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1. Introduction

1.1 Motivation and scope

Matrix decomposition is a fundamental theme in algebra with both scien-

tific and engineering significance. For example, a large data matrix can

be approximately factorized into several low-rank matrices. Two popular

factorization methods are Singular Value Decomposition (SVD) [65] and

Principle Component Analysis (PCA) [91] that are extensively used for

data analysis. Many real-world data are nonnegative and the correspond-

ing hidden components convey physical meanings only when the nonneg-

ative condition holds. The factorizing matrices in SVD or PCA can have

negative entries, which makes it hard or impossible to obtain physical

interpretations from the factorizing results.

Nonnegative Matrix Factorization (NMF) [109] imposes the nonnegativ-

ity constraint on some of the factorizing matrices. When all involved ma-

trices are constrained to be nonnegative, NMF allows only additive but

not subtractive combinations during the factorization. Such nature can

result in parts-based representation of the data, which can discover the

hidden components that have specific structures and physical meanings.

Originally, the NMF approximation is factorized into two nonnegative

matrices based on either Euclidean distance or I-divergence. Actually

there are many other divergence measurements, and the factorization can

take many different forms. Besides the nonnegativity constraint, NMF

has been extended by incorporating other constraints and regularizations,

such as stochasticity and orthogonality, on the factorizing matrices in or-

der to enhance the capability to find true structures in data. Many numer-

ical algorithms have been developed to optimize NMF objectives, among

which multiplicative update algorithms are commonly utilized. The mul-

11
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tiplicative algorithms can automatically maintain the nonnegativity con-

straint and require no user-specified parameters.

NMF has found a variety of applications in, for example, image process-

ing [109, 83], text mining [109, 186], sound or music analysis [161, 54],

bioinformatics [24], etc., among which NMF is mainly used for analyz-

ing multivariate data, i.e. working on features. Recently, NMF has been

extended to handle the graph input or similarity matrix between data

points, i.e. grouping samples [117]. Actually, NMF has a close relation-

ship with the classical k-means clustering [44]. In practice, NMF is easy

to implement. These merits of NMF thus give the motivation of this thesis

to study NMF methods with their application in data clustering tasks.

This thesis presents advances in NMF with the application in cluster

analysis. Cluster analysis such as k-means is not a linear problem, and

thus using standard NMF for clustering is an approximation. Therefore,

the thesis reviews a class of higher order NMF methods, called Quadratic

Nonnegative Matrix Factorization (QNMF) [191], where some factorizing

matrices occur twice in the approximation. In addition to k-means clus-

tering, QNMF can be applied to various other learning problems, such as

graph matching and bi-clustering. Two important special cases of QNMF

are Projective NMF (PNMF) [194] and NMF based on graph Random

Walk (NMFR) [187], both of which can yield a highly orthogonal factor-

izing matrix desired for cluster analysis.

For some other problems, especially probabilistic models, even QNMF

is not enough, but more complex matrix factorizations must be used. The

thesis reviews a structural decomposition technique based on Data-Cluster-

Data (DCD) random walk. NMF and QNMF are restricted to the scope

of matrix factorization, whereas DCD goes beyond matrix factorization

since the decomposition of the approximating matrix includes operations

other than matrix product. In particular, DCD directly learns the clus-

ter assigning probabilities as the only decomposing matrix. Besides, DCD

adopts the Kullback-Leibler divergence as the approximation error mea-

sure that takes into account sparse similarities between samples, which

is advantageous for clustering large-scale manifold data.

It is known that multiplicative update rules may suffer from slow con-

vergence [62]. To improve the optimization speed, we present an adaptive

multiplicative update algorithm, where a constant exponent in the update

rule is replaced with a varied one. The adaptive algorithm can increase

the convergence speed of QNMF for various applications while maintain

12
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the monotonic decrease of their objective functions.

In addition to a fast convergence, initialization often has a great impact

on the clustering accuracy. This thesis presents a co-initialization strat-

egy, where a set of diverse clustering methods provide initializations for

each other to improve the clustering results. We have empirically shown

that the clustering performance can be greatly improved by using more

comprehensive co-initialization strategies.

The presented methods have been tested on a variety of real-world data-

sets, including facial images, textual documents, and protein data, etc.

Specifically, the thesis will present an experimental study on clustering

emotional data, where the presented approaches can achieve improved

clustering performance over other existing clustering methods.

1.2 Contributions of the thesis

This thesis presents advances in nonnegative matrix decomposition with

application to cluster analysis. Its major contributions are:

• A new class of NMF methods called Quadratic Nonnegative Matrix Fac-

torization (QNMF) is reviewed, where some factorizing matrices occur

twice in the approximation. The properties of QNMF are discussed.

• An adaptive multiplicative update scheme is proposed for QNMF, where

the constant exponent in the update rules is replaced by an variable

one to accelerate the convergence speed of QNMF while its monotonic

objective decrease is still maintained.

• A novel nonnegative low-rank approximation clustering method is re-

viewed, where the approximation is formed by only cluster assigning

probabilities based on Data-Cluster-Data (DCD) random walk. DCD

goes beyond matrix factorization and belongs to the class of probabilistic

clustering methods.

• A co-initialization strategy is proposed, where a set of base clustering

methods provide initializations for each other to improve clustering re-

sults. A hierarchy of initializations is presented, where a higher level

can better facilitate methods that require careful initialization such as

the DCD.

13
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• A gaze-and speech-enhanced Contented-Based Image Retrieval System

is proposed, and an emerging research area called Emotional Seman-

tic Image Retrieval is introduced, where low-level generic image fea-

tures are proposed for describing people’s high-level affective feelings

evoked by viewing images within affective image classification and re-

trieval tasks.

• An experimental study is performed, where the proposed co-initialization

approach is applied to the cluster analysis of a widely-used emotional

image dataset. Our approach has been compared with several other ex-

isting clustering methods.

1.3 Author’s contribution in the publications

The author’s contributions in the publications are described as follows:

Publication I studies the replacement of the I-divergence with the origi-

nal Kullback-Leibler (KL-) divergence for NMF, and presents a projective

gradient algorithm for NMF. The author participated in running the ex-

periments and in writing the paper.

In Publication II, the author proposed a pairwise clustering algorithm

by generalizing Probabilistic Latent Semantic Analysis (PLSI) to t−expo

-nential family based on a criterion called t−divergence. The proposed

method can improve clustering performance in purity for certain datasets.

The author formulated the learning objective, developed the Majorization-

Minimization algorithm, ran all the experiments, and wrote a major part

of the paper.

Publication III provides an online Projective Nonnegative Matrix Fac-

torization (PNMF) algorithm for handling large-scale datasets. The em-

pirical studies on synthetic and real-world datasets indicate that the on-

line algorithm runs much faster than the existing batch version. The au-

thor participated in designing the experiments and in writing the paper.

The original PNMF optimization algorithm can not guarantee the theo-

retical convergence during the iterative learning process. In Publication

IV, the author proposed an adaptive multiplicative update algorithm for

PNMF which not only ensures the theoretical convergence but also signifi-

cantly accelerates its convergence speed. An adaptive exponent scheme is

adopted by the author to replace the old unitary one. The author also de-
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rived two new multiplicative update rules for PNMF based on the squared

Euclidean distance and the I-divergence, performed all the numerical ex-

periments, and wrote a major part of the paper.

In Publication V, the author extended the method proposed in Publica-

tion IV by generalizing the adaptive exponent scheme to Quadratic Non-

negative Matrix Factorization (QNMF). The author claimed that the pro-

posed method is general and thus can be applied to QNMF with a variety

of factorization forms and with the most commonly used approximation

error measures. In addition to PNMF, the author has applied the adap-

tive scheme to two other special cases of QNMF, i.e. bi-clustering and

estimation of hidden Markov chains. The extensive experimental results

show that the new method is effective in these applications on both syn-

thetic and real-world datasets. The author was responsible for both the

theoretical and empirical contributions, as well as writing the article.

Publication VI discusses a comprehensive initialization strategy for im-

proving cluster analysis. The author proposed a co-initialization method,

where a set of different clustering methods provide initializations for each

other to boost their clustering performance. The author also presented

an initialization hierarchy, from simple to comprehensive. The extensive

empirical results show that a higher-level initialization often gives bet-

ter clustering results, and the proposed method is especially effective for

advanced clustering methods such as the Data-Cluster-Data (DCD) de-

composition technique. The author was responsible for conducting all the

empirical analysis and writing a major part of the article.

Publication VII presents a novel gaze-and speech-enhanced Content-

Based Image Retrieval (CBIR) system. The author recruited 18 users to

evaluate the system in an image tagging task. Both the qualitative and

quantitative results show that using gaze and speech as relevance feed-

back can improve the accuracy and the speed of finding wrongly-tagged

images. The author was responsible for setting up the CBIR system, col-

lecting each user’s gaze and speech data, and recording the user’s experi-

ence feedback after each evaluation. The author also conducted the nu-

merical analysis and wrote a major part of the paper.

In Publication VIII, the author studied human’s emotions evoked by

viewing abstract art images within a classification framework. The au-

thor proposed to utilize generic low-level color, shape, and textual features

for describing people’s high-level emotions. The empirical results show

that people’s emotions can be predicted to certain extent using rather low-
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level image features. The author created the abstract image dataset, con-

ducted the online user survey participated by 20 test subjects, performed

the empirical analysis, and wrote the whole paper.

Publication IX extends Publication VIII by conducting affective classi-

fication and retrieval of abstract art images using the Multiple Kernel

Learning (MKL) framework. The experimental results on two abstract

image datasets demonstrate the advantage of the MKL framework for

image affect detection in terms of feature selection, classification perfor-

mance, and interpretation. The author performed all the numerical ex-

periments and wrote the whole paper.

1.4 Organization of the thesis

This thesis consists of an introductory part and nine publications. The

structure of the thesis is organized as follows:

After this introduction in Chapter 1, Chapter 2 gives a brief review on

the basic Nonnegative Matrix Factorization (NMF) method, algorithms,

constraints, and its applications. Chapter 3 summarizes well-known clus-

tering approaches. In Chapter 4, we first review existing clustering meth-

ods with NMF. We then review advances in NMF including Quadratic

Nonnegative Matrix Factorization (QNMF) and a structural matrix de-

composition technique based on Data-Cluster-Data (DCD) random walk.

A novel adaptive multiplicative update algorithm is presented for increas-

ing the convergence speed for QNMF. Chapter 5 presents a co-initialization

approach for improving the performance of clustering methods such as the

DCD. In Chapter 6, an experimental study is presented, in which we apply

the proposed approach to clustering emotional data. Finally in Chapter 7,

we conclude the thesis and discuss potential future directions.
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2. Nonnegative Matrix Factorization

Nonnegative Matrix Factorization (NMF) is a popular matrix decompo-

sition method with various applications in e.g. machine learning, data

mining, pattern recognition, and signal processing. The nonnegativity

constraints have been shown to result in parts-based representation of

the data, and such additive property can lead to the discovery of data’s

hidden structures that have meaningful interpretations. In this chapter,

we review the related work of NMF, including its algorithms, constraints,

and applications.

2.1 Introduction

In linear algebra, a Matrix Factorization (MF) is a decomposition of a ma-

trix into a product of matrices. Let the input data matrix X = (x1, . . . ,xn)

contain n data vectors of dimensionality m, W = (w1, . . . ,wr), and H =

(h1, . . . ,hn). To factorize matrix X into the product of matrices W and H,

one can write:

X = WH. (2.1)

In conventional MF, both the input matrix X and the factorized matrices

W and H can contain either positive or negative entries.

The idea of Nonnegative Matrix Factorization (NMF) originated from

the work by Paatero and Tapper in 1994 [142], in which they introduced a

factor analysis method called Positive Matrix Factorization (PMF). Given

an observed positive data matrix X, PMF solves the following weighted

factorization problem with nonnegativity constraints:

min
W≥0,H≥0

||A� (X−WH)||F , (2.2)

where ||·||F denotes Frobenius norm, � denotes Hadamard (element-wise)

product, A is the weighting matrix, and W, H are factor matrices that are

17



Nonnegative Matrix Factorization

constrained to be nonnegative. The authors in [142] proposed an alternat-

ing least squares (ALS) algorithm by minimizing Eq. 2.2 with respect to

one matrix while keeping the other constant.

Lee and Seung’s milestone work [109] has made NMF attract more re-

search attentions and gain more applications in various fields. Given a

nonnegative input data matrix X ∈ R
m×n
+ , NMF finds two nonnegative

matrix W ∈ R
m×r
+ and H ∈ R

r×n
+ such that

X ≈ WH. (2.3)

The rank r is often chosen so that r < min(m,n), An appropriate selec-

tion of the value r is critical in practice, but its choice is usually problem

dependent.

