
Implementing Ordered Disjunction Using
Answer Set Solvers for Normal Programs

Gerhard Brewka1, Ilkka Niemelä2, and Tommi Syrjänen2

1 Universität Leipzig 2 Helsinki University of Technology
Institut für Informatik Dept. of Computer Science and Engineering
Augustusplatz 10-11 Lab. for Theoretical Computer Science

04109 Leipzig, Germany P.O.Box 5400 FIN-02015 HUT, Finland
brewka@informatik.uni-leipzig.de {Ilkka.Niemela,Tommi.Syrjanen}@hut.fi

Abstract. Logic programs with ordered disjunction (LPODs) add a
new connective to logic programming. This connective allows us to rep-
resent alternative, ranked options for problem solutions in the heads of
rules: A×B intuitively means: if possible A, but if A is not possible, then
at least B. The semantics of logic programs with ordered disjunction is
based on a preference relation on answer sets. In this paper we show
how LPODs can be implemented using answer set solvers for normal
programs. The implementation is based on a generator which produces
candidate answer sets and a tester which checks whether a given candi-
date is maximally preferred and produces a better candidate if it is not.
We also discuss the complexity of reasoning tasks based on LPODs.

1 Introduction

In [2] a propositional logic called Qualitative Choice Logic (QCL) is introduced.
The logic contains a new connective × representing ordered disjunction. Intu-
itively, A×B stands for: if possible A, but if A is impossible then (at least) B. In
[1] it is shown how ordered disjunction can be added to logic programs with two
kinds of negation under answer set semantics. The resulting logic programs with
ordered disjunction (LPODs for short) allow us to combine default knowledge
with knowledge about preferences in a simple and elegant way.

In this paper we show how LPODs can be implemented using answer set
solvers (ASP solvers) for normal (non-disjunctive) programs. This means that
when implementing LPODs it is possible to directly exploit constantly improving
performance of ASP solvers for standard logic programs such as Smodels and
dlv. The implementation is based on two normal logic programs, a generator
which produces candidate answer sets and a tester which checks whether a given
candidate is maximally preferred. The tester produces a better answer set if the
candidate is not preferred. Iteration thus leads to a maximally preferred answer
set. We also discuss the complexity of reasoning tasks based on LPODs.

We will restrict our discussion in this paper to propositional programs. How-
ever, as usual in answer set programming, we admit rule schemata containing

variables bearing in mind that these schemata are just convenient representa-
tions for the set of their ground instances.

We have constructed a prototype implementation for LPODs based on Smod-
els, an efficient ASP solver developed at Helsinki University of Technology. The
generator and tester programs use special rule types of the Smodels system, but
they can be modified to work with any ASP solver. The prototype implementa-
tion is available at http://www.tcs.hut.fi/Software/smodels/priority.

The rest of the paper is organized as follows. In the next section we recall the
basic notions underlying syntax and semantics of LPODs. For a more detailed
discussion the reader is referred to [1]. Section 3 discusses several alternative
preference relations on answer sets which can be obtained based on the satis-
faction degrees of rules. Section 4 presents our Smodels based implementation.
Section 5 gives complexity results. Section 6 gives a short discussion on applying
preferences on the problem of configuration management. Section 7 concludes.

2 Logic Programs with Ordered Disjunction

Logic programming with ordered disjunction is an extension of logic program-
ming with two kinds of negation (default and strong negation) [4]. The new
connective × representing ordered disjunction is allowed to appear in the head
of rules only. A (propositional) LPOD thus consists of rules of the form

C1 × · · · × Cn ← A1, . . . , Am, not B1, . . . , not Bk

where the Ci, Aj and Bl are ground literals.
The intuitive reading of the rule head is: if possible C1, if C1 is not possible,

then C2, . . ., if all of C1, . . . , Cn−1 are not possible, then Cn. The literals Ci

are called choices of the rule. Extended logic programs are a special case where
n = 1 for all rules. We omit ← whenever m = 0 and k = 0. Moreover, rules of
the form ← body (constraints) are used as abbreviations for p ← not p, body for
some p not appearing in the rest of the program. The effect is that no answer
sets containing body exist. We use the notations At(P) and Lit(P) to denote the
sets of atoms and literals occurring in a LPOD P .

