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Abstract. In this paper we apply answer set programming to solve al-
ternating Boolean equation systems. We develop a novel characterization
of solutions for variables in disjunctive and conjunctive Boolean equa-
tion systems. Based on this we devise a mapping from Boolean equation
systems with alternating fixed points to normal logic programs such that
the solution of a given variable of an equation system can be determined
by the existence of a stable model of the corresponding logic program.
The technique can be used to model check alternating formulas of modal
µ-calculus.

1 Introduction

Model checking is a verification technique aimed at determining whether a sys-
tem model satisfies desired properties expressed as temporal logic formulas. In
recent years, research on model checking has addressed large scale verification
problems, which are often solved by special purpose verification tools.

Yet it has been demonstrated that also logic programming systems can suc-
cessively be applied to the construction of practical model checkers, like e.g. in
[10, 5, 13]. In the present paper, we continue this line of research and restrict the
attention to the model checking problem of modal µ-calculus [12], and in par-
ticular to its formulation as Boolean equation systems [1, 18, 23]. The research
topic belongs to the area of formal verification, but more specifically it addresses
effective ways of solving systems of fixed point equations.

The modal µ-calculus is an expressive logic for systems verification, and
has been widely studied in the recent model checking literature (e.g. [3] gives
a general exposition). Boolean equation systems provide here a useful frame-
work, because µ-calculus expressions can easily be translated into this more
flexible formalism (see [1, 3, 18] for the standard translations). The complexity
of µ-calculus model checking is an important open problem; no polynomial time
algorithm has been discovered. On the other hand, it is shown in [6, 7] that
the problem is in the complexity class NP ∩ co-NP (and is known to be even
in UP ∩ co-UP [11], where UP is the class of problems decided by unambigu-
ous polynomial time nondeterministic Turing machines, see [21]). In theory, the
problem appears thus to be solvable with any answer set programming system
capable of handling NP-complete problems.



In this paper we propose an answer set programming (ASP) based approach
for solving alternating Boolean equation systems. In ASP a problem is solved
by devising a mapping from a problem instance to a logic program such that
models of the program provide the answers to the problem instance [14, 19, 20].
We develop such a mapping from alternating Boolean equation systems to logic
programs providing a basis for a model checking technique for µ-calculus logic.

Previously, answer set programming has been applied to solve Boolean equa-
tion systems in [13] where it is argued that alternating Boolean equation systems
can be solved by computing certain preferred stable models of propositional nor-
mal logic programs corresponding to Boolean equation systems. Moreover, it is
shown in [13] how alternation-free Boolean equation systems can be mapped to
stratified logic programs, which can be directly solved in linear time, preserv-
ing the complexity [2] of model checking alternation-free fragment of µ-calculus.
However, the approach proposed in [13] does not preserve the polynomial time
complexity [9] of solving disjunctive and conjunctive Boolean equation systems.

We reduce the problem of solving alternating Boolean equation systems to
computing stable models of normal logic programs. This is achieved by devising
an alternative mapping from Boolean equation systems to normal logic pro-
grams so the solution for a given variable in an equation system can be deter-
mined by the existence of a stable model of the corresponding logic program.
Our translation is such that it ensures polynomial time complexity of solving
both disjunctive and conjunctive alternating systems, and hence preserves the
complexity of model checking many important fragments of µ-calculus, like L1
and L2 investigated in [4, 6, 7].

The paper is organized as follows. In the following section we introduce basic
notions of Boolean equation systems. In Section 3 we state some properties of
Boolean equation systems which are important in solving them. In Section 4
we review stable model semantics of normal logic programs. In Section 5 we
show how alternating Boolean equation systems can be solved using answer
set programming techniques. In Section 6 we discuss some initial experimental
results. Finally, Section 7 contains conclusive remarks.

2 Boolean Equation Systems

We will give in this section a short presentation of Boolean equation systems.
Essentially, a Boolean equation system is an ordered sequence of fixed point
equations over Boolean variables, with associated signs, µ and ν, specifying the
polarity of the fixed points. The equations are of the form σx = α, where α is
a positive Boolean expression. The sign, σ, is µ if the equation is a least fixed
point equation and ν if it is a greatest fixed point equation.