Let us write xi ≈ Whi =
∑r

k=1wk · hki. One can see that NMF ap-

proximates each nonnegative input data vector in X by an additive linear

combination of r nonnegative basis columns in W, with nonnegative co-

efficients in the corresponding column in H. Therefore the matrix factor

W is usually regarded as the basis matrix, the factor H as the coefficient

matrix, and the product term WH is called the compressed version of the

X or the approximating matrix of X. As illustrated in [109], the additive

nature of NMF can often generate parts-based data representation that

conveys physical meanings .

2.2 NMF algorithms

Many numerical algorithms have been developed to solve the NMF prob-

lem [36]. Generally, the algorithms can be divided into three major classes:

multiplicative update algorithms, projected gradient algorithms, and al-

ternating nonnegative least squares algorithms.

2.2.1 Multiplicative update algorithms

The multiplicative update algorithm originates from the work by Lee and

Seung [110], where they proposed to solve the NMF in Eq. 2.3 by minimiz-

ing two criteria: (1) the squared Euclidean (EU) distance DEU (X||WH) =∑
ij (Xij − (WH)ij)

2 and (2) the generalized Kullback-Leibler (KL) diver-

gence DKL(X||WH) =
∑

ij

(
Xij log

Xij

(WH)ij
−Xij + (WH)ij

)
. For example,

the update rules based on squared EU distance are given by

Wia ← Wia

(
XHT

)
ia

(WHHT )ia
, Haμ ← Haμ

(
W TX

)
aμ

(W TWH)aμ
. (2.4)
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Lee and Seung utilized the gradient descent to obtain the above multi-

plicative update algorithm by choosing a smart step size. For the imple-

mentation purpose (e.g, using Matlab), a small constant in each update

rule is added to the denominator to avoid division by zero.

NMF algorithms that use multiplicative updates are characterized in

Algorithm 1. ∇ denotes the gradient of NMF objective with respect to

W or H; ∇+ and ∇− are the positive and (unsigned) negative parts of ∇
respectively, i.e. ∇ = ∇+ −∇−; � denotes the element-wise division.

Algorithm 1 Basic Multiplicative Update Algorithm for NMF
Initialize W ≥ 0 as a m× r random matrix

Initialize H ≥ 0 as a r × n random matrix

repeat

W = W � (∇−W �∇+
W

)
H = H� (∇−H �∇+

H

)
until converged or the maximum number of iterations is reached

Recently, Yang and Oja [189] presented a unified principle for deriv-

ing NMF multiplicative update algorithms with theoretical monotonicity

guarantee for a large number of objectives under various divergence mea-

sures. Although Lee and Seung [110] claimed their algorithm converges

to a local minimum, many researchers (e.g. [66, 119]) later revealed that

their algorithm can only keep the non-increasing property of the objective.

Rigorous proof of convergence to stationary points still lacks in general.

Another issue of conventional multiplicative update algorithms is that

their convergence speed is relatively slow, compared with alternatives

such as the projected gradient algorithms and the alternating nonnega-

tive least squares algorithms discussed below. In [120], Lin demonstrated

that one of his proposed methods converges faster than the algorithm by

Lee and Seung [110]. Gonzalez and Zhang [66] accelerated Lee and Se-

ung’s algorithm by adding extra step-length parameters to rows of W and

columns of H. In Publication IX and Publication V, an adaptive exponen-

tial scheme was adopted instead of the constant one for speeding up the

convergence of multiplicative updates.

2.2.2 Projected gradient algorithms

The second class of NMF algorithms has update rules of the form given in

Algorithm 2. The step size parameters εW and εH are often problem de-

pendent, and are selected alone the negative gradient direction. In [83],
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Algorithm 2 Basic Projected Gradient Algorithm for NMF
Initialize W ≥ 0 as a m× r random matrix

Initialize H ≥ 0 as a r × n random matrix

Choose parameters εW and εH

repeat

W = W − εW �∇W

Set all negative elements of W to be 0

H = H− εH �∇H

Set all negative elements of H to be 0

until converged or the maximum number of iterations is reached

Hoyer set the initial step size values to be 1 and multiplied them by one-

half at each subsequent iteration. However, this additive setup can not

prevent the entries of the updated matrices W and H from getting neg-

ative values. A common practice used by many projected gradient algo-

rithms (see e.g. Hoyer [83], Chu et al. [34], and Pauca et al. [145] etc.) is a

simple projection step, where, after each update rule, the updated matri-

ces are projected to the nonnegative orthant by setting all negative values

to be zero.

The convergence of projected gradient algorithm depends on the choices

of step size parameters W and H. The extra step of nonnegativity projec-

tion makes the analysis even more difficult. In general, projected gradient

methods can not guarantee the monotonic decrease of objective function.

2.2.3 Alternating nonnegative least squares algorithms

Alternating Nonnegative Least Squares (ANLS) algorithms are the third

class of NMF algorithms. This class has a general update form described

in Algorithm 3, where a least squares step is followed by another least

squares step in an alternating manner. The advantage of ANLS algo-

rithms lies in the fact that, although the NMF problem of Eq. 2.3 is not

convex in both W and H, it is convex in either W or H. Therefore, one can

fix one matrix and solve for the other matrix using a simple least squares

method.

The alternating least squares algorithm was first used by Paatero and

Tapper [142] for minimizing the PMF problem of Eq. 2.2. To ensure the

nonnegativity, a truncation step is added after each least squares step to

project all negative elements of factorizing matrices to be 0. This simple

approach facilitates sparsity, and gives more flexibility than multiplica-
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Algorithm 3 Basic Alternating Nonnegative Least Squares (ANLS)

Algorithm for NMF
Initialize W ≥ 0 as a m× r random matrix

repeat

Solve for H using equation WTWH = WTX

Set all negative elements of H to be 0

Solve for W using equation HHTWT = HXT

Set all negative elements of W to be 0

until converged or the maximum number of iterations is reached

tive update algorithms because it allows the iterative process to escape

from a poor path.

For NMF based on Euclidean distance, the ANLS algorithms in general

have nice optimization properties and converge faster than the multiplica-

tive update approach [120]. However, the underlying distribution of least

square measurement is Gaussian, which is not suitable for handling data

with other types of distributions.

2.3 NMF with additional constraints or regularizations

For many real-world problems, the input X to be analyzed often has noise

or other data degradations inside. To alleviate this issue, researchers

have proposed combining various auxiliary constraints with NMF objec-

tives to enforce the agreement between the factorization results and the

expected physical interpretations. The forms of constraints are applica-

tion dependent, which can be characterized by extending the NMF objec-

tive of Eq. 2.3 as follows:

min
W≥0,H≥0

||X−WH)||2F + αJ1(W) + βJ2(H), (2.5)

where J1(W) and J2(H) are penalty terms regarded as auxiliary con-

straints; α and β are small regularization parameters that balance the

trade-off between the approximation error and the added constraints.

Smoothness constraints are often used to counteract the noise in data.

For example, Pauca et al. [145] presented an NMF algorithm by incorpo-

rating additional constraints as

J1(W) = ||W||2F and J2(H) = ||H||2F (2.6)

in order to penalize W and H solutions of large Frobenius norm and thus
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enforce the smoothness in both matrices.

Sparsity constraints are often used in situations where only a few fea-

tures are enough to represent data vectors and/or an emphasis on the ex-

traction of local rather than global features. Cichochi et al. [35] achieved

a sparse representation of data by setting

J1(W) =
∑
ij

Wij and J2(H) =
∑
jk

Hjk. (2.7)

Hoyer [83] proposed a sparseness criterion by leveraging the relationship

between the L1 and L2 norm:

sparseness(x) =

√
n− (

∑ |xi|)/
√∑

x2
i√

n− 1
, (2.8)

where x denotes a given vector with dimension n. For instance, the sparse-

ness criterion imposed on a m × k matrix W can be formulated as the

following penalty term:

J1(W) = (α||vec(W)||2 − ||vec(W)||1)2 , (2.9)

where α =
√
mk − (

√
mk − 1)α and vec(·) is an operator that transforms

a matrix into a vector by stacking its columns. The sparseness in W is

specified by setting α to a value between 0 and 1.

In addition to the smoothness and sparsity constraints, there are situ-

ations when certain prior knowledge about the application is known be-

forehand. In such cases, the prior information can be transformed to be

auxiliary constraints for helping to better achieve the desired results. A

good example is the semi-supervised NMF, which imposes the label in-

formation as constraints (see [113] for a recent survey). More examples

using the different constraint forms discussed above will be given in the

following NMF applications’ section.

2.4 Initialization

Most NMF objectives are not convex and are thus sensitive to the ini-

tialization of factor matrices W and H (see e.g. [1, 201, 101]). A good

initialization strategy can significantly relieve the convergence problem

of NMF algorithms. Here the term good refers to the initialization strat-

egy that leads to a rapid error reduction of an NMF objective with a fast

algorithmic convergence speed [18].

Among the literature, random initialization has been commonly used,

for instance in Lee and Seung’s work [109], where one needs to run an
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NMF algorithm several times with different initial matrices and picks

the best solution. However, choosing the initial matrices randomly often

gives a poor solution. Wild et al. [182] proposed a structured initializa-

tion approach for NMF, where they initialized the factor matrices using

the cluster centroids of the Spherical k-means clustering [42]. Boutsidis

et al. [18] described an initialization method based on two SVD processes

to speed up the approximation error reduction. Other SVD-based initial-

ization approaches include [108, 201, 101]. In Publication VI, we proposed

a comprehensive initialization strategy to relieve the problem, where sev-

eral algorithms provide initializations until convergence (see a detailed

discussion in Chapter 5). These alternatives all demonstrated better per-

formance than the random initialization approach.

2.5 Selected applications of NMF

2.5.1 Image processing

In the work by Lee and Seung [109], they demonstrated with a facial

image dataset that NMF can be used to obtain a set of bases that corre-

spond to the intuitive notion of facial parts such as eyes, nose, and mouth.

Since then, many NMF algorithms have been developed for image pro-

cessing tasks. It is argued that the nonnegativity of linear factorization is

particularly suitable for analyzing image libraries that consist of images

showing a composite object in many articulations and poses [109, 49]. The

nonnegativity constraints lead to a parts-based representation as they al-

low only additive, not subtractive, combinations of the original data. More

specifically, since ||X − WH||2F =
∑

i(xi − Whi)
2 =

∑
i(xi −

∑
k wkhki)

2,

each column xi of the nonnegative input X now represents a m dimen-

sional (column-wise aligned) image vector; each column wk ∈ R
m is a

basis element that corresponds a facial part (eyes or nose etc.); each col-

umn hi ∈ R
r is considered as a coefficient array representing the i-th im-

age in the basis elements. Therefore, the NMF model can be interpreted

that each image represented as a vector xi is obtained by superimposing

a collection of standard parts wk with respective weighting coefficients hi.

The resulting parts (pixel values) and the coefficients are all nonnegative.

Figure 2.1 shows an illustrative example.

Since the additive parts learned by original NMF are not necessarily
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Figure 2.1. The above figure is taken from Lee and Seung’s paper [109]. The training
samples are from MIT-CBCL [2] image dataset that contains 2, 429 facial im-
ages, each consisting of 19× 19 pixels. The basis vectors correspond to facial
parts such as eyes, mouths, and noses, etc. NMF seeks to approximate an
original input image by a linear combination of the (learned) basis weighted
by their corresponding (learned) coefficients.

localized, several NMF methods have been proposed to enhance the local-

ization. For example, Li et al. [116, 53] combined NMF with localization

constraints for learning spatially localized representation of facial images.

Guillamet et al. [70] presented a weighted NMF (WNMF) algorithm to

reduce basis redundancies with a factorization form XQ ≈ WHQ, where

the weighting matrix Q is learned from the training data (newspaper im-

ages). In [71], Guillamet and co-authors introduced a probabilistic frame-

work to compare PCA, NMF, and WNMF in the context of image patch

classification. Hoyer [83] incorporated sparseness constraints on matri-

ces W and H for improving the parts-based decompositions of facial im-

ages and natural image patches. Wang et al. [181] proposed a subspace

method called Fisher NMF that encodes within-class and between-class

scattering information for face recognition. Yuan and Oja [194] presented

a projective NMF method with a factorization form X ≈ WWTX to in-

duce a stronger sparseness on basis W for facial image compression and
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feature extraction. NMF has also been used for image hashing [132, 166]

and image watermarking [140, 124]. More works of NMF related to image

processing can be found, e.g., in [195, 143, 163, 77, 26, 67, 121].

