
Ma 108

ACTA
POLYTECHNICA
SCANDINAVICA
MATHEMATICS AND COMPUTING SERIES No. 108

Bayesian Ensemble Learning for Nonlinear Factor Analysis

HARRI VALPOLA

Helsinki University of Technology
Neural Networks Research Centre
P.O. Box 5400
FIN-02015 HUT
Finland

Dissertation for the degree of Doctor of Science in Technology to
be presented with due permission for public examination and debate in
Auditorium T2 of Helsinki University of Technology (Espoo, Finland) on
the 10th of November, 2000, at 12 o’clock noon.

Helsinki University of Technology
Department of Computer Science and Engineering
Laboratory of Computer and Information Science

ESPOO 2000

Valpola, H., Bayesian Ensemble Learning for Nonlinear Factor Analysis. Acta
Polytechnica Scandinavica, Mathematics and Computing Series No. 108, Espoo 2000, 54
pp. Published by the Finnish Academies of Technology. ISBN 951-666-552-7. ISSN 1456-
9418. UDC 519.237.7:517.988:681.327.12:159.953.

Keywords: Nonlinear factor analysis, unsupervised learning, latent variable models, gen-
erative models, Bayesian probability theory, ensemble learning, neural networks.

ABSTRACT

An active research topic in machine learning is the development of model structures which
would be rich enough to represent relevant aspects of the observations but would still allow
efficient learning and inference.

Linear factor analysis and related methods such as principal component analysis and
independent component analysis are widely used feature extraction and data analysis tech-
niques. They are computationally efficient but are restricted to linear models. Many natu-
ral phenomena are nonlinear and therefore several attempts have been made to generalise
the model by relaxing the linearity assumption. The suggested approaches have suffered
from overfitting and the computational complexity of many of the algorithms scales ex-
ponentially with respect to the number of factors, which makes the application of these
methods to high dimensional factor spaces infeasible.

This thesis describes the development of a nonlinear extension of factor analysis. The
learning algorithm is based on Bayesian probability theory and solves many of the prob-
lems related to overfitting. The unknown nonlinear generative mapping is modelled by
a multi-layer perceptron network. The computational complexity of the algorithm scales
quadratically with respect to the dimension of the factor space which makes it possible to
use a significantly larger number of factors than with the previous algorithms. The feasi-
bility of the algorithm is demonstrated in experiments with artificial and natural data sets.
Extensions which combine the nonlinear model with non-Gaussian and dynamic models
for the factors are introduced.

c© All rights reserved. No part of the publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the author.

PREFACE

The work reported in this thesis was carried out in the Neural Networks Research Centre,
Helsinki University of Technology, during 1996–2000. The work was mainly funded by the
Helsinki Graduate School of Computer Science and Engineering. Additional support came
from Jenny and Antti Wihuri Foundation.

I wish to thank Professors Juha Karhunen and Erkki Oja for supervising my work and
Academy Professor Teuvo Kohonen for guiding the early steps of my scientific career and
teaching me what scientific research is about.

I also wish to thank the co-authors of the publications included in this thesis, Xavier
Giannakopoulos, James Miskin, Antti Honkela and Dr. Petteri Pajunen, as well as Juha
Reunanen who did much of the preliminary experimental work for the last publication.

The manuscript of this thesis was reviewed by Professor Mark Girolami and Dr. Petri
Myllymäki. I am greatful for their expert comments on the structure and scientific content
which led to considerable improvements of the thesis. I also wish to express my sincere
gratitude for the valuable comments and constructive criticism Professors Juha Karhunen
and Erkki Oja gave on the earlier versions of the manuscript.

Special thanks go to the personnel of the Neural Networks Research Centre and the
Laboratory of Computer and Information Science who have created a friendly and inspiring
atmosphere in which to work.

I thank Lotta for her patience and tolerance during the time of writing the manuscript.

Espoo, October 2000

Harri Valpola

4

CONTENTS

List of abbreviations and glossary of terms 6

1 Introduction 8
1.1 Contributions and structure of the thesis . 9

2 Publications of the thesis 10
2.1 Original papers . 10
2.2 Contents of the publications and author’s contributions 10

3 Bayesian probability theory 12
3.1 Propositions . 12
3.2 Elementary rules of Bayesian probability theory 12

3.2.1 Bayes’ rule . 13
3.2.2 Marginalisation principle . 13

3.3 Decision theory . 14
3.4 Summary: learning, reasoning and action 14

4 Bayesian learning in practice 15
4.1 Probability density for real valued variables 16
4.2 Methods for approximating the posterior probability 17

4.2.1 Point estimates . 18
4.2.2 Stochastic sampling . 19
4.2.3 Parametric approximations . 19

4.3 Information-theoretic approaches to learning 20
4.3.1 Coding and complexity . 20
4.3.2 Minimum message length inference 21

4.4 Ensemble learning . 22
4.4.1 Cost function . 22
4.4.2 Bits-back argument . 23

4.5 Specification of the model and priors . 25
4.5.1 Noise models . 25
4.5.2 Causal structure of the model . 25
4.5.3 Supervised vs. unsupervised learning 26
4.5.4 Priors . 27

5 Linear factor analysis and its extensions 30
5.1 Linear Gaussian factor analysis model . 30

5.1.1 Neural network interpretation of the model 31
5.1.2 Algorithms . 33

5.2 Non-Gaussian factors . 33
5.2.1 Algorithms . 33

5.3 Nonlinear mapping . 34
5.3.1 Multi-layer perceptron networks . 34
5.3.2 Algorithms . 35

5.4 Dynamic factors . 37
5.4.1 Algorithms . 37

5

6 Bayesian nonlinear factor analysis 38
6.1 Model . 38
6.2 Why simple methods fail . 39
6.3 Approximation of the posterior . 39
6.4 Automatic pruning . 40
6.5 Results . 42

7 Discussion 42
7.1 Biological relevance . 42

7.1.1 Cerebral cortex and generative models 43
7.1.2 Cortex and nonlinear factor analysis 44
7.1.3 Structural development . 44

7.2 Future trends . 45

References 47

Publication I 55

Publication II 65

Publication III 75

Publication IV 83

Publication V 99

Publication VI 125

Publication VII 135

Publication VIII 143

6

LIST OF ABBREVIATIONS AND GLOSSARY OF TERMS

Abbreviations

EM expectation maximisation
FA factor analysis
GTM generative topographic mapping
ICA independent component analysis
IFA independent factor analysis
MAP maximum a posteriori
MDL minimum description length
ML maximum likelihood
MLP multi-layer perceptron
PCA principal component analysis
RBF radial basis function
SOM self-organising map
ST signal transformation

Glossary of terms

artificial neural network: A model which consists of simple building-blocks. The devel-
opment of such models has been inspired by neurobiological findings. The building-
blocks are termed neurons in analogy to biological brain.

auto-associative learning: Representation of the observations is learned by finding a
mapping from observations to themselves through an “information bottleneck” which
forces the model to produce a compact coding of the observations. The recognition
model and generative model are learned simultaneously.