Let X = {x1, x2, ..., xn} be a set of Boolean variables. The set of positive
Boolean expressions over X is denoted by B+(X ), and given by the grammar:

α ::= 0 | 1 | x ∈ X | α1 ∧ α2 | α1 ∨ α2

where 0 stands for false and 1 for true. We define the syntax of Boolean equation
systems as follows.



Definition 1 (The syntax of a Boolean equation system). A Boolean
equation is of the form σixi = αi, where σi ∈ {µ, ν}, xi ∈ X , and αi ∈ B+(X ).
A Boolean equation system is an ordered sequence of Boolean equations

E = ((σ1x1 = α1)(σ2x2 = α2), ..., (σnxn = αn))

where the left-hand sides of the equations are all different. We assume that the
order on variables and equations are in synchrony, and that all right-hand side
variables are from X .

The semantical interpretation of Boolean equation systems is such that each
system E has a uniquely determined solution, which is a valuation assigning a
constant value in {0, 1} to variables occurring in E . More precisely, the solution
is a truth assignment to the variables {x1, x2, ..., xn} satisfying the fixed-point
equations such that the right-most equations have higher priority over left-most
equations (see e.g. [1, 18]). In particular, we are interested in the value of the
left-most variable in the solution of a Boolean equation system. Such a local
solution can be characterized in the following way.

Let α be a closed positive Boolean expression (i.e. without occurrences of
variables in X ). Then α has a uniquely determined value in the set {0, 1} which
we denote by ‖α‖. We define a substitution for positive Boolean expressions.
Given Boolean expressions α, β ∈ B+(X ), let α[x/β] denote the expression α
where all occurrences of variable x are substituted by β simultaneously.

Similarly, we extend the definition of substitutions to Boolean equation sys-
tems in the following way. Let E be a Boolean equation system over X , and let
x ∈ X and α ∈ B+(X ). A substitution E [x/α] means the operation where [x/α]
is applied simultaneously to all right-hand sides of equations in E . We suppose
that substitution α[x/α] has priority over E [x/α].

Definition 2 (The local solution of a Boolean equation system). The
solution a Boolean equation system E, denoted by [[E ]], is a Boolean value induc-
tively defined by

[[σx = α]] = ‖α[x/bσ]‖
[[E(σx = α)]] = [[E [x/α[x/bσ]]]]

where bσ is 0 when σ = µ, and bσ is 1 when σ = ν.

The following example illustrates the definition of the solution.

Example 1. Let X be the set {x1, x2, x3} and assume we are given a Boolean
equation system

E1 ≡ ((νx1 = x2 ∧ x1)(µx2 = x1 ∨ x3)(νx3 = x3)).

The local solution, [[E1]], of variable x1 in E1 is given by
[[((νx1 = x2 ∧ x1)(µx2 = x1 ∨ x3)(νx3 = x3))]] =
[[((νx1 = x2 ∧ x1)(µx2 = x1 ∨ x3)[x3/1]]] =
[[((νx1 = x2 ∧ x1)(µx2 = x1 ∨ 1)]] =
[[((νx1 = x2 ∧ x1)[x2/x1 ∨ 1]]] =
[[(νx1 = (x1 ∨ 1) ∧ x1)]] = ‖((1 ∨ 1) ∧ 1)‖ = 1



3 Properties of Boolean Equation Systems

In this section, we discuss important concepts concerning Boolean equation sys-
tems. We also state some facts about Boolean equation systems, which turn out
to be useful in the computation of their solutions.

The size of a Boolean equation system is inductively defined as |ε| = 0 and
|(σx = α)E| = 1 + |α|+ |E|, where |α| is the number of variables and constants
in α.

A Boolean equation system E is in standard form if each right-hand side
expression αi consists of a disjunction xi ∨ xj , a conjunction xi ∧ xj , or a single
variable xi. As pointed out in [18], for each system E there is another system
E ′ in standard form such that E ′ preserves the solution of E and has size linear
in the size of E . In the sequel we restrict to standard form Boolean equation
systems.

Given a Boolean equation system, we define a variable dependency graph sim-
ilar to a Boolean graph in [1], which provides a representation of the dependencies
between the variables.

Definition 3 (A dependency graph). Let E be a standard form Boolean
equation system:

((σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)).

The dependency graph of E is a directed graph GE = (V,E) where

– V = {i | 1 ≤ i ≤ n} is the set of nodes
– E ⊆ V × V is the set of edges such that for all equations σi xi = αi:

(i, j) ∈ E iff a variable xj appears in αi.

