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Trends in Machine Learning

B increasing dimensionality of data sets
m increasing size of data sets

m "300 hours of video are uploaded to YouTube every minute
m 1.8 billion pictures uploaded every day to various sites
(mid-2014)
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Trends in Machine Learning

Photos Alone = 1.8B+ Uploaded & Shared Per Day...
Growth Remains Robust as New Real-Time Platforms Emerge

Daily Number of Photos Uploaded & Shared on Select Platforms,
2005 - 2014YTD

1,800
a Flickr
=Snapchat
= instagram
= Facebook
WhatsApp (2013, 2014 oriy)

o -unl [

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014YTD

§

E

#of Photos Uploaded & Shared per Day
(Mn)
g & &

[http://tech firstpost.com/news-analysis/now-upload-share-1-8-billion-photos-
everyday-meeker-report-224688.html]
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Trends in Machine Learning

m increasing dimensionality of data sets
B increasing size of data sets
m "300 hours of video are uploaded to YouTube every minute

m "1.8 billion pictures uploaded every day to various sites
(mid-2014)

machine learning methods needed, that can be used to analyze this
data and extract useful knowledge and insights from this wealth of
information
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Contributions

Combinations of Multiple Extreme Learning Machines (ELM)
= |: Adaptive Ensemble Models of ELMs for Time Series Prediction

m 1l: GPU-accelerated and parallelized ELM ensembles for large-scale regression
Variable Selection and ELM
m Ill: Feature selection for nonlinear models with extreme learning machines

m IV: Fast Feature Selection in a GPU Cluster Using the Delta Test
®m V: Binary/Ternary Extreme Learning Machines
Trade-offs in Extreme Learning Machines

= VI: Compressive ELM: Improved Models Through Exploiting Time-Accuracy
Trade-offs
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Extreme Learning Machines
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Extreme Learning Machines
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Extreme Learning Machines

Input Hidden Output
layer layer layer

input zj; H

input zj2 —

input zj3 —

1
(O]
! ~_least-squares

input zj4 —
solution
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Part I: Ensemble Models of ELM
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Adaptive Ensemble of ELMs (Publ 1)
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Adaptive Ensemble of ELMs (Publ 1)

-------------------------------------- random inputs
T random #neurons
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Adaptive Ensemble of ELMs (Publ 1)

random inputs
random #neurons
trained on sliding/growing window

*

\ 1/
V%

—en

adaptive linear combination
based on performance of each ELM
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Parallelized/GPU-Accelerated Ensemble of ELMs
(Publ 1)
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Parallelized/GPU-Accelerated Ensemble of ELMs
(PUbI II) """"""""""""""""" random inputs

- optimized #neurons (loo-cv on GPU)
training performed on GPU
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Parallelized /GPU-Accelerated Ensemble of ELMs

(Publ ”) --------------------------------- random inputs
P optimized #neurons (loo-cv on GPU)
' - training performed on GPU

=

training of ELMs
@  parallelized over
multiple CPU/GPU

1
1
!
1
1
1
1
1
1
1
1
1
1
1
=
1
1
1
1

fixed linear combination based on loo-cv
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Highlighted ELM Ensemble Results

035, 0.4
03 035
0.25] 03
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Adaptation of ensemble weight during task
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Highlighted ELM Ensemble Results

0.016]

0.0158

0.0156

NMSE ensemble

0.0154

0.0152

20 40 60 8 100
Number of models in ensemble

The more models in the ensemble, the more accurate the results
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Highlighted ELM Ensemble Results
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B
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Running time ensemble (s)
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Number of workers

Scalability through parallelization, limited precision, use of GPUs
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Part |l: Variable Selection and ELM
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ELM-based Feature Selection (Publ I11)

output y;

,, Aalto University Advances in Extreme Learning Machines 13/23
Mark van Heeswijk April 17, 2015
Lectio Praecursoria