Bayesian probability theory: In Bayesian probability theory, probability is a measure
of subjective belief as opposed to frequentist statistics where probability is interpreted
as the relative frequency of occurrences in an infinite sequence of trials.

factor: In generative models, the regularities in the observations are assumed to have
been caused by underlying factors, also termed hidden causes, latent variables or
sources.

factor analysis: A technique for finding a generative model which can represent some
of the statistical structure of the observations. Usually refers to linear factor analysis
where the generative model is linear.

feature: Feature describes a relevant aspect of observations. The term is often used in
connection with recognition models. Bears resemblance to the term factor which
is more common in connection to generative models.

ensemble learning: A technique for approximating the exact application of Bayesian
probability theory.

generative model: A model which explicitly states how the observations are assumed to
have been generated. See recognition model.

7

graphical model: A graphical representation of the causal structure of a probabilistic
model. Variables are denoted by circles and arrows are used for representing the
conditional dependences.

hidden cause: See factor.

latent variable: See factor.

posterior probability: Expresses the beliefs after making an observation. Sometimes
referred to as the posterior.

prior probability: Expresses the beliefs before making an observation. Sometimes re-
ferred to as the prior.

probability density: Any single value of a continuous valued variable usually has zero
probability and only a finite range of values has a nonzero probability. Probability
of a continuous variable can be characterised by probability density which is defined
to be the probability of a range divided by the size of the range.

probability mass: In analogy to physical mass and density, ordinary probability can be
called probability mass in order to distinguish it from probability density.

recognition model: A model which states how features can be obtained from the ob-
servations. See generative model.

signal transformation approach: Finds a recognition model by optimising a given
criterion over the resulting features.

source: See factor.

supervised learning: Aims at building a model which can mimic the responses of a
“teacher” who provides two sets of observations: inputs and the corresponding desired
outputs. See unsupervised learning.

unsupervise learning: The goal in unsupervised learning is to find an internal represen-
tation of the statistical structure of the observations. See supervised learning.

volume: In analogy to physical mass, density and volume, the size of range of continuous
valued variables can be called volume. See probability density.

8

1 INTRODUCTION

Models are simplifications of reality which have the purpose of representing relevant as-
pects of a system under consideration whilst discarding minor details in order to reduce
computational load. Models can be used for making predictions and inferences which are
required for decision making and choosing actions.

In some cases there is well established theory which can be used for constructing the
model. However, for applications such as speech recognition, computer vision and au-
tonomous robotics, the theoretical knowledge is either incomplete or produces models
which are too complex and detailed to be of any practical use. In such applications,
machine learning has proven to be a successful approach to model building. This means
that the learning system is given a flexible set of possible models from which it selects the
ones that seem to explain the observations.

An active research topic in machine learning is the development of model structures
which are rich enough to represent the relevant aspects of the observations but at the same
time allow efficient learning and inference. This is also the topic of the present thesis.

Theoretically the richest model would be the universal Turing machine, which can
represent anything that is programmable with computers [41]. The problem with this
model is that the space of programmes has too complex a structure to aid in finding good
representations for given observations. Therefore the use of this model is restricted to very
simple problems where the richness of the model cannot be utilised.

At the other end of the spectrum are structurally very limited but computationally
powerful models. The linear factor analysis model is a typical example. These models can
be applied to vast data sets but the problem is that most of the interesting structure will
remain hidden because the model has no means of representing it.

Artificial neural networks are models which are structurally very simple because they
consist of very simple building blocks, neurons1. The term originates from models which
were inspired by certain structures observed in the brain but in the current meaning the
neural network models may not have anything to do with the biological brain. The linear
factor analysis model, for instance, can be viewed as a very simple neural network. The
idea is that from very elementary, computationally efficient building blocks it is possible
to build models which have a rich representational capacity. The hope is that the resulting
model will also be computationally efficient. The research is driven by the knowledge
that the brain seems to have solved the problem: we are able to find regularities in our
environment and learn abstractions which capture the structure of the regularities and
allow us to predict future observations and plan our actions.

The goal of unsupervised learning is to extract an efficient representation of the sta-
tistical structure implicit in the observations [43]. Factor analysis is one example of unsu-
pervised learning of latent variable models [25]. The observations are modelled as having
been generated by unknown latent variables via an unknown mapping. Typically these
models are learned by alternating between estimating the latent variables assuming that
the model is fixed and estimating the model assuming that the latent variables are fixed.

The linear factor analysis model states that the observations are generated by a linear
but otherwise unknown mapping from continuous valued latent variables, factors. The
linearity assumption is restrictive and unrealistic in many cases and therefore several at-
tempts have been made to relax the assumption. This extension has turned out to be very

1When referring to ’neurons’, the computational neurobiological interpretation is assumed.

9

difficult and most existing methods are able to handle only models where the number of
factors is quite low.

1.1 Contributions and structure of the thesis

This thesis consists of eight publications and an introductory part with literature survey.
The aim of the thesis is to develop a computationally efficient algorithm for a nonlinear
extension of the linear factor analysis model.

• The main result of this thesis is the development of an algorithm which is able
to learn nonlinear factor analysis models with a relatively high number of factors.
The computational complexity scales quadratically with respect to the dimension of
factor space which is already efficient enough for many interesting applications, but
it is also possible to use the model as an elementary module in larger models which
scale linearly in the total size of the representation.

• Bayesian probability theory and decision theory provide the theoretical framework
for learning, inference and decision making. In this thesis, a computationally feasible
approximation of the exact Bayesian learning, termed ensemble learning, is used.
The manner in which ensemble learning can be applied to nonlinear factor analysis
is presented.

• It is shown how the nonlinear model can be combined with other extensions of factor
analysis which relax the Gaussianity assumption of the factors and include a model
for the dynamics of the factors.

Section 2 of the introductory part summarises the publications of the thesis, with the
contributions of the author explained. Section 3 outlines the theoretical framework of
Bayesian probability theory and decision theory. Practical methods and approximations
together with their connection to information theory are discussed in section 4. Section 5
introduces the basic static Gaussian linear factor analysis model and its non-Gaussian,
nonlinear and dynamic extensions. Publication V serves as a detailed account on the non-
linear factor analysis method developed in this thesis but section 6 gives a brief summary.
Biological relevance and further lines of research are discussed in section 7.

