SGN-6156, Lecture 1

Biological sequence analysis
Harri Lähdesmäki, harri.lahdesmaki@tut.fi
(part of the material by Juha Kesseli)
Department of Signal Processing,
Tampere University of Technology
01.04.2008

General motivation

- Computational biology/bioinformatics is almost always somehow connected to biological sequences.
- Three main types of biological sequences: DNA, RNA and protein.

Basic concepts: a simplified view

- Basic building blocks:
- genome/DNA
- genes, proteins
- cis-regulatory elements
- Basic mechanisms:
- transcription
- splicing
- translation (steps 1-3 = gene expression)
- post-translational modifications/protein folding. . .
- Transcriptional regulatory mechanisms and other regulatory mechanisms (alternative splicing, microRNAs, protein modifications,...)
- See additional notes from (Ji and Wong, 2006).

Figure from (Ji and Wong, 2006)

Computational analysis of biological sequences

- Here we emphasize the computational methods (and their underlying principles) that are used to analyze biological sequences.
- Little emphasis on practical sequence analysis or specific programs etc.
- Wet-lab experimentation is the most reliable way of determining a property or a feature of a biological molecule.
- Computational predictions (e.g. from sequence alone) are much easier and less expensive to perform and are thus of great importance.
- Sometimes direct experimentation might also be impossible and indirect computational analysis (statistical inference) is the only way to make biological conclusions.
- Before being able to start computational sequence analysis, one needs at least the sequence(s) to analyze.
- Sequencing.
- Before been able to use the sequenced genome, one needs to know, at least approximately, the basic components: genes (protein-encoding regions), cis-regulatory regions, etc.
- Gene finding:
- Extrinsic, utilizing sequence alignment.
- Ab initio methods, utilizing statistical models of sequences.
- Several immediate questions are related to biological sequence similarity, homology and alignment.
- Most problems in computational biology are statistical in nature.

Some probabilistic models/concepts, recap

- An example of a biological sequence model: in the most simple setting, biological sequences are strings from an alphabet of size K (4 nucleotides or 20 amino acids).
- Consider a multinomial distribution $\theta=\left(\theta_{1}, \ldots, \theta_{K}\right)$
- K outcomes, $\sum_{i=1}^{K} \theta_{i}=1$.
- Assume that residues in sequences occur independently.
- The probability of a sample sequence $x=\left(x_{1}, \ldots, x_{N}\right)$ is

$$
P(x \mid \theta)=\prod_{i=1}^{N} P\left(x_{i} \mid \theta\right)=\prod_{i=1}^{N} \theta_{x_{i}}
$$

- Maximum-likelihood (ML) estimate: given a model with parameters θ and a set of data D, the maximum-likelihood estimate of θ is the value that maximizes $P(D \mid \theta)$, i.e.,

$$
\hat{\theta}=\arg \max _{\theta} P(D \mid \theta)
$$

- Consider again the above simple model and a sequence x.
- Observations can expressed as counts $n=\left(n_{1}, \ldots, n_{K}\right)$, and $N=$ $\sum_{i} n_{i}$.
- ML parameter estimates are $\hat{\theta}_{i}=n_{i} / N$

SGN-6156 - Computational Systems Biology II

- Likelihood of the data can be written as

$$
P(x \mid \theta)=\prod_{i=1}^{N} P\left(x_{i} \mid \theta\right)=\prod_{i=1}^{N} \theta_{x_{i}}=\prod_{i=1}^{K} \theta_{i}^{n_{i}}=P(n \mid \theta) .
$$

