
SGN-6156, Lecture 3
Biological sequence analysis

Harri Lähdesmäki, harri.lahdesmaki@tut.fi

(part of the material by Juha Kesseli)

Department of Signal Processing,

Tampere University of Technology

08.04.2008



SGN-6156 – Computational Systems Biology II

Alignment with the affine gap penalty

• A standard assumption is to use the affine gap score

γ(g) = −d − e(g − 1)

• An O(nm) implementation exists (but with slightly increased memory

requirements)

• Three matrices

– M(i, j): assuming xi is aligned to yj

– Ix(i, j): assuming xi is aligned to a gap

– Iy(i, j): assuming yj is aligned to a gap
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• Recursions for global alignment:

M(i, j) = max















M(i − 1, j − 1) + s(xi, yj)

Ix(i − 1, j − 1) + s(xi, yj)

Iy(i − 1, j − 1) + s(xi, yj)

Ix(i, j) = max







M(i − 1, j) − d

Ix(i − 1, j) − e

Iy(i, j) = max







M(i, j − 1) − d

Iy(i, j − 1) − e

• The above recursions can be expressed in an intuitive way using finite

state machines, see Figure 2.9 in (Durbin et al., 1998)

• State variable updated according to the maximum of transition scores
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• See Figure 2.10 in (Durbin et al., 1998)
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Estimating the substitution matrices

• Previously, we assumed that the model parameters (substitution ma-

trices) are known.

• An intuitive approach would count the frequencies of aligned residue

pairs and gaps and sets the parameters to normalized counts. This

corresponds to the maximum likelihood method, as shown previously.

• Problems:

– constructing a representative (random) sample of “true” align-

ments.

– evolutionarily distance between aligned sequence pairs can be very

different.
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PAM matrix

• Point Accepted Mutation (PAM) matrix (Dayhoff matrix) is an older

substitution matrix that does not perform as well as BLOSUM for

more distantly related sequences.

• The matrix was originally obtained by studying very similar proteins

and then extrapolating the results to more divergent sequences.

• One PAM unit refers to the evolutionary time during which one point

mutation is accepted for every 100 residues.

• PAM matrices for longer time periods can be obtained by multiplying

the original matrix with itself, once for a period twice as long.

• In other words, PAM1 model (say matrix S) can be viewed as a

Markov chain corresponding to transition/substitutions probabilities

during one time unit.
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• Transition/Substitutions probabilities for n time steps are Sn, e.g.

P (a|b, t = 2) =
∑

c

P (c|b, t = 1)P (a|c, t = 1)

• PAM matrices have been updated based on more current information

and are still in use.

• Commonly used PAM250 matrix (there are several versions) corre-

sponds to evolutionary time resulting in 20% sequence similarity. Note

that unlike with BLOSUM, a PAM matrix with a lower number should

be used for closer matches.

• Note that the PAM units are not the same for different families of

proteins, since the speed of evolution varies.
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Estimating the substitution matrix (continued)

• The Blocks database contains multiply aligned ungapped segments

that correspond to the most highly conserved regions of proteins.

• The database is generated automatically based on proteins in InterPro

database.
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BLOSUM

• BLOSUM (BLOcks SUbstitution Matrix) matrices are based on Blocks.

• E.g. BLOSUM62 uses entries from Blocks that are clustered so that

sequences with at least 62% pairwise identity with one of the previous

sequences in a cluster are added to it.

– In estimating the frequencies, pairs of individual sequences are

replaced with pairs of clusters, each member in the cluster getting

an equal weight in the estimation.

• If we want to find more distant relationships, we should use a scoring

matrix constructed with lower sequence identity requirement. The

lower the percentage identity required the more distant the sequences

to be compared should be for the scoring to be succesful.
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BLOSUM in practice

• The BLOSUM matrix A can be obtained as follows:

1. From all the sequence data in the blocks database, estimate the

frequency of each amino acid fi, i = 1, . . ., 20.

2. Taking all pairs of sequences in each block, estimate the frequency

of different pairs of amino acids, fi,j , i, j = 1, . . ., 20.