We say that a variable xi depends on variable xj in a Boolean equation
system E , if the dependency graph GE of E contains a directed path from node
i to node j. It is said that two variables xi and xj are mutually dependent, if
xi depends on xj and vice versa. A Boolean equation system is alternation free,
if xi and xj are mutually dependent implies that σi = σj holds. Otherwise, the
Boolean equation system is said to be alternating.

Given a Boolean equation system E , let G = (V, E) be its dependency graph
and k ∈ V . We define the graph G¹k = (V,E¹k) by taking

– E¹k = {〈i, j〉 ∈ E | i ≥ k and j ≥ k}.
We say that a variable xk is self-dependent in the system E , if xk depends on
itself on the graph G¹k.

Example 2. Consider the Boolean equation system E1 of Example 1. The system
E1 is in standard form and is alternating, because it contains alternating fixed
points with mutually dependent variables having different signs, like x1 and x2

with σ1 6= σ2. The variables x1 and x3 of E1 are self-dependent.



The variables of a standard form Boolean equation system can be partitioned
in blocks such that any two distinct variables belong to the same block iff they
are mutually dependent. The dependency relation among variables extends to
blocks such that block Bi depends on another block Bj if some variable occurring
in block Bi depends on another variable in block Bj . The resulting dependency
relation among blocks is an ordering. For example, the system E1 of Example
1 can be divided in two blocks, B1 = {x1, x2} and B2 = {x3} such that the
block B1 depends on the block B2. In Mader [18], there are two useful lemmas
(Lemma 6.2 and Lemma 6.3) which allow us to solve all blocks of standard form
Boolean equation systems one at a time. The basic idea is that we start by
solving blocks that do not depend on any other block. For each solved block we
can substitute its solution to blocks depending on it and thus iteratively solve
them. Alternation-free blocks of standard form Boolean equation systems can
be trivially solved in linear time in the size of the blocks [2]. Thus, we focus here
on devising a technique to solve an alternating block of standard form Boolean
equations, for which no polynomial time solution technique is known.

We call an equation σixi = αi disjunctive if its right-hand side αi is a disjunc-
tion. A standard form Boolean equation system is said to be disjunctive if all its
equations σixi = αi are either disjunctive or αi ∈ X . Similarly, a Boolean equa-
tion σixi = αi is conjunctive if its right-hand side αi is a conjunction. A standard
form Boolean equation system is conjunctive if all its equations σixi = αi are
conjunctive or αi ∈ X .

The following lemmas form the basis for our answer set programming based
technique to solve standard form Boolean equation systems with alternating
fixed points. For a disjunctive (conjunctive respectively) form Boolean equation
systems we have:

Lemma 1 (Lemma 4.2 of [9]). Let E be a disjunctive (conjunctive) Boolean
equation system in standard form. Then the following are equivalent:

1. [[E ]] = 1 (or [[E ]] = 0 respectively)
2. There is a variable xj in E such that σj = ν (σj = µ) and:

(a) x1 depends on xj, and (b) xj is self-dependent.

From each Boolean equation system E containing both disjunctive and conjunc-
tive equations we may construct a new Boolean equation system E ′, which is
either in a disjunctive or in a conjunctive form. To obtain from E a disjunctive
form system E ′, we remove in every conjunctive equation of E exactly one con-
junct; otherwise the system E is unchanged. The dual case is similar. For any
standard form Boolean equation system having both disjunctive and conjunctive
equations we have:

Lemma 2. Let E be a standard form Boolean equation system. Then the follow-
ing are equivalent:

1. [[E ]] = 0 (or [[E ]] = 1 respectively)
2. There is a disjunctive (conjunctive) system E ′ with the solution

[[E ′]] = 0 ( [[E ′]] = 1 respectively) which can be constructed from E.



Proof. We only show that (2) implies (1) for the conjunctive case. The other
direction can be proved by a similar argument and also follows directly from
Proposition 3.36 in [18].

Define a parity game in the following way. Given a standard form Boolean
equation system E = ((σ1x1 = α1), (σ2x2 = α2), ..., (σnxn = αn)), we define a
game ΓE = (V, E, P, σ) where V and E are exactly like in the dependency graph
of E and

– P : V → {I, II} is a player function assigning a player to each node;
for 1 ≤ i ≤ n, P is defined by P (i) = I if αi is conjunctive and P (i) = II
otherwise.

