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The probability of a sequence

Another useful quantity is the probability of a sequence P(z) (i.e.,
given a HMM, P(x|0))

For example, that allows (among many other things) to compare dif-
ferent HMMs using Bayesian model comparison

A sequence of symbols x can be generated via several paths, thus

P(x) = Z P(m,x)

Let f1(7) denote the probability of the observed subsequence (1, ..., x;)
such that m; = k&, i.e.,

fk(’b) — P(.Cl?l,...,.fl?i,ﬂ'i — k)
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e The probability of f;(¢ + 1) for all [ can be found as

fili+1) = [Z fk(i)ak:l] er(Tit1)
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The forward algorithm
e Initialization: ¢ =0, fx(0) =0 for k > 0

e Recursion: : =1,...,L, foralll
fi(@) = [Z Si(i = 1)akz] er(xi)
k

e lermination:
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The probability of a state

Yet another interesting quantity is the probability that observation x;

is emitted from state k, i.e., P(m; = k|x)

First compute the probability of (m; = k, )

P(my=k,z) = P(xq,..
= P(xq,..

= fr(D)br(2)

fx(2) is the quantity used in the forward algorithm

ey Lgy Ty — k)P(ZEH_l, ..

oy Lgy T = k)P(ZC'L’—l—la K

.,.CCL|5131,...,37Z',7T¢ :k)

'7wL|7T'L' — k)

bi(7) can be computed similarly, so called backward algorithm

From the definition of conditional probability one gets

P(r; = k,x) _ fuli)bi(i)

P(m; = k|x)

P(x)

P(x)
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The backward algorithm

Initialization: ¢ = L, b (L) = 0 for all k
Recursion: ¢ = L,....1, for all £
b(i) = > amer(ip1)bi(i+ 1)
l
Termination:

P(z) = agey(w1)by(1)

l
See Figures 3.6 and 3.7 in (Durbin et al., 1998)
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Posterior decoding

e Instead of the Viterbi solution 7*, one can use the
T; = arg mkaXP(m = k|x)
e This can be more appropriate than 7* if there are several paths that

have approximately the same probability

e Note that @ = (7y,...,71) may even represent an impossible path,
e, P(m|lx) =0
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Parameter estimation for HMMs
e HMMSs contains transition and emission probabilities, ay; and e (b)

e Parameters can be estimated from data (both supervised and unsu-
pervised)

e We will skip this interesting and important topic for now but will get
back to this topic later on if needed. ..
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Choice of HMM model structure
All previous model structures have been fully connected
In applications, HMM model structure is typically constructed by hand

If e.g. transitions from state k to state [ are not allowed, then simply
set ap; =0

Some model structures are shown on page 69 in (Durbin et al., 1998)

The HMM model structure can also be learned from training data as
well

Let M; denote the HMM structure and 6; its parameters

A simple approach: if there is lots of data, then compute P(x|M;,0;)
and consequently e.g.

P(z|M;,0;)P(M;, ;)
P(M;,0;|x) =
M 8il0) = S5 T, 0, POM,, 6,)

—8—
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Silent states
e States that do not emit symbols
e These can be useful for reducing the complexity of the model

e See an example on pages 7071 in (Durbin et al., 1998)
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Numerical stability of HMMs
e Long sequences would require extremely high numerical precision

e Two general techniques to avoid numerical instability
— The log-transformation

— Scaling of probabilities

~10-
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Pairwise alignment using HMMs

The material below is mainly based on Section 4 in (Durbin et al.,
1998)

In the case of the affine gap penalty, we used finite state machines
(FSA) to align a sequence pair

FSAs can be converted into HMMs relatively easily

HMMSs provide truly probabilistic interpretation of pairwise alignments
allowing assessment of

— Reliability of alignments

— Sample alternative suboptimal alignments

~11—
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Convert a FSA to a HMM by

— Assigning probabilities to transitions between states and emission
of symbols from states

— Define start and end states
See Figures 4.1-4.2 in (Durbin et al., 1998)

This is similar with HMMs introduced before except that instead of
emitting a sequence x this pair HMM generates a pairwise alignment

The standard HMM algorithms can be applied with an extra dimension
(e.g. vi(i,7) instead of v (7))

~12—
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The most probable alignment

e Viterbi algorithm can again be applied to find the most probably path
which corresponds to the optimal FSA alignment

e As above, v*(i, j) denotes the probability of the most probably path
ending in @ and emitting symbols x; and y;

—13-
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Viterbi for pair HMMs

e Initialization: v*(0,0) = 1, and v*(i,0) = v*(0,5) = 0 for all i, 7,
and e € {M, XY}

e Recursion: 1 =1,...,n,7=1,....m
(1—26 =)oM@ —1,5—1)
vM (i, ) = pag,max{ (1—e—7)oX(i—1,5—1)
Y . .
(1—e—T)v" (i—-1,7—-1)
)
SoM(i—1,5
UX(iaj) = (g, MAX { ( ])
Lot (i —1,)
)
ovM(i, 5 —1
vy(i,j) = (y, Max ( )
evY (i,5 — 1)
\

—14—
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e lermination:

E

v? = rmax(v™ (n,m),v™ (n,m), v’ (n,m))

e Optimal path/alignment can be found by keeping track of pointers
and backtracking

e A related HMM can also be constructed for
— The random model (i.e., for unrelated sequences)
— Local alignment (see Figure 4.3 in (Durbin et al., 1998)

— etc.

15—
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The probability of aligning = and y

If there is just one high-scoring alignment, then the best alignment is
representative and the score itself useful

When x and y are not closely related, then choosing a low-scoring
alignment can be misleading, see Figure 4.4 in (Durbin et al., 1998)
(this is a useful guideline even more generally)

HMM framework provides a way to compute the probability of any
alignment 7

P(z,y) = > _ P(m,x,y)

As in the case of standard HMMs, we can use the forward algorithm
to compute P(x,y) efficiently

Let f%(i,7) denote the probability of all possible alignments up to
(4, 7) that end with state k

~16—
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Forward algorithm for pair HMMs
e Initialization: f™(0,0) =1, f*(0,0) = f¥(0,0) = 0and all f*(i,—1) =
fo(=1,7) =0
e Recursion: i =0,...,n, j=0,...,m except (0,0)
fU05) = Pe,lA=20 = 7) (1,5 -1)
+(l—e—T7)f*({—1,5-1)
+(l—e—7)f (i —1,5-1)]
FR0) = @ [0fYG—15) +ef (i —1,5)
FU5) = ay0vfM (5 — 1) +ef (6,5 —1)]

e [ermination:

17 =7l (nom) + £ X (nym) + £ (n,m)

_17-
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Posterior distribution of alignments

The probability of any alignment can be used to compute the posterior
distribution of an alignment as

P(m,x,y)
P(z,y)

As mentioned above, P(7|x,y) can be remarkably small

P(rlz,y) =

If z and y are unrelated, then a low probability is of course under-
standable (even desired)

A low value of P(7|x,y) can be due to the fact that there are many
small variants 7 that have almost the same probability

18—
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Suboptimal alignment

Find particular alignments whose probability is close to the most prob-
able one

Two different types of suboptimal alignments
— Alignments differ in only a few positions

— A major difference
A general strategy: sample alignments from the posterior
Sampling performed when tracing back (i, j)

Sampled alignments 71, 75, . .. can be used to estimate any interesting
quantity

Another method can be used to find distinct alignments. The method
works by repeatedly modifying the Viterbi matrix and setting the score
of previously sampled paths/alignments to zero.

—~19-
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