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Modeling of biological processes

• The problem of building a good mathematical model is to balance de-

tails versus higher-level generality, i.e., to capture essential biological

features

• For example:

– Diagrams + qualitative verbal descriptions

– Simple (semi)quantitative models, such as deterministic or stochas-

tic linear or discrete models

– Coupled (stochastic) biochemical reactions

– Systems of ordinary or partial differential equations, the chemical

master equations

–1–



SGN-6156 – Computational Systems Biology II

Simulation of biological processes

• Construct a mathematical model by combining the current knowledge

of a particular biological system

– Test the model against the current understanding (model valida-

tion)

– Perform (simulation based) virtual experiments in different con-

texts/with different initial values or perturbations

– Generate or redefine new biological experiments. Check the simu-

lation based predictions in wet-lab

• Stochastic (and deterministic) simulations can be extremely useful if

accurate model of a system is available

• The previous lecture introduced the essential ideas and algorithms

for detailed simulation of a stochastic biological process: Chemical

master equations, Gillespie algorithm and its variant, ODEs and SDEs
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• Before simulations, a model needs to be defined.

– Model selection: which variables x1, . . . , xn affect a variable y (y

can be one of the xis) and what is a specific type of function that

describes stochastic relationship between x1, . . . , xn and y?

– Parameter values: what are appropriate parameter values for a

chosen model(s)?

• In some cases a model is known accurately, but more often we face a

problem where we have no clue of the underlying biological model

• In the context of stochastic modeling (using previously introduced

stochastic models)

– Parameters can be learned from measurement data (this requires

quite involved computation and is not discussed in this course)

– Parameters (rate constants) can be “measured” in some cases

– Model selection is difficult/practically impossible
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Quantitative models of biochemical systems, recap

• CSB1 course introduced the essential concepts for quantitative models

of biochemical systems, e.g.

– Enzyme-catalyzed reactions, e.g., substrate S forms a product P

(catalyzed by an enzyme E)

E + S
k1−−⇀↽−−
k
−1

ES
k2−→ E + P,

where ks are the rate constants, leads to a differential equation

(similarly for other variables)

dP

dt
= k2ES
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• Michaelis-Menten equations assume a steady state condition has been

reached
dP

dt
=

vmaxS

Km + S

• A quantitative model can be specified (up to parameter values) start-

ing from known chemical reactions
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Quantitative models for transcriptional regulation

• Transcriptional regulation is a central regulatory control mechanism

in cells and is a basis for many cellular processes

• A simplified example of eukaryotic transcription from (Wilkinson,

2006)

• Assume a case where two TFs, TF1 and TF2, regulate a gene g

• TF1 binds the promoter of g (a specific location upstream of g)

• TF2 binds the promoter of g (another specific location upstream of

g) only if promoter is already bound by TF1

• TF1 cannot unbind DNA once TF2 has bound

• TF1 and TF2 recruit RNA polymerase to bind the DNA and to initiate

transcription

• All steps are reversible
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• This can be modeled as (see Figure 1.5 in Wilkinson, 2006)

g + TF1 −⇀↽− g · TF1

g · TF1 + TF2 −⇀↽− g · TF1 · TF2

g · TF1 · TF2 + RNAP −⇀↽− g · TF1 · TF2 · RNAP

g · TF1 · TF2 · RNAP −→ g · TF1 · TF2 + RNAP + r

• The above model can be accurate enough for certain modeling pur-

poses, but the transcription process is much more complex in reality

(see additional material)

• A precise model (e.g. which TFs bind g) is most often unknown!
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Figure from (Wilkinson, 2006)
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Quantitative models for translation and degradation

• mRNA is translated into a protein with the help of ribosome and

folded into a 3-D structure

r + Rib −⇀↽− r · Rib

r · Rib −→ r + Rib + Pu

Pu −→ Pf

• Degradation of mRNA by RNase

r + RNase −→ r · RNase

r · RNase −→ RNase

and degradation of folded protein (tagged by a signal molecule t)

Pf + t −→ Pf · t

Pf · t −→ t
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Modeling transcriptional regulation

• The above models (or their more elaborated versions) can in principle

give us a model for transcriptional regulation

– The well-known lac operon model (see also Figure 1.8 in Wilkinson,

2006)

• As noted above, accurate models are rarely available in practice

→ Learn the models from measurement data (recall also the binding site

prediction problem from the last week)
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Simulation of a model