2.5.2 Text mining

Besides the applications to images, Lee and Seung [109] utilized NMF for

the semantic analysis of textual documents (articles in the encyclopedia)

as well. For this application, X contains a corpus of documents, where

Xij is the number of times the i-th word in the vocabulary appears in

the j-th document; each column wk corresponds to a semantic feature or

topic; each column hi is a projection array for approximating the i-th docu-

ment in X. In each semantic feature, NMF groups together semantically

related words. Each document is represented by additively combining

several of these features.

NMF gives a natural choice for document clustering, since the coefficient

matrix H can be directly used to determine the cluster membership of

each document, i.e., assigning document xi to cluster k if k = argmax
k

hki,

for k = 1, . . . , r. For example, Xu et al. [186] showed with a document clus-

tering task that NMF surpasses the latent semantic indexing and spectral

clustering methods in terms of reliability and clustering accuracy. Pauca

and co-authors [146, 157] conducted text mining by using a hybrid NMF

method, where W is updated with gradient descent approach whereas H

is updated with constrained least squares. Berry et al. [11] applied NMF

for email surveillance. Ding et al. [48] proposed a 3-factor NMF having

the form X ≈ FSGT with orthogonality constraints on both F and G.

They showed that the 3-factor model can cluster words and documents

simultaneously. A semi-supervised NMF model was proposed in [113].

Online NMF methods can be found in [176, 68]. Other related works us-

ing NMF for text mining include [117, 175, 47, 114, 174].

2.5.3 Music analysis

Another successful application area of NMF is sound source separation.

In real-world audio signals, multiple sound sources are often mixed to-

gether within a single channel, and one needs to separate the mixed

sounds for a better analysis and manipulation of audio data. Usually the

separation is done by using prior knowledge of the sources, which results

in highly complex systems. In contrast, NMF does the separation by find-
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ing a nonnegative decomposition of the input signal xt ≈ ∑r
k=1wk · hkt,

without using any other source-specific prior information than the non-

negativity. Each source is modeled as a sum of one or more components.

The term component refers to a basis wk and its time-varying gain hkt for

t = 1, . . . , T . The input xt denotes a magnitude or power spectrum vector

in frame t, with T being the number of frames. In the case of music sig-

nals, each component usually represents a musically meaningful entity or

parts of it (e.g., the sounds produced by a drum or piano).

Smaragdis and Brown [161] applied NMF for analyzing polyphonic mu-

sic passages by following the basic NMF algorithms presented in [110].

Later, Smaragdis [160] presented a deconvolution version of NMF for ex-

tracting multiple sound sources produced by drums. Virtanen [170] com-

bined NMF with temporal continuity and sparseness criteria for separat-

ing sound sources in single-channel music signals. Févotte et al. [54]

applied NMF with Itakura-Saito (IS) divergence for piano music analy-

sis, where they experimentally show that the scale invariance property

of IS divergence is advantageous in the estimation of low-power com-

ponents, such as note attacks. The authors in [12] presented the con-

strained NMF within a Bayesian Framework for polyphonic piano music

transcription. Other works that use NMF for sound source separation

include [80, 155, 171, 141, 81].

2.5.4 Computational biology

NMF has recently been utilized for the analysis and interpretation of bi-

ological data. NMF as an unsupervised method is particular useful when

there is no prior knowledge of the expected gene expression patterns for

a given set of genes. In this context, X denotes the gene expression data

matrix that consists of observations on m genes from n samples; each col-

umn wk defines a meta-gene; each column hi represents the meta-gene

expression pattern of the corresponding sample in X.

A large amount of works focus on using NMF in the area of molecular

pattern discovery, especially for gene and protein expression microarray

studies. For instance, Kim and Tidor [99] applied NMF to cluster genes

and predict functional cellular relationships in yeast with gene expression

data. Brunet et al. [24] utilized NMF to detect cancer-related microarray

data. Sparse versions of NMF were presented by Gao and Church [60],

Kim and Park [98], for cancer-class discovery and gene expression data

analysis. Pascual-Montano et al. [144] and Carmona-Saez et al. [27] con-
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ducted two-way clustering of gene expression profiles using non-smooth

NMF [143]. NMF has also used for applications such as protein fold recog-

nition [137], cross-platform and cross-species characterization [165], and

gene functional characterization [147, 169]. Other works of using NMF

for computational biology include [177, 93, 31, 100, 61, 148, 178].

2.5.5 Other applications

In addition to the above applications, NMF has been used in many other

areas, including Electroencephalogram (EEG) signal classification [32,

112, 111], financial data analysis [50, 150], remote sensing and object

identification [145, 130, 90], as well as color and vision research [25].
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3. Clustering

Clustering, or cluster analysis, plays an essential role in machine learn-

ing and data mining. Clustering aims to group data points according to

certain similarity criterion, without knowing the data labeling informa-

tion. This chapter gives an introduction on cluster analysis and provides

a brief review on the well-known clustering methods. In the next chapter,

we will go into details on using NMF for cluster analysis.

3.1 Introduction

Clustering is a combinatorial problems whose aim is to find the cluster as-

signment of data that optimizes certain objective. The aim of clustering is

to group a set of objects in such a way that the objects in the same cluster

are more similar to each other than to the objects in other clusters, ac-

cording to a particular objective. Clustering belongs to the unsupervised

learning scope that involves unlabeled data only, which makes it a more

difficult and challenging problem than classification because no labeled

data or ground truth can be used for training. Cluster analysis is preva-

lent in many scientific fields with a variety of applications. For example,

image segmentation, an important research area of computer vision, can

be formulated as a clustering problem (e.g. Shi and Malik [159]). Doc-

uments can be grouped by topics for efficient information retrieval (e.g.

Hofmann [82]). Clustering techniques are also used for volatility analysis

in financial markets (e.g. Lux and Marchesi [126]) and genome analysis

in bioinformatics (e.g. Ben-Dor et al. [10]).

Many clustering algorithms have been published in the literature. These

algorithms can be divided into two groups: hierarchical and partitioning.

Hierarchical clustering algorithms recursively find nested clusters accord-

ing to certain hierarchy, whereas partitioning clustering algorithms locate
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all the clusters simultaneously without imposing any hierarchical struc-

ture. In the following section, we give a brief overview on some of the

major clustering approaches.

3.2 Major clustering approaches

3.2.1 Hierarchical clustering

Hierarchical clustering organizes data into a cluster hierarchy or a binary

tree known as dendrogram, according to the proximity matrix. The roof

node of the dendrogram represents the whole dataset and each leaf node

is regarded as a data object. Hierarchical clustering methods can be fur-

ther divided into agglomerative (bottom-up) mode and divisive (top-down)

mode. An agglomerative clustering starts with one-point (singleton) clus-

ters and recursively merges two or more of the most similar clusters to

form a cluster hierarchy, whereas a divisive clustering starts with a single

cluster containing all data points and recursively splits the most appropri-

ate cluster into smaller clusters. The process continues until the stopping

criterion (e.g. the requested number of clusters) is achieved. To split or

merge clusters, a linkage metric needs to be defined for measuring the dis-

tance between two clusters. The most popular metrics are single-linkage,

complete linkage, and average linkage (see surveys in [135] and [40]), all

of which can be derived from the Lance-Williams updating formula [106].

Typical agglomerative clustering algorithms include CURE (Clustering

Using Representatives) by Guha et al. [69], CHAMELEON by Karypis et

al. [94], and BIRCH (Balanced Iterative Reduction and Clustering using

Hierarchies) by Zhang et al. [199]. CURE represents a cluster by a fixed

set of points scattered around it, which makes it possible to handle clus-

ters of arbitrary shapes. CHAMELEON uses the connectivity graph G

sparsified by a K-nearest neighbor model: only the edges of K most simi-

lar points to any given point are preserved, the rest are dropped. BIRCH

is designed for clustering very large databases, where it represents data

by its statistics summaries instead of using original data features. For

divisive clustering, a good example is the Principle Direction Divisive Par-

titioning) algorithm presented by Boley [16], in which the author applied

SVD to hierarchical divisive clustering of document collections.

Hierarchical clustering facilitates data exploration on different levels of
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granularity. However, most of the hierarchical algorithms do not recon-

sider clusters once constructed, which means that they are not capable of

correcting previous improper cluster assignments.

3.2.2 Partitioning relocation clustering

Compared with hierarchical clustering, partitioning clustering finds all

the clusters simultaneously and imposes no hierarchical structure. Per-

haps the most well-known and the simplest partitioning algorithm is k-

means presented by Lloyd [123]. The k-mean algorithm finds a parti-

tion by minimizing the distance between the empirical mean of a cluster

and the points inside the cluster. It consists of two-step major iterations:

(1) re-assign all the points to their nearest centroids, and (2) re-compute

centroids of newly assembled clusters. The iterations continues until a

stopping criterion (e.g. no changes on cluster assignments) is achieved.

Despite of the popularity, the k-means algorithm can not choose the best

number of clusters K by itself. Also, k-means only facilitates the detection

of spherical shaped clusters due to its usage of Euclidean distance in most

cases, which makes it rather sensitive to initializations and outliers.

Many extensions of k-means have been developed, such as ISODATA by

Ball and Hall [7] and FORGY by Forgy [57]. Other representative exam-

ples include fuzzy c-means by Dunn [51], kernel k-means by Scholkopf et

al. [156], and k-medoid by Kaufman and Rousseeuw [95]. Fuzzy c-means

assigns each data point a membership of multiple clusters, i.e., making a

“soft" assignment rather than a “hard" assignment of k-means. Kernel k-

means leverages the power of kernels to detect arbitrary shaped clusters.

In k-medoid methods, a cluster is represented by one of its points instead

of the geometric centroid, which makes it robust against outliers.

Unlike traditional hierarchical clustering methods, in which clusters are

revisited after being constructed, relocation clustering methods can grad-

ually improve the intermediate results to achieve high quality clusters.

3.2.3 Generative models

In clustering based on generative models, each data object is assumed to

be independently generated from a mixture model of several probability

distributions (see McLachlan and Basford [129]). If the distributions are

known, finding the clusters of a given dataset is equivalent to estimat-

ing the parameters of several underlying models. Multivariate Gaussian
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mixture model is often utilized due to its analytical tractability, where the

Maximum Likelihood (ML) estimation is commonly used for estimating

parameters. However, the closed-form solution of maximizing the likeli-

hood does not exist for mixture models. Dempster et al. [41] proposed the

Expectation-Maximization (EM) algorithm, which is the most popular ap-

proach for approximating the ML estimates. EM iterates two steps: the

E-step computes the expectation of the complete data log-likelihood, and

the M-step selects a parameter that maximizes the log-likelihood. The

process continues until the log-likelihood converges. An important obser-

vation by Celeux and Govaert [29] has shown that the classification EM

algorithm under a spherical Gaussian mixture assumption is equivalent

to the classical k-means algorithm. Therefore, EM is sensitive to initial

parameter selection and is slow to converge. Detailed descriptions regard-

ing EM algorithm and extensions can be found in [128].

Hofmann [82] proposed a clustering method named Probabilistic Latent

Semantic Indexing (PLSI) based on a statistical latent class model. PLSI

was further developed into a more comprehensive model called Latent

Dirichlet Allocation (LDA) by Blei et al. [15], where a Bayesian treatment

is applied to improve the mixture models for data clustering. In Publi-

cation II, we presented a pairwise clustering algorithm by generalizing

PLSI to t−exponential family based on a criterion called t−divergence.

Clustering based on generative models provides an easy and straight-

forward interpretation on cluster system.

3.2.4 Graph-based partitioning

Graph-based partitioning has become an active research field in recent

years, thanks to the concepts and properties of graph theories. Let G =

(V,E) denote a weighted graph, where the nodes V represent the data

points and the edges E reflect the proximities between each pair of data

points. Early works (e.g. [184]) concentrate on finding the minimum cut

of a graph, that is, to partition the nodes V into two subsets A and B such

that the cut size, defined as the sum of the weights assigned to the edges

connecting between nodes in A and B, is minimized. However, methods

based on the minimum cut often result in un-balanced data clusters.

Hagen and Kahng [72] proposed the ratio cut algorithm for balancing

the cluster size, i.e., the number of data points in a cluster. Shi and Malik

[159] presented the normalized cut algorithm, which measures both the

total dissimilarity between the different groups and the total similarity
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within the groups. A multi-class version was later proposed by Yu and

Shi [193]. Ng et al. [136] presented another variant by deriving data rep-

resentation from the normalized eigenvectors of a kernel matrix, whereas

Belkin and Niyogi [8] constructed data representation based on the eigen-

vectors of a graph Laplacian.