10

2 PUBLICATIONS OF THE THESIS

2.1 Original papers

The following eight publications describe the development of methods suitable for unsu-
pervised learning of nonlinear factor analysis models.

I H. Lappalainen2, “Using an MDL-based cost function with neural networks,” in Proceed-
ings of the International Joint Conference on Neural Networks, IJCNN’98, (Anchor-
age, Alaska, USA, May 4–9), pp. 2384–2389, 1998.

II H. Lappalainen, “Ensemble Learning for Independent Component Analysis,” in Pro-
ceedings of the First International Workshop on Independent Component Analysis
and Blind Signal Separation, ICA’99, (Aussois, France, Jan. 11–15), pp. 7–12, 1999.

III H. Lappalainen and X. Giannakopoulos, “Multi-Layer Perceptrons as Nonlinear Gen-
erative Models for Unsupervised Learning: a Bayesian Treatment,” in Proceedings of
the Ninth International Conference on Artificial Neural Networks, ICANN’99, (Ed-
inburgh, UK, Sep. 7–10), pp. 19–24, 1999.

IV H. Lappalainen and J. W. Miskin, “Ensemble Learning,” in Advances in Independent
Component Analysis (M. Girolami, ed.), pp. 76–92, Springer-Verlag, 2000.

V H. Lappalainen and A. Honkela, “Bayesian Nonlinear Independent Component Analysis
by Multi-Layer Perceptrons,” in Advances in Independent Component Analysis (M.
Girolami, ed.), pp. 93–121, Springer-Verlag, 2000.

VI H. Valpola, “Nonlinear Independent Component Analysis Using Ensemble Learning:
Theory,” in Proceedings of the Second International Workshop on Independent Com-
ponent Analysis and Blind Signal Separation, ICA 2000, (Helsinki, Finland, June
19–22), pp. 251–256, 2000.

VII H. Valpola and P. Pajunen, “Fast Algorithms for Bayesian Independent Component
Analysis,” in Proceedings of the Second International Workshop on Independent Com-
ponent Analysis and Blind Signal Separation, ICA 2000, (Helsinki, Finland, June
19–22), pp. 233–237, 2000.

VIII H. Valpola, “Unsupervised learning of nonlinear dynamic state-space models,” Publi-
cations in Computer and Information Science A59, Helsinki University of Technology,
Espoo, Finland, 2000.

2.2 Contents of the publications and author’s contributions

Publication I lays the foundation of the thesis. A cost function for multi-layer perceptron
(MLP) networks is developed in the minimum description length (MDL) framework. The
presentation is given from the point of view of supervised learning as this is the learning
method traditionally used with MLP networks. The possibility of unsupervised learning
is briefly outlined. It transpired that the cost function has a Bayesian interpretation and
essentially the same approach works for ensemble learning, the Bayesian method used in
the remainder of the publications.

2The former name of the present author was Lappalainen.

11

Publication II demonstrates that it is possible to apply ensemble learning to the unsu-
pervised learning of linear independent component (or factor) analysis. The emphasis is on
using full posterior approximations instead of point estimates, as that allows comparing be-
tween models and protects against overfitting. The treatment of the posterior distribution
of variables which have mixture-of-Gaussians prior distributions is later replaced by the
method borrowed from [3], but the treatment of other distributions in later publications is
based on the methods presented here.

In publication III, multi-layer perceptrons are used for nonlinear factor analysis follow-
ing the guidelines presented in publications I and II. The results are encouraging although
the model used is rather small. The strategy for growing the network is inspired by the
biological brain. Mr. Xavier Giannakopoulos assisted in running the simulations.

Publication IV is a tutorial introduction to ensemble learning and appeared in the
same volume as publication V. It is co-authored by Mr. James Miskin, who also had
another paper using ensemble learning in the same volume. The credit of writing the part
considering free form approximation in ensemble learning should go to James Miskin. The
present author was responsible for the rest of the text: fixed form approximation, model
selection and the relation to coding and the EM algorithm.

Most of the results concerning nonlinear factor analysis by an MLP network are con-
tained in publication V. The article also includes a detailed account on the learning scheme
used in the simulations. It turned out that the simple approximation developed in publi-
cation I and applied in publication III does not suffice for unsupervised learning of MLP
networks. A more accurate and laborious approximation is used in publication V. The
article also outlines nonlinear independent factor analysis which results as the combination
of a nonlinear mapping and a non-Gaussian model for factors. Mr. Antti Honkela assisted
in running the simulations.

Publication VI presents a more accurate and detailed derivation for nonlinear indepen-
dent factor analysis than that provided in publication V.

The basic idea on which publication VII is based was first published in the technical
report [72] which provides a new interpretation for the FastICA algorithm. This inter-
pretation suggests various extensions of which a fast Bayesian independent component
analysis algorithm utilising ensemble learning is given as an example. Dr. Petteri Pajunen
contributed to writing and clarifying the style of presentation.

Publication VIII outlines a dynamic extension of the nonlinear independent factor anal-
ysis algorithm. The dynamics of the factors, or states in this case, are modelled by the
same principles as the mapping from factors to observations. The extension is simple but
has practical significance since time sequences with significant time structure are often
encountered in practical problems.

12

3 BAYESIAN PROBABILITY THEORY

The starting point in modern Bayesian probability theory is that probability is interpreted
as a degree of belief (for bibliographic notes, see [7, 57]). Richard Cox showed that cer-
tain very general requirements for the calculus of beliefs result in the rules of probability
theory [19]. Decision theory also leads to the same rules [129, 114, 102] with the same
interpretation. There are other domains, most notably measure theory, where the same
rules appear, but from the point of view of learning systems and decisions in the face of
uncertainty, degree of belief is the appropriate interpretation.

Beliefs are always subjective, and therefore all the probabilities appearing in Bayesian
probability theory are conditional. In particular, under the belief interpretation probability
is not an objective property of some physical setting, but is conditional to the prior as-
sumptions and experience of the learning system. It is completely reasonable to talk about
“the probability that there is a tenth planet in the solar system” although this planet either
exists or does not exist and there is no sense in interpreting the probability as a frequency
of observing a tenth planet. Sometimes the probabilities can be roughly equated with em-
pirical frequencies, but this can be considered as a special case of the belief interpretation
as was shown by Cox [19].

Accessible introductions to practical applications of Bayesian probability theory can be
found, for instance, in [75, 103, 28].

3.1 Propositions

In Bayesian probability theory, probabilities are defined for propositions which follow the
laws of Boolean algebra [11, 132] and can be either true or false, i.e., propositions which
satisfy the laws of ordinary logic. We shall denote the propositions by capital letters. Three
basic operations are defined in Boolean algebra: conjunction, disjunction and negation. We
shall denote “A and B” by AB, “A or B” by A + B and “not A” by ¬A.

