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Pairwise vs. family alighment
This lecture is based on Section 5 in (Durbin et al., 1998)
Previous methods focus on aligning sequence pairs (z, y)
Many functional biological sequences come in families

A straightforward approach: align a sequence x with all sequences y

in a family )

Pairwise comparisons can miss distantly related sequences, but detec-
tion sensitivity can be improved using conserved features of a family

An example in Figure 5.1 (Durbin et al., 1998)
A probabilistic family alignment using profile HMMs

Assume we are given an alignment of multiple sequences
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Ungapped score matrix
In Figure 5.1 ungappad/gapped regions are relatively well aligned

Define a score for an ungapped region as

1=1

where e;(x;) is the probability of seeing nucleic/amino acid z; in
position 1

Compare this with the random model, i.e.,

S =log P(z|M)/P(z|R) = Zlog

log %) terms defines a position specific score matrix (PSSM) which

Lq

does not allow gaps
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Profile HMMs

PSSM is a special type of HMM: sequence of “match states” M; with
emission probabilities e, (a) and deterministic transitions between
them (see Figures on pages 103-104)

Some positions are more prone to gaps than others

Insertions can be anywhere in the sequence: move from match state

M; to insertion state I; and back to M;

— Score penalty of an insertion is equal to the sum of log transition
probabilities (CLMi]i, ar, I, and CL]iMZ.Jrl)

Deletions anywhere in the sequence: move from match state M, to
another match state M;, j > ¢ 4+ 1, via salient states D;y1, Djyo,
etc.

— Score penalty of a deletion is equal to the sum of log transition

probabilities (aMiDHl, AD; 1Dsior + -+ AD,;_1D;, CLDij+1)

—3—
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Profile HMM is obtained by putting together the three parts: PSSM,
insertions and deletions

Profile HMMs can be seen as a generalization of pair HMMs. Notice
that the structure of profile HMM is in a sense repetitive compared
to that of pair HMM

Thus, practically the same algorithms as in the case of pair HMMs
can be applied

note that transition probabilities ays, p,,, can be different fromay;. p, .,

for i # j (position specificity)
See Figure 5.4 (Durbin et al., 1998)
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Parameters of profile HMMs

Profile HMM can be thought of as a stochastic process (“random
number generator”) that generates sequences from a family

Members of a particular family should be assigned a high probability

The structure of a profile HMM can be constructed based on the
multiple aligned (which we assume is available)

State transition probabilities can be estimated using ML principle
(again assuming a multiple alignment is given)
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Profile HMMs and searching

Use profile HMM to match/align a new/unannotated sequence x to

a family

Most probable alignment (Viterbi algorithm)

The probability of x, summed over all alignments (forward algorithm)
Instead of pure probabilities, log-odds are used (length dependency)

Let V]M(z) denote the score of the best path that matches x4, ..., z;
to the profile HMM until state M; and ending with symbol z; (V' (7)
and V" (i) similarly)
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Viterbi for profile HMMs

e Viterbi recursions:

(VM (i — 1) +logan,
VM . — ] eMj(xi) I :
(1) = log 0 +max § V(i — 1) +logar,_, um,
\‘/]D—l(z o ]‘) —I_ 1Og a’Dj_le
(VM (@i — 1) +log a1,
V] : — 1 efj(xi) I/-
i (1) = log . + max ¢ V. (¢ —1)+logar,g,
\V}D(z’ —1) +logap,_, 1,
( .
‘/jﬂfl(z) + 10g AM;_1D;
V;7(i) = max; Vi (i) +logar,_,p,
\ijD—l(Z) + lOg AD;_1D;
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Forward algorithm for profile HMMs

o Let FjM(i) denote the full score of the subsequence z1, ..., z; to the
profile HMM until state M and ending with symbol z; (V! (i) and

D . . .
V.7 (i) similarly)

e The forward algorithm is practically the same as the Viterbi except

that max is replaced with summation
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Profile HMM example
e See pages 111-112/Figures 5.5-5.6 (Durbin et al., 1998)

e A profile HMM for local alignment (see page 113 (Durbin et al.,
1998))
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Multiple sequence alignment
The material follows Section 6 in (Durbin et al., 1998)

Previously we have considered both pairwise alignments or family
alignments using profile HMMs (assuming a multiple alignment was
given)

Good multiple alignments can be constructed manually by experts but
that is a slow process

Probabilistic multiple alignments can be constructed computationally
Briefly, similar/homologous residues in sequences are aligned in columns

It is impossible in general to construct a single meaningful best align-
ment

~10-
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A score for multiple alighments

e Multiple alignments make use of the observation that some part are
more conserved than others, see Figure 6.1 (Durbin et al. 1998)

e Notation:

— m is the multiple alignment (matrix) and m! defines the symbol
for sequence j in column i
— The ith column is m; = (m7,...,mM)?