ELM-based Feature Selection (Publ I11)

scaling
layer

input zj1 4‘—»
input j2 *
input zj3 —>‘——»
input zj4 *—»

output y;
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ELM-based Feature Selection (Publ I11)

random #neurons
scaling for each restart
layer of algorithm

input zj1

[

input ;>

———

©

—— e e

output y;
input zj3

0

input zj4

\ll
starting from a random
scaling: gradually reduced
until empty, based on
training and loo error

Mark van Heeswijk
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Highlighted ELM-FS Results
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Fast Feature Selection with GPU-accelerated
Delta Test (Publ 1V)

input zj1 * O
input zj> ‘ O
input zj3 ‘ O
input zj4 ‘ O

@ output y;

0 -0O0
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Fast Feature Selection with GP
Delta Test (Publ 1V)

)
. 1\
s (@} O
.
input Tj2 1'—. 1
1 |

mpu >4 @) O
1 1
. \ 1
s A@Y O
\j /l

variable selection optimized
using an evolutionary algorithm
with GPU-accelerated Delta-Test
as fitness criterion

0 -0O0

U-accelerated

@ output y;
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Fast Feature Selection with GPU-accelerated
Delta Test (Publ IV)

reference X
set

N

1

2N E (Yi—yNN(i))2
i=1

query
set
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Binary/Ternary Extreme Learning Machines
(Publ V)

input 1
input ;>
input ;3

input xj4
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Binary/Ternary Extreme Learning Machines
(Publ V)

input 1
input ;>
input ;3

input xj4
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Binary/Ternary Extreme Learning Machines
(Publ V)

input 1
input ;>
input ;3

input xj4

scaling of weights and biases
optimized using batch-
intrinsic plasticity pretraining
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Binary/Ternary Extreme Learning Machines
(Publ V)

input 1
input ;>
input ;3

input zj4

scaling of weights and biases least-squares solution
optimized using batch- with fast L2 regularization
intrinsic plasticity pretraining by using SVD decomposition
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Ternary ELM Results

07
r+1 0 0 (U — BIP(rand)-TR-ELM
-1 0 0 0 0.69 --- BIP(rand)-TR-2-ELM
1 var 0 +1 0 0 0.68 — BIP(rand)-TR-3-ELM
0 -1 o0 0 067
+1 41 0 0 .
+1 -1 0 0 go.es
-1 41 0 0 Zoea
2vars |—-1 -1 0 0
0.63
0.62
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Part 1ll: Trade-offs in ELM
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Compressive ELM (Publ VI)

input zj1
input zj>
input z;j3

input zj4

scaling of weights and biases least-squares solution
optimized using batch- with fast L2 regularization
intrinsic plasticity pretraining by using SVD decomposition
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Compressive ELM (Publ VI)

fast low-distortion embedding
into lower-dimensional space

input zj1
input = I |
L /) — output y;
input zj3 ‘ .‘I
. ,/’/ \\ "
input z;j4
scaling of weights and biases least-squares solution
optimized using batch- with fast L2 regularization
intrinsic plasticity pretraining by using SVD decomposition
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training time

Highlighted Results Compressive ELM
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Summary
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Summary

Overall:
m resulting collection of proposed methods provides an efficient,
accurate and flexible framework for solving large-scale

supervised learning problems.

m proposed methods:
m are not limited to the particular types of random-weight neural

networks and contexts in which they have been tested
m can easily be incorporated in new contexts and models
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Related Models
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ELM vs RVFL

Input Hidden Output
layer layer layer
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ELM vs RVFL

input xj1
input ;>
input x;j3

input x4
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ELM vs RVFL
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General
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Standard ELM

Given a training set (x;,yi),x; € RY, y; € R, an activation function f : R — R
and M the number of hidden nodes:

1: - Randomly assign input weights w; and biases bj, i € [1, M];

2: - Calculate the hidden layer output matrix H;

