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Optimal solution with dynamic programming

• Given a scoring model, an optimal alignment needs to be founds.

• There are exceedingly many possible alignments, thus it is prohibitive

to go through all exhaustively.

• Optimal solution(s) can be found efficiently by dynamic programming.

• Dynamic programming is guaranteed to find the best alignment(s).

• In dynamic programming, the optimal solution to the sequence align-

ment problem is found by combining partial optimum solutions.

• Heuristic methods can improve computational efficiency even further,

but they are not guaranteed to find the best solution(s).

• Given the log-odds scoring scheme, we want to maximize the score.

• Assume linear gap model (for simplicity).
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• Given the scoring model, alignments have a probabilistic interpretation

as well. The dynamic programming presented below can be viewed

as a Hidden Markov model solution.
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Global alignment: Needleman-Wunsch algorithm

• Global alignment allowing gaps.

• Construct a matrix F (i, j) (recursively) which contains the score of

the best alignment between subsequences x1, . . . , xi and and y1, . . . , yj

• Initialize F (0, 0) = 0 and proceed from top left to bottom right.

• If F (i− 1, j − 1), F (i, j − 1) and F (i− 1, j) are known then we can

compute F (i, j)

• Recursion:

F (i, j) = max















F (i − 1, j − 1) + s(xi, yj) (xi is aligned to yj)

F (i − 1, j) − d (xi is aligned to gap)

F (i, j − 1) − d (yj is aligned to gap).
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• See Figure 2.4 in (Durbin et al 1998).

• F (i, 0) represents alignments of x1, . . . , xi to all gaps in the beginning

of y, thus initialize F (i, 0) = −id (similarly F (0, j) = −jd).

• F (n, m) contains the best score for aligning x and y.

• During the recursion, keep pointers from F (i, j) to the cell from which

it was computed.

• Following the reverse pointers gives the optimal alignment itself. This

is called traceback.

• See Figure 2.5 in (Durbin et al 1998).

• Dynamic programming relies on the additivity of the score.
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Algorithmic complexity, big-O notation, recap

• A function g is a tight upper bound for a function f , denoted as

f(n) ∈ O(g(n)), if and only if there exist positive constants n0 and

c such that

n > n0 ⇒ 0 ≤ f(n) ≤ cg(n).

• Needleman-Wunsch algorithm needs to store (n+1)× (m+1) values

and each value is computed by three sums and three max-operation.

• Thus, both computational complexity and memory requirements are

O(nm).

• For n ≈ m this means O(n2)

• For large-scale problems, O(n2) is typically considered relatively effi-

cient but O(n3) is already a bit slow.
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Local alignment: Smith-Waterman algorithm

• Local alignment between subsequences of x and y allowing gaps.

• For highly diverged species, local alignment can be more sensitive

than global alignment.

• Smith-Waterman is similar with Needleman-Wunsch, recursion:

F (i, j) = max



























0 (Start a new alignment)

F (i − 1, j − 1) + s(xi, yj) (xi is aligned to yj)

F (i − 1, j) − d (xi is aligned to gap)

F (i, j − 1) − d (yj is aligned to gap).

• Option 0 corresponds to starting a new alignment. Consequently,

initialization needs to be changed to F (i, 0) = 0 for all i (similarly

F (0, j) = 0).
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• Alignment can end anywhere in the recursion matrix.

• The optimal local alignment can now be found by starting from the

position with the highest score and following (tracebacking) the path

until reaching score zero.

• See Figure 2.6 in (Durbin et al 1998).

• For local alignments to be found, the expectation of the scores needs

to be negative for alignment of random sequences.

• Otherwise, long matches between totally unrelated sequences will

have high scores and the optimal alignment would be nearly global.
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Aligning repeated matches

• Repeated matches can be important if one of the sequences is long.

• E.g. a repeated short domains or motif in a protein (asymmetric prob-

lem).

• Assume one is looking for alignment scores that are above a threshold

T .

