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Course book

Darren J. Wilkinson
Stochastic Modelling for Systems Biology
Chapman & Hall/CRC, 2006.

today:

Section 1: Introduction
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Modeling

General

Modeling

purposes of modeling

mathematical representation of the current state of knowledge:
elements and interactions
test current knowledge: consistency with experimental data

learn model parameters/structure from data

use model predictively: virtual experiments
integrate sub-models into a larger model: interactions

modeling important in biology

integrating knowledge and experimental data
testable predictions
make inference about biological phenomena
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Modeling

General

Stochastic modeling

biological systems are typically considered as deterministic
systems

dynamics of biological systems (at detailed level) are
intrinsically stochastic in nature



Signal Processing Graduate Seminar IV (SGN-9406): Stochastic Modelling for Systems Biology

Modeling

Example

An example model

linear birth-death process for bacterium

reproduces at rate λ

dies at rate µ

initial amount x0

continuous deterministic model

dX (t)

dt
= (λ − µ)X (t)

has the solution

X (t) = x0 exp((λ − µ)t)

λ − µ is sufficient: population size will increase if λ > µ,
decrease if λ < µ, remain the same if λ = µ
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Modeling

Example

An example model (2)

[Figure 1.1]
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Modeling

Example

An example model (3)

identifiability: experimental data only give information about
λ − µ

cannot infer from experimental data if we have pure birth or
pure death model

problems: bacteria vary in number

discretely
stochastically

see Fig. 1.2

e.g. confidence intervals at time t = 2

deterministic model never reaches level 0
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Modeling

Example

An example model (4)

[Figure 1.2]
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Modeling

Example

An example model (5)

stochastic model depends on both λ and µ (see Fig. 1.3)

stochastic rate constants cannot in general be estimated using
a deterministic model

similar observations apply to genetic and biochemical network
models
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Modeling

Example

An example model (6)

[Figure 1.3]
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Chemical reactions

Coupled chemical reactions

Chemical reactions

a biological system can be represented in a number of ways:
verbal, diagrams, graphs, ODEs, PDEs, coupled chemical

reactions

chemical reactions can be simulated and define full dynamic
model

chemical reactions with stoichiometric coefficients

m1R1 + m2R2 + . . . + mrRr −→ n1P1 + n2P2 + . . . + npPp

which chemical species react, in which proportions, and what
is produced
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Chemical reactions

Coupled chemical reactions

A concrete example: protein dimerisation

protein dimerisation
2P −→ P2

dissociation
P2 −→ 2P

reversible reaction can happen in both directions

2P −⇀↽− P2
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Modeling genetic and biochemical networks

Transcription

Motivation

Stochastic modeling is particularly important for genetic and
biochemical networks

transcription is a central biological process

 transcriptional regulation is important
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Modeling genetic and biochemical networks

Transcription

Prokaryotic transcription

[Figure 1.4]
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Modeling genetic and biochemical networks

Transcription

Prokaryotic transcription (2)

gene g , promoter p, transcript r , RNA polymerase RNAP

(see Fig. 1.4)

p + RNAP −→ p · RNAP

p · RNAP −→ p + RNAP + r

reactions do not necessarily form a closed system

linear chain of reactions can sometimes be summarized as

p + RNAP −→ p + RNAP + r
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Modeling genetic and biochemical networks

Transcription

Prokaryotic transcription (3)

transcription including elongation

p + RNAP −→ p · RNAP

p · RNAP −→ p · RNAP · r1

p · RNAP · r1 −→ p · RNAP · r2
... −→

...

p · RNAP · rn−1 −→ p · RNAP · rn

p · RNAP · rn −→ p + RNAP + r

gene is blocked. . .
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Modeling genetic and biochemical networks

Transcription

Eukaryotic transcription

[Figure 1.5]
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Modeling genetic and biochemical networks

Transcription

Eukaryotic transcription (2)

eukaryotic transcription is much more complex: see Fig. 1.5
for a simple model with transcription factors TF1 and TF2

g + TF1 −⇀↽− g · TF1

g · TF1 + TF2 −⇀↽− g · TF1 · TF2

g · TF1 · TF2 + RNAP −⇀↽− g · TF1 · TF2 · RNAP

g · TF1 · TF2 · RNAP −→ g · TF1 · TF2 + RNAP + r
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Modeling genetic and biochemical networks

Transcription

Prokaryotic transcription repression

transcriptional regulation necessarily involves feedback (a
definition for biological network)

an example of repression: see Fig. 1.6

g + R −⇀↽− g · R

g + RNAP −⇀↽− g · RNAP

g · RNAP −→ g + RNAP + r

g and g · R are different chemical species
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Modeling genetic and biochemical networks

Transcription

Prokaryotic transcription repression (2)

[Figure 1.6]
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Modeling genetic and biochemical networks

Transcription

Translation

simplified reactions to produce an unfolded protein Pu and
folded protein P from an mRNA molecule with the help of
ribosome Rib

r + Rib −⇀↽− r · Rib

r · Rib −→ r + Rib + Pu

Pu −→ P
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Modeling genetic and biochemical networks

Transcription

mRNA degradation

simply
r −→ ∅

or

r + RNase −⇀↽− r · RNase

r · RNase −→ RNase

similar reactions for protein degradation and mRNA transport
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Modeling genetic and biochemical networks

Transcription

Prokaryotic auto-regulation

combine the previous building blocks of simple reactions into
a auto-regulatory model (see Fig. 1.7)

g + P2 −⇀↽− g · P2

g −→ g + r

r −→ r + P

2P −⇀↽− P2

r −→ ∅

P −→ ∅
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Modeling genetic and biochemical networks

Transcription

Prokaryotic auto-regulation (2)

[Figure 1.7]



Signal Processing Graduate Seminar IV (SGN-9406): Stochastic Modelling for Systems Biology

Modeling genetic and biochemical networks

Transcription

Lac operon

[Figure 1.8]
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Modeling genetic and biochemical networks

Transcription

Lac operon (2)

see Fig. 1.8

i −→ i + rI

rI −→ rI + I

I + Lactose −⇀↽− I · Lactose

I + o −⇀↽− I · o

o + RNAP −→ o · RNAP

o · RNAP −→ o + RNAP + r

r −→ r + A + Z + Y

Lactose + Z −→ Z
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Modeling genetic and biochemical networks

Transcription

Birth-death model

the linear birth-death model

x −→ 2X

X −→ ∅
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