As discussed in [1] answer sets of LPODs cannot be inclusion minimal be-
cause this would in certain cases exclude answer sets from consideration which,
intuitively, satisfy the rules best. The definition of answer sets for LPODs is
therefore based on the notion of a split program. This notion was first used in
[7] for disjunctive logic programs. A split program consists of single head rules
obtained from the original program by picking one of the available alternatives.
Our definition of split programs for LPODs differs in two respects from Sakama
and Inoue’s to comply with the intuitive reading of ordered disjunction:

1. we require that a split program contains exactly one of the alternatives
provided in the original program by a single rule,

2. our single head rules are slightly more complicated to guarantee that a choice
is only made if a better choice isn’t already derived through some other rule.

The precise definition is as follows:

Definition 1. Let r = C1× · · · ×Cn ← body be a rule. For k ≤ n we define the
kth option of r as

rk = Ck ← body, not C1, . . . , not Ck−1.

Definition 2. Let P be an LPOD. Then P ′ is a split program of P if it is
obtained from P by replacing each rule in P by one of its options.

Here is a simple example. Let P consist of the rules

A×B ← not C

B × C ← not D
(1)

We obtain 4 split programs

A ← not C A ← not C
B ← not D C ← not D, not B

B ← not C, not A B ← not C, not A
B ← not D C ← not D, not B

Split programs do not contain ordered disjunction. We thus can define:

Definition 3. Let P be an LPOD. A set of literals A is an answer set of P if
it is a consistent answer set of a split program P ′ of P .

We exclude inconsistent answer sets from consideration since they do not repre-
sent possible problem solutions. In the example above we obtain 3 answer sets:
{A,B}, {C}, {B}. Note that one of the answer sets is a proper subset of another
answer set. On the other hand, none of the rules in the original LPOD sanctions
more than one literal in any of the answer sets, as intended.

Not all of the answer sets satisfy our most intended options. Clearly, {A,B}
gives us the best options for both rules, whereas {C} gives only the second best
option for the latter and {B} the second best option for the former rule. We
therefore introduce the notion of a preferred answer set in the next section.

3 Preferred Answer Sets

To distinguish between more and less intended answer sets we introduce the
degree of satisfaction of a rule in an answer set:

Definition 4. Let S be an answer set of an LPOD P . Then S satisfies the rule

C1 × . . .× Cn ← A1, . . . , Am, not B1, . . . , not Bk

– to degree 1 if Aj 6∈ S, for some j, or Bi ∈ S, for some i,
– to degree j (1 ≤ j ≤ n) if all Aj ∈ S, no Bi ∈ S, and j = min{r | Cr ∈ S}.

The degrees can be viewed as penalties: the higher the degree the less satisfied we
are. If the body of a rule is not satisfied, then there is no reason to be dissatisfied
and the best degree 1 is obtained. We denote the degree of r in S by degS(r).

The satisfaction degrees of the rules of a program P are the basis for defining
a preference relation on the answer sets of P . There are many different ways of
inducing such a preference relation. We will discuss three of them in this paper.

The first preference criterion is based on the cardinality of the sets of rules
satisfied to a particular degree. For a set of literals S, let Si(P) = {r ∈ P |
degS(r) = i}. Now cardinality based preference can be defined as follows:

Definition 5. Let S1 and S2 be answer sets of an LPOD P . Then S1 is cardi-
nality-preferred to S2 (S1 >c S2) iff there is i such that |Si

1(P)| > |Si
2(P)|, and

for all j < i, |Sj
1(P)| = |Sj

2(P)|.
In certain applications counting does not provide the best way of defining pref-
erences among answer sets. We therefore propose a second, inclusion based cri-
terion. This is the criterion originally used in [1]:

Definition 6. Let S1 and S2 be answer sets of an LPOD P . The answer set S1

is inclusion-preferred to S2 (S1 >i S2) iff there is k such that Sk
2 (P) ⊂ Sk

1 (P),
and for all j < k, Sj

1(P) = Sj
2(P).

Although inclusion-preference is more cautious than cardinality-preference it
is sometimes not cautious enough; in some cases adding unattainable preferences
changes the set of preferred answer sets. Consider the following decision over
possible desserts:

r1 : ice-cream × cake
r2 : coffee × tea
r3 : ← coffee, ice-cream

(2)

Now there are two preferred answer sets, {ice-cream, tea} and {coffee, cake}.
Neither of them dominates the other because they both satisfy one rule to the
first degree and one rule to the second degree. Now replace r1 by

r′1 : cookie × ice-cream × cake

and add the fact ¬cookie to the program. Then, {coffee, cake,¬cookie} is the
only preferred answer set. By adding an unsatisfiable preference to cookies, we
inadvertently made the second preference more important than the first. To
avoid effects of this kind one can use the following Pareto criterion1:

Definition 7. Let S1 and S2 be answer sets of an LPOD P . Then S1 is Pareto-
preferred to S2 (S1 >p S2) iff there is r ∈ P such that degS1(r) < degS2(r), and
for no r′ ∈ P degS1(r

′) > degS2(r
′).

