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Pairwise vs. family alignment

• This lecture is based on Section 5 in (Durbin et al., 1998)

• Previous methods focus on aligning sequence pairs (x, y)

• Many functional biological sequences come in families

• A straightforward approach: align a sequence x with all sequences y

in a family Y

• Pairwise comparisons can miss distantly related sequences, but detec-

tion sensitivity can be improved using conserved features of a family

• An example in Figure 5.1 (Durbin et al., 1998)

• A probabilistic family alignment using profile HMMs

• Assume we are given an alignment of multiple sequences
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Ungapped score matrix

• In Figure 5.1 ungappad/gapped regions are relatively well aligned

• Define a score for an ungapped region as

P (x|M) =
L

∏

i=1

ei(xi)

where ei(xi) is the probability of seeing nucleic/amino acid xi in

position i

• Compare this with the random model, i.e.,

S = log P (x|M)/P (x|R) =
L

∑

i=1

log
ei(xi)

qxi

• log ei(xi)
qxi

terms defines a position specific score matrix (PSSM) which

does not allow gaps
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Profile HMMs

• PSSM is a special type of HMM: sequence of “match states” Mi with

emission probabilities eMi
(a) and deterministic transitions between

them (see Figures on pages 103–104)

• Some positions are more prone to gaps than others

• Insertions can be anywhere in the sequence: move from match state

Mi to insertion state Ii and back to Mi+1

– Score penalty of an insertion is equal to the sum of log transition

probabilities (aMiIi
, aIiIi

and aIiMi+1
)

• Deletions anywhere in the sequence: move from match state Mi to

another match state Mj , j > i + 1, via salient states Di+1, Di+2,

etc.

– Score penalty of a deletion is equal to the sum of log transition

probabilities (aMiDi+1
, aDi+1Di+2

, . . ., aDj−1Dj
, aDjMj+1

)
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• Profile HMM is obtained by putting together the three parts: PSSM,

insertions and deletions

• Profile HMMs can be seen as a generalization of pair HMMs. Notice

that the structure of profile HMM is in a sense repetitive compared

to that of pair HMM

• Thus, practically the same algorithms as in the case of pair HMMs

can be applied

• note that transition probabilities aMiDi+1
can be different from aMjDj+1

for i 6= j (position specificity)

• See Figure 5.4 (Durbin et al., 1998)

–4–



SGN-6156 – Computational Systems Biology II

Parameters of profile HMMs

• Profile HMM can be thought of as a stochastic process (“random

number generator”) that generates sequences from a family

• Members of a particular family should be assigned a high probability

• The structure of a profile HMM can be constructed based on the

multiple aligned (which we assume is available)

• State transition probabilities can be estimated using ML principle

(again assuming a multiple alignment is given)
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Profile HMMs and searching

• Use profile HMM to match/align a new/unannotated sequence x to

a family

• Most probable alignment (Viterbi algorithm)

• The probability of x, summed over all alignments (forward algorithm)

• Instead of pure probabilities, log-odds are used (length dependency)

• Let V M
j (i) denote the score of the best path that matches x1, . . . , xi

to the profile HMM until state Mj and ending with symbol xi (V I
j (i)

and V D
j (i) similarly)

–6–



SGN-6156 – Computational Systems Biology II

Viterbi for profile HMMs

• Viterbi recursions:

V M
j (i) = log

eMj
(xi)

qxi

+ max















V M
j−1(i − 1) + log aMj−1Mj

V I
j−1(i − 1) + log aIj−1Mj

V D
j−1(i − 1) + log aDj−1Mj

V I
j (i) = log

eIj
(xi)

qxi

+ max















V M
j (i − 1) + log aMjIj

V I
j (i − 1) + log aIjIj

V D
j (i − 1) + log aDj−1Ij

V D
j (i) = max















V M
j−1(i) + log aMj−1Dj

V I
j−1(i) + log aIj−1Dj

V D
j−1(i) + log aDj−1Dj

–7–



SGN-6156 – Computational Systems Biology II

Forward algorithm for profile HMMs

• Let FM
j (i) denote the full score of the subsequence x1, . . . , xi to the

profile HMM until state Mj and ending with symbol xi (V I
j (i) and

V D
j (i) similarly)

• The forward algorithm is practically the same as the Viterbi except

that max is replaced with summation
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Profile HMM example

• See pages 111–112/Figures 5.5–5.6 (Durbin et al., 1998)

• A profile HMM for local alignment (see page 113 (Durbin et al.,

1998))
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Multiple sequence alignment

• The material follows Section 6 in (Durbin et al., 1998)

• Previously we have considered both pairwise alignments or family

alignments using profile HMMs (assuming a multiple alignment was

given)

