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Outline

• What is stochasticity?
• Stochastic phenomena in biology
• Stochastic simulation methods

◦ Gillespie method for simulating coupled chemical
reactions

◦ Stochastic differential equations (SDEs) and Brownian
motion
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Stochasticity

• from Greek stokhastikos = capable of guessing
• "the quality of lacking any predictable order or plan"

(randomness, noise)
• "having a probability distribution, usually with finite variance"

(statistical)
• "involving a random variable the successive values of which

are not independent" (statistical)
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Stochastic phenomena in biology

• Pollen in water (→ Brownian motion)
• Chemical reactions
• Diffusion
• Bacterial motion
• Behaviour of ion channels on cell membrane
• Electroresponsiveness of a neuron
• Radioactive decay
• etc..
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ODEs

• The time evolution of spatially homogeneous mixture of
chemically reacting molecules is usually calculated by
solving a set of ordinary differential equations.

• N chemical species → N differential equations.
• Each equation expresses the rate-of-change of the

molecular concentration of one chemical species as a
function of the molecular concentrations of all the species.

d[Xi]

dt
= fi([X1], . . . , [XN ], t)
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ODEs

• Traditional method based on a deterministic formulation of
chemical kinetics.

• Reaction constants are viewed as "reaction rates".

d[X3]

dt
= k1[X1][X2] − k2[X3]

• Concentrations are represented by continuous,
single-valued functions of time.

• Although adequate in most cases, there are important
situations, for which underlying physical assumptions are
unrealistic and consequent predictions are unreliable.
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Gillespie’s stochastic method

• Reaction constants are viewed not as "reaction rates", but
as "reaction probabilities per unit time".

• Temporal behaviour of a chemically reacting system takes
the form of a Markovian random walk in the N -dimensional
space of molecular populations.

• The time evolution is described by a single equation for a
grand probability function in which time and the N
populations appear as independent variables (the master
equation).
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Gillespie’s stochastic method

• From a physical point of view, the stochastic formulation is
superior to the deterministic formulation.

• The stochastic approach is always valid whenever the
deterministic approach is valid, and is sometimes valid
when the deterministic approach is not.

• Gillespie presents a feasible method for numerically
calulating the stochastic time evolution of a chemical
system.

• Set of deterministic reaction-rate equations for a given
chemical system is much easier to solve than the stochastic
master equation for the same system.
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Gillespie’s stochastic method

• The general problem: given a volume V which contains
molecules of N chemically active species Si, determine the
time evolution of such a system.

• Xi := current number of molecules of chemical species Si

in V .
• Chemical species can participate in M reactions Rm, each

characterised by a reaction parameter cm.
• Parameter cm is called the reaction propensity.
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Gillespie’s stochastic method

• (For definiteness) Reaction Rm is one of the following type
◦ * → reaction products,
◦ Sj → reaction products,
◦ Sj + Sk → reaction products,
◦ 2Sj → reaction products,
◦ Sj + Sk + Sl → reaction products,
◦ Sj + 2Sk → reaction products,
◦ 3Sj → reaction products.

• Each reaction is unidirectional, so any reversible reaction
must be considered as two separate reactions.
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Gillespie’s stochastic method

• Fundamental hypothesis: cm∆t := average probability that
a particular combination of Rm reactant molecules will react
accordingly in the next time interval ∆t.

• The relationship between the propensity cm and the
"reaction rate constant" km which is used in the
deterministic formulation will be examined later.

• Simulate the time evolution of N quantities {Xi}, knowing
only their initial values, the forms of the M reactions {Rm}
and the values of the assosiated reaction parameters {cm}.
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Finding the propensity cm

• Let’s look at reaction Rm : S1 + S2 → 2S3.
• Molecules are hard spheres with masses mi and diameters

di.
• 1–2 collision will occur if the centre-to-centre distance

between an S1 and S2 molecule decreases to
d12 := (d1 + d2)/2.

• Let v12 denote the relative speed of the molecules.
• In the vanishingly small time interval ∆t molecule 1 sweeps

out relative to molecule 2 a "collision volume"
∆Vcoll = πd2

12v12∆t.

• If the center of molecule 2 lies in ∆Vcoll then molecules 1
and 2 collide in time ∆t.
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Finding the propensity cm

• Problems in deterministic case (spatially homogeneous)
when ∆t → 0, because the number of molecules in ∆Vcoll

will either be 0 or 1.
• Averaging leads to more trouble (e.g. the average number

of molecular pairs does not equal to the product of average
numers of molecules).

• Herein lies the source of the inexact nature of the
deterministic reaction rate equations.

• All these difficulties can be avoided if we consider uniformly
(randomly) distributed molecules throughout V .