3: - Calculate output weights matrix 8 = HTY.

where
fwi-xi+b1) - f(wwm-x1+ bu)
f(wl-XN—l-bl) f(WM~XN—|—bM)
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ELM Theory vs Practice

u In theory, ELM is universal approximator

m In practice, limited number of samples; risk of overfitting

m Therefore:

m the functional approximation should use as limited number of
neurons as possible

m the hidden layer should extract and retain as much useful
information as possible from the input samples
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ELM Theory vs Practice

Weight considerations:

m weight range determines typical activation of the transfer function
(remember (w;, x) = |w;||x| cos6,)

m therefore, normalize or tune the length of the weights vectors somehow
Linear vs non-linear:

m since sigmoid neurons operate in nonlinear regime, add d linear neurons
for the ELM to work better on (almost) linear problems

Avoiding overfitting:

m use efficient L2 regularization
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Batch Intrinsic Plasticity

m suppose (X1, ...,xy) € RVNX9 and output of neuron i is
h; = f(ajw; - xx + b;), where f is an invertible transfer function
m for each neuron |
m from exponential distribution with mean e, draw targets
t=(t1,tp,...,ty) and sort such that t; < t, < ... < ty
m compute all presynaptic inputs sy = w; - Xk, and sort such that

S1 <SS <...<sy
= now, find a; and b; such that

s1 1 f_l(tl)
. aj .
S| ( b; ) = :
SN 1 f_l(tN)

,, Aalto University Advances in Extreme Learning Machines 30/23
Mark van Heeswijk April 17, 2015
Lectio Praecursoria



Fast leave-one-out cross-validation

The leave-one-out (LOO) error can be computed using the PRESS
statistics:

2
Floo = NZ (1— hat,,)

where hat;; is the it" value on the diagonal of the HAT-matrix,
which can be quickly computed, given HT :

Y = HB = HH'Y
=HAT-Y
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Fast leave-one-out cross-validation

Using the SVD decomposition of H = UDV, it is possible to
obtain all needed information for computing the PRESS
statistic without recomputing the pseudo-inverse for every A:

Y = Hp
=HMHH+A)IHTY
=HV(D? + Al)"'DUTY
=UDV'V(D?+ AI)'DUTY
= UD(D? + Al)"'DUTY
= HAT - Y
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Fast leave-one-out cross-validation

2

where D(D? + Al)71D is a diagonal matrix with iy 3 the jth
diagonal entry. Now:
1N Vi — ¥ 2
MSETR—PRESS - !
N ; 1 — hat;;
N N 2
_ 1 3 Yi —Yi
N — \1- hi.(HTH + Al)~th|
1 ¢ Yi =¥ 2
_ = 1
N 2 9% \uT
=t \1—ui (s ) u
A,, Aalto University ﬁnda‘:i"ff.f Ei:&:ﬁ;ne Learning Machines Ao 173%%3
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Leave-one-out computation

overhead

0 500 1000 1500
Number of hidden neurons

2000
Figure :

Comparison of running times of ELM training (solid lines) and

ELM training + leave-one-out-computation (dotted lines), with (black
lines) and without (gray lines) explicitly computing and reusing Hf
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Error reduction by ensembling
Vi=y+ei (1)
E[{5; - y}*] = E[]. )

Eavg = Z Elef]. (3)
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Running times parallelized and GPU-Accelerated
ELM Ensemble (SantaFe, ESTSP)