• Recall the simplest possible numerical simulation method (Euler’s

method) for ODEs (more sophisticated methods exist)

• Variables X = (X1, . . . , Xn)T and an arbitrary function f of X with

parameters θ

dX(t)

dt
= f(X(t)|θ)

lim
△t→0

X(t + △t) − X(t)

△t
= f(X(t)|θ)

• For small values of △t this is well approximated with the finite diffi-

dence as
X(t + △t) − X(t)

△t
≈ f(X(t)|θ)
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and by solving for X(t + △t) one gets

X(t + △t) = X(t) + △tf(X(t)|θ)

• The above equation can be applied repeatedly to compute X(t0),

X(t0 +△t), X(t0 + 2△t), . . . which can be used to approximate the

exact solution

X(t) = X(t0) +

∫ t

t0

f(X(t)|θ)dt
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Parameter estimation

• Assume first that we are given a model up to unknown parameter

values

• Parameter estimation for θ given data D = {(Y1, t1), . . . (Ym, tm)}

1. Randomly choose θ

2. Simulate model/numerically solve for X(t)

3. Assess the goodness of the parameters, e.g.

e(θ) =
m∑

i=1

(Yi − X(ti))
2

4. Check for convergence of θ and stop if converged

5. Update θ e.g. to the direction of negative gradient and go back

to step 2

6. Repeat the whole process with several different initial values
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• Another commonly used but typically more crude approximation for
dX(t)

dt
= f(X(t)|θ) is

X(ti+1) − X(ti)

ti+1 − ti
≈ f(X(ti)|θ), t1 < t2 . . . < tm

• Accuracy of the approximation depends on the measurement sampling

times

• This can be interpreted as standard linear/nonlinear regression prob-

lem yi = f(X(ti)|θ) where

yi =
X(ti+1) − X(ti)

ti+1 − ti

and can be solved for θ by any standard methods
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Model selection

• The most interesting case and the most often met in practice is the

one where both the activation function f and the subset of variables

that regulate y are unknown

• Without constraints, there are 2n different combinations/subsets of

{X1, . . . , Xn}

• There might also be a family of activation function f to consider,

f1, . . . , fℓ. In the most general case, there are infinitely many func-

tions to consider. . .

• In that case, the use of the above simple search method for the iden-

tification of the best subset(s)/activation function(s), by minimizing

squared error criterion on sample data D, is destined to fail for finite

(i.e., in practice small) sample sizes
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• This is due to the fact that the above error criterion is of the type

of resubstitution, i.e., parameters of a model are fitted to the whole

data without taking into consideration the model complexity

• Thus, more complex models/larger subsets will decrease the error

although they are far away from the true model and do not generalize

to unseen data points ((i.e., are overfitted to given data)

• A principled model selection method is needed

• Three different types of model selection methods

– Assess predictive accuracy (cross-validation, bootstrap)

– Bayesian model selection

– Error-bound bounds
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Cross-validation

• In k-fold cross-validation, the (training) data D is split into k non-

overlapping parts Di that have (approximately) the same size, i.e.:

Di ∩ Dj = ∅, i 6= j, |Di| ≈ |Dj |, i 6= j and D = ∪iDi

• Each set Di is left out from the training data in turn and the model

parameters are estimated from D1, . . . , Di−1, Di+1, . . . , Dk. The ac-

curacy of the model is tested on the left out set Di

• This process is repeated for all k folds and the average prediction

accuracy from the k repetitions is used as the error estimate

• The k-fold cross-validation can be repeated several times with ran-

domly chosen Dis and again average

• If K = m where m is the number of data points this corresponds to

the leave-one-out cross-validation (LOOCV)
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• Cross-validation gives an approximately unbiased prediction error es-

timate for data set size m − m/K

• Larger k gives a smaller bias but larger variance, and the other way

round

• Computationally rather expensive at least for large values of k
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An example

• Example from (Bonneau et al., 2006)

• Learn transcriptional regulatory networks from gene expression data

using a model of the form

dY

dt
= f(β1X1 + . . . + βnXn) − τY

where g is a sigmoidal type of function

• Model selection using cross-validation
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Example (cont.)

Figure adapted from (Bonneau et al., 2006)
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An advertisement

• A new course will be taught next year: Modeling Techniques for

Stochastic Gene Regulatory Networks, 3 cr, lectured by Dr. Andre S.

Ribeiro
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