Graph-based partitioning based on (generalized) eigen decomposition of

a matrix is simple to implement and can be solved efficiently by standard

linear algebra methods. The weighted or similarity graph can be eas-

ily computed no matter if the data is numerical or categorical. An open

problem for graph partitioning methods is: how to compute the similarity

graph or how to select the similarity function (see related discussions by

Luxburg [172]).

3.2.5 Large-scale and high-dimensional data clustering

Many techniques have been developed for clustering large-scale databases.

These techniques can be divided into: incremental clustering, data squash-

ing, and data sampling. Incremental clustering handles one data point at

a time and then discards it, which is in contrast to most clustering al-

gorithms that require multiple passes over data points before identifying

the cluster centroids. Typical examples include the hierarchical clustering

algorithm COBWEB proposed by Fisher [55], and the scaling clustering

algorithms proposed by Bradley et al. [22]. Data squashing techniques

scan data to compute certain data summaries (sufficient statistics) that

are then used instead of the original data for clustering. An algorithm

with high impact is BIRCH [199]. Data sampling methods subsample a

large dataset selectively, and perform clustering over the smaller set. The

resulting information is later transferred to the larger dataset. A typical

example is CURE [69].

The term curse of dimensionality [9] is often used to describe the prob-

lems caused by high dimensional spaces. It is theoretically proved that

the distance between the nearest points becomes indistinguishable from

the distance to the majority of points when the dimensionality is high

enough [13]. Therefore dimensionality reduction is an important proce-

dure in cluster analysis to keep the proximity measures valid. Principal

Component Analysis (PCA) [91] is a popular approach for reducing the di-

mension of multivariate data. Other typical approaches include projection

pursuit [84], multidimensional scaling (MDS) [17], locally linear embed-

ding (LLE) [152, 8], and semi-supervised dimensionality reduction [196].
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A survey on dimension reduction techniques is given in [56].

3.2.6 Other clustering techniques

Neural networks-based clustering finds clusters based on Aritificial Neu-

ral Networks (ANN). The most typical method is Self-Organizing Maps

(SOM) or Self-Organizing Feature Maps (SOFM), proposed by Kohonen

[102]. SOM projects high-dimensional input data points onto a low-

dimensional (usualy 2-dimensional) lattice structure while preserving the

topological properties of the input space, which makes SOM become one

of the few clustering methods that can be used as a helpful tool for visual-

izing high-dimensional data. One can see Kohonen’s book [103] for more

details on SOM and various variants. In addition to SOM, other ANN

methods, such as Adaptive Resonance Theory (ART) presented by Car-

penter et al. [28], have received much research attention as well. Further

details related to ANN can be found in the tutorial by Jain et al. [89].

Nature-inspired clustering, or evolutionary techniques, is characterized

by Genetic Algorithms (GA) (see Goldberg [64] for details). A set of evolu-

tionary operators, usually the selection, crossover, and mutation, are iter-

atively applied to the population until the objective, called fitness func-

tion, satisfies the stopping condition. Hall et al. [73] proposed a Ge-

netically Guided Algorithm (GGA) that can be considered as a general

scheme for center-based (hard or fuzzy) clustering problems. Evolution-

ary techniques rely on user-defined parameters and have high computa-

tional complexity, which limits their applications in large-scale datasets.

Some researches combine genetic techniques with other clustering meth-

ods for better clustering performance. For instance, Krishna and Murty

[104] proposed a hybrid method called genetic k-means algorithm (GKA)

that can converge to the best known optimum corresponding to the given

data.

3.3 Evaluation measures

Effective evaluation measures are crucial for quantifying and comparing

the performance of clustering methods. Generally there are three differ-

ent categories of evaluation criteria: internal, relative, and external [88].

Internal criteria examine the resulting clusters directly from the original

input data. Relative criteria compare several clustering structures, which
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can be produced by different algorithms, and decide which one may best

characterize the data to certain extent. External criteria has been com-

monly used; they measure the clustering performance by using the known

information (often referred to as ground truth). Two widely used external

criteria are

• Purity, (e.g. [48, 190]), defined as

purity =
1

n

r∑
k=1

max
1≤l≤q

nl
k,

where nl
k is the number of vertices in the partition k that belong to

the ground-truth class l. Purity is easy to understand, as it can be in-

terpreted in a similar way as the classification accuracy in supervised

learning. However, purity has a drawback in that it tends to emphasize

the large clusters.

• Normalized Mutual Information [164], defined as

NMI =

∑K
i=1

∑K′
j=1 ni,j log

(
ni,jn
nimj

)
√∑K

i=1 ni log
(
ni
n

)∑K′
j=1mj log

(mj

n

) ,
where K and K ′ respectively denote the number of clusters and classes;

ni,j is the number of data points agreed by cluster i and class j; ni and

mj denote the number of data points in cluster i and class j respectively;

and n is the total number of data points in the dataset. NMI examines

the quality of clusters from an information-theoretic perspective. Com-

pared with purity, NMI tends to be less affected by the cluster sizes due

to the normalization step given by its denominator, but it is not that

intuitive as purity for people to interpret.

For a given clustering structure of the data, both purity and NMI give a

value between 0 and 1, where a larger value in general indicates a bet-

ter clustering performance. Other typical external criteria include, for

instance, Rand Index [149] and Adjusted Rand Index [85].
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4. Nonnegative matrix decomposition
for clustering

NMF can often produce parts-based data representation. If we transpose

the data matrix, the grouping can appear over samples, instead of fea-

tures. This is a desired property for cluster analysis. In this chapter, we

review two recent nonnegative matrix decomposition methods. One is a

new class of NMF methods called Quadratic Nonnegative Matrix Factor-

ization (QNMF). The other one is a matrix decomposition method based

on Data-Cluster-Data (DCD) random walk.

4.1 Early NMF methods for clustering

Assume there are n samples to be grouped into r disjoint clusters, the

cluster assignment can be represented by a binary indicator matrix W ∈
{0, 1}n×r, where Wik = 1 if the i-th sample is assigned to the k-th cluster

and 0 otherwise.

Many existing clustering methods employ a non-convex objective func-

tion over the cluster indicator matrix W, and directly optimizing W is dif-

ficult as the solution space is discrete, which usually leads to an NP-hard

problem. Therefore, a relaxation to “soft" clustering is often required to

obtain computationally efficient solutions.

NMF relaxes clustering problems by nonnegative low-rank approxima-

tion, in which the cluster indicator matrix W can be operated within a

continuous space to ease the optimization process.

4.1.1 Related work

Originally, NMF was applied to analyzing vectorial data, i.e. extracting

features. Later, NMF was extended to take graph or pairwise similarities

as input in order to group samples (see [117]). An early example can be

found in [186], where NMF was applied to clustering textual documents.
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Actually, the clustering property of NMF was not well discussed in Lee

and Seung’s works [109, 110]. Ding et al. have shown that the basic NMF

is equivalent to the classical k-means clustering under certain constraints

[46], and that some NMF extensions with least square error measure are

equivalent to kernel k-means and spectral clustering [44].

In the following, we briefly review some recent NMF-based clustering

methods. In the subsequent sections, we will present our two methods

based on nonnegative matrix decomposition.

• Orthogonal tri-factor NMF (ONMF), proposed by Ding et al. [48]. Given

the nonnegative input matrix X ∈ R
m×n
+ , ONMF has a factorization

form of X ≈ WSH, where W ∈ R
m×r
+ , S ∈ R

r×l
+ , H ∈ R

l×n
+ , and solves

the following optimization problem:

minimize
W≥0,S≥0,H≥0

||X−WSH||2F , subject to WTW = I, HHT = I. (4.1)

The tri-factorization form of ONMF makes it capable of grouping rows

and columns of the input data matrix simultaneously. An important

special case is that the input X contains a matrix of pairwise similari-

ties, i.e., X = XT = A. In this case, W = HT ∈ R
n×r
+ , S ∈ R

r×r
+ , and the

optimization problem becomes:

minimize
W≥0,S≥0

||A−WSWT ||2F , subject to WTW = I. (4.2)

• Nonnegative Spectral Clustering (NSC), proposed by Ding et al. [45].

NSC solves the normalized cut [159] by using a multiplicative update

algorithm. Let W ∈ R
n×r
+ be the cluster indicator matrix. NSC solves

the following optimization problem:

minimize
WTDW=I, W≥0

−trace(WTAW), (4.3)

where D = diag(d1, . . . , dn) with di =
∑n

j=1Ai,j . Unlike the normalized

cut, where the solutions (eigenvectors) contain mixed signs, the nonneg-

ative constraint on W makes the cluster assignment easy to interpret.

• Projective NMF (PNMF), proposed by Yuan and Oja [194]. PNMF tries

to find a nonnegative projection matrix P ∈ R
m×m
+ of rank r such that

X ≈ PX = WWTX, where W ∈ R
m×r
+ . This equals to solve the follow-

ing optimization problem:

minimize
W≥0

||X−WWTX||. (4.4)
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Compared with the basic NMF [109] where X ≈ WH, PNMF replaces

the factorizing matrix H with WTX, which brings a sparser factorized

matrix desired for cluster analysis. The kernelized version of PNMF is

discussed by Yang and Oja [188], where the term XTX is replaced by

the similarity matrix A.

• Semi-NMF and Convex-NMF, proposed by Ding et al. [46]. Both Semi-

NMF and Convex-NMF allow the input data matrix X to have mixed

signs, which extends the applicability of NMF methods. Semi-NMF di-

rectly connects to the K-means clustering with the factorization form

X± ≈ W±H, where X± is the data matrix, W± (∈ R
m×r) contains the

cluster centroids, and H (∈ R
r×n
+ ) contains the cluster membership indi-

cators. Only H is constrained to be nonnegative. Convex-NMF further

restricts the columns of W to be convex combinations of data points

(columns) in X and considers the factorization form X± ≈ X±WH,

where W ∈ R
m×r
+ and H ∈ R

r×n
+ . The term X±W can be interpreted as

weighted cluster centroids. Note that both W and H are constrained to

be nonnegative. The authors also discussed kernel Convex-NMF, where

a special case is PNMF [194].

• Left Stochastic Matrix Decomposition (LSD), proposed by Arora et al.

[3]. LSD is a probabilistic clustering method. Given a similarity matrix

A, it estimates a scaling factor c∗ and a cluster probability matrix W∗

to solve the following optimization problem:

minimize
c∈R+

{
minimize

W≥0
||cA−WWT ||2F , subject to

r∑
k=1

Wik = 1

}
, (4.5)

where W ∈ R
n×r
+ . Note that minimizing the scaling factor c∗ is given in

a closed form and does not depend on a particular solution W∗, which

means that only W needs to be updated. The authors also developed a

rotation-based algorithm to compute the objective of Eq. 4.5.

In [133], Mørup et al. tackled the matrix factorization problem with

Archetypal Analysis (AA). One advantage of AA is that its solution or

factorization result is unique. More recent works concerning their work

on AA can be found in [134, 167].
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4.2 Quadratic nonnegative matrix factorization

Given a nonnegative input matrix X ∈ R
m×n
+ , conventional NMF and its

variants find a number of matrices W(1), . . . ,W(Q), some of which are

constrained to be nonnegative, so that the distance between X and its ap-

proximation matrix X̂ =
∏Q

q=1W
(q) can be minimized. Most existing NMF

methods are linear in that each factorizing matrix W(q) appears only once

in the approximation. In [191], Yang and Oja introduced a higher-order

class of NMF methods called Quadratic Nonnegative Matrix Factoriza-

tion (QNMF), where some of the factorizing matrices appear twice in the

approximation, or formally, W(s) = W(t)T for a series of non-overlapping

pairs (s, t) with 1 ≤ s < t ≤ Q.

There are many important real-world problems that employ quadratic

factorization forms. One example is graph matching, when presented

as a matrix factorization problem [45]: given two adjacency matrices A

and B, graph matching aims to find a permutation matrix W so that

A = WBWT . If such matrix W exists, then matrices A and B are con-

sidered to be isomorphic. This is actually an NMF problem when min-

imizing the distance between A and WBWT with respect to W, under

certain constraints. Note that the approximation here is quadratic in W

since the matrix W occurs twice. Another example is clustering. As-

sume an input data matrix X with n columns to be grouped into r dis-

joint clusters, the classical k-means objective function can be written as

J1 = trace(XTX) − trace(UTXTXU) [43], where U ∈ R
n×m is the bi-

nary cluster indicator matrix. It has been shown in [188] that minimizing

the objective of Projective NMF (PNMF) [194] J2 = ||XT − WWTXT ||2F
achieves the same solution except for the binary constraint. In this exam-

ple, the factorization is also quadratic in W.