Natural language involves propositions whose truth value is ambiguous, “sky is blue” for
example. The definitions of words sky and blue are more or less ambiguous and therefore
it is possible to think that the truth value of “sky is blue” is neither completely true nor
completely false but something in between. Fuzzy logic [136, 133] tries to capture the
ambiguity of propositions in natural language, but we shall consider only unambiguously
defined propositions3.

3.2 Elementary rules of Bayesian probability theory

Bayesian probability theory can be conveniently summarised in the following elementary
rules:

Sum rule: P (A|B) + P (¬A|B) = 1

Product rule: P (AB|C) = P (A|C)P (B|AC)

3Since fuzzy logic is sometimes presented as an alternative to Bayesian probability theory, it should
be emphasised that truth value and degree of belief are different dimensions. It is possible to envision an
extension of Bayesian probability theory which would define probabilities for propositions with fuzzy truth
values.

13

Here P (A|B) denotes the probability of A on the condition that B is true. These rules
correspond to the negation and conjunction operations of Boolean algebra. The disjunction
does not need a separate rule because it can be derived from negation and conjunction:
A+B = ¬(¬A¬B). In fact, only one operation would suffice since other operations can be
derived from either NAND or NOR operation alone. The NAND operation, for instance,
yields the following rule, starting from which every other rule of Bayesian probability theory
can be derived: P (¬A + ¬B|C) + P (A|C)P (B|AC) = 1.

These rules fix the scale on which the degrees of belief are measured. Cox showed that
under very general requirements of consistency and compatibility with common sense, the
rules of calculus with beliefs have to be homomorphic with the sum and product rule [19].
This means that one can measure the degrees of beliefs on any scale, but it is possible to
transform the degrees of beliefs on the canonical scale of probabilities such that the rules
for negation and conjunction take the form of the sum and product rule.

3.2.1 Bayes’ rule

From the product rule it is possible to derive Bayes’ rule:

P (A|BC) = P (A|C)P (B|AC)/P (B|C) . (1)

If we assume that A is one of several explanations for the new observation, B is the new
observation and C summarises all prior assumptions and experience, we notice that Bayes’
rule tells how the learning system should update its beliefs as it receives a new observation.

Before making the observation B, the learning system knows only C, but afterwards it
knows BC, that is, it knows “B and C”. Bayes’ rule then tells how the learning system
should adapt P (A|C) into P (A|BC) in response to the observation. In order for Bayes’ rule
to be useful, the explanation A needs to be such that together with the prior assumptions
and experience C it fixes the probability P (B|AC).

Usually P (A|C) is called the prior probability and P (A|BC) the posterior probability.
It should be noted, however, that this distinction is relative to the observation; the posterior
probability for one observation is the prior probability for the next observation.

3.2.2 Marginalisation principle

While Bayes’ rule specifies how the learning system should update its beliefs as new data
arrives, the marginalisation principle provides for the derivation of probabilities of new
propositions given existing probabilities. This is useful for prediction and inference.

Suppose the situation is the same as in the example with Bayes’ rule, but now the learn-
ing system tries to compute the probability of making observation B before it has actually
made the observation, that is, the learning system tries to predict the new observation.

Suppose A1, A2, . . . are exhaustive and mutually exclusive propositions, in other words,
exactly one of Ai is true while the rest are false. As before, assume that Ai are possible ex-
planations for B and the prior assumptions and experience C are such that both P (B|AiC)
and P (Ai|C) are determined. The marginalisation principle then states the following:

P (B|C) =
∑

i

P (Ai|C)P (B|AiC) . (2)

The probability of B thus depends on the prior probabilities P (Ai|C) of the different
explanations and the probability P (B|AiC) which each explanation gives to B.

14

Notice also that P (B|C) appears in Bayes’ rule, but the marginalisation principle shows
that it can be computed from P (Ai|C) and P (B|AiC) alone. Therefore P (Ai|C) and
P (B|AiC) suffice for computing the posterior probability P (Ai|BC):

P (Ai|BC) =
P (Ai|C)P (B|AiC)∑
j P (Aj |C)P (B|AjC)

. (3)

3.3 Decision theory

Beliefs alone are not sufficient for making decisions. Preferences are also needed. Decision
theory points out how the beliefs and preferences should be combined when making deci-
sions. We shall denote by U(A) the utility of proposition A. By definition, A is preferred
over B if U(A) > U(B).

Decision theory can be summarised in a single rule:

U(A) = P (B|A)U(AB) + P (¬B|A)U(A¬B) . (4)

We shall call it the rule of expected utility. In case of mutually exclusive and exhaustive
propositions B1, B2, . . . , it generalises into

U(A) =
∑

i

P (Bi|A)U(ABi) . (5)

The significance of the rule becomes apparent if one considers A to be an action and Bi

to be the possible consequences. Basically the rule indicates that the utility of A depends
on the utilities of the possible consequences of A, weighted by the probabilities of the
consequences.

The sum and product rules of probability theory fix the scale by which degrees of beliefs
are measured to be the canonical scale of probabilities. The rule of expected utility does
the same for utilities, up to linear scaling and an additive constant. This is because the
beliefs have clear limits in absolute belief and disbelief while there are no absolutely worst
or best possible states of the world, or if there are, the difference of their utility is probably
infinitely greater than the difference between any other states of the world.

3.4 Summary: learning, reasoning and action

We can now summarise what Bayesian probability theory and decision theory say about
learning, reasoning and action by giving a simple example. Suppose there are prior as-
sumptions and experience I and possible explanations expressed as states of the world Si.
An observation D is made and an action Aj is chosen based on the belief about what is
the consequence D′ of the action. We assume D′ is one of several possible observations D′

k

made after the action is chosen.
The prior assumptions and experience I are assumed to be such that it is possible to

determine the prior probability P (Si|I) of each state of the world; the probability P (D|SiI)
of observation D given the state of the world Si; the probabilities P (D′

k|SiAjDI) of different
consequences of actions given the state of the world and prior experience; and the utility
of the consequences U(AjD

′
kDI). The action Aj is assumed to have no effect on the state

Si of the world and thus P (Si|AjDI) = P (Si|DI).
The first stage of the example is learning. First the states of the world have prior

probabilities P (Si|I). After making the observation D, the probabilities change according

15

to Bayes’ rule:

P (Si|DI) =
P (Si|I)P (D|SiI)∑
i′ P (Si′ |I)P (D|Si′I)

. (6)

The belief in those states of the world which were able to predict the observation better
than average increases, and vice versa.

The next stage is to infer which consequences different actions have. According to the
marginalisation principle,

P (D′
k|AjDI) =

∑
i

P (Si|AjDI)P (D′
k|SiAjDI). (7)

Notice that Aj was assumed to have no effect on Si and thus P (Si|AjDI) is equal to the
posterior probability P (Si|DI) which was computed in the first stage.