3. Compute (and round to nearest integer) the following score:

si,j = log2

fi,j

fifj

• The scores are normalized by the background frequencies of differ-

ent amino acids. Thus, scoring with this matrix means comparing

the likelihood of the sequences resulting from substitutions with the

likelihood of observing the sequences by chance.
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Markov chains

• The following is mostly based on Section 3 of (Durbin et al., 1998)

• Discrete time and discrete state Markov chains (and their extensions

hidden Markov models (HMM)) are widely used in biological sequence

analysis

• Markov chain can be used to model sequences in which the probability

of an element depends on the previous element(s) (the context)

• The first order Markov model is defined by transition probabilities

ast = P (xi = t|xi−1 = s), s, t ∈ A

and these probabilities remain unchanged for all i (homogeneous)

• See figure on page 48 in (Durbin et al., 1998)
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• E.g. a sequence x = (x1, x2, . . .) of DNA can be modeled by giving

probabilities p(xi = a|xi−1 = a), p(xi = a|xi−1 = c), . . . , indepen-

dent of i

• Note that aaa+aac+aag+aat = 1 and sums for different conditioning

terms are independent (multinomials)

• Generally, the probability of a sequence x = (x1, . . . , xL) factorizes

as

P (x) = P (x1)
L
∏

i=2

P (xi|xi−1) = P (x1)
L
∏

i=2

axi−1xi

• This corresponds to so called evaluation of x

• Given a nucleotide sequence acgttcg we can compute its probability

given a first-order Markov model by

p(acgttcg) = p(a)aacacgagtattatcacg
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• In a zeroth-order Markov chain the elements are independent. This

is sometimes used as the simplest “background model.”

• The sum of xs over all sequences of length L equals 1

• Higher-order models take a longer preceding sequence into account

• The nth order Markov model is defined by transition probabilities

P (xi|xi−1, . . . , xi−n)

• E.g. in a second-order model we would model the sequence acgttcg

as

p(acgttcg) = p(ac)p(g|ac)p(t|cg)p(t|gt)p(c|tt)p(g|tc).

• Markov chains can also be inhomogeneous
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Estimating model parameters

• Parameters can be estimated from a training data that is assumed to

represent a feature/phenomenon of interest.

• The conditional probabilities of a Markov chain can be estimated

simply based on counts from the data, i.e.

ast =
cst

∑

t′ cst′
,

where cst is the number of times s is followed by t

• As discussed before, these are the maximum-likelihood (ML) param-

eters (well-known benefits of ML estimation)

• Note that if higher-order models are used the number of probabilities

to be estimated increases significantly.
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• In addition to taking more time, more data is required as well —

estimating probabilities from low counts will not produce a reliable

model.

• In small sample setting Bayesian approach can be more appropriate

than ML.
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A simple Markov chain method

• At its simplest we can try to find, e.g., the protein coding regions in

a prokaryote genome as follows:

1. Learn the probabilities for the Markov model θ1 from data con-

taining known protein-coding regions (e.g. ML method)

2. Learn the probabilities for the Markov model θ2 from known non-

coding regions (e.g. ML method)

3. For each sequence stretch x of interest:

– Compute the probability of x given model θ1, p1 = P (x|θ1)

– Compute the probability of x given model θ2, p2 = P (x|θ2)

– If p1/p2 > t, a threshold selected e.g. by finding an optimal

value using training data, consider the given sequence a poten-

tial coding region

– Alternatively, a Bayesian model comparison: P (θ1|x) vs. P (θ2|x)
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4. Resolve overlaps, if any

–16–



SGN-6156 – Computational Systems Biology II

A Markov chain example

• CpG islands, CG-rich regions in gene promoters, are clues to the lo-

cation of genes

• Example from (Durbin et al., 1998): classify a set of sequences into

CpG-islands and “others”

• Learn model parameters for the two first-order Markov models

• See table on page 50 in (Durbin et al., 1998)

• Compute the likelihood ratios as above, see Figure 3.2 in (Durbin et

al., 1998)
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Another Markov chain example

• Finding prokaryotic genes

• Use the first and “higher-order” models in the same way as above

• See Figure 3.11 and 3.12 in (Durbin et al., 1998)
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Beginning and end of a Markov chain

• Additional ’begin’ and ’end’ states, B and E :

– The probability of starting the chain with symbol s is

P (x1 = s) = aBs

– The probability of ending the chain with symbol t is

P (xL = t) = atE

• See Figure 3.1 in (Durbin et al., 1998)

• End state allows modeling sequences of different lengths
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Testing for significance of the model

• Often the correct order of the Markov model is not known.