4.2.1 Factorization form

Following [191], we can write the general approximating factorization

form of QNMF as:

X̂ = AWBWTC, (4.6)

where we consider only one doubly occurring matrix W first. Note that

matrix A or B or C can be the products of any number of linearly ap-

pearing matrices. Here we focus on optimizing the matrix W, since the

optimization of other linearly occurring matrices can be done by solving

each matrix independently using standard NMF methods such as [110].
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The factorization form of Eq. 4.6 is general such that it accommodates

several QNMF objectives proposed earlier:

• when A = B = I and C = X, the factorization becomes PNMF, i.e.,

X̂ = WWTX, which is also called Clustering-NMF as a constrained

case of Convex-NMF [46].

• when X is a square matrix and A = B = C = I, the factorization

reduces to the Symmetric Nonnegative Matrix Factorization (SNMF)

X̂ = WWT as a special case of 3-factor NMF [48].

• when X and B are the same-size square matrices and A = C = I, the

factorization has the form X̂ = WBWT . With the orthogonal constraint

WWT = I, this corresponds to learning a permutation matrix for solv-

ing, for example, the graph matching problem [45]. With the constraint

that each column of W sums to be 1, the learned W serves for estimat-

ing parameters of hidden Markov chains (see Section 5.3 of [191]).

In addition to one doubly occurring matrix W, there can be cases where

two or more doubly appearing matrices exist as well. For instance, when

A = CT = U, the factorization 4.6 becomes X̂ = UWBWTUT ; when

A = B = I and C = XUUT , it gives X̂ = WWTXUUT , and the solution

of the latter QNMF problem can be used for solving the bi-clustering or co-

clustering problem, i.e., to group the rows and columns of data matrix X

simultaneously. In such cases we can utilize an alternative optimization

approach over each doubly appearing matrix.

It is worth mentioning that the quadratic NMF problems can not be

considered as special cases of linear NMF. In linear NMF, the factorizing

matrices are all different and each of them can be optimized while keep-

ing the others unchanged. However, in quadratic NMF, the optimization

is more complex in that there are at least two matrices changing at the

same time, leading to higher-order objectives. For example, the objective

of linear NMF [110] with Euclidean distance ||X − WH||2F is quadratic

with respect to W and H, whereas the objective of PNMF ||X−WWTX||2F
is quartic with respect to W. Mathematically, minimizing a fourth-order

objective as such is more difficult than minimizing a quadratic function.
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4.2.2 Multiplicative update algorithms

Multiplicative update rules have been widely adopted for optimizing NMF

objectives because they are easy to implement and to use. Multiplicative

algorithms can automatically maintain the nonnegativity constraints and

require no user-specified parameters during the iterative updating stage.

Similar to linear NMF, there exists a multiplicative update algorithm for a

wide variety of quadratic NMF that theoretically guarantees convergence

or the monotonic decrease of the objective function in each iteration, if the

QNMF objective can be written as a generalized polynomial form [189].

In the rest, we recapitulate the essence of multiplicative algorithms for

QNMF. We write X̃ = AW̃BW̃TC for denoting the approximation that

contains the variable X̃, and X̂ = AWBWTC for the current estimate.

Following the approach by Lee and Seung [110], the convergence proof

of the QNMF objective is carried out by minimizing a certain auxiliary

upper-bounding function. First we define the objective of QNMF as:

J (W)
def
== D(X||AWBWTC), (4.7)

where D() is a divergence measure given in the Appendix. G(W,U) is

defined as an auxiliary function if it satisfies:

G(W,U) ≥ J (W), and G(W,W) = J (W). (4.8)

Let us define

Wnew = argmin
W̃

G(W̃,W). (4.9)

By construction, we have

J (W) = G(W,W) ≥ G(Wnew,W) ≥ G(Wnew,Wnew) = J (Wnew),

(4.10)

where the first inequality results from minimization and the second from

the upper bound. By iteratively applying the update rule of Eq. 4.9, one

can obtain a monotonically decreasing sequence of J to guarantee the

convergence of the objective function. Further, by setting ∂G

∂W̃
= 0, one can

have a closed-form iterative update rule that usually takes the form

Wnew
ik = Wik

(∇−ik
∇+

ik

)η

, (4.11)

where the terms ∇+ and ∇− denote respectively the sums of positive

and unsigned negative parts of ∇ = ∂J (X̃)/∂X̃|
X̃=W

(i.e. ∇ = ∇+ −
∇−). The exponent η is determined by the specific NMF objective and the
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Majorization-Minimization optimization procedure, and it guarantees a

monotonic decrease of approximation errors (see more details in [189]).

For QNMF, the update rule can be unified by the following equation

[189, 191]:

Wnew
ik = Wik

[(
ATQCTWBT + CQTAWB

)
ik

(ATPCTWBT + CP TAWB)ik
· θ
]η

, (4.12)

where P,Q, θ, and η are specified in Table 4.1. For example, the update

rule for the QNMF problem X ≈ WBWT based on the (squared) Eu-

clidean distance (i.e. β → 1) takes the form

Wnew
ik = Wik

[ (
XWBT +XTWB

)
ik

(WBW TWBT +WBTW TWB)ik

]1/4
. (4.13)

Table 4.1. Notations in the multiplicative update rules of QNMF examples, where X̂ =

AWBWTC.

Divergence Pij Qij θ η

α-Divergence 1 Xα
ijX̂

−α
ij 1 1/(2α) for α > 1

1/2 for 0 < α < 1

1/(2α− 2) for α < 0

β-Divergence X̂β
ij XijX̂

β−1
ij 1 1/(2 + 2β) for β > 0

1/(2− 2β) for β < 0

γ-Divergence X̂γ
ij XijX̂

γ−1
ij

∑
ab X̂

γ+1
ab∑

ab X̂
γ
ab

1/(2 + 2γ) for γ > 0

1/(2− 2γ) for γ < 0

Rényi divergence 1 Xr
ijX̂

−r
ij

∑
ab X̂ab∑

abX
r
abX̂

1−r
ab

1/(2α) for r > 1

1/2 for 0 < r < 1

4.2.3 Adaptive multiplicative updates for QNMF

The original QNMF multiplicative update rules in Eq. 4.12 have a fixed

form, which means the exponent η does not change during all iterations.

Despite the simplicity, the constant exponent corresponds to overly con-

servative learning steps and thus often leads to mediocre convergence

speed [62, 154].

In Publication V, we proposed an adaptive multiplicative update scheme

for QNMF algorithms to overcome this drawback: we replace the constant

43



Nonnegative matrix decomposition for clustering

Algorithm 4 Multiplicative Updates with Adaptive Exponent for QNMF
Usage: W ← FastQNMF(X, η, μ).

Initialize W; ρ ← η.

repeat

Uik ← Wik

[(
ATQCTWBT + CQTAWB

)
ik

(ATPCTWBT + CP TAWB)ik
· θ
]ρ

if D(X||AUBUTC) < D(X||AWBWTC) then

W ← U

ρ ← ρ+ μ

else

ρ ← η

end if

until convergent conditions are satisfied

exponent in multiplicative update rules by a variable one, which acceler-

ates the optimization while still maintaining the monotonic decrease of

QNMF objective function. In particular, the proposed approach increases

the exponent steadily if the new objective is smaller than the old one and

otherwise shrinks back to the safe choice, η. We have empirically used

η = 0.1 in all related experiments in this work. Algorithm 4 gives the

pseudo-code for implementing the adaptive QNMF multiplicative update

algorithm, and its monotonicity proof is straightforward by following the

theorem proof in [191]:

Proposition 1. D(X||AWBWTC) monotonically decreases after each of

the iterations in Algorithm 4.

Proof. If D(X||AUBUTC) < D(X||AWBWTC), then after W is replaced

by U and the exponent ρ is replaced by ρ+μ, D(X||AWBWTC) monoton-

ically decreases; otherwise, W remains unchanged and the exponent ρ re-

turns to the initial value η. Thus D(X||AUBUTC) < D(X||AWBWTC),

which is guaranteed by Theorem 1 in [191].

A similar adaptive scheme was presented in our earlier work of Publica-

tion IV for accelerating the convergence speed of Projective NMF (PNMF)

objective. PNMF is a special case of QNMF, and Publication V has gener-

alized the adaptive multiplicative update algorithm for a wide variety of

QNMF applications.

Here we show the performance of the adaptive multiplicative update

algorithm using several real-world datasets. The statistics of the datasets

are summarized in Table 4.2. These datasets were obtained from the UCI
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Table 4.2. Datasets used in the PNMF experiments.

Datasets Dimensions #Samples

wine 13 178

mfeat 292 2000

orl 10304 400

feret 1024 2409

swimmer 1024 256

cisi 1460 5609

cran 1398 4612

med 1033 5831

repository1, the University of Florida Sparse Matrix Collection2, and the

LSI text corpora3, as well as other publicly available websites.

Figure 4.1 shows the objective function evolution curves using the origi-

nal and the adaptive PNMF multiplicative update algorithms for the eight

datasets. It is clear to see that the dashed lines are below the solid ones

in respective plots, which indicates that the adaptive update algorithm is

significantly faster than the original one.

Table 4.3 gives the mean and standard deviation of the convergence time

of PNMF using the compared algorithms. The convergence time is calcu-

lated at the earliest iteration where the objective D is sufficiently close to

the minimum D∗, i.e. |D−D∗|/D∗ < 0.001. Each algorithm on each dataset

has been repeated 100 times with different random seeds for initializa-

tion. These quantitative results confirm that the adaptive algorithm is

significantly faster: it is 3 to 5 times faster than the original one.

The adaptive algorithm can be applied for other QNMF applications, for

example, bi-clustering (also called co-clustering or two-way clustering).

Bi-clustering aims to simultaneously group rows and columns of given in-

put matrix, and can be formulated as: X ≈ LLTXRRT [191]. This is

a two-sided QNMF problem, which can be solved by alternatively opti-

mizing X ≈ LLTY(R) with Y(R) = XRRT fixed and X ≈ Y(L)RRT with

Y(L) = LLTX fixed. The bi-cluster indices of rows and columns are given

by taking the maximum of each row in L and R.

The above Bi-clustering QNMF (Bi-QNMF) was originally implemented

by interleaving multiplicative updates between L and R using constant

1http://archive.ics.uci.edu/ml/
2http://www.cise.ufl.edu/research/sparse/matrices/index.html
3http://www.cs.utk.edu/~lsi/corpa.html
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Table 4.3. The mean and standard deviation of the convergence time (seconds) of PNMF
using the compared algorithms.

(a) PNMF based on Euclidean distance

dataset original adaptive

wine 0.22±0.11 0.06±0.03

mfeat 68.57±1.75 19.10±0.70

orl 117.26±1.74 29.89±1.48

feret 107.58±24.43 19.97±5.60

(b) PNMF based on I-divergence

dataset original adaptive

swimmer 613.04±20.63 193.47±5.43

cisi 863.89±69.23 193.23±18.70

cran 809.61±62.64 189.41±18.50

med 566.99±64.44 132.67±13.86

exponents. Figure 4.2 shows the comparison results between the previous

implementation and the adaptive algorithm using variable exponents, on

both synthetic and real-world data. The synthetic data is a 200 × 200

blockwise nonnegative matrix, where each block has dimensions 20, 30, 60

or 90 and the matrix entries in a block are randomly drawn from the same

Poisson distribution whose mean is chosen from 1, 2, 4, or 7. The real-

world data matrix contains a subset of the whole webkb textual dataset4,

with two classes of 1433 documents and 933 terms. The ij-th entry of the

matrix is the number of the j-th term that appears in the i-th document.

We can see that the dashed curves are below the solid ones for both

datasets, which indicates that the adaptive algorithm brings efficiency

improvement. The advantage is further quantified in Table 4.4, where

we ran each algorithm 10 times and recorded their mean and standard

deviation of the convergence times.

It is worth mentioning that, in addition to QNMF algorithms, the pro-

posed adaptive exponent technique is readily extended to other fixed-point

algorithms that use multiplicative updates.

4.2.4 QNMF with additional constraints

Similar to NMF objectives, there are situations where one needs to ap-

pend certain constrains to QNMF objectives for achieving the desired out-

4http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
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Figure 4.1. Evolutions of objectives using the original and adaptive PNMF multiplicative
update algorithms based on (left) squared Euclidean distance and (right) I-
divergence.

