming, and Fixgat®— 40/51

q

&

Encoding LTL Requirements

m For an LTL formula ¢ (negation of the requirement),
Req ¢, n) eliminates models not satisfying .

= Req¢,n):
() rules capturing the conditions under which a
model corresponds to an execution satisfying ¢
(i) rule
— nOt(I)(O)

to eliminate models not satisfying ¢ in an initial state.

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

LTL requirements—cont'd

Bounded Model Checking, Answer Set Programming, and Fixgat®— 41/51

m Consider looping bounded executions

m Treating non-looping ones is a straightforward
extension

HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Bounded Model Checking, Answer Set Programming, and Fixgat® - 42/51

\ 4

N

LTL encoding—contd

Guess a loop point: ~ 1{1(0),1(1),...,I(n—1)}1
Check it: —

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Bounded Model Checking, Answer Set Programming, and Fixgat®— 43/51

LTL encoding

m Req ¢,n): Formula ¢ is translated recursively
starting from its subformulas

m Translation of ¢ = ¢1U ¢» based on the fixed point
characterization $1Ud2 = ¢V (d1 A X(d1Ud2))

(i) « ¢2(i)
¢(i) — ¢a(i), ¢ (1+1)
d(n+1) — nl(i), o (i)
m Example. f1(i) < not p1(i)
fi fo(i) Fa(i), p2(i)
f = poU (SpLAp2): Fi) — fofi)
v (i)« po(i), (i +1)

f(n+1) — nl(i), f(i)

HELSINKI UNIVERSITY OF TECHNOLOGY Bounded Model Checking, Answer Set Programming, and Fixgat®— 44/51

Laboratory for Theoretical Computer Science

q

&

Comparison

m SAT based encoding [Biere et al./Cimatti et al.]:
m size is at least quadratic in the bound
m Logic program encoding

m size is linear in the bound, system description,
and LTL formula

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Bounded Model Checking, Answer Set Programming, and Fixgat®— 45/51

Exploiting Concurrency

m Inherent concurrency of an asynchronous system
can be exploited by allowing multiple independent
actions to occur together (step semantics):

= Change Exe(N, n) to allow steps.

= Req,n): For step semantics, allow at most one
visible action in a step by adding:

—2{t1(i),...,t(i)}

where {t1,...,t} is the set of visible actions ,
l.e., the actions whose firing changes the truth
value of an atom p appearing in the formula ¢.

m (X cannot be used)

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Bounded Model Checking, Answer Set Programming, and Fixgat®— 46/51

\ 4

N

Example

Preconditions

{t1()} — p3(i)
{t2(i)} — p1(i), p2(i)
{t3()} — p2(i)
{t4(i)} — pa(i)
{t5(i)} — p2(i)

Conflicts:
—2{t2(i),t3(i),t5(i)}

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Experiments

Effects

pl(i+1) « t1(i)
p2(i 4+ 1) < t4(i)
p3(i+1) «— t2(i)
pa(i+1) —t2(i)
pa(i+1) —t3(i)
p5(i 4+ 1) — t5(i)

Idling only at start:

— idle(i + 1), notidle(i)
—idle(n—1)

Exe(N, n) * Free initial marking

{PL(0)} <

Initial conditions
— notp1(0)
— notp2(0)

Frame axioms

pl(i +1) < p(i),nott2(i)

p2(i+1) «— p2(i),nott2(i),
nott3(i), nott5(i)

p3(i + 1) < p3(i),nott1(i)

p4(i +1) — p4(i),nott4(i)

P5(i+1) — p5(i)

idle(i) < nottl(i),...,nott5(i)

Bounded Model Checking, Answer Set Programming, and Fixgadt®— 47/51

m Deadlock checking/LTL checking using a benchmark

set proposed by Corbett [1995]

m Experiments using step and interleaving semantics
m ASP solver: Snodel s 2.26

m Comparison with NuSW 2.1.0

NuSMV/ BMC: NuSMWV with optimized Biere et al.
translation and zChaf f
NuSMV/ BDD: NuSMWV with tableau-based LTL using

BDDs

[K. Heljanko and I. Niemel&. Bounded LTL Model
Checking with Stable Models. Theory and Practice of
Logic Programming, 3 (4&5): 519-550, 2003.]

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Bounded Model Checking, Answer Set Programming, and Fixgat®— 48/51

Experiments—cont'd

q

LTL Model Checking Experiments

ProblemSt n Sts Intn Ints Bmcn BmcS Bdds States
DP(6) 7 0.2 8 0.5 8 4.3 64.8 728
DP(8) 8 15 10 5.7 10 64.0 >1800 6560
DP(10) 9 25.9 12 140.1 12 1257.1 >1800 59048
DP(12) 10 889.4 14 >1800 14 >1800 >1800 531440

For instance for six philosophers:
—GF (fs.upU (ps.eat A (fz.upU (pz.eat A (f1.upU ps.€at)))))

http://ww.tcs. hut.fi/~kepal experinents/boundsnodel s/

HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Conclusions

Bounded Model Checking, Answer Set Programming, and Fixgadt®— 49/51

q

m ASP = KR + DB + search
m ASP emerging as a viable KR tool

m Efficient implementations under development
(Smodel s, aspps, dl v, XASP, CMCDELS, ASSAT,
nonor e++, cl asp, ...)

m Logic programming based ASP supports directly
(least) fixed points useful in many applications:
encoding temporal properties, configurations,

planning, ...

m Exploiting concurrency in asynchronous models
computationally advantageous

HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Bounded Model Checking, Answer Set Programming, and Fixgat®— 50/51

Further Work

\ 4

m Exploiting concurrency

[T. Jussila, K. Heljanko, and I. Niemel&a. BMC via
On-the-Fly Determinization. International Journal on
Software Tools for Technology Transfer, 7(2), 89-101,

2005.]

m Linear size encoding in SAT
[Latvala, Biere, Heljanko, Junttila; FMCAD’2004]

m Incrementality and Past LTL
[Heljanko et al., CAV’2005]
Implemented in NUSW 2.4.0

Laborato

HELSINKI UNIVERSITY OF TECHNOLOGY
r Theoretical Computer Science

Bounded Model Checking, Answer Set Programming, and Fixgadt®— 51/51

http://www.tcs.hut.fi/~kepa/experiments/boundsmodels/

	Contents
	Answer Set Programming
	ASP---cont'd
	Example. Bounded Model Checking
	What is ASP Good for?
	Applying ASP
	ASP Using Logic Programs
	Example. 3-coloring
	LPs with Stable Models Semantics
	Stable Models --- cont'd
	Stable Models --- cont'd
	Example. Stable models
	Example. Stable models
	Variables
	Variables --- cont'd
	Stable Models --- cont'd
	Extensions
	 {color {blue} Problem Encoding with ASP}
	Generate-and-test programming
	Example. Propositional Satisfiability
	Fixed Points
	Example. Hamiltonian cycles
	ASP vs Other Approaches
	 {color {blue} ASP Solvers and Applications}
	ASP Solvers
	Architecture of ASP Solvers
	Program Completion
	Program Completion --- cont'd
	SAT and ASP
	ASP Implementations
	Applications
	Applications---cont'd
	 {color {blue} BMC Using ASP}
	Encoding BMC Problems
	Encoding BMC problems---cont'd
	Encoding BMC problems---cont'd
	Encoding the executions
	Example
	Requirements---LTL
	Encoding LTL Requirements
	LTL requirements---cont'd
	LTL encoding---cont'd
	LTL encoding
	Comparison
	Exploiting Concurrency
	Example
	Experiments
	Experiments---cont'd
	Conclusions
	Further Work