- ML parameters $\hat{\theta}$ must satisfy $P(x \mid \hat{\theta})>P(x \mid \theta)$ or $\log \frac{P(x \mid \hat{\theta})}{P(x \mid \theta)}>0$ for any $\theta \neq \hat{\theta}$

$$
\begin{aligned}
\log \frac{P(x \mid \hat{\theta})}{P(x \mid \theta)} & =\log \frac{P(n \mid \hat{\theta})}{P(n \mid \theta)}=\log \frac{\prod_{i=1}^{K} \hat{\theta}_{i}^{n_{i}}}{\prod_{i=1}^{K} \theta_{i}^{n_{i}}}=\log \prod_{i=1}^{K}\left(\frac{\hat{\theta}_{i}}{\theta_{i}}\right)^{n_{i}} \\
& =\sum_{i=1}^{K} n_{i} \log \frac{\hat{\theta}_{i}}{\theta_{i}}=N \sum_{i=1}^{K} \hat{\theta}_{i} \log \frac{\hat{\theta}_{i}}{\theta_{i}} \\
& =N \cdot H(\hat{\theta}| | \theta)>0,
\end{aligned}
$$

where $H(\cdot \| \cdot)$ is the relative entropy (Kullback-Leibler distance).

SGN-6156 - Computational Systems Biology II

- The conditional probability of an event X given Y is (assuming $P(Y) \neq 0)$

$$
P(X \mid Y)=\frac{P(X, Y)}{P(Y)}
$$

- The marginal probability of X

$$
P(X)=\sum_{Y} P(X, Y)=\sum_{Y} P(X \mid Y) P(Y)
$$

- The Bayes' theorem: the posterior probability of X given Y

$$
P(X \mid Y)=\frac{P(Y \mid X) P(X)}{P(Y)}
$$

- Bayesian model comparison among a set of models $\mathcal{M}=\left\{M_{1}, M_{2}\right\}$, given data D and priors $P\left(M_{i}\right)$

$$
P\left(M_{1} \mid D\right)=\frac{P\left(D \mid M_{1}\right) P\left(M_{1}\right)}{P(D)}=\frac{P\left(D \mid M_{1}\right) P\left(M_{1}\right)}{P\left(D \mid M_{1}\right) P\left(M_{1}\right)+P\left(D \mid M_{2}\right) P\left(M_{2}\right)} .
$$

- Bayesian parameter estimation, given data D and prior $P(\theta)$

$$
P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{P(D)}
$$

where $P(D)=\int_{\theta^{\prime}} P\left(D \mid \theta^{\prime}\right) P\left(\theta^{\prime}\right) d \theta^{\prime}$.

- The prior $P(\theta)$ can be either informative or uninformative.
- $P(\theta \mid D)$ defines the full posterior distribution that can be used for/to compute:
- full Bayesian analysis
- maximum a posteriori (MAP) estimate
- posterior mean.
- Both frequentist and Bayesian approaches will be used in the following, although Bayesian methods are preferred (e.g. in small sample settings and in model selection).

SGN-6156 - Computational Systems Biology II

Motivation for sequence alignment

- Evolution and natural selection adapts new sequences from the existing ones.
- Sequences evolve by accumulating substitutions, insertions and deletions.
- A basic sequence analysis task is to ask if sequences are related/conserved.
- To answer that, first align the sequences and then determine if that alignment is statistically significant.
- Some potential issues:
- What kind of alignments are considered as good?
- How to score and rank different alignments?
- How to find (computationally) good alignments?
- How to evaluate significance?
- Known sequences in databases can be used to find close matches in arbitrary DNA or protein sequences.
- Match similar sequences in order to find, e.g.
- homologs (sequences with shared ancestry and, thereby, possibly a shared function)
- binding sites of similar molecules (can result from convergent evolution, typically transcription factors)
- ...
- Finding homologous genes is the most common way of generating new annotations for genes (although homologous genes need not have the same or similar function).
- Aligning multiple sequences can also be used to study the phylogenetic tree.

Protein vs. DNA alignment

- Typically, it is recommended that proteins are aligned instead of DNA if possible.
- With DNA, we need to consider the different reading frames.
- It is simpler to incorporate probabilities of mutation for different amino acids into the alignment scores.
- In particular with more distant sequences the comparison of nucleotides discards usable information.