Table 4.4. The mean and standard deviation of the converged time (seconds) of Bi-QNMF
using the compared algorithms.

data original adaptive

synthetic 17.96 ± 0.26 5.63 ± 0.10

webkb 139.35 ± 76.81 25.93 ± 13.61
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Figure 4.2. Evolutions of objectives using the original and adaptive Bi-QNMF multiplica-
tive update algorithms based on (left) synthetic data and (right) webkb data.

puts. For solving the constrained QNMF problems, a relaxation technique

has been adopted by the authors in [191], summarized as below:

Step 1 The (soft) constraints are attached to the QNMF objective as reg-

ularization terms;

Step 2 A multiplicative update rule is constructed for the augmented

objective, where the Lagrangian multipliers are solved by using the

K.K.T. conditions;

Step 3 Inserting back the multipliers one thus obtains new update rules

with the (soft) constraints incorporated.

The above algorithm is called iterative Lagrangian solution of the con-

strained QNMF problem. It minimizes the QNMF approximation error

while forcing the factorizing matrices to approach the manifold specified

by the constraints. A similar idea was also employed by Ding et al. [48].

Below we give solutions or update rules of QNMF with two widely-used

constraints.

Stochastic constraints for nonnegative matrices are often utilized to rep-

resent probabilities, which ensures the summation of all or partial matrix

elements to be one. The left-stochastic constraint ensures a column-wise

unitary sum (i.e.
∑

iWik = 1); the right-stochastic constraint ensures

a row-wise unitary sum; the matrix-wise stochastic constraint ensures

a matrix-wise unitary sum. A general principle that incorporates the

stochastic constraints to an existing convergent QNMF algorithm is given

in [191].

Orthogonal constraints for nonnegative matrices are frequently utilized

for approximating cluster indicator matrices, because a nonnegative or-

thogonal matrix has only one non-zero entry in each row. Usually a strict
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orthogonality is not required since the discrete optimization problem is of-

ten NP-hard, and relaxation is needed so that there is only one large non-

zero entry in each row of the matrix W, leaving the other entries close to

zero. A general principle that incorporates the orthogonal constraint to a

theoretically convergent QNMF algorithm is given in [191].

4.2.5 NMF using graph random walk

In cluster analysis, the cluster assignment can be learned from pairwise

similarities between data points. Let S ∈ R
n×n
+ denote a pairwise simi-

larity matrix encoding n data samples. Since clustered data tend to have

higher similarities within clusters but lower similarities between clus-

ters, the matrix S should have a nearly diagonal appearance if its rows

and columns are sorted by clusters. This structure has motivated approx-

imative low-rank factorization of S by the binary cluster indicator matrix

U ∈ {0, 1}n×r for r clusters: S ≈ UUT , where Uik = 1 if the i-th sample

belongs to the k-th cluster and 0 otherwise, as shown by the example in

Figure 4.3.

Figure 4.3. An illustrative example showing the approximation S ≈ UUT , where U ∈
{0, 1}321×2 is the binary cluster indicator matrix, and S ∈ R

321×321
+ is the

symmetrized 5-NN similarity matrix constructed by taking the subset of dig-
its “2" (162 samples) and “3" (159 samples) from the SEMEION handwritten
digit dataset. The matrix entries are visualized as image pixels, with darker
pixels representing higher similarities.

However, as stated in Chapter 4, directly optimizing over U often leads

to an NP-hard problem due to the discrete solution space, and the contin-

uous relaxation is thus needed to ease the problem. A popular relaxation

technique is to combine the nonnegativity and orthogonality constraints,

that is, replacing U with W where Wik ≥ 0 and WTW = I. After that,

each row of W has only one non-zero entry since two nonnegative orthog-

onal vectors do not overlap. Therefore the factorization takes the form
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S ≈ WWT , with the constraints of Wik ≥ 0 and WTW = I. This problem

is called Symmetric NMF (SNMF) [48], which is also a special case of the

QNMF problem with auxiliary constraints.

A commonly used approximation error or divergence is the Least Square

Error (LSE) or squared Euclidean (EU) distance (Frobenius norm) [110,

78]. By using LSE, the above SNMF problem can be solved by minimizing

the following objective function:

J = ||S−WWT ||2F =
∑
ij

[
Sij − (WW T )ij

]2 (4.14)

subject to Wik ≥ 0 and WTW = I. (4.15)

The EU distance measure is the most popular approximation criterion.

However, NMF methods using LSE often give mediocre clustering results.

To see the reason, one may consider the example as illustrated in Figure

4.4. To minimize ||S − Ŝ||2F for a given similarity matrix S, the approxi-

mating matrix Ŝ should be diagonal blockwise for clustering, as shown in

Figure 4.4 (b), and the ideal input S should be similar to Figure 4.4 (c).

However, the similarity matrices of real-world data often look like Figure

4.4 (a), where the non-zero entries are much sparser than the ideal case

in Figure 4.4 (c). This is because the raw data features are usually weak

such that a simple metric like EU distance is only valid in a small neigh-

borhood, but tends to be unreliable for non-neighboring data points with

long distances. Therefore the similarities between those non-neighboring

samples are usually set to be zero, and the resulting similarity matrix is

often sparse as in Figure 4.4 (a).

Since the underlying distribution of LSE is Gaussian, which is good at

handling dense matrices, it is a mismatch to approximate a sparse sim-

ilarity matrix by a dense diagonal blockwise matrix using LSE. Because

the squared Euclidean distance is a symmetric metric, the learning ob-

jective can be dominated by the approximation to the majority of zero

entries, which may hinder from finding correct cluster assignments. Yet

little research effort has been made to overcome the above mismatch.

To reduce the sparsity gap between input and output matrices, Yang et

al. [187] proposed to approximate a smoothed version of S using graph

random walk, which implements multi-step similarities that considers

farther relationships between data samples. Assume the normalized sim-

ilarity matrix Q = D−1/2SD−1/2, where D is a diagonal matrix with

Dii =
∑

j Sij . By using graph random walk, the similarities between data

nodes are given by (αQ)j , where α ∈ (0, 1) is the decay parameter that
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Figure 4.4. An example from [187] showing the LSE-based NMF clustering: (a) the sym-
metrized 5-NN similarity matrix constructed by taking the subset of digits “2"
(162 samples) and “3" (159 samples) from the SEMEION handwritten digit
dataset, (b) the correct clusters to be found, (c) the ideally assumed data that
suits the least square error, (d) the smoothed input by using graph random
walk. The matrix entries are visualized as image pixels, with darker pixels
representing higher similarities. In [187], Yang et al. proposed to find correct
clusters using (d) ≈ (b) instead of (a) ≈ (b) by NMF with LSE, because (d) is
“closer" to (c) than (a).

controls the random walk extent. Summing over all possible numbers of

steps gives
∑∞

j=1(αQ)j = (I−αQ)−1. The authors thus proposed to replace

S with the following smoothed similarity matrix:

A = c−1 (I− αQ)−1 , (4.16)

where c =
∑

ij [(I − αQ)−1]ij is a normalizing factor. The parameter α con-

strols the smoothness: a larger α tends to produce a smoother A, whereas

a smaller one makes A shrink on its diagonal. Figure 4.4 (d) shows a

smoothed approximated matrix A, where one can see that the sparsity

gap to the approximating matrix Ŝ has been reduced. Therefore, the opti-
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mization problem of Eq. 4.14 (with constraints) becomes:

minimize
W≥0

J (W) = −trace(WTAW) + λ
∑
i

(∑
k

W 2
ik

)2

(4.17)

subject to WTW = I, (4.18)

where λ is the tradeoff parameter. The extra penalty term has two func-

tions [187]: (1) it emphasizes off-diagonal correlations in the trace, and

(2) it tends to equalize the norms of W rows.

The above constrained optimization problem can be solved by using the

following multiplicative update rule [187]:

Wnew
ik = Wik

[(
AW + 2λWW TVW

)
ik

(2λVW +WW TAW )ik

]1/4
, (4.19)

where V is a diagonal matrix with Vii =
∑

l W
2
il. Note that the update rule

of Eq 4.19 only needs the product of (I − αQ)−1 with a low-rank matrix

instead of A, which avoids expensive computation and storage of a large

smoothed similarity matrix.

4.3 Clustering by low-rank doubly stochastic matrix decomposition

Clustering methods based on NMF or QNMF are restricted to the scope of

matrix factorization. Yang and Oja [190] proposed a nonnegative low-rank

approximation method to improve the clustering. The proposed method

is based on Data-Cluster-Data random walk and thus named DCD. DCD

goes beyond matrix factorization because the decomposition of the approx-

imating matrix includes operations other than matrix product.

4.3.1 Learning objective

Given n data samples to be grouped into r disjoint clusters. Let i, j, and

v be indices for data points, and k and l for clusters. Assume A ∈ R
n×n
+

as the similarity matrix between samples, and P (k|i) (i = 1, . . . , n and k =

1, . . . , r) as the probability of assigning the ith sample to the kth cluster.

DCD seeks an approximation to A by another matrix Â whose elements

correspond to the probabilities of two-step random walks between data

points through clusters 1 to r. By using the Bayes formula and the uni-

form prior P (i) = 1/n, the random walk probabilities are given by

Âij = P (i|j) =
∑
k

P (i|k)P (k|j) =
∑
k

P (k|i)P (k|j)∑
v P (k|v) . (4.20)
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Let us write Wik = P (k|i) for convenience, and thus

Âij =
∑
k

WikWjk∑
v Wvk

. (4.21)

By using the Kullback-Leibler (KL-) divergence, the DCD approximation

is formulated as the following optimization problem:

minimize
W≥0

DKL(A||Â) =
∑
ij

(
Aij log

Aij

Âij

−Aij + Âij

)
, (4.22)

subject to
∑
k

Wik = 1, i = 1, . . . , n. (4.23)

4.3.2 Optimization

The optimization is solved by a Majorization-Minimization algorithm [86,

189, 191, 202] that iteratively applies a multiplicative update rule:

Wnew
ik = Wik

(∇−ikai + 1

∇+
ikai + bi

)
, (4.24)

where the terms ∇+ and ∇− denote respectively the sums of positive and

unsigned negative parts of the gradient, ai =
∑
l

Wil

∇+
il

, and bi =
∑
l

Wil
∇−il
∇+

il

.

Given a good initial decomposing matrix W, DCD can achieve better

cluster purity than many other existing clustering approaches, especially

for large-scale datasets where the data samples lie in a curved manifold

such that only similarities in a small neighborhood are reliable. The ad-

vantages of DCD owe to its objective in three aspects: 1) the approxi-

mation error measure by Kullback-Leibler divergence takes into account

sparse similarities; 2) the decomposition form ensures relatively balanced

clusters and equal contribution of each data sample; 3) the probabilities

from samples to clusters form the only decomposing matrix to be learned,

and directly give the answer for probabilistic clustering.
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5. Improving cluster analysis using
co-initialization

Many clustering methods, including NMF-based approaches, adopt objec-

tive functions that are not convex. These objectives are usually solved

by employing iterative algorithms that start from an initial value (or ma-

trix). A proper initialization is thus critical for finding clusters with high

qualities. In this chapter, we introduce a novel initialization strategy to

improve clustering performance through combining a set of diverse clus-

tering methods. We also present an initialization hierarchy, from simple

to comprehensive, and empirically demonstrate that a higher level of ini-

tialization often achieves better clustering results, especially for methods

that require a careful initialization such as the DCD approximation.

5.1 Motivation

For many clustering methods, their objective functions are non-convex

and their optimization generally involves iterative algorithms that start

from an initial guess. A proper initialization plays a key role in achieving

good clustering results. Random initialization has widely been used by

researchers due to its simplicity. However, random guesses often yield

poor results and the iterative clustering algorithm has to be run many

times with different starting points in order to get better solutions.

Many advanced initialization techniques have been proposed to improve

the efficiency, for example, specific choices of the initial cluster centers of

the classical k-means method (e.g. [21, 118, 97, 52]), or singular value

decomposition for clustering based on nonnegative matrix factorization

[201, 101]. However, there still lacks an initialization principle that is

commonly applicable for a wide range of iterative clustering methods. Es-

pecially, there is little research on whether one clustering method could

benefit from initializations by the results of other clustering methods.

55



Improving cluster analysis using co-initialization

5.2 Clustering by co-initialization

In Publication VI, we proposed a co-initialization strategy, where a set of

base clustering methods provide initializations for each other to improve

clustering performance. The proposed approach is based on two observa-

tions as follows:

1. Many clustering methods that use iterative optimization algorithms

are sensitive to initializations, and random starting guesses often lead

to poor local optima.

2. On the other hand, the iterative algorithms often converge to a much

better result given a starting point that is sufficiently close to the opti-

mal result or the ground truth.

These two observations inspired us to systematically study the behav-

ior of an ensemble of clustering methods through co-initializations, i.e.,

providing starting guesses for each other. We presented a hierarchy of

initializations towards this direction, where a higher level represents a

more extensive strategy.