The proof of the following proposition is straightforward:
1 The Pareto-criterion was suggested to us by Harri Haanpää.

Proposition 1. Let S1 and S2 be answer sets of an LPOD P . Then S1 >p S2

implies S1 >i S2 and S1 >i S2 implies S1 >c S2.

Definition 8. A set of literals S is a k-preferred (where k ∈ {c, i, p}) answer
set of an LPOD P iff S is an answer set of P and there is no answer set S′ of
P such that S′ >k S.

Given a particular preference criterion k, we say a literal l is a conclusion
of an LPOD P iff l is contained in all k-preferred answer sets of P . In many
applications, for instance in design and configuration, each preferred answer set
represents a solution that satisfies the preferences best.

Sometimes we may want to express that one preference is more important
than another. Consider again the dessert program (2) in its original form. As-
sume that we would rather have ice-cream than coffee. Now we would like have a
mechanism that could express the differences in preference importance. A conve-
nient way is to express these meta-preferences by defining a relation Â on rules.
In our case we could simply say r1 Â r2. It is not difficult to take these rule
preferences into account. Let us illustrate this using Pareto preference:

Definition 9. Let S1 and S2 be answer sets of an LPOD P , Â a preference
relation on the rules of P . S1 is Pareto-preferred to S2 (S1 >p S2) iff

1. there is r ∈ P such that degS1(r) < degS2(r), and
2. for each r′ ∈ P : degS1(r

′) > degS2(r
′) implies there is r′′ such that r′′ Â r′

and degS1(r
′′) < degS2(r

′).

In principle, it is possible to represent preferences among rules within the pro-
grams and thus to make them context dependent. However, since the rule prefer-
ence information then is part of the generated answer sets one has to be careful
not to loose anti-symmetry. For instance, if we have

r1 : a× ¬a r2 Â r1 ← a
r2 : ¬a× a r1 Â r2 ← ¬a

then, from the perspective of each of the two answer sets, the other answer set
is preferred. As long as different answer sets do not disagree about preferences
among rules, one is on the safe side. We will not pursue this issue further here.

4 Implementation

We can compute preferred answer sets of an LPOD P using standard answer set
implementations and two programs. A similar approach is used in [5] to compute
stable models of disjunctive programs using Smodels. The two programs are:

– A generator G(P) whose stable models correspond to the answer sets of P ;
and

– A tester T (P,M) for checking whether a given answer set M of P is preferred.

The two programs are run in an interleaved fashion. First, the generator
constructs an answer set M of P . Next, the tester tries to find an answer set
M ′ that is strictly better than M . If there is no such M ′, we know that M is a
preferred answer set. Otherwise, we use G(P) to construct the next candidate.
When we want to find only one preferred answer set we can save some effort by
taking M ′ directly as the new answer set candidate.

The basic idea of G(P) is to encode all possible split programs of P into one
program by adding an explicit choice over the options of each ordered disjunction.
We encode the choice using new atoms of the form c(r, k) to denote that we are
using the kth option of rule r.

To make model comparison easier we also add another set of new atoms,
s(r, k) to denote that the rule r is satisfied to the degree k. These atoms are not
strictly necessary but they make the programs more readable.

Definition 10. Let P be an LPOD and r = C1 × · · · ×Cn ← body be a rule in
P . Then the translation G(r, k) of the kth option of r is defined as follows:

G(r, k) = {Ck ← c(r, k), not C1, . . . , not Ck−1, body; (3)
← Ck, not c(r, k), not C1, . . . , not Ck−1, body} (4)

The satisfaction translation S(r) is:

S(r) = {s(r, 1) ← not c(r, 1), . . . , not c(r, n)}∪ (5)
{ s(r, i) ← c(r, i) | 1 ≤ i ≤ n} (6)

The translation G(r) is:

G(r) =
{
1 {c(r, 1), . . . , c(r, n)} 1 ← body

} ∪
⋃
{G(r, k) | k ≤ n} ∪ S(r) (7)

The generator G(P) is defined as follows:

G(P) =
⋃
{G(r) | r ∈ P} (8)

The definition of G(P) is rather straightforward, but a few points may need
explaining. First, the rule 1 {c(r, 1), . . . , c(r, n)} 1 ← body states that if body is
true, then exactly one of the atoms c(r, k) is true. Its formal semantics is defined
in [6] but it can also be seen as a shorthand for n pairs of rules of the form:

c(r, k) ← not ¬c(r, k), body

¬c(r, k) ← not c(r, k)

and n2 − n constraints ← c(r, i), c(r, j), i 6= j.
Also, the reason for having two rules in G(r, k) may not be clear, since (3)

already ensures that only correct answer sets of the split program P ′ will be
generated. Now consider the situation where some Cj , j < k, is a consequence
of a different part of the program. Then without (4) we could have an answer
set where c(r, k) is true, but Ck is not because Cj blocks (3). In other words, we
would have chosen to satisfy r to the degree k, but it actually would be satisfied
to the degree j. The rule (4) prevents this unintuitive behavior by always forcing
us to choose the lowest possible degree.

Example 1. The program (1) is translated to:

1 {c(1, 1), c(1, 2)} 1 ← not C A ← c(1, 1), not C
1 {c(2, 1), c(2, 2)} 1 ← not D B ← c(2, 1), not D

← not c(1, 1), A, not C B ← c(1, 2), not A, not C
← not c(1, 2), B, not A, not C C ← c(2, 2), not B, not D
← not c(2, 1), B, not D s(1, 1) ← not c(1, 1),not c(1, 2)
← not c(2, 2), C, not B, not D s(2, 1) ← not c(2, 1),not c(2, 2)

s(1, 1) ← c(1, 1) s(1, 2) ← c(1, 2) s(2, 1) ← c(2, 1) s(2, 2) ← c(2, 2)

It has three answer sets: {A,B, c(1, 1), c(2, 1), s(1, 1), s(2, 1)}, {B, c(1, 2), c(2, 1),
s(1, 2), s(2, 1)}, and {C, c(2, 2), s(1, 1), s(2, 2)}. Note that in the last case there
is no atom c(1, k) since the body of the first rule is not satisfied.

Proposition 2. Let P be an LPOD. Then M is an answer set of G(P) if and
only if M ∩ Lit(P) is an answer set of P .

Proof. Let M be an answer set of P . Now, for each rule r = C1 × · · · × Cn ←
body define p(M, r) = {c(r, k), s(r, k) | body is satisfied in M, Ck ∈ M, and ∀i <
k : Ci /∈ M} ∪ {s(r, 1) | r ∈ P and body is unsatisfied in M}. Let M ′ = M ∪⋃

r∈P p(M, r). By definition of p(M, r), M ′ satisfies all rules (3)–(6). Finally, (7)
is satisfied since exactly one atom c(r, k) was added to M ′ for each rule r that
had its body true. It follows that M ′ is an answer set of G(P). Now, suppose that
M ′ is an answer set of G(P). Then for each atom C ∈ M = M ′ ∩ Lit(P), there
exists a rule of the form (3) where C is the head and some atom c(r, k) ∈ M ′

occurs positively in the body. We define P ′ = {rk | c(r, k) ∈ M ′} ∪ {r1 | ¬∃k :
c(r, k) ∈ M ′}. We see that P ′ is a split program of P that generates M as its
answer set so M is an answer set of P .

Since we have three different optimality criteria, we need three different tester
programs. They all consist of a common core C(P,M) augmented by case-specific
rules Tc, Ti, or Tp. Since we want the tester to find an answer set M ′ that is
strictly better than a given M , we define two new atoms, namely better and
worse with the intuition that better (worse) is true when M ′ is in some aspect
better (worse) than M . If both are true, then the answer sets are incomparable.