• For example, to check if a Markov chain of order 1 should be used

instead of order 0 we test the null hypothesis

– H0: The probability of a nucleotide in position i+1 is independent

of the nucleotide in position i.

against the alternative H1

• We can compile a table from the counts we have observed based on

sequence data, e.g.:

–20–



SGN-6156 – Computational Systems Biology II

Nucleotide in position i + 1

a g c t Total

Nucleotide in a 70 61 79 60 270

position i g 48 60 60 55 223

c 79 45 51 68 243

t 72 57 53 81 263

Total 269 223 243 264
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• Denote the elements of the above matrix as xij and the row and

column sums as nxj =
∑

i xij and nix =
∑

j xij .

• If the null hypothesis were true and rows and columns were indepen-

dent, based on the marginals we would expect to have a table with

values Eij = nixnxj/n.

• In that case, the square error is asymptotically distributed as

Y =
∑

i,j

(xij − Eij)
2

Eij

∼ χ2(9).

• For the above table we find Y ≈ 19.585 and the corresponding value

from the cumulative distribution function of χ2(9) as 0.9793 > 0.95,

so that with p-value 0.02 the dependence is significant.

• For sequence alignment, a zeroth-order model is often used as a back-

ground model, so that independent nucleotides actually make align-

ment work better.
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Hidden Markov models (HMM)

• Consider the previous Markov model examples. Given long sequences,

how does one locate CpG islands (or protein coding parts) in them

without classifying each entire sequence as cpG or non-CpG?

• For example, combine CpG and non-CpG Markov models and allow a

small transition probability between them (see Figure 3.3 in (Durbin

et al., 1998))

• Distinguish sequence of states π (path) and sequence of symbols x

• Unobserved path π follows a Markov chain with transition probabilities

akl = P (πi = l|πi−1 = k)

• Symbols are generated by emission probabilities: the probability of
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emitting b given that the state is k

ek(b) = P (xi = b|πi = k)

• The above transition and emission probabilities do not depend on i

(homogeneous)

• A generative model (simulation):

– Choose the first state π1 according to the probabilities aBi

– Emit the first observation x1 according to eπ1

– Choose the next state π2 according to a1i

– Emit the second observation x2 according to eπ2

– etc.

• See example on page 54 in (Durbin et al., 1998)
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• The probability of a path and symbols

P (π, x) = aBπ1
eπ1

(x1)

(

L
∏

i=2

aπi−1πi
eπi

(xi)

)

aπLE
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Path estimation in HMM

• Often the unknown path π is of interest

• Thus, a path needs to be estimated (decoding)

• Find a path π that has the highest probability

π∗ = arg max
π

P (π, x)

• Viterbi is a dynamic programming algorithm for finding π∗

• Let vk(i) denote the probability of the most probable path ending in

state k with observation i

• Probability vl(i + 1) for all l can be found as

vl(i + 1) =

[

max
k

(vk(i)akl)

]

el(xi+1)

• The actual path π∗ can be obtained by backtracking
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Viterbi algorithm for HMM decoding

• Initialization: i = 0, v0(0) = 1, vk(0) = 0 for k > 0

• Recursion: i = 1, . . . , L, for all l

vl(i) =

[

max
k

(vk(i − 1)akl)

]

el(i)

ptri(l) = arg max
k

(vk(i − 1)akl)

• Termination:

P (π∗, x) = max
k

(vk(L)al0)

π∗

L = arg max
k

(vk(L)ak0)

• Backtracking: i = L, . . . , 1

π∗

i−1 = ptri(π
∗

i )
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• See Figure 3.5 in (Durbin et al., 1998)
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