In the following, we call the clustering method used for initialization

the base method, in contrast to the main method used for the actual con-

sequent cluster analysis. The proposed initialization hierarchy is summa-

rized into five levels as below:

Level 0 Random initialization: using random starting points. Typically

the starting point is drawn from a uniform distribution. To find a

better local optimum, one may repeat the optimization algorithm

several times with different starting assignments (e.g. with differ-

ent random seeds). Although the random initialization is easy to

implement, such a heuristic approach often leads to clustering re-

sults which are far from a satisfactory partition.

Level 1 Simple initialization: initializing by a fast and computation-

ally simple method such as k-means or NCUT. We call this strategy

simple initialization because here the base method is simpler than

the main clustering method. This strategy has been widely used in

NMF-based clustering methods (e.g. [48, 45, 188]).

Level 2 Family initialization: using base methods from a same param-
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eterized family as the main method for initialization. That is, both

the base and the main methods use the same form of objective and

metric but only differ by a few parameters. For example, in the above

DCD method [190], varying α in the Dirichlet prior can provide dif-

ferent base methods [190]; the main method (α = 1) and the base

methods (α �= 1) belong to the same parametric family.

Level 3 Heterogeneous initialization: using any base methods to pro-

vide initialization for the main method. We call this strategy hetero-

geneous initialization because we remove the constraint of the same

parameterized family and generalize the above family initialization

such that any clustering methods can be used as base methods. Sim-

ilar to the strategies for combining classifiers, it is reasonable to

have base methods as diverse as possible for better exploration. Al-

gorithm 5 gives the pseudocodes for heterogeneous initialization.

Level 4 Heterogeneous co-initialization: running in multiple iterations,

where in each iteration all participating methods provide initial-

ization for each other. Here we make no difference from base and

main methods. The participating methods can provide initializa-

tions to each other, and such cooperative learning can run for more

than one iteration. That is, when one algorithm finds a better local

optimum, the resulting cluster assignment can again serve as the

starting guess for the other clustering methods. The loop will con-

verge when none of the involved methods can find a better local op-

timum. Note that the convergence is guaranteed if the involved ob-

jective functions are all bounded. A special case of this strategy was

used for combining NMF and Probabilistic Latent Semantic Index-

ing [47]. Here we generalize this idea to any participating clustering

methods. Algorithm 6 gives the pseudocodes for heterogeneous co-

initialization.

Ensemble clustering is another way to combine a set of clustering meth-

ods, where several base clustering results from different clustering meth-

ods are combined into a single categorical output through a combining

function called consensus function (e.g. [63, 59, 87]). However, the perfor-

mance of ensemble clustering methods will not bring extraordinary im-

provement over the base clustering methods if the base methods fall into

poor local optima during the optimization (see the numerical examples in

the following Section 5.3).
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Algorithm 5 Cluster analysis using heterogeneous initialization. We de-

note W ← M(D,U) a run of clustering method M on data D, with start-

ing guess matrix U and output cluster indicator matrix W.
Input: data D, base clustering methods B1,B2, . . . ,BT , and main clus-

tering method M
Initialize {Ut}Tt=1 by e.g. random or simple initialization

for t = 1 to T do

V ← Bt(D,Ut)

Wt ← M(D,V)

end for

Output: W ← argmin
Wt

{JM (Wt)}Tt=1.

Algorithm 6 Cluster analysis using heterogeneous co-initialization.
Input: data D and clustering methods M1,M2, . . . ,MT

Jt ← ∞, t = 1, . . . , T .

Initialize {Wt}Tt=1 by e.g. random or simple initialization

repeat

bContinue←False

for i = 1 to T do

for j = 1 to T do

if i �= j then

Ui ← Mi(D,Wj)

end if

end for

J ← min
Uj

{JMj (D,Uj)}Tj=1

V ← argmin
Uj

{JMj (D,Uj)}Tj=1

if J < Ji then

Ji ← J
Wi ← V

bContinue←True

end if

end for

until bContinue=False or maximum iteration is reached

Output: {Wt}Tt=1.
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Table 5.1. Statistics of the datasets.

DATASET # SAMPLES # CLASSES

ORL 400 40

COIL20 1440 20

CITESEER 3312 6

USPS 9298 10

PROTEIN 17766 3

20NEWS 19938 20

LET-REC 20000 26

MNIST 70000 10

5.3 Empirical results

We have performed clustering experiments on real-world datasets cover-

ing various domains such as facial images, textual documents, handwrit-

ten digit / letter images, and protein etc. For each dataset, we constructed

its similarity matrix using KNN graph (K = 10), which is then binarized

and symmetrized as the nonnegative input. There are 19 different data-

sets used in our Publication VI. Here we show a subset of them for the

illustration purpose (see Table 5.1 for their statistics). The clustering per-

formance is evaluated by two-widely used criteria (described in Section

3.3), i.e. Purity and Normalized Mutual Information (NMI).

We have tested various clustering methods with different initializations

in the hierarchy described previously. We focus on the following four lev-

els: random initialization, simple initialization, heterogeneous initializa-

tion, and heterogeneous co-initialization in these experiments, while treat-

ing family initialization as a special case of heterogeneous initialization.

For heterogeneous co-initialization, the number of co-initialization itera-

tions was set to 5, as in practice we found that there is no significant

improvement after five rounds. These levels of initializations have been

applied to six clustering methods, i.e. PNMF [194, 188], NSC [45], ONMF

[48], PLSI [82], LSD [3], and DCD [190]. For comparison, we also include

the results of two other methods based on graph cut, i.e. Normalized Cut

(NCUT) [159] and 1-Spectral Ratio Cheeger Cut (1-SPEC) [79].

The extensive empirical results are given in Table 5.2, shown in cells

with quadruples. We can see from the results that more comprehensive

initialization strategies often lead to better clusterings, where the four

numbers in most cells monotonically increase from left to right. Some
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clustering methods such as Normalized Cut [159] are not sensitive to

initializations but tend to return less accurate clustering, whereas some

methods can find more accurate clusters but require careful initialization

(see discussions in e.g. [190, 187]). DCD is a typical clustering method

of the latter kind, since the geometry of the KL-divergence cost function

is more complex than the commonly-used cost functions based on the Eu-

clidean distance.

We have also compared our co-initialization method with three ensemble

clustering methods, i.e. the BEST algorithm [63], the co-association algo-

rithm (CO) [59], and the link-based algorithm (CTS) [87]. For fair compar-

ison, the set of base methods (i.e. same objective and same optimization

algorithm) is the same for all compared approaches: the 11 bases are from

NCUT, 1-SPEC, PNMF, NSC, ONMF, LSD, PLSI, DCD1, DCD1.2, DCD2,

and DCD5 respectively. Here we chose the result by DCD for the com-

parison with the ensemble methods, as we find that this method benefits

the most from co-initializations. The results are given in Table 5.3. We

can see that DCD wins most clustering tasks and the superiority of DCD

using co-initializations is especially distinct for large datasets that lie a

curved manifold.
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Table 5.2. Clustering performance of various clustering methods with different initial-
izations. Performances are measured by (top) Purity and (bottom) NMI. Rows
are ordered by dataset sizes. In cells with quadruples, the four numbers from
left to right are results using random, simple, and heterogeneous initialization
and heterogeneous co-initialization.
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Improving cluster analysis using co-initialization

Table 5.3. Clustering performance comparison of DCD using heterogeneous co-
initialization with three ensemble clustering methods. Rows are ordered by
dataset sizes. Boldface numbers indicate the best. The 11 bases are from
NCUT, 1-SPEC, PNMF, NSC, ONMF, LSD, PLSI, DCD1, DCD1.2, DCD2, and
DCD5 respectively.

Purity NMI

DATASET BEST CO CTS DCD BEST CO CTS DCD

ORL 0.81 0.81 0.80 0.83 0.90 0.90 0.90 0.91

COIL20 0.73 0.69 0.72 0.70 0.80 0.77 0.79 0.80

CITESEER 0.43 0.34 0.35 0.48 0.18 0.12 0.15 0.21

USPS 0.75 0.65 0.73 0.85 0.76 0.69 0.78 0.81

PROTEIN 0.46 0.46 0.46 0.50 0.01 0.01 0.01 0.04

20NEWS 0.45 0.28 0.40 0.50 0.45 0.38 0.47 0.45

LET-REC 0.26 0.23 0.24 0.38 0.37 0.35 0.39 0.46

MNIST 0.96 0.57 0.76 0.98 0.92 0.68 0.84 0.93
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6. Cluster analysis on emotional
images

This chapter presents an experimental study on emotional image clus-

tering. Emotional semantic image analysis as a new research area has

attracted an increasing attention in recent years. Most researchers at-

tack this problem within a supervised learning context. Here we study

image emotions from an unsupervised learning context and perform clus-

ter analysis on a widely-used emotional image dataset.

6.1 Introduction

Content-Based Image Retrieval (CBIR) is the study that helps organize

and index digital images by their visual content or similarity (see de-

tail surveys in [122, 39]). A major challenge of the current approaches

is handling the semantic gap between low-level visual features that the

computer is relying upon and high-level semantic concepts that humans

naturally associate with images [162]. To narrow down the semantic gap,

relevance feedback techniques, including both explicit feedback and im-

plicit feedback (also called enriched feedback [197]), have been utilized

for decades to improve the CBIR performance [6, 96, 76].

In Publication VII, we presented a gaze-and-speech-enhanced CBIR sys-

tem, where we analyzed the use of implicit relevance feedback from the

user’s gaze tracking patterns for boosting up the CBIR performance. A

client-side information collector, implemented as a Firefox browser exten-

sion, can unobtrusively record a user’s feedback forms on a displayed im-

age, including eye movements, pointer tracks and clicks, keyboard strokes,

and speech input, which are then transmitted asynchronously to the re-

mote CBIR server for assisting in retrieving relevant images (operational

details can be found in [198]). The information collector was integrated

with an existing CBIR server named PicSOM [105], and the effectiveness
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Cluster analysis on emotional images

(a) Amusement (b) Fear

Figure 6.1. Example images from a photo sharing site (ArtPhoto [127]) with the ground
truth labels of Amusement and Fear. Though emotions are highly subjective
human factors, still they have stability and generality across different peo-
ple and cultures [139]. Intuitively, an “Amusement" picture usually makes
people feel pleasant or induces high valence, whereas a “Fear" picture may
induce low valence but high arousal to the viewer.

of the system has been verified by real users in image-tagging tasks.

Images contain emotional information that can trigger people’s affec-

tive feelings (see Figure 6.1 as an example). Recently, studies related to

affective image classification and retrieval have attracted an increasing

research effort. Unlike most modern CBIR systems that were designed

for recognizing objects and scenes such as plants, animals, outdoor places

etc., an Emotional Semantic Image Retrieval (ESIR) system (see [179] for

a recent survey) aims at incorporating the user’s affective states or emo-

tions to bridge the so called “affective gap" [74], by enabling queries like

“beautiful flowers", “cute dogs", “exciting games", etc. The major chal-

lenges in this area are (1) modeling image affects or emotions [138, 153,

131], and (2) designing features and classifiers for better classification

performance (see e.g. [14, 139, 180, 127, 125, 37, 115, 183, 38, 192]).

In Publication VIII, we adopted generic low-level color, shape, and tex-

ture features to describe people’s high-level affective states evoked by

viewing abstract art images. Our empirical results show that image emo-

tions can be well recognized even using rather low-level image descriptors

(see Table 6.1). In Publication IX, we proposed to utilize Multiple Kernel

Learning (MKL) for classifying and retrieving abstract art images with

low-level features. MKL can utilize various image features simultane-

ously, such that it jointly learns the feature weights and the correspond-

ing classifier for selecting automatically the most suitable feature or a

combination of them [5, 4]. Our experimental results demonstrate the

advantage of MKL framework for affective image recognition, in terms of

feature selection, classification performance, and interpretation.

64



Cluster analysis on emotional images

Table 6.1. The low-level features used in Publication VIII. These features were originally
used in [158] for representing emotional images.

Group of Features Type Dimension

First four moments Image Statistics 48

Haralick features Texture 28

Multiscale histograms Texture 24

Tamura features Texture 6

Radon transform features Texture 12

Chebyshev statistic features Polynomial 400

Chebyshev-Fourier features Polynomial 32

Zernike features Shape & Edge 72

Edge statistics features Shape & Edge 28

Object statistics Shape & Edge 34

Gabor filters Shape & Edge 7

6.2 Cluster analysis on affective images

6.2.1 Motivation

The prediction of image emotions can be conceived as a multiclass classifi-

cation problem that has been well attempted by supervised learning meth-

ods. However, a major challenge in affective image classification is that

there are few emotional image databases available to the research com-

munity, as obtaining controlled experimental data is expensive in time

and cost [92]. For example, the ground truth label or the most dominant

emotion of an image is supposed to be agreed by a sufficient number of

human evaluators whose ages, backgrounds, and cultures should be as

diverse as possible.

