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ABSTRACT

Periodicity detection in time series measurements is a usual
application of signal processing in studying biological data.
The reasons for detecting periodically behaving biologi-
cal events are many, e.g. periodicity in gene expression
time series could suggest cell cycle control over the gene
expression. In this paper we present a robust version of
the Fisher’s test for detecting hidden periodicities in uni-
formly sampled time series data. The robust test performs
better than the original test in case the data is not truly
Gaussianly distributed. The proposed robust method is
nearly as fast to evaluate as the original Fisher’s test.

1. INTRODUCTION

Detecting periodically behaving biological time series has
gained a lot of attention lately. Especially the growth
of available gene microarray [1] time series data has led
to the introduction of periodicity detection methods from
other research fields of interest to gene expression studies.

Periodicity detection methods can be broadly divided
into two classes. The generic approaches seek hidden pe-
riodic components at all the available frequencies [2, 3,
4, 5, 6] and use statistical tests to yield significance val-
ues with multiple correction. The methods in the sec-
ond class seek periodic phenomena at a priori specified
frequencies, e.g. the assumed cell cycle frequency, see
e.g. [7, 8, 9, 10, 11, 12, 13].

The problems of processing gene expression and other
molecular biological time series data include short time
series length, the presence of noise of unknown distribu-
tion, outliers and other non-linearities involved in mea-
surement technologies themselves. In [2] we presented
a robust rank based modification of Fisher’s g test [4]
for finding hidden periodicities in time series data. The
method performs well both under the Gaussian noise as-
sumption and when outliers and other non-linearities are
present. The method, however, requires intensive numer-
ical computation when it comes to evaluating the signifi-
cance values.

In this paper we follow the general direction of Fisher’s
g test together with multiple testing correction for the de-
tection of periodic time series in multiple time series data.

We use a regression based formulation of the method pre-
sented [14] to find robust spectral estimates of time series
instead of using the basic non-robust periodogram. After
finding the spectral estimates we replace the periodogram
in the g test with the robust spectral estimate, in a similar
way as in [2].

To find the p values corresponding to the computed g
statistics (the test statistic in Fisher’s test), we propose to
use the analytical distribution of the unmodified g statistic
and explain the justification to do so. This way the robust
test is nearly as computationally efficient as the original
Fisher’s test; thus no need for permutation tests or Monte
Carlo simulations.

The performance of the proposed robust regression based
method is then compared to that of the periodogram. We
use simulations to evaluate the receiver operating char-
acteristic (ROC) and power of test figures under several
noise and signal configurations to show the performances.

2. METHODS

Fisher’s test for the detection of hidden periodicities of
unspecified frequency in time series ([4]) is a well known
test based on the periodogram spectral estimator. The
null hypothesis is that the time series is Gaussian noise
against the alternative hypothesis that the signal contains
an added deterministic periodic component of unspecified
frequency. An implicit assumption is that the time series
sampling is even. Thus, we assume the model for a peri-
odic time series as

yn = β cos(ωn + φ) + εn, (1)

where β ≥ 0, ω ∈ (0, π), n = 1, . . . , N , φ ∈ (−π, π],
and εn is an i.i.d. noise sequence. To test for periodicity,
define the null hypothesis as H0 : β = 0, i.e., the time
series consists of the noise sequence alone, yn = εn.

The g statistic in Fisher’s test is then defined as

g =
max1≤i≤q I(ωi)∑q

i=1 I(ωi)
, (2)

with q = [(n − 1)/2] and I(ω) is the spectral estimate
(the periodogram) evaluated at Fourier frequencies. The p
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value for a realisation of the g statistic (g∗) is given by

P (g ≥ g∗) = 1 −
q∑

j=0

(−1)j

(
q

j

)
(1 − jg∗)q−1

+ , (3)

and if this probability is less than α we can reject the null
hypothesis at level α [7]. Fisher’s test is further described
in ([7]) and used successfully with gene expression mi-
croarray data in ([6]).

In case our measured time series are not strictly obey-
ing the Gaussian distribution, but have for instance data
points that are inconsistent with the rest of the data (out-
liers), we should consider making the test somehow more
robust.

One way of gaining robustness is to use a robust time
series cleaner and then use the Fisher’s test with the cleaned
time series. One such cleaner is introduced in ([14]) where
the authors first estimate the Fourier coefficients of the
time series by using robust M-estimation. The estimated
robust Fourier coefficients are then inverse transformed
with the ordinary inverse Fourier transform to yield a cleaned
time series.

Instead of using the inverse Fourier transform as de-
scribed and then using the periodogram in Fisher’s test
we drop the two unnecessary steps and use the originally
M-estimated Fourier coefficients to form the robust peri-
odogram. This way the Fourier coefficients are estimated
directly with the Tukey’s biweight-based M-estimator re-
gression. By tuning the estimator correctly a 95% asymp-
totic efficiency on the standard normal distribution can
be achieved. In addition, M-estimators are known to be
asymptotically normally distributed. Since normally dis-
tributed Fourier coefficients form the basis of Fisher’s clas-
sical result in Equation 3, asymptotic normality of M -
estimators suggests a similar asymptotic null hypothesis
distribution for the proposed robust test as well. This mo-
tivates us to use the original distribution of the g statis-
tic (the statistic in Fisher’s test) with our modified peri-
odogram. Although the distribution is not exact for the
modified test (see Figure 1), it is the exact distribution for
the cleaned series.

