SGN-6156, Lecture 8
Modeling biological regulatory networks

Harri Lähdesmäki, harri.lahdesmaki@tut.fi
Department of Signal Processing,
Tampere University of Technology

23.04.2008

Modeling of biological processes

- The problem of building a good mathematical model is to balance details versus higher-level generality, i.e., to capture essential biological features
- For example:
- Diagrams + qualitative verbal descriptions
- Simple (semi)quantitative models, such as deterministic or stochastic linear or discrete models
- Coupled (stochastic) biochemical reactions
- Systems of ordinary or partial differential equations, the chemical master equations

Simulation of biological processes

- Construct a mathematical model by combining the current knowledge of a particular biological system
- Test the model against the current understanding (model validation)
- Perform (simulation based) virtual experiments in different contexts/with different initial values or perturbations
- Generate or redefine new biological experiments. Check the simulation based predictions in wet-lab
- Stochastic (and deterministic) simulations can be extremely useful if accurate model of a system is available
- The previous lecture introduced the essential ideas and algorithms for detailed simulation of a stochastic biological process: Chemical master equations, Gillespie algorithm and its variant, ODEs and SDEs
- Before simulations, a model needs to be defined.
- Model selection: which variables x_{1}, \ldots, x_{n} affect a variable y (y can be one of the $x_{i} \mathrm{~s}$) and what is a specific type of function that describes stochastic relationship between x_{1}, \ldots, x_{n} and y ?
- Parameter values: what are appropriate parameter values for a chosen model(s)?
- In some cases a model is known accurately, but more often we face a problem where we have no clue of the underlying biological model
- In the context of stochastic modeling (using previously introduced stochastic models)
- Parameters can be learned from measurement data (this requires quite involved computation and is not discussed in this course)
- Parameters (rate constants) can be "measured" in some cases
- Model selection is difficult/practically impossible

Quantitative models of biochemical systems, recap

- CSB1 course introduced the essential concepts for quantitative models of biochemical systems, e.g.
- Enzyme-catalyzed reactions, e.g., substrate S forms a product P (catalyzed by an enzyme E)

$$
E+S \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftharpoons}} E S \xrightarrow{k_{2}} E+P
$$

where $k s$ are the rate constants, leads to a differential equation (similarly for other variables)

$$
\frac{d P}{d t}=k_{2} E S
$$

- Michaelis-Menten equations assume a steady state condition has been reached

$$
\frac{d P}{d t}=\frac{v_{\max } S}{K_{m}+S}
$$

- A quantitative model can be specified (up to parameter values) starting from known chemical reactions

Quantitative models for transcriptional regulation

- Transcriptional regulation is a central regulatory control mechanism in cells and is a basis for many cellular processes
- A simplified example of eukaryotic transcription from (Wilkinson, 2006)
- Assume a case where two TFs, $T F_{1}$ and $T F_{2}$, regulate a gene g
- $T F_{1}$ binds the promoter of g (a specific location upstream of g)
- $T F_{2}$ binds the promoter of g (another specific location upstream of g) only if promoter is already bound by $T F_{1}$
- $T F_{1}$ cannot unbind DNA once $T F_{2}$ has bound
- $T F_{1}$ and $T F_{2}$ recruit RNA polymerase to bind the DNA and to initiate transcription
- All steps are reversible
- This can be modeled as (see Figure 1.5 in Wilkinson, 2006)

$$
\begin{aligned}
g+T F_{1} & \rightleftharpoons g \cdot T F_{1} \\
g \cdot T F_{1}+T F_{2} & \rightleftharpoons g \cdot T F_{1} \cdot T F_{2} \\
g \cdot T F_{1} \cdot T F_{2}+R N A P & \rightleftharpoons g \cdot T F_{1} \cdot T F_{2} \cdot R N A P \\
g \cdot T F_{1} \cdot T F_{2} \cdot R N A P & \rightarrow g \cdot T F_{1} \cdot T F_{2}+R N A P+r
\end{aligned}
$$

- The above model can be accurate enough for certain modeling purposes, but the transcription process is much more complex in reality (see additional material)
- A precise model (e.g. which TFs bind g) is most often unknown!

Figure 1.5 A simple illustrative model of the transcription process in eukaryotic cells
Figure from (Wilkinson, 2006)

Quantitative models for translation and degradation

- mRNA is translated into a protein with the help of ribosome and folded into a 3-D structure

$$
\begin{array}{r}
r+\operatorname{Rib} \rightleftharpoons r \cdot \operatorname{Rib} \\
r \cdot R i b \rightarrow r+\operatorname{Rib}+P_{u} \\
P_{u} \rightarrow P_{f}
\end{array}
$$

- Degradation of mRNA by RNase

$$
\begin{array}{r}
r+R N \text { ase } \rightarrow r \cdot R N a s e \\
r \cdot R N a s e \rightarrow R N a s e
\end{array}
$$

and degradation of folded protein (tagged by a signal molecule t)

$$
\begin{array}{r}
P_{f}+t \rightarrow P_{f} \cdot t \\
P_{f} \cdot t \rightarrow t
\end{array}
$$

Modeling transcriptional regulation

- The above models (or their more elaborated versions) can in principle give us a model for transcriptional regulation
- The well-known lac operon model (see also Figure 1.8 in Wilkinson, 2006)
- As noted above, accurate models are rarely available in practice
\rightarrow Learn the models from measurement data (recall also the binding site prediction problem from the last week)