– σ : V → {µ, ν} is a parity function assigning a sign to each node;
for 1 ≤ i ≤ n, σ is defined by σ(i) = µ if σi = µ and σ(i) = ν otherwise.

A play on the game graph is an infinite sequence of nodes chosen by players I
and II. The play starts at node 1. Whenever a node n is labelled with P (n) = I,
it is player I’s turn to choose a successor of n. Similarly, if a node n is labelled
with P (n) = II, it is player II’s turn to choose a successor of n. A strategy
for a player i is a function which tells i how to move at all decision nodes,
i.e. a strategy is a function that assigns a successor node to each decision node
belonging to player i. Player I wins a play of the game if the smallest node that
is visited infinitely often in the play is labelled with µ, otherwise player II wins.
We say that a player has a winning strategy in a game whenever she wins all the
plays of the game by using this strategy, no matter how the opponent moves.
According to Theorem 8.7 in [18], player II has a winning strategy for game on
ΓE with initial vertex 1 iff the solution of E is [[E ]] = 1.

So suppose there is a conjunctive equation system E ′ obtained from E by
removing exactly one disjunct from all equations of the form σixi = xj ∨xk such
that [[E ′]] = 1. We can construct from E ′ a winning strategy for player II in the
parity game ΓE . For all nodes i of ΓE where it is player II’s turn to move, define
a strategy for II to be strII(i) = j iff σixi = xj is an equation of E ′. That is, the
strategy strII for II is to choose in every II labelled node of ΓE the successor
which appears also in the right-hand side expression of the i-th equation in E ′.

It is then straightforward to verify that for the game on ΓE with initial node
1 player II wins every play by playing according to strII . By Lemma 1, the
system E ′ does not contain any µ labelled variables that depend on x1 and
are self-dependent. The crucial observation is that the dependency graph of E ′
contains all and only those paths which correspond to the plays of the game ΓE
where the strategy strII is followed. Consequently, there cannot be a play of the
game ΓE starting from node 1 that is won by player I and where player II plays
according to strII . It follows from Theorem 8.7 in [18] that the solution of E is
[[E ]] = 1. ut

Example 3. Recall the Boolean equation system E1 of Example 1. There is only
one conjunctive equation νx1 = x2∧x1, yielding two possible disjunctive Boolean
equation systems which can be constructed from E1:



– if we throw away the conjunct x2, then we obtain:

E ′1 ≡ ((νx1 = x1)(µx2 = x1 ∨ x3)(νx3 = x3))

– if we throw away the conjunct x1, then we obtain:

E ′′1 ≡ ((νx1 = x2)(µx2 = x1 ∨ x3)(νx3 = x3)).

Using Lemma 1, we can see that these disjunctive systems have the solutions
[[E ′1]] = [[E ′′1 ]] = 1. By Lemma 2, a solution to E1 is [[E1]] = 1 as expected.

In Section 5 we will see the application of the above lemmas to give a compact
encoding of the problem of solving alternating Boolean equation systems as the
problem of finding certain stable models of normal logic programs.

4 Stable Models of Normal Logic Programs

For encoding Boolean equation systems we use normal logic programs with the
stable model semantics [8]. A normal rule is of the form

a← b1, . . . , bm,not c1, . . . , not cn. (1)

where each a, bi, cj is a ground atom. Models of a program are sets of ground
atoms. A set of atoms ∆ is said to satisfy an atom a if a ∈ ∆ and a negative
literal not a if a 6∈ ∆. A rule r of the form (1) is satisfied by ∆ if the head a is
satisfied whenever every body literal b1, . . . , bm, not c1, . . . , not cn is satisfied by
∆ and a program Π is satisfied by ∆ if each rule in Π is satisfied by ∆.

Stable models of a program are sets of ground atoms which satisfy all the
rules of the program and are justified by the rules. This is captured using the
concept of a reduct. For a program Π and a set of atoms ∆, the reduct Π∆ is
defined by

Π∆ = {a← b1, . . . , bm. | a← b1, . . . , bm, not c1, . . . , not cn. ∈ Π,
{c1, . . . , cn} ∩∆ = ∅}

i.e., a reduct Π∆ does not contain any negative literals and, hence, has a unique
subset minimal set of atoms satisfying it.

