SGN-6156, Lecture 12 Review lecture

Harri Lähdesmäki, harri.lahdesmaki@tut.fi Department of Signal Processing, Tampere University of Technology

07.05.2008

The main topics

- Biological sequence analysis
- Modeling biological regulatory networks

Important points by lecture

- Lecture 1
 - Basic building blocks and basic regulatory mechanisms (from the point of view what was studied later during the course)
 - Motivation for sequence alignment: why it is useful?
 - A probabilistic alignment scoring model: substitution matrices, gap penalties, likelihood ratios, etc.
- Lecture 2
 - Dynamic programming algorithms for finding alignments (developed separately from the scoring model)
 - Global alignments, local alignments, and the ideas of more complex alignment procedures
 - Algorithmic complexity
 - Motivation and the idea of heuristic alignment methods (BLAST)

- Bayesian model comparison (applications throughout the course)
- Standard hypothesis testing also non-parametric (applications throughout the course)
- Lecture 3
 - Alignment with the affine gap penalty
 - Substitution matrices: estimation
 - Markov chains: definition, parameter estimation, simple applications, significance of a Markov model
 - Hidden Markov models (HMM): definition/basics, Viterbi for path estimation
- Lecture 4
 - HMMs: the probability of a sequence/forward algorithm, the probability of a state/forward-backward algorithm, posterior decoding
 - Pairwise alignment using HMMs (truly probabilistic interpreta-

tion): Viterbi, forward algorithm, posterior of alignments

- Lecture 5
 - Profile HMMs for sequence families: definitions, searching (Viterbi and forward algorithms)
 - Multiple alignments: scoring methods, dynamic programming for finding alignments, iterative (heuristic) methods
- Lecture 6
 - DNA sequence motifs
 - Transcription factor binding sites: representation, prediction, motif discovery
- Lecture 7
 - Stochastic simulation methods: benefits, stochastic vs. deterministic simulation methods

- Gillespie's simulation algorithm
- Lecture 8
 - Simulation of biological processes: general, the level of approximation
 - Quantitative models: biochemical reaction systems
 - Modeling of biological processes: parameter estimation, model selection, cross-validation
- Lecture 9
 - Bayesian networks and dynamic Bayesian networks
 - Motivation for probabilistic graphical models, definition, probability factorization, discrete model, parameter learning, structure learning, search strategies for structure
- Lecture 10

- Stoichiometric analysis of metabolic networks and pathways
- Metabolism, metabolic networks and pathways
- Reconstruction of metabolic networks, stoichiometry and fluxes
- Metabolic pathway analysis: steady-state, flux balance analysis, minimization of metabolic adjustment, elementary modes, extreme pathways, applications
- Lecture 11
 - Gene ontology: ontologies and annotations
 - Gene set enrichment analysis

Exam

- The first exam on 14-05-2008
- You can use a (graphical) calculator in the exam (you may or may not need it...)