• Probability that the centre of one S2 molecule will lie inside
∆Vcoll is exactly ∆Vcoll/V .
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Finding the propensity cm

• Average probability that a particular 1–2 molecular pair will
collide in the next ∆t is

〈

∆Vcoll

V

〉

=
πd2

12〈v12〉∆t

V
.

• Average relative velocity can be calculated using
Maxwell-Bolzmann distributions.

• The above expression corresponds exactly to the quantity
cm∆t.

Methods of stochastic simulation – p. 14/34



Relation between cm and km

• Mathematical relationship between cm and km is always
rather simple (e.g. km = V cm or km = V cm/2), but from a
physical standpoint cm appears to be on much firmer
ground.

• The stochastic formulation of chemical kinetics for spatially
homogenous systems does indeed take proper account of
correlations and fluctuations which are ignored in the
deterministic formulation.

• For most systems the difference between the stochastic and
the deterministic formulation is academic. However, near
chemical instabilities in certain nonlinear systems,
fluctuations and correlation can produce dramatic effets.
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Reaction probability density

• P (X1, . . . ,XN , t) = the probability that there will be Xi

molecules of Si in V at time t.
• The so-called master equation is just the time evolution

equation for the function P (X1, . . . ,XN , t), and it can be
rigorously derived by using simple probability calculus.

• The master equation is usually intractable, both analytically
and numerically.

• Problem can be solved using reaction probability density
function P (τ,m).
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Reaction probability density

• P (τ,m)dτ = probability at time t that the next reaction in V
will occur in the differential time interval (t + τ, t + τ + dτ )
and will be an Rm reaction.

• After some calculations we get

P (τ,m) = hmcm exp

(

−
M
∑

i=1

hiciτ

)

,

where hi is the number of distinct molecular reactant
combinations for reaction Rm found to be present in V at
time t.
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Simulation algorithm

1) Set t = 0. Specify initial values X1, . . . ,XN and c1, . . . , cm.
Calculate h1c1, . . . , hMcM which determine P (τ,m).

2) Generate random pair (τ,m) according to P (τ,m).

3) Using numbers τ and m andvance t by τ , and change Xi

values of those species involved in reaction Rm to reflect
the occurrence of one Rm reaction. Then, recalculate hici

for the new P (τ,m) and go to step 2.
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Simulation algorithm

• By carrying out the above procedure one obtains one
possible realisation of the stochastic process.

• In order to get statistically complete picture of the temporal
evolution of the system, one must actually carry out several
independend simulations with same initial conditions.

• Expected number of Si molecules, variance or standard
deviation for describing the fluctuations which may
reasonably be expected.
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Summary of Gillespie method

• Relatively simple procedure for calculating the time
evolution of any spatially homogeneous chemical system.

• Commonly used in biological stochastic simulations.
• Implemented in many softwares.
• Improved versions also available ("direct" method, "first

reaction" method, τ -leap . . . ).
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Example

The Brusselator, a "limit cycle" chemical oscillator

(1) X1
c1→ Y1

(2) X2 + Y1
c2→ Y2 + Z1

(3) 2Y1 + Y2
c3→ 3Y1

(4) Y1
c4→ Z2
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Example
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Example
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Example
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Example
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SDEs and Brownian motion

• SDE models play a prominent role in a range of aplication
areas, including biology, chemistry, epidemiology,
mechanics, microelectronics, economics and finance.

• Complete understanding requires familiarity with advanced
probability theory and stochastic processes.

• Simple simulation can be carried out just with background
knowledge of Euler’s method for ODEs and an intuitive
understanding of random variables (..says Higham).
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SDEs and Brownian motion
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A sample path of one-dimensional Brownian motion.
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SDEs and Brownian motion

• Brownian motion incorporates the natural randomness
observed in biological phenomena into the biological
models.

• A proper stochastic process (unlike commonly used "white
noise").

• Brownian motion has analytically desirable properties (e.g.
normally distributed, independent increments).
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SDEs and Brownian motion

• (ODE) dX(t)
dt

= f(X(t), t)

⇒ X(t) = X(0) +

∫ t

0
f(X(t), t)dt.

• (SDE) dX(t) = f(X(t), t)dt + g(X(t), t)dW

⇒ X(t) = X(0) +

∫ t

0
f(X(t), t)dt

+

∫ t

0
g(X(t), t)dW.
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SDEs and Brownian motion

• Handling of stochastic integrals needs new type of calculus.
• Derivation of analytical results is possible, but usually

tedious.
• Simulation of SDEs is, on the other hand, rather

straightforward.
• Presently not implemented in existing simulation software.
• Own simulation software needed (e.g. MATLAB scripts).
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SDEs and Brownian motion

Deterministic and stochastic model for cerebellar granule cell.
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SDEs and Brownian motion

A) 

B) 

C) 
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Exercises

Simulation of a barnacle muscle fibre.
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