The third stage of the example is choosing an action which has the greatest utility. The
utilities can be computed by the rule of expected utility:

U(AjDI) =
∑

k

P (D′
k|AjDI)U(AjD

′
kDI). (8)

The utilities of actions are based on the utilities of consequences and the probabilities of
consequences in light of the experience, which were computed in the previous stage.

So far we have explicitly denoted that the probabilities are conditional to the prior
assumptions and experience I. In most cases the context will make it clear which are the
prior assumptions and usually I is left out. This means that probability statements like
P (Si) should be understood to mean P (Si|I) where I denotes the assumptions appropriate
for the context.

4 BAYESIAN LEARNING IN PRACTICE

The previous section outlined how learning, reasoning and decision making should function
in theory. The theory does not take into account the computational and storage capacity
requirements, however. In realistic situations exact computation following Bayes’ rule, the
marginalisation principle and the rule of expected utility is almost always computationally
prohibitive. Therefore an important research topic has long been the development of
methods which yield practical approximations of the application of the exact theory.

Currently the frequentist interpretation is the prevailing statistical philosophy. Accord-
ing to this view, probability measures the relative frequencies of different outcomes in an
(imaginary) infinite sequence of trials. Probability is defined for random variables which
can take different values in different trials. Both the frequency and belief interpretations
have coexisted since the early days of probability theory (see, e.g., [75]). The advent of
quantum physics gave the frequentist view strong impetus because probability was seen as
a measurable property of the physical world.

The Bayesian and frequentist schools use different language and methods. In frequentist
statistics, a hypothesis or a parameter of a model cannot have probabilities as they are
not random variables and do not take different values in different trials. The methods
developed within the frequentist school include estimators and confidence intervals for
parameters and P -values for hypothesis testing, whereas prior and posterior probabilities
do not enter the calculations.

16

In Bayesian statistics, probability measures the degree of belief and it is therefore ad-
missible to talk about the probabilities of hypotheses and parameters. The probability
distribution of a parameter, for instance, quantifies the uncertainty of its value. Many
Bayesian statisticians avoid talking about random variables altogether because almost al-
ways one is actually talking about uncertainty of the outcomes of experiments, not some
intrinsic property of the world.

The prevailing frequentist language and methods have caused misconceptions about
the Bayesian view and not all researchers are ready to consider the Bayesian approach to
statistical inference as theoretically optimal. Here are answers to some common arguments
against the Bayesian approach to learning:

• “Prior probabilities are needed in Bayesian learning whereas other methods do not
need them.”

Learning cannot start from a vacuum and therefore prior assumptions of some sort
are needed. In some learning algorithms these assumptions are implicit but they still
exist. In Bayesian learning, these assumptions are required to be stated explicitly,
which makes it easier to locate possible flaws in them.

• “Bayesian learning works only if the true model is included in the hypothesis space.”

True models exist only in theoretical constructs. Bayesian statistics does not take
a stand on true models because it only talks about the beliefs in propositions. In
practice the prior knowledge about models almost never states that one of the models
is true but that the models give better and worse predictions about the observations.
Then the posterior probability does not measure the belief that a certain hypothesis
is true but the belief that the observations can be best predicted by the hypothesis.

• “Various efficient learning methods are not derived from Bayesian probability theory
but they still work.”

It is true that it is possible to develop efficient learning algorithms without referring to
Bayesian probability theory. Evolution of the brain, for instance, was not guided by
any theory for certain. However, this does not mean that Bayesian probability theory
would not be an appropriate way to try to understand the learning algorithms. In
practice they can be interpreted as approximations to the theoretically optimal exact
Bayesian approach. It is then often easier to investigate their underlying assumptions
and limitations and in some cases generalise the methods.

4.1 Probability density for real valued variables

In symbolic representations, the propositions are discrete and similar to simple statements
of natural language. When trying to learn models of the environment, the problem with
discrete propositions is that an unimaginable number of them is needed for covering all
the possible states of the world. The alternative is to build models which have real valued
variables. This allows one to manipulate a vast number of elementary propositions by
manipulating real valued functions, probability densities.

Following the usual Bayesian convention, probability density is denoted by a lower case
p and the ordinary probability by a capital P throughout this thesis. We also use the
convenient short hand notation where p(x|y) means the distribution of the belief in the
value of x given y. Alternative notation would be fX|Y (x|y), which makes explicit the fact
that p(x|y) is not the same function as, for instance, p(u|v). In cases where the ordinary

17

probability needs to be distinguished from probability density, it is called probability mass
in analogy to physical mass and density.

Bayes’ rule looks exactly the same for probability densities as it does for probability
mass. If a and b are real valued variables, Bayes’ rule takes the following form:

p(a|bC) =
p(a|C)p(b|aC)

p(b|C)
. (9)

This is convenient but also dangerous. It is all too easy to talk about “the single most
probable model” when one is actually talking about the model which has the highest
probability density. This is dangerous since probability density is a derived quantity and
has no role per se in probability theory. This will be more evident when looking at the
marginalisation principle

p(b|C) =

∫
p(a|C)p(b|aC)da (10)

or the rule of expected utility

U(A) =

∫
p(b|A)U(Ab)db (11)

written for probability densities. Notice that for probability density the sum changes into
an integral. In the integrals, the impact on the probability p(b|C) or on the utility U(A)
is zero at any single point if the density is finite. Only a nonzero range has a nonzero
contribution in the integrals. It is then evident that a high density per se is not important,
but the overall probability mass in the vicinity of a model is.

4.2 Methods for approximating the posterior probability

In Bayesian learning, the learning system updates its prior probability of models (expla-
nations, states of the world, etc.) into posterior probability according to Bayes’ rule. The
updated probability can then be used for prediction or making decisions. In both cases,
the computation involves a sum weighted by the posterior probability (or an integral in
case of real valued parameters). The straight-forward numerical summation or integration
is usually computationally far too expensive, and therefore various techniques have been
developed for approximating the result.

Basically there are two complementing ways to reduce the required computation. One is
to design the models so that the posterior probability will have a mathematically tractable,
simple functional form. The other is to approximate the weighted sum or integral. The
methods are complementary because the accuracy of the approximation depends on the
complexity of the posterior probability which can be affected by the design of the model.

If it is known in advance which prediction or decision is going to be made based on the
posterior probability, the approximation can and should take this into account. In many
cases this information is not available, however, and then the best thing to do is to try
to approximate those parts of the posterior probability which have the highest probability
mass because those are the ones which have the strongest impact on the predictions and
decisions.