In the absence of ground truth labels, unsupervised learning methods

can learn patterns among data in a more impromptu fashion so that peo-

ple may gain a quick insight on the data at hand. Moreover, it has been

found that unsupervised methods often achieve successful intermediate

results for classification tasks [23, 33]. For instance, Bressan et al. [23]

described a procedure to compute a similarity matrix between painters,

which was then used to infer connections between painter styles and gen-

res. The authors in [33] proposed an automatic photo recommendation

system, where they carried out a preprocessing step on photos with k-
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means clustering and graph-based partitioning methods. In addition to

images or pictures, clustering methods are often coupled with classifica-

tion approaches for detecting emotions in videos or movies [185, 200].

6.2.2 Affective image clustering

In this section we perform an experimental study on affective image clus-

tering. To our knowledge, there are still no similar studies that explore

NMF-based methods for the cluster analysis on affective images.

Dataset. We use the International Affective Picture System (IAPS)

[107] dataset in our clustering experiment. The IAPS data set is a widely-

used stimulus set in emotion-related studies. It contains altogether 1182

color images that cover contents across a large variety of semantic cate-

gories, including snakes, insects, animals, landscapes, babies, guns, and

accidents, among others. Each image is evaluated by subjects (males &

females) on three continuously varying scales from 1 to 9 for Valence,

Arousal, and Dominance. Figure 6.2 shows some of the IAPS images. A

subset of 394 IAPS images have been grouped into 8 discrete emotional

categories based on a psychophysical study [131], which are Amusement,

Awe, Contentment, Excitement, Anger, Disgust, Fear, and Sad. The emo-

tion (ground truth label) for each image was selected as the most domi-

nant emotion that had received the majority of votes from people. Low-

level features as described in Table 6.2 are extracted from each image.

The dataset is symmetrized and then binarized to be a KNN (K = 15)

similarity matrix as the nonnegative data input.

Compared methods. There are 8 clustering methods compared in the

experiment:

• The classical k-means [123] (KM) clustering,

• Projective NMF (PNMF) [194],

• Symmetric Tri-Factor Orthogonal NMF (ONMF) [48],

• NMF using Graph Random Walk (NMFR) [187],

• 1-Spectral Ratio Cheeger Cut (1-SPEC) [79],

• Data-Cluster-Data random walks (DCD) [190],
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Table 6.2. The set of low-level image features used in the experiment. The features are
extracted both globally and locally using the PicSOM system [105].

Index Feature Type Zoning Dims.

F1 Scalable Color Color Global 256

F2 Dominant Color Color Global 6

F3 Color Layout Color 8× 8 12

F4 5Zone-Color Color 5 15

F5 5Zone-Colm Color 5 45

F6 Edge Histogram Shape 4× 4 80

F7 Edge Fourier Shape Global 128

F8 5Zone-Edgehist Shape 5 20

F9 5Zone-Edgecoocc Shape 5 80

F10 5Zone-Texture Texture 5 40

• DCD using heterogeneous initialization (DCD-heter-init), i.e. Algorithm

1 in Publication VI,

• DCD using heterogeneous co-initialization (DCD-heter-co-init), i.e. Al-

gorithm 2 in Publication VI.

We have implemented PNMF, ONMF, NMFR, and DCD using multiplica-

tive updates and ran each of these programs for 10, 000 iterations to en-

sure their convergence. We adopted the 1-SPEC software by Hein and

Bühler1 with its default setting. For k-means, we directly utilized the

Matlab function kmeans. For DCD-heter-init, the involved methods are

PNMF, NSC [45], ONMF, LSD [3], PLSI [82], DCD with 4 different Dirich-

let priors (α = 1, 1.2, 2, 5), NMFR, and 1-SPEC. For DCD-heter-co-init, the

involved methods are the same as DCD-heter-init excluding the 1-SPEC

method. The number of co-initialization iterations was set to 5, as in prac-

tice we found that there is no significant improvement after five rounds.

Clustering results. Figure 6.3 shows the clustering result of the com-

pared methods. It can be seen that our new nonnegative matrix ap-

proximation methods DCD and NMFR are more advantageous over sev-

eral other compared approaches on emotional image clustering, especially

with larger numbers of clusters. Moreover, as the number of clusters in-

creases, DCD methods using co-initialization have generally better perfor-

1http://www.ml.uni-saarland.de/code/oneSpectralClustering/oneSpectralClustering.html
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mance than the original DCD and others. This makes sense in that emo-

tional image datasets, such as IAPS, are often very “noisy", which means

that the data points lie in a rather curved manifold and need to be han-

dled by more advanced clustering techniques than traditional methods,

such as the k-means.

Note that the clustering results above are rather preliminary at this

stage; yet it would rather serve as a starting point for using NMF-type

methods into the area of image affect analysis.
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Figure 6.2. Example images from IAPS dataset (note: these example images are taken
from the work [192]. A - anger, Am - amusement, Aw - awe, C - content-
ment, D - disgust, E - excitement, F - fear, S - sadness, Un - undifferentiated
negative, Up - undifferentiated positive.

Figure 6.3. Clustering purities on the IAPS image dataset using 8 compared clustering
methods with different numbers of clusters.
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7. Conclusion

Since Lee and Seung’s Nature article published in 1999, Nonnegative Ma-

trix Factorization (NMF) has been an active research field with applica-

tions in various areas. NMF approximates a nonnegative data matrix

by a product of several low-rank factorizing matrices under nonnegative

constraints. The additive nature of NMF can often result in parts-based

representation of the data, and this property is especially desired for fea-

ture extraction and data clustering.

This thesis presents advances in Nonnegative Matrix Decomposition

(NMD) with application in cluster analysis. It reviews a higher-order

class of NMF methods called Quadratic Nonnegative Matrix Factorization

(QNMF), where some factorizing matrices appear twice in the approxima-

tion. Further, the thesis reviews a matrix decomposition method based on

Data-Cluster-Data (DCD) random walk. DCD goes beyond matrix factor-

izations since it involves operations other than matrix multiplications.

Despite the advantage of QNMF, its convergence speed is mediocre.

This thesis has presented an adaptive multiplicative update algorithm for

QNMF, where the constant exponent in the update rules is replaced by a

variable one to accelerate the convergence speed while the monotonic de-

crease of QNMF objective is still ensured. In addition, a co-initialization

strategy has been presented, where a set of base clustering methods pro-

vide initializations for each other to improve the clustering performance.

The co-initialization approach is especially suitable for those methods

that require careful initializations such as the DCD.

The proposed methods have been tested on a variety of real-world data-

sets, such as textual documents, facial images, and protein data, etc. In

particular, the thesis has presented an experimental study on clustering

emotional data, where DCD and the presented co-initialization strategy

have been applied for the cluster analysis on a benchmark emotional im-

71



Conclusion

age dataset. Although the experimental study is rather preliminary, the

clustering results have shown that NMD-type methods are suitable for

analyzing the structure of affective images. Besides, the comparison re-

sult with other existing clustering methods has also demonstrated the ad-

vantage of DCD and the co-initialization approach in terms of clustering

purity.

The research on NMD is still going on. For QNMF, in addition to matrix

products, nonlinear operators could be considered in the approximation,

such as a nonlinear activation function that interleaves a factorizing ma-

trix and its transpose. This type of approximation can be extended to the

field of nonnegative neural networks and connected to the deep learning

principle. For DCD, one might consider different priors or regularization

techniques for smoothing the objective function space in order to obtain

better initialization matrices. Besides, one should notice that using more

informative features or a better similarity measure to construct the input

similarity matrix can significantly improve the clustering results.

The presented adaptive algorithm facilitates the applications of QNMF

methods. More comprehensive adaptation schemes, such as the more effi-

cient line search, could be applied for further increasing the convergence

speed of QNMF objectives. Moreover, the presented adaptive exponent

technique is readily extended to other fixed-point algorithms that use

multiplicative updates. As for the co-initialization strategy, the partici-

pating methods are currently chosen heuristically in the presented work.

A more rigorous and computable diversity measure between clustering

methods could be helpful for more efficient co-initializations.

The presented experimental study shows the suitability of NMD-type

decomposition methods in affective image analysis, where DCD using co-

initialization outperforms other compared methods in terms of clustering

purity. The study here is rather preliminary at this stage. More large-

scale affective image datasets are worth to be tested in the future. Be-

sides, due to the high cost in obtaining the affective image labels, semi-

supervised clustering could be a promising alternative for further improv-

ing the clustering performance, especially when only partial labels are

available. In addition, one might investigate the feature-extraction as-

pect of NMD in affective image classification tasks. Because of the varying

subjectivity in humans and the limit of available affective databases, the

development in affective image analysis relies on the joint efforts from,

for instance, artificial intelligence, computer vision, and psychology.
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It is worth mentioning that the number of data clusters is assumed to

be known beforehand in our thesis. Usually people pre-specify the num-

ber of clusters, K, based on their expertise. However, in many real-world

applications, the value of K is unknown and needs to be estimated from

the data in question. One way is to run a clustering algorithm with dif-

ferent values of K and choose the best value of K according to a prede-

fined criterion. The criteria frequently used include: Minimum Descrip-

tion Length (MDL) criterion [151, 75], Minimum Message Length (MML)

criterion [173], Bayes Information Criterion (BIC) [58], and Akaike’s In-

formation Criterion (AIC) [19, 20]. Other approaches include, for example,

the gap statistics [168] and the entropy criterion [30]. Despite the various

objective criteria, the most appropriate number of clusters largely relies

on the parameter tuning and is application dependent.
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A. Appendix

A.1 Divergence

Divergences are commonly used to measure the difference between two

probability distributions P and Q. A divergence measure, denoted by

D(P ||Q), satisfies the condition:

D(P ||Q) ≥ 0, (A.1)

where D(P ||Q) = 0 if and only if P = Q. There are various kinds of

divergences. Typical measures include the Euclidean distance (Frobenius

norm) and the non-normalized Kullback–Leibler divergence (I-divergence).

Note that divergences are non-symmetric measurements because D(P ||Q)

is not necessarily equal to D(Q||P ). For NMF problems, P corresponds to

the input data matrix X and Q to the approximation matrix X̂.

Table A.1 summarizes the divergence measures used in the thesis. For

α-divergence, when setting α → 1, its limiting value leads to the

I-divergence:

DI(X||X̂) =
∑
ij

(
Xij ln

Xij

X̂ij

−Xij + X̂ij

)
; (A.2)

when setting α → 0, its limiting value gives the Dual I-divergence:

DI(X̂||X) =
∑
ij

(
X̂ij ln

X̂ij

Xij
− X̂ij +Xij

)
. (A.3)

For β-divergence, when setting β = 0, it gives the I-divergence as in Eq.

A.2; when setting β = 1, it gives the Euclidean distance:

DEU (X||X̂) =
∑
ij

(
Xij − X̂ij

)2
; (A.4)
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Table A.1. Divergence measure used in the thesis. X denotes the input data matrix and
X̂ denotes the approximation matrix.

Divergence measure Definition

α-divergence Dα(X||X̂) = 1
α(1−α)

∑
ij

(
αXij + (1− α) X̂ij −Xα

ijX̂
1−α
ij

)
β-divergence Dβ(X||X̂) =

∑
ij

(
Xij

Xβ
ij−X̂β

ij

β − Xβ+1
ij −X̂β+1

ij

β+1

)
γ-divergence Dγ(X||X̂) =

∑
ij

1
γ(1+γ)

(
ln
(∑

ij X
1+γ
ij

)
+ γ ln

(∑
ij X̂

1+γ
ij

)
−(1 + γ) ln

(∑
ij XijX̂

γ
ij

))
Rényi divergence Dρ(X||X̂) = 1

ρ−1 ln

[∑
ij

(
Xij∑
ab Xab

)ρ( X̂ij∑
ab X̂ab

)1−ρ]
, where ρ > 0

when setting β → −1, its limiting value leads to the Itakura-Saito diver-

gence:

DIS(X||X̂) =
∑
ij

(
− ln

Xij

X̂ij

+
Xij

X̂ij

− 1

)
. (A.5)

For γ-divergence, when setting γ → 0, it gives the Kullback-Leibler (KL)

divergence:

DKL(X||X̂) =
∑
ij

(
Xij ln

Xij

X̂ij/
∑

ab X̂ab

)
, (A.6)

where
∑

ij Xij = 1. For Rényi divergence, when setting ρ → 1, its limiting

value gives the KL-divergence (i.e. Eq. A.6) as well.
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