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The probability of a sequence

• Another useful quantity is the probability of a sequence P (x) (i.e.,

given a HMM, P (x|θ))

• For example, that allows (among many other things) to compare dif-

ferent HMMs using Bayesian model comparison

• A sequence of symbols x can be generated via several paths, thus

P (x) =
∑

π

P (π, x)

• Let fk(i) denote the probability of the observed subsequence (x1, . . . , xi)

such that πi = k, i.e.,

fk(i) = P (x1, . . . , xi, πi = k)
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• The probability of fl(i + 1) for all l can be found as

fl(i + 1) =

[

∑

k

fk(i)akl

]

el(xi+1)
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The forward algorithm

• Initialization: i = 0, fk(0) = 0 for k > 0

• Recursion: i = 1, . . . , L, for all l

fl(i) =

[

∑

k

fk(i − 1)akl

]

el(xi)

• Termination:

P (x) =
∑

k

fk(L)ak0

–3–
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The probability of a state

• Yet another interesting quantity is the probability that observation xi

is emitted from state k, i.e., P (πi = k|x)

• First compute the probability of (πi = k, x)

P (πi = k, x) = P (x1, . . . , xi, πi = k)P (xi+1, . . . , xL|x1, . . . , xi, πi = k)

= P (x1, . . . , xi, πi = k)P (xi+1, . . . , xL|πi = k)

= fk(i)bk(i)

• fk(i) is the quantity used in the forward algorithm

• bk(i) can be computed similarly, so called backward algorithm

• From the definition of conditional probability one gets

P (πi = k|x)
P (πi = k, x)

P (x)
=

fk(i)bk(i)

P (x)

–4–
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The backward algorithm

• Initialization: i = L, bk(L) = 0 for all k

• Recursion: i = L, . . . , 1, for all k

bk(i) =
∑

l

aklel(xi+1)bl(i + 1)

• Termination:

P (x) =
∑

l

a0lel(x1)bl(1)

• See Figures 3.6 and 3.7 in (Durbin et al., 1998)

–5–
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Posterior decoding

• Instead of the Viterbi solution π∗, one can use the

π̂i = arg max
k

P (πi = k|x)

• This can be more appropriate than π∗ if there are several paths that

have approximately the same probability

• Note that π̂ = (π̂1, . . . , π̂L) may even represent an impossible path,

i.e., P (π̂|x) = 0

–6–
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Parameter estimation for HMMs

• HMMs contains transition and emission probabilities, akl and ek(b)

• Parameters can be estimated from data (both supervised and unsu-

pervised)

• We will skip this interesting and important topic for now but will get

back to this topic later on if needed. . .
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Choice of HMM model structure

• All previous model structures have been fully connected

• In applications, HMM model structure is typically constructed by hand

• If e.g. transitions from state k to state l are not allowed, then simply

set akl = 0

• Some model structures are shown on page 69 in (Durbin et al., 1998)

• The HMM model structure can also be learned from training data as

well

• Let Mi denote the HMM structure and θi its parameters

• A simple approach: if there is lots of data, then compute P (x|Mi, θi)

and consequently e.g.

P (Mi, θi|x) =
P (x|Mi, θi)P (Mi, θi)

∑

i P (x|Mi, θi)P (Mi, θi)

–8–
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Silent states

• States that do not emit symbols

• These can be useful for reducing the complexity of the model

• See an example on pages 70–71 in (Durbin et al., 1998)
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Numerical stability of HMMs

• Long sequences would require extremely high numerical precision

• Two general techniques to avoid numerical instability

– The log-transformation

– Scaling of probabilities
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Pairwise alignment using HMMs

• The material below is mainly based on Section 4 in (Durbin et al.,

1998)

• In the case of the affine gap penalty, we used finite state machines

(FSA) to align a sequence pair

• FSAs can be converted into HMMs relatively easily

• HMMs provide truly probabilistic interpretation of pairwise alignments

allowing assessment of

– Reliability of alignments

– Sample alternative suboptimal alignments

–11–
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• Convert a FSA to a HMM by