Definition 11. Let P be an LPOD. Then the core tester C(P, M) is defined as
follows:

C(P,M) = G(P) ∪ {o(r, k) | s(r, k) ∈ M} ∪ {rule(r) ←| r ∈ P}
∪ {degree(d) ←| ∃r ∈ P such that r has at least d options}
∪ {← not better ; ← worse}

The k-preference tester (k ∈ {c, i, p}) Tk(P, M) is defined as follows:

Tk(P,M) = C(P, M) ∪ Tk

better ←s(R, I), o(R, J), I < J, rule(R), degree(I), degree(J)

worse ←s(R, J), o(R, I), I < J, rule(R), degree(I), degree(J)

Fig. 1. The Pareto-preference tester Tp

better(D1) ←s(R, D1), o(R, D2), D1 < D2, rule(R), degree(D1), degree(D2)

worse(D1) ←s(R, D2), o(R, D1), D1 < D2, rule(R), degree(D1), degree(D2)

better ←{worse(D2) : degree(D2) ∧D2 ≤ D1} 0, better(D1), degree(D1)

worse ←{better(D2) : degree(D2) ∧D2 ≤ D1} 0, worse(D1), degree(D1)

Fig. 2. The inclusion preference tester Ti

The case-specific parts of the three different testers are shown in Figures 1–
3. The atoms o(r, k) are used to store the degrees of satisfaction in the original
answer set M so that o(r, k) is added as a fact to T (P, M) whenever s(r, k) ∈ M .

The p-preference tester Tp (Fig. 1) is by far the simplest. It states that M ′

is better if there exists some rule that has a lower degree of satisfaction in M ′

than in M , and worse if some rule has a higher degree. The i-preference tester
Ti (Fig. 2) considers each different degree of satisfaction separately. Now M ′ is
preferred over M if there exists some degree k that M ′ satisfies better and for
all degrees k′ ≤ k M ′ is not worse than M . The c-preference tester Tc (Fig. 3) is
quite similar to Ti but we add new atoms s-card(k, n) and o-card(k, n) to encode
the cardinalities of the sets Sk, and make the comparisons based on them.

Proposition 3. Let P be an LPOD and M be an answer set of G(P). Then
M ′ is an answer set of Tk(P,M) (k ∈ {c, i, p}) iff M ′ ∩Lit(P) is an answer set
of P which is k-preferred to M ∩ Lit(P).

Proof. (For p-preference) First, suppose that Tp(P,M) has an answer set M ′.
Then better ∈ M ′ and worse /∈ M ′. We see that better is true exactly when
∃r : degM ′(r) < degM (r). Since worse /∈ M ′, we know that ¬∃r : degM ′(r) >

s-card(K, N) ←N {s(R, N) : rule(R)} N, degree(K)

o-card(K, N) ←N {o(R, N) : rule(R)} N, degree(K)

better(D) ←s-card(D, N1), o-card(D, N2), N1 > N2, degree(D)

worse(D) ←s-card(D, N1), o-card(D, N2), N1 < N2, degree(D)

better ←better(D), degree(D)

worse ←{better(D2) : degree(D2) ∧D2 < D1} 0, worse(D1), degree(D1)

Fig. 3. The cardinality preference tester Tc

better(R) ← s(R, I), o(R, J), I < J, rule(R), degree(I), degree(J)

worse ← s(R, J), o(R, I), not excused(R), I < J, rule(R), degree(I), degree(J)

excused(R1) ← R2 Â R1, better(R2), rule(R1), rule(R2)

better ← better(R), rule(R)

Fig. 4. A meta-preference tester

degM (r) so M ′ ∩Lit(P) >p M . Conversely, if there exists M ′ >p M , then M ′ is
generated by the G(P) part of T (P,M) so M ′ ∪⋃

r∈P p(M ′, r) ∪ {better} is an
answer set of Tp(P,M). The cases for c- and i-preference are analogous.

The following corollary is immediate from Proposition 3:

Corollary 1. Let P be an LPOD and M be an answer set of G(P). Then M
is k-preferred (k ∈ {c, i, p}) iff Tk(P,M) does not have any answer set.

We can handle meta-preferences by modifying the rules of the worse atom.
We define a new predicate excused(r) to denote that some more important rule
r′, r′ Â r, is satisfied to a lower degree in M ′ than it was in M so we allow r
to be satisfied to a higher degree. Figure 4 shows how the p-preference tester
has to be modified to take the meta-information into account. The i-preference
tester can be altered in a similar fashion. However, adding meta-preferences to
the c-preference tester is more complex and we do not discuss it here.