Definition 4. A set of atoms ∆ is a stable model of a program Π iff ∆ is the
unique minimal set of atoms satisfying Π∆.

We employ two extensions which can be seen as compact shorthands for normal
rules. We use integrity constraints, i.e., rules

← b1, . . . , bm, not c1, . . . , not cn. (2)

with an empty head. Such a constraint can be taken as a shorthand for a rule

f ← not f, b1, . . . , bm,not c1, . . . , not cn.



where f is a new atom. Notice that a stable model ∆ satisfies an integrity
constraint (2) only if at least one of its body literals is not satisfied by ∆.

For expressing the choice of selecting exactly one atom from two possibilities
we use choose-1-of-2 rules on the left which correspond to the normal rules on
the right:

1 {a1, a2} 1. a1 ← not a2. a2 ← not a1. ← a1, a2.

Choose-1-of-2 rules are a simple subclass of cardinality constraint rules [22].
The Smodels system (http://www.tcs.hut.fi/Software/smodels/) provides
an implementation for cardinality constraint rules and includes primitives sup-
porting directly such constraints without translating them first to corresponding
normal rules.

5 Solving Boolean Equation Systems in ASP

The overall idea of our approach is as follows. Given a standard form Boolean
equation system E , we partition its variables into blocks so that variables are in
the same block iff they are mutually dependent. The partition can be constructed
in linear time on the basis of the dependencies between the variables. Like argued
in Section 3, the variables can be solved iteratively one block at a time.

If all variables in a single block have the same sign, i.e. the block is alternation-
free, the variables in this block can be trivially solved in linear time (see e.g. [2,
17]). So we only need to concentrate on solving alternating blocks containing mu-
tually dependent variables with different signs. Consequently, we present here a
technique to solve an alternating Boolean equation system which applies Lem-
mas 1-2 from Section 3.

In order to reduce the resolution of alternating Boolean equation systems to
the problem of computing stable models of logic programs we define a translation
from equation systems to normal logic programs. Consider a standard form,
alternating Boolean equation system E . We construct a logic program Π(E)
which captures the solution [[E ]] of E . Suppose that the number of conjunctive
equations of E is less than (or equal to) the number of disjunctive equations,
or that no conjunction symbols occur in the right-hand sides of E . The dual
case goes along exactly the same lines and is omitted.1 The idea is that Π(E)
is a ground program which is polynomial in the size of E . We give a compact
description of Π(E) as a program with variables. This program consists of the
rules

solve(1). (3)
depends(Y )← dep(X,Y ), solve(X). (4)
depends(Y )← depends(X), dep(X, Y ). (5)

1 This is the case where the number of disjunctive equations of E is less than the
number of conjunctive equations, or where no disjunction symbols occur in the right-
hand sides of E .



reached(X, Y )← nu(X), dep(X, Y ), Y ≥ X. (6)
reached(X, Y )← reached(X, Z), dep(Z, Y ), Y ≥ X. (7)
← depends(Y ), reached(Y, Y ), nu(Y ). (8)

extended for each equation σixi = αi of E by

dep(i, j)., if αi = xj (9)
dep(i, j). and dep(i, k)., if αi = (xj ∨ xk) (10)
1 {dep(i, j), dep(i, k)} 1., if αi = (xj ∧ xk) (11)

and by nu(i). for each variable xi such that σi = ν.

Example 4. Recall the Boolean equation system E1 of Example 1. The program
Π(E1) consists of the rules 3-8 extended with rules:
1 {dep(1, 2), dep(1, 1)} 1. nu(1).
dep(2, 1). dep(2, 3).
dep(3, 3). nu(3).

The idea is that for the solution [[E ]] of E , [[E ]] = 0 iff Π(E) has a stable model.
This is captured in the following way. The system E is turned effectively into a
disjunctive system by making a choice between dep(i, j) and dep(i, k) for each
conjunctive equation xi = (xj ∧ xk). Hence, each stable model corresponds to a
disjunctive system constructed from E and vice versa. Then by Lemmas 1 and
2 the main result can be established.

Theorem 1. Let E be a standard form, alternating Boolean equation system.
Then [[E ]] = 0 iff Π(E) has a stable model.