N | t(mldivg,) | t(gesvgp) | t(mldivsy) | t(gesvsy) | t(culaGesvsp)
SantaFe 0 674.0 s 672.3 s 5158 s 418.4 s 401.0s
1 17816 s 1782.4 s 1089.3 s 1088.8 s 7029 s
2 917.5s 911.5s 567.5 s 554.7 s 365.3 s
3 636.1 s 639.0 s 3922 s 389.3 s 258.7 s
4 495.7 s 495.7 s 3373 s 304.0 s 207.8 s
ESTSP 0 21458 s 21276 s 14258 s 1414.3 s 1304.6 s
1 5636.9 s 5648.9 s 3488.6 s 34798 s 2299.8 s
2 29173 s 2929.6 s 1801.9 s 1806.4 s 1189.2 s
3 2069.4 s 2065.4 s 12559 s 1248.6 s 8419 s
4 1590.7 s 1596.8 s 961.7 s 9615 s 639.8 s
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Running times parallelized and GPU-Accelerated
ELM Ensemble (SantaFe, ESTSP)
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2 2
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000 e T e
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2 3
Number of workers

2 3
Number of workers
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ELM Ensemble Accuracy (SantaFe, ESTSP)

0.01
0.016,
0.008, ©
o S 00158
= £
£ 0.006 2
E 5 0.0156
3 a
s 0.004 s
z Z 0.0154
0.002
0.0152
% 100 0 20 40 60 80 100

20 40 60 80 B
Number of models in ensemble Number of models in ensemble
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Binary / Ternary ELM
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Better Weights

m random layer weights and biases drawn from e.g. uniform /
normal distribution with certain range / variance

m typical transfer function f ((w;, x) + b;)

m from (w;, x) = |w;||x| cos @, it can be seen that the typical
activation of f depends on:

m expected length of w;
m expected length of x
m angles 6 between the weights and the samples
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Better Weights: Orthogonality?

Idea 1:

m improve the diversity of the weights by taking weights that are
mutually orthogonal (e.g. M d-dimensional basis vectors,
randomly rotated in the d-dimensional space)

m however, does not give significantly better accuracy

m apparently, for the tested cases, random weight scheme of
ELM already covers the possible weight space pretty well
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Better Weights: Sparsity!

Idea 2:

m improve the diversity of the weights by having each of them
work in a different subspace (e.g. each weight vector has
different subset of variables as input)

m spoiler: significantly improves accuracy, at no extra
computational cost

m experiments suggest this is due to the weight scheme enabling
implicit variable selection
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Binary Weight Scheme

rn o 0 0 07
0 1 0 0 0
1var 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
2vars |1 0 0 0 1
0 0 0 1 1
3vars etc. i

until enough neurons:
B add w € {0,1}9 with 1 var (# = 2! x ())
B add w € {0,1}9 with 2 vars (# = 22 x (J))

B add w € {0,1}9 with 3 vars (# = 23 x (J))
...

For each subspace, weights are added in random or-

der to avoid bias toward particular variables

A Aalto University
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Ternary Weight Scheme

r+1 0 0 0 7
-1 0 0 0
1var 0 41 0 0
0o -1 0 0
+1 +1 0 0
+1 -1 0 0
-1 41 0 0
2vars |-1 -1 0 0
0 o -1 -1
3vars

until enough neurons:
B add w € {~1,0,1}¢ with 1 var (3! x (9))
B add w € {~1,0,1}¢ with 2 vars (3% x (%))
B add w € {~1,0,1}9 with 3 vars (33 x (J))
[

For each subspace, weights are added in random or-

der to avoid bias toward particular variables

A’ Aalto University
| |
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Experimental Settings

# training ‘ # test ‘

’ Data H Abbreviation number of variables
Abalone Ab 8 2000 2177
CaliforniaHousing Ca 8 8000 12640
CensusHouse8L Ce 8 10000 12784
DeltaElevators De 6 4000 5517
ComputerActivity Co 12 4000 4192

BIP(CV)-TR-ELM vs BIP(CV)-TR-2-ELM vs BIP(CV)-TR-3-ELM

u

B Experiment 1:
B Experiment 2:
B Experiment 3:
]

relative performance
robustness against irrelevant vars
implicit variable selection

(all results are averaged over 100 repetitions, each with randomly drawn
training/test set)