18

4.2.1 Point estimates

The most efficient and least accurate approximation is, in general, a point estimate of the
posterior probability. It means that only the model with highest probability or probability
density is used for making the predictions and decisions. Whether the accuracy is good
depends on how large a part of the probability mass is occupied by models which are similar
to the most probable model.

The two point estimates in wide use are the maximum likelihood (ML) and the max-
imum a posteriori (MAP) estimator. The ML estimator neglects the prior probability of
the models and maximises only the probability which the model gives for the observation.
The MAP estimator chooses the model which has the highest posterior probability mass
or density.

One should be particularly careful when using the MAP estimator with probability
densities. The MAP estimator is useful in cases where the second order curvature of the
logarithm of the posterior probability density with respect to the model parameters is
roughly constant for all models. Then the widths of the peaks of the posterior density
are roughly equal and probability mass around any of the models is proportional to the
probability density of the model. The second order curvature can be affected by the
parameterisation of the model, but in general it depends also on the observations.

For the real valued latent variable models considered in this thesis, the MAP estimators
cannot be used as such. The models include products of unknown quantities, weights and
factors in this case, which means that by increasing the value of one variable, the value of
another variable can be decreased. This scaling does not change the model but the density
of the first variable decreases and the second value increases. For each observation, a new
set of values is estimated for factors which means that typically the number of unknown
values for factors is far greater than the number of unknown values for weights. If the
MAP estimates were used for factor analysis models, the result would be that the weights
of the model would grow and the values of the factors shrink. The resulting low density
of the weights would be overwhelmed by the high density of the factors. In other words,
MAP estimation would find the values of the weights which give the highest density for the
factors, but would not say much about the posterior probability mass of the model because
the high density would be obtained at the cost of narrow posterior peaks of the factors.

In any case, the use of a point estimate will cause a phenomenon called overfitting.
Most people are familiar with the concept at least in the context of fitting polynomials to
observations. Using only the best model means being excessively confident that the best
fit is the correct one. In the case of probability densities, for instance, all probability mass
is in models which have a poorer fit than the best model. This means that the optimal
prediction based on the full posterior density will necessarily be less confident about the
fit than a prediction based on only the “best” model.

EM algorithm. The expectation-maximisation (EM) algorithm [21] is often used for
learning latent variable models, including the factor analysis model [110]. It is a mixture
of point estimation and analytic integration over posterior density. The EM algorithm is
useful for latent variable models if the posterior probability of the latent variables can be
computed when other parameters of the model are assumed to be known.

The EM algorithm was developed for maximum likelihood parameter estimation from
incomplete data. Let us denote the measured data by x, the missing data by y and
the parameters by θ. The algorithm starts with an estimate θ̂0 and alternates between
two steps, called E-step for expectation and M-step for maximisation. In the former,

19

the conditional probability distribution p(y|θ̂i, x) of the missing data is computed given

the current estimate θ̂i of the parameters and in the latter, a new estimate θ̂i+1 of the
parameters is computed by maximising the expectation of ln p(x, y|θ) over the distribution
computed in the E-step.

It can be proven that this iteration either increases the probability p(x|θ) or leaves
it unchanged. The usefulness of the method is due to the fact that it is often easier to
integrate the logarithmic probability ln p(x, y|θ) than probability p(x, y|θ) which would be
required if p(x|θ) were maximised directly.

The EM algorithm applies to latent variable models when the latent variables are
assumed to be the missing data. When compared to simple point estimation, the benefit of
the method is that fewer unknown variables are assigned a point estimate, thus alleviating
the problems related to overfitting.

4.2.2 Stochastic sampling

In stochastic sampling one generates a set of samples of models, whose distribution approx-
imates the posterior probability of the models [33]. There are several techniques having
slightly different properties, but in general the methods yield good approximations of the
posterior probability of the models but are computationally demanding. To some extent
the trade-off between efficiency and accuracy can be controlled by adjusting the number
of generated samples.

For simple problems, the stochastic sampling approach is attractive because it poses the
minimal amount of restrictions on the structure of the model and does not require careful
design of the learning algorithm. For an accessible presentation of stochastic sampling
methods from the point of view of neural networks, see [92].

4.2.3 Parametric approximations

Parametric approximations lie in between point estimates and stochastic sampling in terms
of computational complexity and accuracy of the approximation. The key idea is to replace
the complex posterior probability by a simpler, mathematically tractable approximation.

A standard procedure for approximating the posterior density with a parametric pos-
terior density is Laplace’s method [71], where the logarithm of the posterior density is
approximated by its Taylor series expansion around the maximum point, i.e., the MAP
estimate. The most used is the second order expansion, which amounts to approximating
the posterior density by the Gaussian distribution. The choice is done primarily for math-
ematical tractability, although it has been shown that under very general conditions the
posterior density will approach the Gaussian distribution as the number of measurements
grows. For a textbook account on Laplace’s method, asymptotic normality of the posterior
density and statistics in general, see e.g. [115].

Laplace’s method, when applied to complex models, can suffer from the same problems
as MAP estimation in general. If the MAP estimate fails to locate a point in parameter
space which not only has high probability density but also is surrounded by large prob-
ability mass, the second order Taylor series expansion can recognise this, but cannot, in
practice, guide the search for a better point estimate to start with because it would be
computationally too expensive. Whether this is a problem depends on the models at hand.
In supervised learning with neural networks, MacKay has obtained good results [81], but
for unsupervised learning of complex models, the MAP estimate causes problems.

20

4.3 Information-theoretic approaches to learning

Information theory can offer a simple, intuitive point of view to learning. If we succeed in
finding a very simple description for the observations, the argument goes, then we must
have found interesting structure in the data. The description length and probability are
tightly linked. According to Shannon’s coding theory, the shortest expected description
length for a proposition equals the negative logarithm of the probability of the proposi-
tion. Viewed like this, the information-theoretic approach to learning is nothing else than
using a different scale for measuring the beliefs, and any learning method derived in the
information-theoretic context can be readily translated into the Bayesian context by a sim-
ple transformation of scale. This is not to say that information theory did not have an
independent justification in coding theory.

Concepts from the Bayesian framework often have intuitive interpretations in the coding
context. The prior probabilities, for instance, translate into the specification of a coding
scheme. Optimal encoding of an observation into a binary string produces a seemingly
random string of ones and zeros and some prior knowledge is needed about the instructions
for decoding. This corresponds to the Bayesian prior. Another example is that slight
approximations to the exact Bayesian learning translate into slightly nonoptimal coding
schemes. Ensemble learning is an example of a Bayesian approximation scheme whose
roots are in coding schemes.