• x is the longer sequence that supposedly contains many occurrences

of a motif y.

• See Figure 2.7 in (Durbin et al 1998).

• F (i, j) is now the best sum of match scores to x1, . . . , xi (assuming

xi is in a matched region and match ends at (i, j)), and F (i, 0) is

now the sum of the best completed match scores.
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• Yet another recursion(s):

F (i, 0) = max







F (i − 1, 0) (unmatched region)

F (i − 1, j) − T, j = 1, . . . , m (end of match)

and

F (i, j) = max



























F (i, 0) (Start of a new match)

F (i − 1, j − 1) + s(xi, yj) (xi is aligned to yj)

F (i − 1, j) − d (xi is aligned to gap)

F (i, j − 1) − d (yj is aligned to gap).

• The optimum score in F (n + 1, 0).

• The match alignments can be tracebacked from (n + 1, 0) to (0, 0).

• Recall: the above alignment methods have a probabilistic interpreta-

tion!
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More complex aligning problems

• For example, a different search strategy is needed if

– we expect that one sequence contains the other or if they overlap

(overlap matches).

– a repetitive sequence is found in tandem copies (i.e., not separated

by gaps)

– etc.

• Linear gap model is not realistic.

• Dynamic programming works with an arbitrary gap model γ(g), but

in general requires O(n3) time.
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• Recursion:

F (i, j) = max















F (i − 1, j − 1) + s(xi, yj)

F (k, j) + γ(i − k), k = 0, . . . , i − 1

F (i, k) + γ(j − k), k = 0, . . . , j − 1.

• Fortunately, the affine gap model has a dynamic programming solu-

tions that works in time O(n2).
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Heuristic alignment methods

• The above aligning methods are exact, in that they are guaranteed to

find the optimal solution(s).

• For long sequences/large sequence databases, running time of O(nm)

can become an issue.

• Heuristic approaches to sequence alignment are often used in prac-

tice, although they are not guaranteed to find the optimal solutions.

Heuristics can also be complemented with a dynamic programming

solution of an optimal alignment when the search can be restricted

to make it feasible.

• The goal of heuristic methods is to search as a small fraction as

possible of F (i, j) but still to find high scoring matches.
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BLAST

• Basic Local Alignment Search Tool (BLAST) is perhaps the most

common alignment tool in use for database searches.

• The search is made faster by utilizing the fact that any interesting

local alignment is very likely to contain a shorter sequence stretch of

identities, or a subalignment with a very high score.

• For each subsequence of the query, BLAST scans the database for

matches (typically e.g. of length 13 for DNA, 4 for proteins) that

have a score that exceeds a chosen threshold.

• In the standard version, each of these local hits is then extended as an

(ungapped) alignment in both directions, stopping at the maiximum

scoring extension.

• The extended hits are called high-scoring segment pairs (HSPs).
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• Since the extension stage is rather slow and a large number of ex-

tensions will need to be done in order to obtain sufficient sensitivity,

some later versions require that there are two hits within a window of

specified length in order to proceed with extension.

• Many versions of BLAST also do gapped alignment by starting a

dynamic programming run for particularly promising matches.

• BLAST can be used online at the NCBI (National Center for Biotech-

nology Information) website or downloaded for use locally. Several

implementations are available.
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• There are numerous versions of BLAST for different purposes and

many implementations, e.g.:

– BLASTn, DNA query from a DNA database.

– BLASTp, Protein query from a protein database.

– BLASTx, DNA query from a protein database, the conceptual

translation products of all six possible frames are searched.

– PSI-BLAST, Position-specific iterative version, which builds a se-

quence motif out of a set of related sequences found and uses

the motif to improve the search results iteratively (multiple align-

ment).
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Linear time algorithms

• Above methods compute matrix F (i, j).

• Sometimes even memory requirements can become a limiting factor.