• Good multiple alignments can be constructed manually by experts but

that is a slow process

• Probabilistic multiple alignments can be constructed computationally

• Briefly, similar/homologous residues in sequences are aligned in columns

• It is impossible in general to construct a single meaningful best align-

ment
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A score for multiple alignments

• Multiple alignments make use of the observation that some part are

more conserved than others, see Figure 6.1 (Durbin et al. 1998)

• Notation:

– m is the multiple alignment (matrix) and mj
i defines the symbol

for sequence j in column i

– The ith column is mi = (m1
i , . . . , m

N
i )T

– cia is the number of times symbol a occurs in column i (for all a)

• A simplifying assumption: columns mi of a multiple alignment m are

independent

S(m) = G +
∑

i

S(mi)

S(mi) is the score for a column and G adds a penalty for gaps
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Minimum entropy score

• If residues in a column are independent then the probability of a

column can be written as

P (mi) =
N
∏

j=1

p
im

j

i

=
∏

a

pcia

ia

where pia is the probability of observing symbol a in column i, and

an entropy score can be defined as

S(mi) = − log P (mi) =
∑

a

cia log pia

• Probabilities for residues pia can be estimated from the counts cia

using ML principle
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Sum of pairs score

• Columns can be scored by sum of pairs using a substitution matrix s

(e.g. BLOSUM or PAM)

• A column score can be written as

S(mi) =
∑

k<l

s(mk
i , ml

i)

• Linear gap scores can be handled using a similar formulation s(a, ‘gap’),

s(‘gap’, a), and s(‘gap’, ‘gap’)
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Multidimensional dynamic programming

• Pairwise dynamic programming alignment can be generalized to mul-

tiple sequences

• Assume statistically independent columns and linear gap penalty

• Define αi1,i2,...,iN
to be the maximum alignment score for subse-

quences (and ending with) (x1
1, . . . , x

1
i1

), (x2
1, . . . , x

2
i2

), . . ., (x1
N , . . . , xN

iN
)
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• Multidimensional dynamic programming recursions: 2N − 1 cases

αi1,i2,...,iN
= max



























































































αi1−1,i2−1,...,iN−1 + S(x1
i1

, x2
i2

, . . . , xN
iN

)

αi1,i2−1,...,iN−1 + S(‘gap’, x2
i2

, . . . , xN
iN

)

αi1−1,i2,...,iN−1 + S(x1
i1

, ‘gap’, . . . , xN
iN

)
...

αi1−1,i2−1,...,iN
+ S(x1

i1
, x2

i2
, . . . , ‘gap’)

αi1,i2,i3−1...,iN−1 + S(‘gap’, ‘gap’, . . . , xN
iN

)
...

αi1,i2−1,...,iN−1−1,iN
+ S(‘gap’, x2

i2
, ‘gap’)

...

• Dynamic programming matrix size is L1L2 . . . LN

–15–



SGN-6156 – Computational Systems Biology II

• Each element requires maximization over the 2N − 1 different cases

• Assuming all sequences have approximately the same length L ≈ Li,

then time complexity is O(2NLN )

• An alternative is to define the score to be the sum of pairwise align-

ment. In that case, MSA is an efficient algorithm for multiple align-

ment

• A number of heuristic methods have been developed
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Progressive multiple alignment methods

• Progressive alignment methods are heuristic, but perhaps the most

commonly used in practise. A general method is as follows

– Align two sequence using a pairwise method

– Align a third sequence to the previous alignment/profile

– Continue this process for all the remaining sequences

• Different variants have been proposed

– The order in which sequences are aligned

– Whether sequences are aligned with the single growing alignment,

or subfamily alignments are first constructed and the families are

then aligned

– The methods to compute pairwise and family alignments

• Align the most similar sequences first
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ClustalW algorithm

• ClustalW is a popular multiple alignment method

– Construct a distance matrix from all N(N − 1)/2 pairwise align-

ments

– Construct a guide tree (phylogenetic tree) from the pairwsie dis-

tances using a clustering algorithm

– Progressively align sequences/family in the order of decreasing

distance

• ClustalW has a number of additional heuristics
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Iterative refinement methods

• A problem with progressive alignment methods is that previously com-

puted alignments are kept fixed

• Barton-Sternberg multiple alignment

– Align the two most similar sequences (pairwise)

– Align to the profile (of the two sequences) the most similar se-

quence. Repeat for all remaining sequences

– Remove one sequence from the alignment/profile and re-align. Re-

peat for all sequences

– Repeat the re-alignment step

–19–



SGN-6156 – Computational Systems Biology II

Fully probabilistic multiple alignment

• Profile HMM training: simultaneous alignment and parameter esti-

mation
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