Simulation of a model

- Recall the simplest possible numerical simulation method (Euler's method) for ODEs (more sophisticated methods exist)
- Variables $X=\left(X_{1}, \ldots, X_{n}\right)^{T}$ and an arbitrary function f of X with parameters θ

$$
\begin{aligned}
\frac{d X(t)}{d t} & =f(X(t) \mid \theta) \\
\lim _{\triangle t \rightarrow 0} \frac{X(t+\triangle t)-X(t)}{\triangle t} & =f(X(t) \mid \theta)
\end{aligned}
$$

- For small values of Δt this is well approximated with the finite diffidence as

$$
\frac{X(t+\triangle t)-X(t)}{\triangle t} \approx f(X(t) \mid \theta)
$$

and by solving for $X(t+\triangle t)$ one gets

$$
X(t+\triangle t)=X(t)+\triangle t f(X(t) \mid \theta)
$$

- The above equation can be applied repeatedly to compute $X\left(t_{0}\right)$, $X\left(t_{0}+\Delta t\right), X\left(t_{0}+2 \Delta t\right), \ldots$ which can be used to approximate the exact solution

$$
X(t)=X\left(t_{0}\right)+\int_{t_{0}}^{t} f(X(t) \mid \theta) d t
$$

Parameter estimation

- Assume first that we are given a model up to unknown parameter values
- Parameter estimation for θ given data $D=\left\{\left(Y_{1}, t_{1}\right), \ldots\left(Y_{m}, t_{m}\right)\right\}$

1. Randomly choose θ
2. Simulate model/numerically solve for $X(t)$
3. Assess the goodness of the parameters, e.g.

$$
e(\theta)=\sum_{i=1}^{m}\left(Y_{i}-X\left(t_{i}\right)\right)^{2}
$$

4. Check for convergence of θ and stop if converged
5. Update θ e.g. to the direction of negative gradient and go back to step 2
6. Repeat the whole process with several different initial values

- Another commonly used but typically more crude approximation for $\frac{d X(t)}{d t}=f(X(t) \mid \theta)$ is

$$
\frac{X\left(t_{i+1}\right)-X\left(t_{i}\right)}{t_{i+1}-t_{i}} \approx f\left(X\left(t_{i}\right) \mid \theta\right), \quad t_{1}<t_{2} \ldots<t_{m}
$$

- Accuracy of the approximation depends on the measurement sampling times
- This can be interpreted as standard linear/nonlinear regression problem $y_{i}=f\left(X\left(t_{i}\right) \mid \theta\right)$ where

$$
y_{i}=\frac{X\left(t_{i+1}\right)-X\left(t_{i}\right)}{t_{i+1}-t_{i}}
$$

and can be solved for θ by any standard methods

Model selection

- The most interesting case and the most often met in practice is the one where both the activation function f and the subset of variables that regulate y are unknown
- Without constraints, there are 2^{n} different combinations/subsets of $\left\{X_{1}, \ldots, X_{n}\right\}$
- There might also be a family of activation function f to consider, f_{1}, \ldots, f_{ℓ}. In the most general case, there are infinitely many functions to consider. . .
- In that case, the use of the above simple search method for the identification of the best subset(s)/activation function(s), by minimizing squared error criterion on sample data D, is destined to fail for finite (i.e., in practice small) sample sizes
- This is due to the fact that the above error criterion is of the type of resubstitution, i.e., parameters of a model are fitted to the whole data without taking into consideration the model complexity
- Thus, more complex models/larger subsets will decrease the error although they are far away from the true model and do not generalize to unseen data points ((i.e., are overfitted to given data)
- A principled model selection method is needed
- Three different types of model selection methods
- Assess predictive accuracy (cross-validation, bootstrap)
- Bayesian model selection
- Error-bound bounds

Cross-validation

- In k-fold cross-validation, the (training) data D is split into k nonoverlapping parts D_{i} that have (approximately) the same size, i.e.: $D_{i} \cap D_{j}=\emptyset, i \neq j,\left|D_{i}\right| \approx\left|D_{j}\right|, i \neq j$ and $D=\cup_{i} D_{i}$
- Each set D_{i} is left out from the training data in turn and the model parameters are estimated from $D_{1}, \ldots, D_{i-1}, D_{i+1}, \ldots, D_{k}$. The accuracy of the model is tested on the left out set D_{i}
- This process is repeated for all k folds and the average prediction accuracy from the k repetitions is used as the error estimate
- The k-fold cross-validation can be repeated several times with randomly chosen D_{i} s and again average
- If $K=m$ where m is the number of data points this corresponds to the leave-one-out cross-validation (LOOCV)
- Cross-validation gives an approximately unbiased prediction error estimate for data set size $m-m / K$
- Larger k gives a smaller bias but larger variance, and the other way round
- Computationally rather expensive at least for large values of k

An example

- Example from (Bonneau et al., 2006)
- Learn transcriptional regulatory networks from gene expression data using a model of the form

$$
\frac{d Y}{d t}=f\left(\beta_{1} X_{1}+\ldots+\beta_{n} X_{n}\right)-\tau Y
$$

where g is a sigmoidal type of function

- Model selection using cross-validation

Example (cont.)

77. Amino acid uptake

209. Cation/ Zn transport

214. Fe transport

205 . Phosphte uptake

251. DNA repair, nucleotide metabolism

Figure adapted from (Bonneau et al., 2006)

An advertisement

- A new course will be taught next year: Modeling Techniques for Stochastic Gene Regulatory Networks, 3 cr, lectured by Dr. Andre S. Ribeiro

References

- Wilkinson D, Stochastic Modelling for Systems Biology, Chapman \& Hall/CRC, 2006.
- Bonneau R et al., The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo, Genome Biology, 7:R36, 2007.

