Next: About this document ...
Up: Unsupervised Learning of Nonlinear
Previous: Acknowledgements
- 1
-
T. Briegel and V. Tresp.
Fisher scoring and a mixture of modes approach for approximate
inference and learning in nonlinear state space models.
In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances
in Neural Information Processing Systems 11, pages 403-409, Denver,
Colorado, USA, Nov. 30-Dec. 5, 1998, 1999. The MIT Press.
- 2
-
Z. Ghahramani and S. T. Roweis.
Learning nonlinear dynamical systems using an EM algorithm.
In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances
in Neural Information Processing Systems 11, pages 599-605, Denver,
Colorado, USA, Nov. 30-Dec. 5, 1998, 1999. The MIT Press.
- 3
-
M. S. Grewal and A. P. Andrews.
Kalman Filtering.
Prentice-Hall, Englewood Cliffs, New Jersey, 1993.
- 4
-
H. Lappalainen and A. Honkela.
Bayesian nonlinear independent component analysis by multi-layer
perceptrons.
In M. Girolami, editor, Advances in Independent Component
Analysis, pages 93-121. Springer-Verlag, Berlin, 2000.
- 5
-
E. N. Lorenz.
Deterministic nonperiodic flow.
Journal of Atmospheric Sciences, 20:130-141, 1963.
- 6
-
J. Moody and C. Darken.
Fast learning in networks of locally-tuned processing units.
Neural Computation, 1(2):281-294, 1989.
- 7
-
S. T. Roweis and Z. Ghahramani.
An EM algorithm for identification of nonlinear dynamical systems.
In S. Haykin, editor, Kalman Filtering and Neural Networks.
To appear.
- 8
-
F. Takens.
Detecting strange attractors in turbulence.
In D. A. Rand and L.-S. Young, editors, Dynamical Systems and
Turbulence, pages 366-381. Springer-Verlag, Berlin, 1981.
Harri Valpola
2000-10-17