A Aalto University

Advances in Extreme Learning Machines 46/23
Mark van Heeswijk April 17, 2015
Lectio Praecursoria



Exp 1: numhidden vs. RMSE (Abalone)

07 m averages over 100 runs
— BIP(rand)-TR-ELM
0.69 --- BIP(rand)-TR-2-ELM . .
Bib(any TRoELv | @ Gaussian < binary

m ternary < gaussian

m better RMSE with much
less neurons

0.63
0.62
0.61
0.6
0 100 200 300 400 500 600 700 800 900 1,000
numhidden
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Exp 1: numhidden vs. RMSE (CpuActivity)

m averages over 100 runs

— BIP(rand)-TR-ELM
--- BIP(rand)-TR-2-ELM
— BIP(rand)-TR-3-ELM

binary < gaussian

m ternary < gaussian

better RMSE with much
less neurons

500 600 700 800 900 1,000
numhidden

0 100 200 300 400
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Exp 2: Robustness against irrelevant variables
(Abalone)

072 = 1000 neurons
— BIP(rand)-TR-ELM

- - BIP(rand)-TR-2-ELM . .
0.7 |— BIP(rand)-TR-3-ELM u binary weight scheme

gives similar RMSE

u ternary weight scheme
makes ELM more robust
against irrelevant vars

number of added noise variables
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Exp 2: Robustness against irrelevant variables
(CpuActivity)

RMSE et

— BIP(rand)-TR-ELM
- - = BIP(rand)-TR-2-ELM
—— BIP(rand)-TR-3-ELM

0.3

o
N
&

10 12 14
number of added noise variables

m 1000 neurons
m binary and ternary
weight scheme makes

ELM more robust
against irrelevant vars

A Aalto University
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Exp 2: Robustness against irrelevant variables

Ab Co
gaussian binary ternary gaussian binary ternary
RMSE with original variables 0.6497 0.6544 0.6438 0.1746 0.1785 0.1639
RMSE with 30 added irr. vars 0.6982 0.6932 0.6788 0.3221 0.2106 0.1904
RMSE loss || 0.0486 | 0.0388 | 0.0339 || 0.1475 | 0.0321 | 0.0265 |

Table : Average RMSE loss of ELMs with 1000 hidden neurons, trained
on the original data, and the data with 30 added irrelevant variables
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Exp 3: Implicit Variable Selection (CpuAct)

m relevance of each input variable quantified as SV 8 x w;|

gaussian

variable relevance
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Exp 3: Implicit Variable Selection (CpuAct)

m relevance of each input variable quantified as SV 8 x w;|

variable relevance

binary view
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variables
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Exp 3: Implicit Variable Selection (CpuAct)

. . e M
m relevance of each input variable quantified as >~ [8i X w;]
ternary

variable relevance

variabl

es
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Binary/Ternary ELM Conclusions

We propose simple change to weight scheme and introduce robust ELM
variants:

m BIP(rand)-TR-ELM
m BIP(rand)-TR-2-ELM
m BIP(rand)-TR-3-ELM
Our experiments suggest that
1. ternary weight scheme generally better than gaussian weights
2. ternary weight scheme robust against irrelevant variables

3. binary/ternary weight scheme allows ELM to perform implicit variable
selection

The added robustness and increased accuracy comes for free!
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Defence Slides:

Trade-offs / Compressive ELM
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Time-accuracy Trade-offs for Several ELMs

ELM

OP-ELM: Optimally Pruned ELM with neurons ranked by relevance, and
then pruned to optimize the leave-one-out error

m TR-ELM: Tikhonov-regularized ELM, with efficient optimization of
regularization parameter A, using the SVD approach to computing Hf

m TROP-ELM: Tikhonov regularized OP-ELM
BIP(0.2), BIP(rand), BIP(CV):

m ELMs pretrained using Batch Intrinsic Plasticity mechanism,
adapting the hidden layer weights and biases, such that they
retain as much information as possible

m BIP parameter is either fixed, randomized, or cross-validated
over 20 possible values
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training time

