SGN-6156, Lecture 4

Biological sequence analysis
Harri Lähdesmäki, harri.lahdesmakiOtut.fi
Department of Signal Processing,
Tampere University of Technology
09.04.2008

The probability of a sequence

- Another useful quantity is the probability of a sequence $P(x)$ (i.e., given a HMM, $P(x \mid \theta)$)
- For example, that allows (among many other things) to compare different HMMs using Bayesian model comparison
- A sequence of symbols x can be generated via several paths, thus

$$
P(x)=\sum_{\pi} P(\pi, x)
$$

- Let $f_{k}(i)$ denote the probability of the observed subsequence $\left(x_{1}, \ldots, x_{i}\right)$ such that $\pi_{i}=k$, i.e.,

$$
f_{k}(i)=P\left(x_{1}, \ldots, x_{i}, \pi_{i}=k\right)
$$

- The probability of $f_{l}(i+1)$ for all l can be found as

$$
f_{l}(i+1)=\left[\sum_{k} f_{k}(i) a_{k l}\right] e_{l}\left(x_{i+1}\right)
$$

The forward algorithm

- Initialization: $i=0, f_{k}(0)=0$ for $k>0$
- Recursion: $i=1, \ldots, L$, for all l

$$
f_{l}(i)=\left[\sum_{k} f_{k}(i-1) a_{k l}\right] e_{l}\left(x_{i}\right)
$$

- Termination:

$$
P(x)=\sum_{k} f_{k}(L) a_{k 0}
$$

The probability of a state

- Yet another interesting quantity is the probability that observation x_{i} is emitted from state k, i.e., $P\left(\pi_{i}=k \mid x\right)$
- First compute the probability of $\left(\pi_{i}=k, x\right)$

$$
\begin{aligned}
P\left(\pi_{i}=k, x\right) & =P\left(x_{1}, \ldots, x_{i}, \pi_{i}=k\right) P\left(x_{i+1}, \ldots, x_{L} \mid x_{1}, \ldots, x_{i}, \pi_{i}=k\right) \\
& =P\left(x_{1}, \ldots, x_{i}, \pi_{i}=k\right) P\left(x_{i+1}, \ldots, x_{L} \mid \pi_{i}=k\right) \\
& =f_{k}(i) b_{k}(i)
\end{aligned}
$$

- $f_{k}(i)$ is the quantity used in the forward algorithm
- $b_{k}(i)$ can be computed similarly, so called backward algorithm
- From the definition of conditional probability one gets

$$
P\left(\pi_{i}=k \mid x\right) \frac{P\left(\pi_{i}=k, x\right)}{P(x)}=\frac{f_{k}(i) b_{k}(i)}{P(x)}
$$

The backward algorithm

- Initialization: $i=L, b_{k}(L)=0$ for all k
- Recursion: $i=L, \ldots, 1$, for all k

$$
b_{k}(i)=\sum_{l} a_{k l} e_{l}\left(x_{i+1}\right) b_{l}(i+1)
$$

- Termination:

$$
P(x)=\sum_{l} a_{0 l} e_{l}\left(x_{1}\right) b_{l}(1)
$$

- See Figures 3.6 and 3.7 in (Durbin et al., 1998)

Posterior decoding

- Instead of the Viterbi solution π^{*}, one can use the

$$
\hat{\pi}_{i}=\arg \max _{k} P\left(\pi_{i}=k \mid x\right)
$$

- This can be more appropriate than π^{*} if there are several paths that have approximately the same probability
- Note that $\hat{\pi}=\left(\hat{\pi}_{1}, \ldots, \hat{\pi}_{L}\right)$ may even represent an impossible path, i.e., $P(\hat{\pi} \mid x)=0$

Parameter estimation for HMMs

- HMMs contains transition and emission probabilities, $a_{k l}$ and $e_{k}(b)$
- Parameters can be estimated from data (both supervised and unsupervised)
- We will skip this interesting and important topic for now but will get back to this topic later on if needed. . .

Choice of HMM model structure

- All previous model structures have been fully connected
- In applications, HMM model structure is typically constructed by hand
- If e.g. transitions from state k to state l are not allowed, then simply set $a_{k l}=0$
- Some model structures are shown on page 69 in (Durbin et al., 1998)
- The HMM model structure can also be learned from training data as well
- Let M_{i} denote the HMM structure and θ_{i} its parameters
- A simple approach: if there is lots of data, then compute $P\left(x \mid M_{i}, \theta_{i}\right)$ and consequently e.g.

$$
P\left(M_{i}, \theta_{i} \mid x\right)=\frac{P\left(x \mid M_{i}, \theta_{i}\right) P\left(M_{i}, \theta_{i}\right)}{\sum_{i} P\left(x \mid M_{i}, \theta_{i}\right) P\left(M_{i}, \theta_{i}\right)}
$$

Silent states

- States that do not emit symbols
- These can be useful for reducing the complexity of the model
- See an example on pages 70-71 in (Durbin et al., 1998)

Numerical stability of HMMs

- Long sequences would require extremely high numerical precision
- Two general techniques to avoid numerical instability
- The log-transformation
- Scaling of probabilities

