SGN-6156, Lecture 5

Biological sequence analysis

Harri Lähdesmäki, harri.lahdesmaki@tut.fi
Department of Signal Processing,
Tampere University of Technology
15.04.2008

Pairwise vs. family alignment

- This lecture is based on Section 5 in (Durbin et al., 1998)
- Previous methods focus on aligning sequence pairs (x, y)
- Many functional biological sequences come in families
- A straightforward approach: align a sequence x with all sequences y in a family \mathcal{Y}
- Pairwise comparisons can miss distantly related sequences, but detection sensitivity can be improved using conserved features of a family
- An example in Figure 5.1 (Durbin et al., 1998)
- A probabilistic family alignment using profile HMMs
- Assume we are given an alignment of multiple sequences

Ungapped score matrix

- In Figure 5.1 ungappad/gapped regions are relatively well aligned
- Define a score for an ungapped region as

$$
P(x \mid M)=\prod_{i=1}^{L} e_{i}\left(x_{i}\right)
$$

where $e_{i}\left(x_{i}\right)$ is the probability of seeing nucleic/amino acid x_{i} in position i

- Compare this with the random model, i.e.,

$$
S=\log P(x \mid M) / P(x \mid R)=\sum_{i=1}^{L} \log \frac{e_{i}\left(x_{i}\right)}{q_{x_{i}}}
$$

- $\log \frac{e_{i}\left(x_{i}\right)}{q_{x_{i}}}$ terms defines a position specific score matrix (PSSM) which does not allow gaps

Profile HMMs

- PSSM is a special type of HMM: sequence of "match states" M_{i} with emission probabilities $e_{M_{i}}(a)$ and deterministic transitions between them (see Figures on pages 103-104)
- Some positions are more prone to gaps than others
- Insertions can be anywhere in the sequence: move from match state M_{i} to insertion state I_{i} and back to M_{i+1}
- Score penalty of an insertion is equal to the sum of log transition probabilities ($a_{M_{i} I_{i}}, a_{I_{i} I_{i}}$ and $a_{I_{i} M_{i+1}}$)
- Deletions anywhere in the sequence: move from match state M_{i} to another match state $M_{j}, j>i+1$, via salient states D_{i+1}, D_{i+2}, etc.
- Score penalty of a deletion is equal to the sum of \log transition probabilities $\left(a_{M_{i} D_{i+1}}, a_{D_{i+1} D_{i+2}}, \ldots, a_{D_{j-1} D_{j}}, a_{D_{j} M_{j+1}}\right)$
- Profile HMM is obtained by putting together the three parts: PSSM, insertions and deletions
- Profile HMMs can be seen as a generalization of pair HMMs. Notice that the structure of profile HMM is in a sense repetitive compared to that of pair HMM
- Thus, practically the same algorithms as in the case of pair HMMs can be applied
- note that transition probabilities $a_{M_{i} D_{i+1}}$ can be different from $a_{M_{j} D_{j+1}}$ for $i \neq j$ (position specificity)
- See Figure 5.4 (Durbin et al., 1998)

Parameters of profile HMMs

- Profile HMM can be thought of as a stochastic process ("random number generator") that generates sequences from a family
- Members of a particular family should be assigned a high probability
- The structure of a profile HMM can be constructed based on the multiple aligned (which we assume is available)
- State transition probabilities can be estimated using ML principle (again assuming a multiple alignment is given)

Profile HMMs and searching

- Use profile HMM to match/align a new/unannotated sequence x to a family
- Most probable alignment (Viterbi algorithm)
- The probability of x, summed over all alignments (forward algorithm)
- Instead of pure probabilities, log-odds are used (length dependency)
- Let $V_{j}^{M}(i)$ denote the score of the best path that matches x_{1}, \ldots, x_{i} to the profile HMM until state M_{j} and ending with symbol $x_{i}\left(V_{j}^{I}(i)\right.$ and $V_{j}^{D}(i)$ similarly)

Viterbi for profile HMMs

- Viterbi recursions:

$$
\begin{aligned}
& V_{j}^{M}(i)= \log \frac{e_{M_{j}}\left(x_{i}\right)}{q_{x_{i}}}+\max \left\{\begin{array}{l}
V_{j-1}^{M}(i-1)+\log a_{M_{j-1} M_{j}} \\
V_{j-1}^{I}(i-1)+\log a_{I_{j-1} M_{j}} \\
V_{j-1}^{D}(i-1)+\log a_{D_{j-1} M_{j}}
\end{array}\right. \\
& V_{j}^{I}(i)=\log \frac{e_{I_{j}}\left(x_{i}\right)}{q_{x_{i}}}+\max \left\{\begin{array}{l}
V_{j}^{M}(i-1)+\log a_{M_{j} I_{j}} \\
V_{j}^{I}(i-1)+\log a_{I_{j} I_{j}} \\
V_{j}^{D}(i-1)+\log a_{D_{j-1} I_{j}}
\end{array}\right. \\
& V_{j}^{D}(i)=\max \left\{\begin{array}{l}
V_{j-1}^{M}(i)+\log a_{M_{j-1} D_{j}} \\
V_{j-1}^{I}(i)+\log a_{I_{j-1} D_{j}} \\
V_{j-1}^{D}(i)+\log a_{D_{j-1} D_{j}}
\end{array}\right.
\end{aligned}
$$