Pairwise alignment

- From now on, the presentation mainly follows (Durbin et al, 1998; Section 2).
- In pairwise alignment we have two sequences that we want to compare.
- The alignment can be global or local.
- In global alignment the two sequences are aligned from beginning to the end.
- In local alignment subsequences with high similarity are found. This is often more interesting and convenient in practice since shorter similar subsequences often correspond with functionally similar domains.
- Pairwise alignment is also used by selecting a query sequence that is then pairwise compared with all the sequences in a database (e.g. BLASTing).
- An alignment example, Figure 2.1 in (Durbin et al. 1998)

An alignment scoring model

- In order to define how closely two sequences match, i.e. how well they can be aligned, we need to have a metric to determine their distance.
- To measure distances between two sequences with a common ancestor we need to know e.g. the probabilities of different point mutations occurring in one or both of the homologous sequences.
- We try to find evidence that sequences have developed (evolutionarily) from a common ancestor by a process of mutation and selection
- Substitutions
- Deletions/Insertions
- Evolutionary selection might have favored some type of mutations.
- The overall score is a combination of individual/point scores: identities, substitutions and gaps (deletions and insertions).
- A pair of sequences, $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{m}\right)$, assume $m=n$ first
- x_{i} and y_{j} take values from an alphabet \mathcal{A} as above: $\mathcal{A}=\{A, C, G, T\}$ or the twenty amino acids.
- A random model R : symbols in x and y occur independently with probabilities q_{a}, q_{c}, q_{g} and q_{t}

$$
P(x, y \mid R)=\prod_{i=1}^{n} q_{x_{i}} \prod_{j=1}^{n} q_{y_{j}}
$$

- A match model M : aligned pairs occur with a joint probability $p_{a a}$, $p_{a c}$, etc.

$$
P(x, y \mid M)=\prod_{i=1}^{n} p_{x_{i} y_{i}}
$$

- $p_{x_{i} y_{i}}$ can be interpreted as the probability that both residues x_{i} and y_{i} have been independently derived from a common ancestor residue.
- Relative alignment score from the likelihood ratio (odds ratio)

$$
\frac{P(x, y \mid M)}{P(x, y \mid R)}=\prod_{i=1}^{n} \frac{p_{x_{i} y_{i}}}{q_{x_{i}} q_{y_{i}}}
$$

- Logarithm of the likelihood ratio gives an additive score

$$
S=\sum_{i=1}^{n} s\left(x_{i}, y_{i}\right)=\sum_{i=1}^{n} \log \left(\frac{p_{x_{i} y_{i}}}{q_{x_{i}} q_{y_{i}}}\right)
$$

- Elements $s(a, b)$ form a substitution matrix.

Substitution matrices

- Substitution matrix contains estimates of the rates of DNA mutation for different amino acids or nucleotides.
- In a common 20-by-20 matrix the (i, j) th entry contains the probability that the i th amino acid mutates into the j th amino acid over a selected unit of time.
- Substitution matrices for nucleotides contain only little information.
- Common substitution matrices for protein sequences
- BLOSUM
- PAM
- Let us assume for now that a substitution matrix s is given (these can be estimated from data, as we'll see later).