5 Complexity

In the previous section we defined two extended logic programs that can be
interleaved to compute k-preferred answer sets. Would it be possible to compute
them using a single disjunction-free program? Unfortunately, this is impossible in
the general case unless the polynomial hierarchy collapses; credulous reasoning
on LPODs is ΣP

2 -complete for {i, p}-preferences. The c-preference is slightly
easier computationally and it stays in ∆P

2 . Whether it is ∆P
2 -complete or not is

still an open question. In this section we prove these complexity results.
We start by noting that since the three different >k relations are all anti-

symmetric and well-founded, an LPOD P has at least one k-preferred answer
set if it has any answer sets at all.

Theorem 1. Let P be an LPOD. Then deciding whether P has a k-preferred
(k ∈ {c, i, p}) answer set is NP-complete.

Theorem 2. Let P be an LPOD and M an answer set of P . Then deciding
whether M is k-preferred (k ∈ {c, i, p}) is coNP-complete.

Proof. Inclusion: If M is not a k-preferred answer set of P , then there exists an
answer set M ′ such that M ′ >k M . Since we can find M ′ with one query to an
NP-oracle, showing that M is preferred is in coNP.

Hardness: Given a 3-sat-instance S, we can construct an LPOD P with
the property that M = {¬sat, d} is a k-preferred answer set exactly when S is
unsatisfiable. This translation t(S) is as follows:

t(S) ={sat × ¬sat ; d ← not ¬d;¬d ← not d;¬sat ← d; sat ← not ¬sat}
∪ {¬sat ← not A1,not A2,not A3 | A1 ∨A2 ∨A3 ∈ S}
∪ {a ← not ¬a,¬d;¬a ← not a,¬d | a ∈ At(S)}

Theorem 3. Given an LPOD P and a literal l ∈ Lit(P), deciding whether
there exists a {i, p}-preferred answer set M such that l ∈ M is ΣP

2 -complete.

Proof. Inclusion: We can first guess M such that l ∈ M and verify that M is
an answer set. Then by Theorem 2 we can use an NP-oracle to verify that M
is {i, p}-preferred.

Hardness: Given a 3-sat-instance S and a literal l, it is ΣP
2 -hard to decide

whether l is true in a minimal model of S [3]. We construct a LPOD t(S) such
that l is true in a {i, p}-preferred answer set of t(S) iff l is true in a minimal
model of S.

t(S) = {← Ā1, Ā2, Ā3 | A1 ∨A2 ∨A3 ∈ S} (9)
∪ {¬a× a | a ∈ At(S)} (10)

Now M is a preferred answer set of t(S) iff it is a minimal model of S. We can
see this by noting that the rules of the form (10) generate all possible truth
valuations for atoms of S and all rules (9) are satisfied whenever all clauses are.

Suppose that M is a minimal model of S and that there exists an answer set
M ′ such that M ′ >i,p M . By (10) this implies that there exists an atom a such
that a ∈ M and a /∈ M ′, and there does not exist an atom b such that b ∈ M ′

and b /∈ M . Thus, M ′ ⊂ M . However, this is a contradiction since M ′ is also a
model of S and we assumed that M is minimal.

Next, suppose that M is a {i, p}-preferred answer set of t(S). This implies
that there is no answer set M ′ such that ∃a ∈ At(S) : a ∈ M ∧ a /∈ M ′. Thus,
there is no M ′ ⊂ M and M is a minimal model of S.

Theorem 4. Given an LPOD P and a literal l ∈ Lit(P), deciding whether
there exists a c-preferred answer set M such that l ∈ M is in ∆P

2 .

Proof. Each answer set M of P induces a tuple (|M1|, . . . , |Md|) where |Mk|
denotes the number of rules satisfied to the degree k by M . We can see from
Definition 5 that each c-preferred answer set induces the same tuple, (c1, . . . , cd).
We can find the correct value of c1 using O(log r) adaptive NP-oracle queries
where r is the number of rules in P . We add to P rules to force |M1| to be within
given upper and lower bounds (u, l) and then perform a binary search to narrow
the bounds. The bound rules may be expressed using the notation of Fig. 3 as
follows:

←s-card(1, N), N < l, degree(N)
←s-card(1, N), N > u, degree(N)

After establishing ci, we proceed to establish ci+1. Since both r and d are linear
with respect to the size n of P , we can find out all ci using O(n log n) NP-
queries. Finally, we add ← not l and issue one more query to see whether l is
true in a c-preferred answer set.

6 An Application: Configuration Management

To illustrate LPODs we want to briefly discuss an application in configuration
management. Answer set programming techniques seem to be suitable for mod-
eling many different configuration domains [8, 6]. During a configuration process
we have often more than one alternative way to satisfy a requirement. For ex-
ample, a workstation may have more than one possible email client.