Pairwise alignment using HMMs

- The material below is mainly based on Section 4 in (Durbin et al., 1998)
- In the case of the affine gap penalty, we used finite state machines (FSA) to align a sequence pair
- FSAs can be converted into HMMs relatively easily
- HMMs provide truly probabilistic interpretation of pairwise alignments allowing assessment of
- Reliability of alignments
- Sample alternative suboptimal alignments
- Convert a FSA to a HMM by
- Assigning probabilities to transitions between states and emission of symbols from states
- Define start and end states
- See Figures 4.1-4.2 in (Durbin et al., 1998)
- This is similar with HMMs introduced before except that instead of emitting a sequence x this pair HMM generates a pairwise alignment
- The standard HMM algorithms can be applied with an extra dimension (e.g. $v_{k}(i, j)$ instead of $\left.v_{k}(i)\right)$

The most probable alignment

- Viterbi algorithm can again be applied to find the most probably path which corresponds to the optimal FSA alignment
- As above, $v^{\bullet}(i, j)$ denotes the probability of the most probably path ending in \bullet and emitting symbols x_{i} and y_{j}

Viterbi for pair HMMs

- Initialization: $v^{M}(0,0)=1$, and $v^{\bullet}(i, 0)=v^{\bullet}(0, j)=0$ for all i, j, and $\bullet \in\{M, X, Y\}$
- Recursion: $i=1, \ldots, n, j=1, \ldots, m$

$$
\begin{aligned}
& v^{M}(i, j)=p_{x_{i} y_{j}} \max \left\{\begin{array}{l}
(1-2 \delta-\tau) v^{M}(i-1, j-1) \\
(1-\epsilon-\tau) v^{X}(i-1, j-1) \\
(1-\epsilon-\tau) v^{Y}(i-1, j-1)
\end{array}\right. \\
& v^{X}(i, j)=q_{x_{i}} \max \left\{\begin{array}{l}
\delta v^{M}(i-1, j) \\
\epsilon v^{X}(i-1, j)
\end{array}\right. \\
& v^{Y}(i, j)=q_{y_{j}} \max \left\{\begin{array}{l}
\delta v^{M}(i, j-1) \\
\epsilon v^{Y}(i, j-1)
\end{array}\right.
\end{aligned}
$$

- Termination:

$$
v^{E}=\tau \max \left(v^{M}(n, m), v^{X}(n, m), v^{Y}(n, m)\right)
$$

- Optimal path/alignment can be found by keeping track of pointers and backtracking
- A related HMM can also be constructed for
- The random model (i.e., for unrelated sequences)
- Local alignment (see Figure 4.3 in (Durbin et al., 1998)
- etc.

SGN-6156 - Computational Systems Biology II

The probability of aligning x and y

- If there is just one high-scoring alignment, then the best alignment is representative and the score itself useful
- When x and y are not closely related, then choosing a low-scoring alignment can be misleading, see Figure 4.4 in (Durbin et al., 1998) (this is a useful guideline even more generally)
- HMM framework provides a way to compute the probability of any alignment π

$$
P(x, y)=\sum_{\pi} P(\pi, x, y)
$$

- As in the case of standard HMMs, we can use the forward algorithm to compute $P(x, y)$ efficiently
- Let $f^{k}(i, j)$ denote the probability of all possible alignments up to (i, j) that end with state k

Forward algorithm for pair HMMs

- Initialization: $f^{M}(0,0)=1, f^{X}(0,0)=f^{Y}(0,0)=0$ and all $f \bullet(i,-1)=$ $f^{\bullet}(-1, j)=0$
- Recursion: $i=0, \ldots, n, j=0, \ldots, m$ except $(0,0)$

$$
\begin{aligned}
f^{M}(i, j)= & p_{x_{i} y_{j}}\left[(1-2 \delta-\tau) f^{M}(i-1, j-1)\right. \\
& +(1-\epsilon-\tau) f^{X}(i-1, j-1) \\
& \left.+(1-\epsilon-\tau) f^{Y}(i-1, j-1)\right] \\
f^{X}(i, j)= & q_{x_{i}}\left[\delta f^{M}(i-1, j)+\epsilon f^{X}(i-1, j)\right] \\
f^{Y}(i, j)= & q_{y_{j}}\left[\delta v f^{M}(i, j-1)+\epsilon f^{Y}(i, j-1)\right]
\end{aligned}
$$

- Termination:

$$
f^{E}=\tau\left[f^{M}(n, m)+f^{X}(n, m)+f^{Y}(n, m)\right]
$$

Posterior distribution of alignments

- The probability of any alignment can be used to compute the posterior distribution of an alignment as

$$
P(\pi \mid x, y)=\frac{P(\pi, x, y)}{P(x, y)}
$$

- As mentioned above, $P(\hat{\pi} \mid x, y)$ can be remarkably small
- If x and y are unrelated, then a low probability is of course understandable (even desired)
- A low value of $P(\hat{\pi} \mid x, y)$ can be due to the fact that there are many small variants π that have almost the same probability

Suboptimal alignment

- Find particular alignments whose probability is close to the most probable one
- Two different types of suboptimal alignments
- Alignments differ in only a few positions
- A major difference
- A general strategy: sample alignments from the posterior
- Sampling performed when tracing back $f^{M}(i, j)$
- Sampled alignments π_{1}, π_{2}, \ldots can be used to estimate any interesting quantity
- Another method can be used to find distinct alignments. The method works by repeatedly modifying the Viterbi matrix and setting the score of previously sampled paths/alignments to zero.

References

- R. Durbin, S. R. Eddy, A. Krogh and G. Mitchison (1998). Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, Cambridge University Press.