– Assigning probabilities to transitions between states and emission

of symbols from states

– Define start and end states

• See Figures 4.1–4.2 in (Durbin et al., 1998)

• This is similar with HMMs introduced before except that instead of

emitting a sequence x this pair HMM generates a pairwise alignment

• The standard HMM algorithms can be applied with an extra dimension

(e.g. vk(i, j) instead of vk(i))

–12–
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The most probable alignment

• Viterbi algorithm can again be applied to find the most probably path

which corresponds to the optimal FSA alignment

• As above, v•(i, j) denotes the probability of the most probably path

ending in • and emitting symbols xi and yj

–13–
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Viterbi for pair HMMs

• Initialization: vM (0, 0) = 1, and v•(i, 0) = v•(0, j) = 0 for all i, j,

and • ∈ {M, X, Y }

• Recursion: i = 1, . . . , n, j = 1, . . . , m

vM (i, j) = pxiyj
max















(1 − 2δ − τ)vM (i − 1, j − 1)

(1 − ǫ − τ)vX(i − 1, j − 1)

(1 − ǫ − τ)vY (i − 1, j − 1)

vX(i, j) = qxi
max







δvM (i − 1, j)

ǫvX(i − 1, j)

vY (i, j) = qyj
max







δvM (i, j − 1)

ǫvY (i, j − 1)

–14–
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• Termination:

vE = τ max(vM (n, m), vX(n, m), vY (n, m))

• Optimal path/alignment can be found by keeping track of pointers

and backtracking

• A related HMM can also be constructed for

– The random model (i.e., for unrelated sequences)

– Local alignment (see Figure 4.3 in (Durbin et al., 1998)

– etc.

–15–
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The probability of aligning x and y

• If there is just one high-scoring alignment, then the best alignment is

representative and the score itself useful

• When x and y are not closely related, then choosing a low-scoring

alignment can be misleading, see Figure 4.4 in (Durbin et al., 1998)

(this is a useful guideline even more generally)

• HMM framework provides a way to compute the probability of any

alignment π

P (x, y) =
∑

π

P (π, x, y)

• As in the case of standard HMMs, we can use the forward algorithm

to compute P (x, y) efficiently

• Let fk(i, j) denote the probability of all possible alignments up to

(i, j) that end with state k

–16–
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Forward algorithm for pair HMMs

• Initialization: fM (0, 0) = 1, fX(0, 0) = fY (0, 0) = 0 and all f•(i,−1) =

f•(−1, j) = 0

• Recursion: i = 0, . . . , n, j = 0, . . . , m except (0, 0)

fM (i, j) = pxiyj
[(1 − 2δ − τ)fM (i − 1, j − 1)

+(1 − ǫ − τ)fX(i − 1, j − 1)

+(1 − ǫ − τ)fY (i − 1, j − 1)]

fX(i, j) = qxi
[δfM (i − 1, j) + ǫfX(i − 1, j)]

fY (i, j) = qyj
[δvfM (i, j − 1) + ǫfY (i, j − 1)]

• Termination:

fE = τ [fM (n, m) + fX(n, m) + fY (n, m)]

–17–
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Posterior distribution of alignments

• The probability of any alignment can be used to compute the posterior

distribution of an alignment as

P (π|x, y) =
P (π, x, y)

P (x, y)

• As mentioned above, P (π̂|x, y) can be remarkably small

• If x and y are unrelated, then a low probability is of course under-

standable (even desired)

• A low value of P (π̂|x, y) can be due to the fact that there are many

small variants π that have almost the same probability

–18–
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Suboptimal alignment

• Find particular alignments whose probability is close to the most prob-

able one

• Two different types of suboptimal alignments

– Alignments differ in only a few positions

– A major difference

• A general strategy: sample alignments from the posterior

• Sampling performed when tracing back fM (i, j)

• Sampled alignments π1, π2, . . . can be used to estimate any interesting

quantity

• Another method can be used to find distinct alignments. The method

works by repeatedly modifying the Viterbi matrix and setting the score

of previously sampled paths/alignments to zero.

–19–
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