We now consider two examples that show how LPODs can be used to model
several kinds of different preference criteria in Linux configuration domain. First,
there are usually several available versions for any given software package. In
most cases we want to install the latest version, but sometimes we have to use
an older one. We can handle these preferences by defining a new atom for each
different version and then demanding that at least one version should be selected
if the component is installed. For example, the following rule defines that there
are three versions of emacs available:

emacs-21.1× emacs-20.7.2× emacs-19.34 ← emacs

Second, a component may have also different variants. For example, most
programming libraries come in two versions: a normal version containing only
files that are necessary to run programs that are linked against the library, and
a developer version with header or class files that allow a developer to create
new applications. Now, a common user would prefer to have the normal variant
while a programmer would prefer the developer version. We may model these
preferences in the following way:

libc6 × libc6-dev ←need-libc6 , not c-developer
libc6-dev × libc6 ←need-libc6 , c-developer .

There are also many other possible preference criteria in the configuration
domain. It is not at all clear how they should be combined into one comprehensive
preference structure, and further work into this direction is needed.

7 Conclusion

In this paper we show how LPODs can be implemented using ASP solvers for
non-disjunctive programs with a two-step approach. We first create a disjunction-
free generator program that has the same answer sets as P , and use the ASP
solver to find a candidate answer set S. Next we use a disjunction-free tester
program to check whether S is preferred or not. Since the tester is based on a

declarative representation of the preference criterion it is easy to switch between
different notions of preference, or to define new ones.

Further contributions of this paper are a Pareto-style preference criterion
which, to the best of our knowledge, has not been used in prioritized non-
monotonic reasoning before, a combination of ordered disjunctions with pref-
erences among rules, and several complexity results. For a discussion of related
approaches to logic programming with context dependent priorities see [1].

In future work we want to study more general qualitative decision making
problems. In such settings it is not always sufficient to consider the most preferred
answer sets only since this amounts to an extremely optimistic view about how
the world will behave (this view is sometimes called wishful thinking). As is well-
known in decision theory, for realistic models of decision making it is necessary
to clearly distinguish what is under the control of the agent (and thus may
constitute the agent’s decision) from what is not.

In answer set programming this can be done by distinguishing a subset of
the literals as decision literals. LPODs can be used to describe possible actions
or decisions and their consequences, states of the world and desired outcomes.
Based on the preference ordering on answer sets an ordering on possible decisions
can be defined based on some decision strategy. We plan to work this out in more
detail in a separate paper.

Acknowledgements. We would like to thank Tomi Janhunen for helpful com-
ments. The second and third author thank Academy of Finland (project 53695)
and HeCSE for financial support.

References

1. G. Brewka. Logic programming with ordered disjunction. In Proc. 18th National
Conference on Artificial Intelligence, AAAI-2002. Morgan Kaufmann, 2002.

2. G. Brewka, S. Benferhat, and D. Le Berre. Qualitative choice logic. In Proc. Prin-
ciples of Knowledge Representation and Reasoning, KR-02, pages 158–169. Morgan
Kaufmann, 2002.

3. T. Eiter and G. Gottlob. Propositional circumscription and extended closed-world
reasoning are ΠP

2 -complete. Theoretical Computer Science, 114:231–245, 1993.
4. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive

databases. New Generation Computing, 9:365–385, 1991.
5. Tomi Janhunen, Ilkka Niemelä, Patrik Simons, and Jia-Huai You. Unfolding par-

tiality and disjunctions in stable model semantics. In Principles of Knowledge Rep-
resentation and Reasoning: Proceedings of the 7th International Conference, pages
411–419. Morgan Kaufmann Publishers, April 2000.

6. Ilkka Niemelä and Patrik Simons. Extending the Smodels system with cardinality
and weight constraints. In Jack Minker, editor, Logic-Based Artificial Intelligence,
pages 491–521. Kluwer Academic Publishers, 2000.

7. C. Sakama and K. Inoue. An alternative approach to the semantics of disjunctive
logic programs and deductive databases. Journal of Automated Reasoning, 13:145–
172, 1994.

8. T. Soininen. An Approach to Knowledge Representation and Reasoning for Product
Configuration Tasks. PhD thesis, Helsinki University of Technology, Finland, 2000.