It may be that much of the success of approximation schemes first derived in the
information-theoretic context is due to the widespread misuse of probability densities and
MAP estimates. In coding context, it is easier to see that it is the probability mass that
matters, not probability density, because it is clear that in order to measure the number
of bits needed for coding a real valued variable, the precision of coding has to be specified.
This corresponds to specifying the volume around a point in space and thus determines a
probability mass.

4.3.1 Coding and complexity

Information theory studies communication and the information content of random vari-
ables. Its foundations were laid by Claude Shannon who studied communication over noisy
channels and was able to show that the information content of observing a discrete random
variable X is L(X) = − log2 P (X) bits [117]. According to Shannon’s coding theory, this
is the number of bits needed for coding entities using optimal coding. Later Rissanen and
Langdon developed arithmetic coding which is a practical algorithm for attaining a coding
which is arbitrarily close to optimal [108, 109].

Solomonoff [119, 120], Kolmogorov [67] and Chaitin [15] independently developed al-
gorithmic information theory which is based on the idea that the complexity of a binary
string is equated with the shortest computer programme which produces that string. This
measure, known as Kolmogorov complexity, is not computable because of the so called
halting problem [41]. By taking into account the time it takes to run a programme, Kol-
mogorov complexity can be modified so that it becomes computable. This is known as
Levin complexity [77]. Good introductions to coding and complexity can be found, for
instance, in [78, 18].

In principle Levin complexity can be used for learning as demonstrated in [116]. How-
ever, the model space which includes all computer programmes lacks the structure which
would help in developing efficient learning algorithms. This means that although applicable
in principle, the method cannot learn complex models in practice.

21

From a Bayesian point of view, a complexity measure can be interpreted as a prior
over binary strings. By using Shannon’s formula in the other direction, the lengths of
the computer programmes C can be interpreted to define a prior over programmes as
P (C) = 2−L(C). Each programme gives a probability P (S|C) = 1 for the string S that the
programme C generates. It is then clear that when n first bits Sn of a string are observed,
it is possible to use the model to predict the continuation for the string using Bayes’ rule
and the marginalisation principle.

The marginalisation principle tells that the prediction should use all programmes C
weighted by their posterior probabilities. However, often the development originating from
coding tradition assumes using only the shortest programme C. An example of this is the
stochastic complexity developed by Rissanen [107]. It replaces the computer programmes
by ordinary parameterised statistical models in measuring the complexity. With simple
models, at least, this leads to practical algorithms for finding the “shortest” model which
gives the observation. Stochastic complexity extends ML estimation so that different model
structures can be dealt with, but like ML estimation, it yields only point estimates.

4.3.2 Minimum message length inference

A different line of research, which leads to ensemble learning, is represented by [130, 106,
131, 44]. Like stochastic complexity, it also operates on parameterised statistical models
rather than computer programmes.

We shall illustrate the treatment of real valued parameters by considering a simple
model with one parameter θ which determines the probability for the observation x. The
probabilities p(x|θ) and p(θ) are assumed to be specified. Then we ask how, using the
given model, we can encode x into a message using the least amount of bits. Assume that
we require x to be encoded with the precision εx. The purpose is not actually to encode x
or send a message to someone, but to learn about θ by imagining a coding scheme.

Wallace and Boulton [130] suggested the following two-part message: first encode θ
discretised with precision εθ using the prior probability p(θ) and then encode x using the
model p(x|θ) and the encoded θ. This will produce a code with length L(θ) + L(x|θ). If εθ

is small, the number of bits used for the first part of the message is approximately

L(θ) ≈ − log[p(θ)εθ]. (12)

The number of bits used for the second part of the message depends on the discretised value
of θ. Assuming the target value for θ was θ0, the discretised value lies between θ0 − εθ/2
and θ0 + εθ/2 with roughly uniform probability. This means that the expected number of
bits used for the second part is approximately

L(x|θ) =

∫ θ0+εθ/2

θ0−εθ/2

− log[p(x|θ)εx]dθ. (13)

If εθ is small, it is possible to approximate the length of the second part of the message by
using a second order Taylor series expansion of − log p(x|θ) about θ0.

Given x, the total message length is a function of θ0 and εθ. The result of learning is
the optimal value for both, which minimises the message length. Looking at the equations
for L(θ) and L(x|θ), it is evident that there is an optimal value for εθ, because increasing
the size of the discretisation bins will decrease L(θ) due to the term − log εθ, but it will
increase the term L(x|θ) because the discretisation errors will increase and the expected
deviations from optimal θ0 grow larger.

22

The optimal value for εθ depends on how quickly p(x|θ) drops as θ is moved further
away from the optimal value, and it turns out that the optimal εθ is linearly dependent
on the width of the maximum peak of p(x|θ). Therefore the optimal θ0 will tell the most
plausible value for the parameter, and εθ will tell how uncertain the value is.

An accessible introduction to learning based on this coding scheme, known as minimum
message length inference, can be found in [97, 96, 6].

4.4 Ensemble learning

Ensemble learning is a technique for parametric approximation of the posterior probability
where fitting the parametric approximation to the actual posterior probability is achieved
by minimising their misfit. The misfit is measured with Kullback-Leibler information [70],
also known as relative or cross entropy. It is a measure suited for comparing probabil-
ity distributions and, more importantly, it can be computed efficiently in practice if the
approximation is chosen to be simple enough.

The Kullback-Leibler information between two probability density functions q(x) and
p(x) is

IKL(q(x)||p(x)) = Eq

{
ln

q(x)

p(x)

}
=

∫
q(x) ln

q(x)

p(x)
dx. (14)

It has the following interpretation: suppose we are picking samples from distribution q(x),
Kullback-Leibler information then measures the average amount of information the samples
give for deciding that the samples are not from distribution p(x). If q(x) and p(x) are
the same, then the amount of information is zero. On the other hand, if q(x) gives finite
probability mass to samples for which p(x) gives zero probability, then a single such sample
will reveal that the samples are not taken from p(x) and the average information is infinite.

Regarding the approximation of posterior probability, the most important benefit of
ensemble learning is that Kullback-Leibler information is sensitive to probability mass and
therefore the search for good models focuses on the models which have large probability
mass as opposed to probability density. The drawback is that in order for ensemble learning
to be computationally efficient, the approximation of the posterior needs to have a simple
factorial structure. This means that most dependences between various parameters cannot
be estimated. On the other hand, it should be possible to use ensemble learning instead of
MAP estimation as the first stage in Laplace’s method.

In the present form, the method was first presented by Hinton and van Camp [44] and
the name ensemble learning was given by MacKay in [82]. Ensemble learning can also be
seen as a variational method [60] and it also has a connection to the EM algorithm [93].