17" 1

— C;q is the number of times symbol a occurs in column i (for all a)

e A simplifying assumption: columns m; of a multiple alignment m are

independent

S(m) = G—I—ZS(mi)

S(my;) is the score for a column and G adds a penalty for gaps

-11-
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Minimum entropy score

e If residues in a column are independent then the probability of a
column can be written as

N
P(m;) = sz'mg’ = prfﬁ
7=1 a

where p;, is the probability of observing symbol a in column 7, and
an entropy score can be defined as

S(m;) = —log P(m;) = Zcm log pia

a

e Probabilities for residues p;, can be estimated from the counts ¢;,
using ML principle

~12—
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Sum of pairs score

e Columns can be scored by sum of pairs using a substitution matrix s
(e.g. BLOSUM or PAM)

e A column score can be written as

S(mi) =3 s(ml,m)

k<l

e Linear gap scores can be handled using a similar formulation s(a, ‘gap’),
s(‘gap’,a), and s(‘gap’, ‘gap’)

—13-
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Multidimensional dynamic programming

e Pairwise dynamic programming alignment can be generalized to mul-

tiple sequences
e Assume statistically independent columns and linear gap penalty

e Define o, i, ... iy to be the maximum alignment score for subse-
- - 1 1 2 2 1 N
quences (and ending with) (z1,...,2; ), (z1,...,27 ), ..., (Tx, ..., T;))

—14—
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e Multidimensional dynamic programming recursions: 2% — 1 cases

iy ig,... iy — 1NAX 4

p
0521—1,2'2—1, ,’iN—l
QG io—1,...in—1
Oéil_laiZa' JZN_l

QG —1,i0—1,...,0N

iy dg,i3—1...in—1

ai17i2_]—7"'7iN—1_]—7iN

e Dynamic programming matrix size is L1 Lo ..

\

_|_

S(:c%l,:ci,...,xf\fv)
S('gap',x?,, ...,z
S(xi,, 'gap’,... ,xf\fv)
S(x; x5 ,...,'gap)
S(‘gap’,'gap’,...,z\)
S(‘gap',z; , 'gap’)

. L

15—
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Each element requires maximization over the 2% — 1 different cases

Assuming all sequences have approximately the same length L ~ L;,
then time complexity is O(2" LY)

An alternative is to define the score to be the sum of pairwise align-
ment. In that case, MSA is an efficient algorithm for multiple align-

ment

A number of heuristic methods have been developed

~16—
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Progressive multiple alignment methods
e Progressive alignment methods are heuristic, but perhaps the most
commonly used in practise. A general method is as follows
— Align two sequence using a pairwise method
— Align a third sequence to the previous alignment/profile

— Continue this process for all the remaining sequences

e Different variants have been proposed
— The order in which sequences are aligned

— Whether sequences are aligned with the single growing alignment,
or subfamily alignments are first constructed and the families are
then aligned

— The methods to compute pairwise and family alignments

e Align the most similar sequences first

_17-
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ClustalW algorithm

e ClustalW is a popular multiple alignment method

— Construct a distance matrix from all N(N — 1)/2 pairwise align-
ments

— Construct a guide tree (phylogenetic tree) from the pairwsie dis-
tances using a clustering algorithm

— Progressively align sequences/family in the order of decreasing
distance

e ClustalW has a number of additional heuristics

18—
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lterative refinement methods

e A problem with progressive alignment methods is that previously com-
puted alignments are kept fixed

e Barton-Sternberg multiple alignment
— Align the two most similar sequences (pairwise)

— Align to the profile (of the two sequences) the most similar se-
quence. Repeat for all remaining sequences

— Remove one sequence from the alignment/profile and re-align. Re-
peat for all sequences

— Repeat the re-alignment step

—~19-
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Fully probabilistic multiple alighment

e Profile HMM training: simultaneous alignment and parameter esti-
mation

—20-
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