ELM Time-accuracy Trade-offs (Abalone UCI)
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——OP-3-ELM
-=- TROP-3-ELM

ELM Time-accuracy Trade-offs (Abalone UCI)

05 0.5
—=OP-3-ELM
0.49 === TROP-3-ELM 0.49
— TR-3-ELM — TR-3-ELM
0.48 ++++ BIP(CV)-TR-3-ELM 0.48 ++++ BIP(CV)-TR-3-ELM
----- BIP(0.2)-TR-3-ELM «s: BIP(0.2)-TR-3-ELM
------ BIP(rand)-TR-3-ELM 0.47 «ww BIP(rand)-TR-3-ELM
0.46
. g045
_""— E
______________ petosl 0.44
0.43
0.42
0.41
0.4
4 5 6 7 1 2 3 5 6
training time testing time 102
Advances in Extreme Learning Machines 59/2
Mark van Heeswij April 17, 2015
Lectio Praecursoria

Ao Aalto University
|



ELM Time-accuracy Trade-offs (Abalone UCI)

Depending on the user's criteria, these results suggest:

m training time most important: BIP(rand)-TR-3-ELM
(almost optimal performance, while keeping training time low)

m if test error is most important: BIP(CV)-TR-3-ELM
(slightly better accuracy, but training time is 20 times as high)

m if testing time is most important: BIP(rand)-TR-3-ELM (surprisingly)
(OP-ELM and TROP-ELM tend to be faster in test, but suffer from
slight overfitting)

Since TR-3-ELM offers attractive trade-offs between speed and accuracy, this
model will be central in the rest of the paper.
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Two approaches for improving models

Time-accuracy trade-offs suggest two possible strategies to obtain models
that are preferable over other models:

= reducing test error, using a better algorithm
(“in terms of training time-accuracy plot: “pushing the curve down”)

= reducing computational time, while retaining as much accuracy as
possible
(“in terms of training time-accuracy plot: “pushing the curve to the left”)

Compressive ELM focuses on reducing computational time by performing
the training in a reduced space, and then projecting back the solution back
to the original space.
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Compressive ELM

Given m X n matrix A, compute k-term approximate SVD

A =~ UDV T [Halko2009]:
B Form the n x (k + p) random matrix €. (where p is small)
m Form the m x (k 4 p) sampling matrix Y = AQ. (sketch it by applying Q)
® Form the m x (k + p) orthonormal matrix Q

(such that range(Q) = range(Y))

Compute B = Q*A.

m Form the SVD of B so that B = UDV"

m Compute the matrix U = QU
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Faster Sketching?

Bottleneck in Algorithm is the time it takes to sketch the matrix. Rather than
using Gaussian random matrices for sketching A, use random matrices that are
sparse or structured in some way and allow for faster multiplication:

(P s (W) (D)

m Fast Johnson Lindenstrauss Transform (FJLT) introduced in
[Ailon2006] for which P is a sparse matrix of random Gaussian variables,
and H encodes the Discrete Hadamard Transform

m Subsampled Randomized Hadamard Transform (SRHT) for which P is
a matrix selecting k random columns from H, and H encodes the
Discrete Hadamard Transform

(Experiments did not show substantial difference in terms of computational
time. Dataset too small?)
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training time

Compressive ELM (CalHousing, FJLT)
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Compressive ELM (CalHousing, FJLT)
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Compressive ELM Conclusions

Contributions
m Compressive ELM provides a flexible way to reduce training time by
doing the optimization in a reduced space of k dimensions
m given k large enough, Compressive ELM achieves the best test error for

each computational time
(i.e. there are no models that achieve better test error and can be trained

in the same or less time).

Future work

m let theory/bounds on low-distortion embeddings inform the choice of k
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