• There are techniques that give the optimal alignment in O(n + m)

space and O(nm) time.
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Significance of scores

• Once an optimal alignment has been found, we need to determine

whether it is significant.

• That is, decide whether (or judge to what extent) the found alignment

– represents a biologically meaningful alignment

– is just the best alignment of totally unrelated sequences.

• Two approaches:

– Bayesian flavored model comparison

– the traditional hypothesis testing based approach.
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Bayesian model comparison

• The above methods compute the log-likelihood ratio

S = log

{

P (x, y|M)

P (x, y|R)

}

.

• A more natural quantity would be the probability that the sequences

are related or unrelated, i.e., P (M |x, y) and P (R|x, y).

• First specify prior probabilities P (M) and P (R) = 1 − P (M).

• After seeing the data (i.e. x and y), we can use the Bayes’ rule

P (M |x, y) =
P (x, y|M)P (M)

P (x, y)

=
P (x, y|M)P (M)

P (x, y|M)P (M) + P (x, y|R)P (R)

and P (R|x, y) = 1 − P (M |x, y).
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• If one defines

S′ = S + log

{

P (M)

P (R)

}

and logistic function

σ(x) =
ex

1 + ex
,

then

P (M |x, y) = σ(S′).

• Prior odds S′ − S can be particularly useful when a large number of

different alignments need to be processed.

• If a fixed prior odds is used, then the average number of false pos-

itive increases linearly. Thus, prior odds should should be inversely

proportional to the number of samples.

• Note that the above model comparison is not entirely Bayesian be-

cause the models/parameter are fixed.

–19–



SGN-6156 – Computational Systems Biology II

Hypothesis testing, recap

• A general approach to compute a significance value for a hypothesis:

1. Choose a null hypothesis H0 and its complement H1

2. Choose a proper test statistic T

3. Derive the null distribution of T for a random sample D from H0

f(X) = P (T (D) = X |H0)

4. Compute the value of the test statistic using the observed data

Dobs, Tobs = T (Dobs)

5. Choose a significance level, e.g. α = 0.05

6. Compute the significance value (one sided test assumed here, large

values of T less probable under H0) and check if p < α

p = P (T (D) ≥ Tobs|H0) =

∫

∞

Tobs

f(X)dX.
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• If no parametric assumption can be made, approximate the null dis-

tribution from a properly randomized/permuted data set.
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Statistical testing of alignments

• For ungapped alignments, the score of a match to a random sequence

is the sum of many similar random variables.

• The central limit theorem suggests that such a quantity can be well

approximated by a normal distribution.

• The asymptotic distribution of the maximum MN of N independent

normal random variables is

P (MN ≤ x) = P (M ≤ x)N ≃ e−KNeλ(x−µ)

,

where P (M ≤ x) is the distribution of a single random variable and

K and λ are constants.

• This is called the extreme value distribution (EVD).

• The above holds true even if the individual scores are not normally

distributed.
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• EVD can be theoretically motivated and derived for the ungapped

alignment scores (details skipped).

• Empirical evidence suggest that EVD can be used for other (gapped)

models as well.

• From less pragmatic point of view, the parameters of the EVD, K and

λ, can be estimated from a large collection of aligned random (non-

related) sequences and the obtained empirical distribution P̂ (X ≥ S)

can be used for hypothesis testing.

• If a database consists of sequences that have different lengths, then

the best local alignment scores for longer sequences are, on average,

higher than the best scores for than shorter sequences. Adjust scores

for varying length.

–23–



SGN-6156 – Computational Systems Biology II

References

• R. Durbin, S. R. Eddy, A. Krogh and G. Mitchison (1998). Biologi-

cal Sequence Analysis: Probabilistic Models of Proteins and Nucleic

Acids, Cambridge University Press.

• H. Ji and W. H. Wong (2006). Computational biology: toward deci-

phering gene regulatory information in mammalian genomes, Biomet-

rics, vol. 62, pp. 645–663.

–24–


