Harri Lähdesmäki

Department of Signal Processing Tampere University of Technology

October 15, 2008

Course book

 Darren J. Wilkinson Stochastic Modelling for Systems Biology Chapman & Hall/CRC, 2006.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

today:

Section 1: Introduction

- 2 Chemical reactions
 - Coupled chemical reactions
- Modeling genetic and biochemical networks
 Transcription

Modeling

purposes of modeling

mathematical representation of the current state of knowledge: elements and interactions

- test current knowledge: consistency with experimental data
 - learn model parameters/structure from data
- use model predictively: virtual experiments
- integrate sub-models into a larger model: interactions
- modeling important in biology
 - integrating knowledge and experimental data
 - testable predictions
 - make inference about biological phenomena

Stochastic modeling

biological systems are typically considered as deterministic systems

 dynamics of biological systems (at detailed level) are intrinsically stochastic in nature

An example model

linear birth-death process for bacterium

- reproduces at rate λ
- \blacksquare dies at rate μ
- initial amount x₀

continuous deterministic model

$$\frac{dX(t)}{dt} = (\lambda - \mu)X(t)$$

has the solution

$$X(t) = x_0 \exp((\lambda - \mu)t)$$

 λ − μ is sufficient: population size will increase if λ > μ, decrease if λ < μ, remain the same if λ = μ

An example model (2)

[Figure 1.1]


```
Signal Processing Graduate Seminar IV (SGN-9406): Stochastic Modelling for Systems Biology
Modeling
Example
```

An example model (3)

- \blacksquare identifiability: experimental data only give information about $\lambda-\mu$
- cannot infer from experimental data if we have pure birth or pure death model

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- problems: bacteria vary in number
 - discretely
 - stochastically
- see Fig. 1.2
- e.g. confidence intervals at time t = 2
- deterministic model never reaches level 0

An example model (4)

[Figure 1.2]

An example model (5)

- stochastic model depends on both λ and μ (see Fig. 1.3)
- stochastic rate constants cannot in general be estimated using a deterministic model
- similar observations apply to genetic and biochemical network models

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

An example model (6)

[Figure 1.3]

Chemical reactions

Coupled chemical reactions

Chemical reactions

- a biological system can be represented in a number of ways: verbal, diagrams, graphs, ODEs, PDEs, coupled chemical reactions
- chemical reactions can be simulated and define full dynamic model
- chemical reactions with stoichiometric coefficients

$$m_1R_1 + m_2R_2 + \ldots + m_rR_r \rightarrow n_1P_1 + n_2P_2 + \ldots + n_pP_p$$

which chemical species react, in which proportions, and what is produced

Chemical reactions

Coupled chemical reactions

A concrete example: protein dimerisation

protein dimerisation

$$2P \rightarrow P_2$$

dissociation

$$P_2 \rightarrow 2P$$

reversible reaction can happen in both directions

$$2P \rightleftharpoons P_2$$

Modeling genetic and biochemical networks

Transcription

Motivation

 Stochastic modeling is particularly important for genetic and biochemical networks

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- transcription is a central biological process
- → transcriptional regulation is important

Modeling genetic and biochemical networks

Transcription

Prokaryotic transcription

[Figure 1.4]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Modeling genetic and biochemical networks

Transcription

```
Prokaryotic transcription (2)
```

 gene g, promoter p, transcript r, RNA polymerase RNAP (see Fig. 1.4)

$$p + \text{RNAP} \rightarrow p \cdot \text{RNAP}$$

 $p \cdot \text{RNAP} \rightarrow p + \text{RNAP} + r$

- reactions do not necessarily form a closed system
- linear chain of reactions can sometimes be summarized as

$$p + \text{RNAP} \rightarrow p + \text{RNAP} + r$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Modeling genetic and biochemical networks

Transcription

transcription including elongation

$$p + \text{RNAP} \rightarrow p \cdot \text{RNAP}$$

$$p \cdot \text{RNAP} \rightarrow p \cdot \text{RNAP} \cdot r_1$$

$$p \cdot \text{RNAP} \cdot r_1 \rightarrow p \cdot \text{RNAP} \cdot r_2$$

$$\vdots \rightarrow \vdots$$

$$p \cdot \text{RNAP} \cdot r_{n-1} \rightarrow p \cdot \text{RNAP} \cdot r_n$$

$$p \cdot \text{RNAP} \cdot r_n \rightarrow p + \text{RNAP} + r_n$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

gene is blocked...