Forward algorithm for profile HMMs

- Let $F_{j}^{M}(i)$ denote the full score of the subsequence x_{1}, \ldots, x_{i} to the profile HMM until state M_{j} and ending with symbol $x_{i}\left(V_{j}^{I}(i)\right.$ and $V_{j}^{D}(i)$ similarly)
- The forward algorithm is practically the same as the Viterbi except that max is replaced with summation

Profile HMM example

- See pages 111-112/Figures 5.5-5.6 (Durbin et al., 1998)
- A profile HMM for local alignment (see page 113 (Durbin et al., 1998))

Multiple sequence alignment

- The material follows Section 6 in (Durbin et al., 1998)
- Previously we have considered both pairwise alignments or family alignments using profile HMMs (assuming a multiple alignment was given)
- Good multiple alignments can be constructed manually by experts but that is a slow process
- Probabilistic multiple alignments can be constructed computationally
- Briefly, similar/homologous residues in sequences are aligned in columns
- It is impossible in general to construct a single meaningful best alignment

A score for multiple alignments

- Multiple alignments make use of the observation that some part are more conserved than others, see Figure 6.1 (Durbin et al. 1998)
- Notation:
- m is the multiple alignment (matrix) and m_{i}^{j} defines the symbol for sequence j in column i
- The i th column is $m_{i}=\left(m_{i}^{1}, \ldots, m_{i}^{N}\right)^{T}$
$-c_{i a}$ is the number of times symbol a occurs in column i (for all a)
- A simplifying assumption: columns m_{i} of a multiple alignment m are independent

$$
S(m)=G+\sum_{i} S\left(m_{i}\right)
$$

$S\left(m_{i}\right)$ is the score for a column and G adds a penalty for gaps

Minimum entropy score

- If residues in a column are independent then the probability of a column can be written as

$$
P\left(m_{i}\right)=\prod_{j=1}^{N} p_{i m_{i}^{j}}=\prod_{a} p_{i a}^{c_{i a}}
$$

where $p_{i a}$ is the probability of observing symbol a in column i, and an entropy score can be defined as

$$
S\left(m_{i}\right)=-\log P\left(m_{i}\right)=\sum_{a} c_{i a} \log p_{i a}
$$

- Probabilities for residues $p_{i a}$ can be estimated from the counts $c_{i a}$ using ML principle

Sum of pairs score

- Columns can be scored by sum of pairs using a substitution matrix s (e.g. BLOSUM or PAM)
- A column score can be written as

$$
S\left(m_{i}\right)=\sum_{k<l} s\left(m_{i}^{k}, m_{i}^{l}\right)
$$

- Linear gap scores can be handled using a similar formulation $s(a$, 'gap'), $s($ 'gap', $a)$, and $s($ 'gap', 'gap')

Multidimensional dynamic programming

- Pairwise dynamic programming alignment can be generalized to multiple sequences
- Assume statistically independent columns and linear gap penalty
- Define $\alpha_{i_{1}, i_{2}, \ldots, i_{N}}$ to be the maximum alignment score for subsequences (and ending with) $\left(x_{1}^{1}, \ldots, x_{i_{1}}^{1}\right),\left(x_{1}^{2}, \ldots, x_{i_{2}}^{2}\right), \ldots,\left(x_{N}^{1}, \ldots, x_{i_{N}}^{N}\right)$
- Multidimensional dynamic programming recursions: $2^{N}-1$ cases
- Dynamic programming matrix size is $L_{1} L_{2} \ldots L_{N}$
- Each element requires maximization over the $2^{N}-1$ different cases
- Assuming all sequences have approximately the same length $L \approx L_{i}$, then time complexity is $O\left(2^{N} L^{N}\right)$
- An alternative is to define the score to be the sum of pairwise alignment. In that case, MSA is an efficient algorithm for multiple alignment
- A number of heuristic methods have been developed

Progressive multiple alignment methods

- Progressive alignment methods are heuristic, but perhaps the most commonly used in practise. A general method is as follows
- Align two sequence using a pairwise method
- Align a third sequence to the previous alignment/profile
- Continue this process for all the remaining sequences
- Different variants have been proposed
- The order in which sequences are aligned
- Whether sequences are aligned with the single growing alignment, or subfamily alignments are first constructed and the families are then aligned
- The methods to compute pairwise and family alignments
- Align the most similar sequences first

ClustalW algorithm

- ClustalW is a popular multiple alignment method
- Construct a distance matrix from all $N(N-1) / 2$ pairwise alignments
- Construct a guide tree (phylogenetic tree) from the pairwsie distances using a clustering algorithm
- Progressively align sequences/family in the order of decreasing distance
- ClustalW has a number of additional heuristics

Iterative refinement methods

- A problem with progressive alignment methods is that previously computed alignments are kept fixed
- Barton-Sternberg multiple alignment
- Align the two most similar sequences (pairwise)
- Align to the profile (of the two sequences) the most similar sequence. Repeat for all remaining sequences
- Remove one sequence from the alignment/profile and re-align. Repeat for all sequences
- Repeat the re-alignment step

Fully probabilistic multiple alignment

- Profile HMM training: simultaneous alignment and parameter estimation

References

- R. Durbin, S. R. Eddy, A. Krogh and G. Mitchison (1998). Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, Cambridge University Press.