Proof. Consider a system E and its translation Π(E). The rules (9–11) effec-
tively capture the dependency graphs of the disjunctive systems that can be
constructed from E . More precisely, there is a one to one correspondence be-
tween the stable models of the rules (9–11) and disjunctive systems that can
be constructed from E such that for each stable model ∆, there is exactly
one disjunctive system E ′ with the dependency graph GE′ = (V, E) where
V = {i | dep(i, j) ∈ ∆ or dep(j, i) ∈ ∆} and E = {(i, j) | dep(i, j) ∈ ∆}.

Now it is straightforward to establish by the splitting set theorem [15] that
each stable model ∆ of Π(E) is an extension of a stable model ∆′ of the rules
(9–11), i.e., of the form ∆ = ∆′∪∆′′ such that in the corresponding dependency
graph there is no variable xj such that σj = ν and x1 depends on xj and xj is
self-dependent. By Lemma 2 [[E ]] = 0 iff there is a disjunctive system E ′ that can
be constructed from E for which [[E ′]] = 0. By Lemma 1 for a disjunctive system
E ′, [[E ′]] = 1 iff there is a variable xj such σj = ν and x1 depends on xj and xj is
self-dependent. Hence, Π(E) has a stable model iff there is a disjunctive system
E ′ that can be constructed from E whose dependency graph has no variable xj

such that σj = ν and x1 depends on xj and xj is self-dependent iff there is a
disjunctive system E ′ with [[E ′]] 6= 1, i.e., [[E ′]] = 0 iff [[E ]] = 0. ut



Similar property holds also for the dual program, which allows us to solve all
alternating blocks of standard form Boolean equation systems.

Although Π(E) is given using variables, for the theorem above a finite ground
instantiation of it is sufficient. For explaining the ground instantiation we intro-
duce a relation depDom such that depDom(i, j) holds iff there is an equation
σixi = αi of E with xj occurring in αi. Now the sufficient ground instan-
tiation is obtained by substituting variables X,Y in the rules (4–6) with all
pairs i, j such that depDom(i, j) holds, substituting variables X,Y, Z in rule (7)
with all triples l, i, j such that nu(l) and depDom(i, j) hold and variable Y in
rule (8) with every i such that nu(i) holds. This means also that such condi-
tions can be added as domain predicates to the rules without compromising
the correctness of the translation. For example, rule (7) could be replaced by
reached(X,Y ) ← nu(X), depDom(Z, Y ), reached(X, Z), dep(Z, Y ), Y ≥ X. No-
tice that such conditions make the rules domain restricted as required, e.g., by
the Smodels system.

6 Experiments

In this section, we describe some experimental results on solving alternating
Boolean equation systems with the approach presented in the previous section.
We demonstrate the technique on two series of examples. The times reported
are the average of 3 runs of the time for Smodels 2.26 to find the solutions as
reported by the /usr/bin/time command on a 2.0Ghz AMD Athlon running
Linux. The time needed for parsing and grounding the input with lparse 1.0.13
is included.

The encoding used for the benchmarks is that represented in Section 5 with a
couple of optimizations. Firstly, when encoding of dependencies as given in rules
(9–11) we differentiate those dependencies where there is a choice from those
where there is not, i.e., for each equation σixi = αi of E we add

ddep(i, j)., if αi = xj

ddep(i, j). ddep(i, k)., if αi = (xj ∨ xk)
1 {cdep(i, j), cdep(i, k)} 1. depDom(i, j). depDom(i, k)., if αi = (xj ∧ xk)

instead of rules (9–11). Secondly, in order to make use of this distinction and to
allow for intelligent grounding, rules (4–7) are rewritten using the above predi-
cates as domain predicates in the following way.

depends(Y )← ddep(X, Y ), solve(X).
depends(Y )← depDom(X, Y ), cdep(X, Y ), solve(X).
depends(Y )← depends(X), ddep(X,Y ).
depends(Y )← depends(X), depDom(X, Y ), cdep(X,Y ).
reached(X, Y )← nu(X), ddep(X, Y ), Y ≥ X.

reached(X, Y )← nu(X), depDom(X,Y ), cdep(X, Y ), Y ≥ X.