BLOSUM62 substitution matrix

| | A | B | C | D | E | F | G | H | I | K | L | M | N | P | Q | R | S | T | V | W | X | Y | Z |
| :--- | ---: |
| A | 4 | -2 | 0 | -2 | -1 | -2 | 0 | -2 | -1 | -1 | -1 | -1 | -2 | -1 | -1 | -1 | 1 | 0 | 0 | -3 | -1 | -2 | -1 |
| B | -2 | 6 | -3 | 6 | 2 | -3 | -1 | -1 | -3 | -1 | -4 | -3 | 1 | -1 | 0 | -2 | 0 | -1 | -3 | -4 | -1 | -3 | 2 |
| C | 0 | -3 | 9 | -3 | -4 | -2 | -3 | -3 | -1 | -3 | -1 | -1 | -3 | -3 | -3 | -3 | -1 | -1 | -1 | -2 | -1 | -2 | -4 |
| D | -2 | 6 | -3 | 6 | 2 | -3 | -1 | -1 | -3 | -1 | -4 | -3 | 1 | -1 | 0 | -2 | 0 | -1 | -3 | -4 | -1 | -3 | 2 |
| E | -1 | 2 | -4 | 2 | 5 | -3 | -2 | 0 | -3 | 1 | -3 | -2 | 0 | -1 | 2 | 0 | 0 | -1 | -2 | -3 | -1 | -2 | 5 |
| F | -2 | -3 | -2 | -3 | -3 | 6 | -3 | -1 | 0 | -3 | 0 | 0 | -3 | -4 | -3 | -3 | -2 | -2 | -1 | 1 | -1 | 3 | -3 |
| G | 0 | -1 | -3 | -1 | -2 | -3 | 6 | -2 | -4 | -2 | -4 | -3 | 0 | -2 | -2 | -2 | 0 | -2 | -3 | -2 | -1 | -3 | -2 |
| H | -2 | -1 | -3 | -1 | 0 | -1 | -2 | 8 | -3 | -1 | -3 | -2 | 1 | -2 | 0 | 0 | -1 | -2 | -3 | -2 | -1 | 2 | 0 |
| I | -1 | -3 | -1 | -3 | -3 | 0 | -4 | -3 | 4 | -3 | 2 | 1 | -3 | -3 | -3 | -3 | -2 | -1 | 3 | -3 | -1 | -1 | -3 |
| K | -1 | -1 | -3 | -1 | 1 | -3 | -2 | -1 | -3 | 5 | -2 | -1 | 0 | -1 | 1 | 2 | 0 | -1 | -2 | -3 | -1 | -2 | 1 |
| L | -1 | -4 | -1 | -4 | -3 | 0 | -4 | -3 | 2 | -2 | 4 | 2 | -3 | -3 | -2 | -2 | -2 | -1 | 1 | -2 | -1 | -1 | -3 |
| M | -1 | -3 | -1 | -3 | -2 | 0 | -3 | -2 | 1 | -1 | 2 | 5 | -2 | -2 | 0 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -2 |
| N | -2 | 1 | -3 | 1 | 0 | -3 | 0 | 1 | -3 | 0 | -3 | -2 | 6 | -2 | 0 | 0 | 1 | 0 | -3 | -4 | -1 | -2 | 0 |
| P | -1 | -1 | -3 | -1 | -1 | -4 | -2 | -2 | -3 | -1 | -3 | -2 | -2 | 7 | -1 | -2 | -1 | -1 | -2 | -4 | -1 | -3 | -1 |
| Q | -1 | 0 | -3 | 0 | 2 | -3 | -2 | 0 | -3 | 1 | -2 | 0 | 0 | -1 | 5 | 1 | 0 | -1 | -2 | -2 | -1 | -1 | 2 |
| R | -1 | -2 | -3 | -2 | 0 | -3 | -2 | 0 | -3 | 2 | -2 | -1 | 0 | -2 | 1 | 5 | -1 | -1 | -3 | -3 | -1 | -2 | 0 |
| S | 1 | 0 | -1 | 0 | 0 | -2 | 0 | -1 | -2 | 0 | -2 | -1 | 1 | -1 | 0 | -1 | 4 | 1 | -2 | -3 | -1 | -2 | 0 |

Gap penalties

- The above scoring model does not yet take into account gaps (insertions/deletions).
- Gaps need to be penalized.
- Common gap penalty scores for a gap of length g are the linear score

$$
\gamma(g)=-d g
$$

or an affine score

$$
\gamma(g)=-d-e(g-1)
$$

where d is the gap open and e is the gap extension penalty.

- Typically $d>e$.
- The probability of a gap at a given location is the product of $f(g)$ (a function/density of the gap width) and the probability of inserted residues

$$
P(\text { gap })=f(g) \prod_{\text {residues in gap }} q_{x_{i}}
$$

- Residues in the gap do not correlate with the length of the gap.
- Probabilities $q_{x_{i}}$ above come from the random model.
- Log-likelihood ratio of the gap model to the probability of the random model gives $\gamma(g)=\log (f(g))$.

References

- R. Durbin, S. R. Eddy, A. Krogh and G. Mitchison (1998). Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, Cambridge University Press.
- H. Ji and W. H. Wong (2006). Computational biology: toward deciphering gene regulatory information in mammalian genomes, Biometrics, vol. 62, pp. 645-663.