Using 10000 Monte Carlo runs we estimated the null
hypothesis distribution for the periodogram and for the
modified estimator. For the modified estimator we used
two null hypothesis signal types, one with Gaussian noise
and the other with Gaussian noise and 10% outliers per
time series. The time series length was set to 20 which
is relatively short. The resulting distributional estimates
and the theoretical distribution can be seen in Figure 1.
Stronger tails are clearly visible for the modified test. How-
ever, as seen in Figure 2 (time series length 100), at longer
time series lengths the distributions merge better.

When implementing the robust spectral estimator we
first note that the periodogram is a function of the Fourier
coefficients estimated from time series data. These coeffi-
cients can be seen as coordinates in a space whose basis is
formed by orthogonal sinusoidals at the Fourier frequen-
cies. We can thus represent the estimation of the Fourier
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Figure 1. The ideal and estimated null hypothesis distributions
at time series length 20.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

14

16

18

20

null hypothesis distributions for the g statistic

 

 
Theoretical
Estimated

Gaussian

M_Estimated
Gaussian

M_Estimated
Gaussian
Outliers

Figure 2. The ideal and estimated null hypothesis distributions
at time series length 100.

coefficients as a linear model regression problem:

y = Xb, (4)

The sinusoidals form the square model matrix X , y is the
measured time series (or equivalently the coordinates in
the time domain) and b are the Fourier coefficient to be
estimated. When using least squares to solve the problem
we can just invert X to get the estimate for b. This yields
the Fourier coefficients for the periodogram. If we want
to use robust regression for this we must reduce the di-
mensionality of the problem. Therefore we estimate the
frequencies iteratively one at a time and always subtract
the previously fitted part away before fitting the next fre-
quency component since we no longer possess orthogo-
nality properties. The order in which the frequencies are
fitted is based on an initial spectral estimate where the fre-
quencies are sought without subtracting the previously fit-
ted parts and whose largest spectral component gives the
first frequency to fit, the second largest the second fre-
quency fit and so on. More details about the model can be
found in ([15]) where we consider the more general case
of non uniform sampling.

Based on the spectral estimates of the time series, we
calculate the g statistics for each spectral estimate. A p
value for each time series can then be found out with help
of the distribution of the g statistic (Equation 3), telling
us whether or not a strong periodic component is present.
Multiple test correction of the p values is then necessary
and we use the Benjamini-Hochberg [16] false discovery
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Figure 3. Power of test with varying Gaussian noise in the sim-
ulation data. The detectors are the basic Fisher’s test (Fishers
test), the M-estimator based Fisher’s test (M-estimator) and the
rank based estimator test ([2]Rank).
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Figure 4. Power of test with varying amount of outliers in the
simulation data.

rate (FDR) to choose a cut-off value for the p values ac-
cepted as periodic.

3. RESULTS

We now compare the power of the presented method to
the basic Fisher’s test and the method introduced in [2]
since there is a strong connection between these methods.
The power of the test, i.e., one minus the probability of
the type II error (false negative), is estimated for two dif-
ferent noise parameter scenarios using 1000 Monte Carlo
runs, see Figures 3 and 4. The significance level is set to
α = 0.05. In both the two cases, the case-specific noise
assumptions are used for both the null hypothesis (β = 0)
and the alternative hypothesis (β > 0). In this simulation,
we use the signal model shown in Eq. (1) with β =

√
2

to represent a periodic signal (i.e., the alternative hypoth-
esis). The lengths of the time series is set to 30 and the
power is shown as the function of varying noise parame-
ters.

Next we compare the receiver operating characteris-
tics (ROCs) of the two methods. The ROC plots sensitivity
versus 1−specificity thus indicating the true positive rate
while accepting more false positives. Figures 5–8 show
4 different scenarios. In Figure 5 there are no outliers
present in the simulation data, in Figure 6 there is one
outlier per time series and so forth. The main diagonal in
these figures represents random decision; thus the name
chance diagonal. The time series length in these simula-
tions was 20.

As we can clearly see from the presented figures, a
few outlying samples degrade the non-robust Fisher’s test
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Figure 5. Receiver operating characteristic curves for the
Fisher’s test (Fishers test), the M-estimator based test (M-
estimator) and the rank based estimator (rank[2]). The noise type
in the time series is plain Gaussian with standard deviation 0.75.
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Figure 6. ROC curves with Gaussian noise and one outlier per
time series.
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Figure 7. ROC curves with Gaussian noise and two outliers per
time series.
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Figure 8. ROC curves with Gaussian noise and three outliers
per time series



whereas the modified test can reject at least 10% of out-
liers. 10% of outliers in noisy short length data like cell
level measurements is not too much considering the dif-
ferent sources of errors.

The results on real measurement data were shown to
be very similar in [2] for both Fisher’s test and the method
presented in [2]. Since the new introduced method is very
similar to these, the results are also likely to be similar
and are not presented here due to limited space. Since the
ground truth of measurement data is rarely known, the per-
formance of different methods should always be verified
by simulations.

4. CONCLUSION

As the results show, the presented robust method outper-
forms the unmodified Fisher’s test when the data is not
exactly normally distributed. Although the method pre-
sented in [2] outperforms the M-estimator modified test in
most presented simulations (except in the 1 and 2 outlier
cases), the implementation of the new test is almost as fast
to evaluate as that of Fisher’s test. If we neglect the effect
of outliers and other deviations from the ideal model and
use classical methods like Fisher’s test we end up with bi-
ased results. Therefore we recommend to keep in mind
when processing real measurement data that the classical
methods pose a danger that should not be neglected.
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