ν x1 = x2 ∧ xn

µ x2 = x1 ∨ xn

ν x3 = x2 ∧ xn

µ x4 = x3 ∨ xn

. . .
ν xn−3 = xn−4 ∧ xn

µ xn−2 = xn−3 ∨ xn

ν xn−1 = xn−2 ∧ xn

µ xn = xn−1 ∨ xn/2

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

for n ∈ 2N

Problem (n) Time (sec)

1800 33.6

2000 41.8

2200 51.4

2400 60.0

2600 71.7

Fig. 1. The Boolean equation system in [18, p.91] and experimental results.

reached(X, Y )← nu(X), reached(X, Z), ddep(Z, Y ), Y ≥ X.

reached(X, Y )← nu(X), depDom(Z, Y ), reached(X, Z), cdep(Z, Y ), Y ≥ X.

All benchmark encodings are available at http://www.tcs.hut.fi/Software/
smodels/tests/inap2004.tar.gz.

The first series deals with solving alternating Boolean equation systems of
increasing size and alternation depth. The problem is taken from [18, p.91] and
consists of finding the solution of the left-most variable x1 in Fig. 1. The exam-
ple is such that a Boolean equation system with n equations has the alternation
depth n. The solution of the system is such that [[E ]] = 1 which can be obtained
by determining the existence of a stable model of the corresponding logic pro-
gram. The experimental results are summarised in Fig. 1. Our benchmarks are
essentially the only results in the literature for alternating Boolean equation sys-
tems with the alternation depth n ≥ 4 of which we are aware. Notice that our
benchmarks have the alternation depths 1800 ≤ n ≤ 2600. Like pointed out in
[18], known algorithms based on approximation techniques are exponential in the
size of the equation system in Fig. 1, because a maximal number of backtracking
steps is always needed to solve the left-most equation.

In the second series of examples we used a set of µ-calculus model checking
problems taken from [16], converted to alternating Boolean equation systems.
The problems consist of checking a µ-calculus formula of alternation depth 2,
on a sequence of models M = (S,A,−→) of increasing size (see Fig. 2 in [16]).
Suppose that all transitions of process M in [16] are labelled with a and we want
to check, at initial state s, the property that a is enabled infinitely often along
all infinite paths. This is expressed with alternating fixed point formula:

φ ≡ νX.µY.([−].(〈a〉true ∧X) ∨ Y ) (12)

which is true at initial state s of the process M . The problem can be directly
encoded as the problem of solving the corresponding alternating equation system
in Fig. 2. The results are given in Fig. 2. The columns are:

– Problem: Process M = (S, A,−→) from [16].



ν xs = ys

µ ys =
^

s′∈∇(t,s)

zs′ ∨ ys

µ zs =
_

s′∈∇(a,s)

true ∧ xs

9
>>>>=
>>>>;

for all s ∈ S.

where ∇(t, s) := {s′|s i−→ s′ ∧ i ∈ A}
and ∇(a, s) := {s′|s a−→ s′}.

Problem |s| | −→ | n Time (sec)

M500 503 505 1006 4.0

M1000 1003 1005 2006 16.4

M1500 1503 1505 3006 39.0

Fig. 2. The Boolean equation system and experimental results.

– |S|: Number of states in M .
– | −→ |: Number of transitions in M .
– n: Number of equations in the corresponding Boolean equation system.
– Time: The time in seconds to solve variable xs.

The benchmarks in [16] have a quite simple structure and no general results can
be drawn from them. In fact, the equation system in Fig. 2 reduces to a sequence
of purely conjunctive equations, whose encoding involves no choose-1-of-2 rules,
i.e. is a Horn program. A more involved practical evaluation of our approach is
highly desirable, and benchmarking on real world systems is left for future work.

7 Conclusion

We present an answer set programming based method for computing the so-
lutions of alternating Boolean equation systems. We developed a novel char-
acterization of solutions for variables in Boolean equation systems and based
on this devised a mapping from systems with alternating fixed points to normal
logic programs. Our translation is such that the solution of a given variable of an
equation system can be determined by the existence of a stable model of the cor-
responding logic program. This result provides the basis for verifying µ-calculus
formulas with alternating fixpoints using answer set programming techniques.

The experimental results indicate that stable model computation is quite a
competitive approach to solve Boolean equations systems in which the number of
alternation is relatively large. The alternation of fixpoint operators gives more
expressive power in µ-calculus, but all known model checking algorithms are
exponential in the alternation depth. Consequently, our approach is expected to
be quite effective in the verification tasks where there is a need of formulas with
great expressive power.
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