Modeling genetic and biochemical networks

Transcription

Eukaryotic transcription

[Figure 1.5]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Modeling genetic and biochemical networks

Transcription

Eukaryotic transcription (2)

eukaryotic transcription is much more complex: see Fig. 1.5 for a simple model with transcription factors TF₁ and TF₂

$$\begin{array}{rcl} g + \mathrm{TF}_1 &\rightleftharpoons & g \cdot \mathrm{TF}_1 \\ g \cdot \mathrm{TF}_1 + \mathrm{TF}_2 &\rightleftharpoons & g \cdot \mathrm{TF}_1 \cdot \mathrm{TF}_2 \\ g \cdot \mathrm{TF}_1 \cdot \mathrm{TF}_2 + \mathrm{RNAP} &\rightleftharpoons & g \cdot \mathrm{TF}_1 \cdot \mathrm{TF}_2 \cdot \mathrm{RNAP} \\ g \cdot \mathrm{TF}_1 \cdot \mathrm{TF}_2 \cdot \mathrm{RNAP} &\to & g \cdot \mathrm{TF}_1 \cdot \mathrm{TF}_2 + \mathrm{RNAP} + r \end{array}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Modeling genetic and biochemical networks

- Transcription

Prokaryotic transcription repression

transcriptional regulation necessarily involves feedback (a definition for biological network)

■ an example of repression: see Fig. 1.6

$$\begin{array}{rcl} g+R &\rightleftharpoons & g \cdot R \\ g+\mathrm{RNAP} &\rightleftharpoons & g \cdot \mathrm{RNAP} \\ g \cdot \mathrm{RNAP} &\to & g+\mathrm{RNAP}+r \end{array}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

g and $g \cdot R$ are different chemical species

Modeling genetic and biochemical networks

Transcription

Prokaryotic transcription repression (2)

[Figure 1.6]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Modeling genetic and biochemical networks

Transcription

simplified reactions to produce an unfolded protein P_u and folded protein P from an mRNA molecule with the help of ribosome Rib

$$\begin{array}{rcl} r + \operatorname{Rib} &\rightleftharpoons & r \cdot \operatorname{Rib} \\ r \cdot \operatorname{Rib} &\to & r + \operatorname{Rib} + P_u \\ P_u &\to & P \end{array}$$

Modeling genetic and biochemical networks

Transcription

mRNA degradation

simply

$$r \rightarrow \emptyset$$

or

$r + \text{RNase} \rightleftharpoons r \cdot \text{RNase}$ $r \cdot \text{RNase} \rightarrow \text{RNase}$

similar reactions for protein degradation and mRNA transport

Modeling genetic and biochemical networks

Transcription

Prokaryotic auto-regulation

 combine the previous building blocks of simple reactions into a auto-regulatory model (see Fig. 1.7)

$$g + P_2 \rightleftharpoons g \cdot P_2$$
$$g \rightarrow g + r$$
$$r \rightarrow r + P$$
$$2P \rightleftharpoons P_2$$
$$r \rightarrow \emptyset$$
$$P \rightarrow \emptyset$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Modeling genetic and biochemical networks

Transcription

Prokaryotic auto-regulation (2)

[Figure 1.7]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Modeling genetic and biochemical networks

Transcription

[Figure 1.8]

Modeling genetic and biochemical networks

Transcription

■ see Fig. 1.8

$$i \rightarrow i + r_{l}$$

$$r_{l} \rightarrow r_{l} + l$$

$$l + \text{Lactose} \rightleftharpoons l \cdot \text{Lactose}$$

$$l + o \rightleftharpoons l \cdot o$$

$$o + \text{RNAP} \rightarrow o \cdot \text{RNAP}$$

$$o \cdot \text{RNAP} \rightarrow o + \text{RNAP} + r$$

$$r \rightarrow r + A + Z + Y$$

$$\text{Lactose} + Z \rightarrow Z$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Modeling genetic and biochemical networks

Transcription

Birth-death model

the linear birth-death model

$$\begin{array}{ccc} x & \rightarrow & 2X \\ X & \rightarrow & \emptyset \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