4.4.1 Cost function

Publication IV discusses ensemble learning at length, but this section describes briefly
the cost function used in ensemble learning. Let us denote the vector of all the unknown
variables of the model by θ and the vector of observations by x and suppose that the prob-
abilities p(x|θ) and p(θ) are defined. According to Bayes’ rule, the posterior probability
p(θ|x) of the unknown variables is

p(θ|x) =
p(x|θ)p(θ)

p(x)
(15)

23

and the Kullback-Leibler information between the true posterior p(θ|x) and its approxi-
mation q(θ|x) is thus

IKL(q(θ|x)||p(θ|x)) = Eq

{
ln

q(θ|x)

p(θ|x)

}
=

∫
q(θ|x) ln

q(θ|x)

p(θ|x)
dθ =∫

q(θ|x)

[
ln

q(θ|x)

p(x|θ)p(θ)
+ ln p(x)

]
dθ =

∫
q(θ|x) ln

q(θ|x)

p(x|θ)p(θ)
dθ + ln p(x) . (16)

The normalising constant ln p(x) is usually difficult to compute because it requires
marginalising the joint density p(x,θ) over θ. The cost function which is actually used is

C(x; q) = IKL(q(θ|x)||p(θ|x)) − ln p(x) =

∫
q(θ|x) ln

q(θ|x)

p(x|θ)p(θ)
dθ . (17)

The approximation q(θ|x) which minimises (17) also minimises (16) because the term
ln p(x) is constant with respect to the approximation q(θ|x).

In order for ensemble learning to be computationally efficient, the approximation q(θ|x)
should have a simple factorial form. Then the cost function splits into a sum of simple
terms which can be computed efficiently.

4.4.2 Bits-back argument

The minimum message length encoding, which was discussed in section 4.3.2, is not decod-
able, that is, it is not sufficient to actually find x. This is because in order to decode θ, the
receiver should know the precision εθ in addition to the prior knowledge p(θ), but εθ was
not included in the message. In [131], Wallace and Freeman argued that the values and
the accuracies of the parameters are not independent, and one can construct a decodable
message with almost the same code length as in minimum message length coding.

Later Hinton and van Camp introduced a “bits-back” argument to show that by a clever
coding scheme, a decodable message is obtained without encoding εθ [44]. The sender uses
the following coding scheme:

1. Compute a distribution q(θ|x) based on the observation x (the algorithm for doing
this is defined later).

2. Pick θ from the distribution q(θ|x) and encode it with a very high prespecified pre-
cision (εθ is close to zero) using p(θ).

3. Encode x using the encoded θ and p(x|θ).
It would seem that the sender has had to use a very large number of bits, because the
length of the first part

L(θ) = −
∫

q(θ|x) log[p(θ)εθ]dθ (18)

is very high due to small εθ. It turns out that this is not the case, however. The trick is
that in step 2, the sender can encode a secondary message in the choice of θ. The average
length of this message is

L(θ|q) = −
∫

q(θ|x) log[q(θ|x)εθ]dθ. (19)

24

Although the length of the first part of the message is very high, most of it is actually
used by the secondary message. In the end, the receiver will get those bits back, so to say,
and hence the name bits-back argument. The total length of the part which is used for
encoding x is

L(θ) + L(x|θ) − L(θ|q). (20)

It might not be immediately clear that the receiver can decode the secondary message
hidden in the choice of θ. In the receiving end, the decoding proceeds as follows:

1. Decode θ from the first part of the message using p(θ).

2. Decode x from the second part of the message using p(x|θ).
3. Run the same algorithm as the sender used for computing the distribution q(θ|x)

based on x.

4. Decode the secondary message from θ using q(θ|x).

Again, the whole point in devising the coding scheme is not the actual transmission of x,
but learning about θ. In this case the information about θ comes in the form of distribution
q(θ|x).

Computing all the terms, it turns out that log εθ appears in both L(θ) and L(θ|q),
but since these terms appear with opposite signs, εθ disappears from the equations. The
remaining terms are

L(θ) − L(θ|q) =

∫
q(θ|x) log

q(θ|x)

p(θ)
dθ. (21)

This is the number of bits actually effectively used for encoding θ in the first part of the
message. The length of the second part of the message is

L(x|θ) = −
∫

q(θ|x) log[p(x|θ)εx]dθ. (22)

The total length of the message is thus

L(θ) − L(θ|q) + L(x|θ) =

∫
q(θ|x) log

q(θ|x)

p(x|θ)p(θ)
dθ − log εx , (23)

which differs from the cost function (17) used in ensemble learning only by the term log εx

which can be neglected as it does not depend on the approximation q(θ|x). The bits-back
argument thus results in ensemble learning.

This derivation for ensemble learning is useful because it gives an intuitive meaning for
the cost function used in ensemble learning. Different terms of the cost function can be
interpreted as the number of bits used for encoding various parameters and the observa-
tions. It is then possible to see how many bits have been used for representing different
parameters and draw conclusions about the importance of the parameter to the model.

At first glance, it might seem that minimum message length and bits-back coding are
quite different, the former using finite accuracy εθ and the latter a very high accuracy
εθ ≈ 0. It turns out, however, that the minimum message length coding can be seen as a
special case of bits-back coding where q(θ|x) is chosen to be a uniform distribution between

25

θ0−εθ/2 and θ0 +εθ/2, where εθ is the finite accuracy used in the minimum message length
scheme.

4.5 Specification of the model and priors

So far we have discussed the rules which the learning should ideally follow and some of the
practical approximation for these rules. This is roughly the point where the theory ends
and practice begins. Bayesian probability theory tells how the beliefs in propositions should
be adapted, but it does not indicate what exactly the propositions should be. Neither does
it specify the prior beliefs of the learning system. These choices are left for the designer
and depend on the problem at hand. This section describes some of the rules of thumb
which have been found to be useful guidelines for the design of a learning system (see, e.g.,
[75, 103, 28]).

4.5.1 Noise models

Due to limitations of computational and storage capacity, it is practically always impossible
to take into account all the available knowledge about minor details which possibly have
some impact on the observation. It is then reasonable to ignore the details and model only
their net effect, which manifests itself in minor fluctuations not predictable from the things
included in the model. These fluctuations are called noise.

For real valued parameters, the standard choice of noise model is the Gaussian dis-
tribution. The central limit theorem states, roughly, that if a very large number of very
small independent fluctuations are summed linearly, then the distribution of the resulting
total fluctuation will be Gaussian. In reality, neither the requirement of all the fluctuations
being small nor the linearity of summation are perfectly met, but Gaussian noise models
are used anyway because they are mathematically very convenient.

4.5.2 Causal structure of the model

Taking into account causal relations of the environment usually results in simpler and
computationally efficient models. Take for example a situation where A and B are known
to affect C and D, but the effect is causally mediated through E. If E summarises all the
knowledge that A and B have about C and D, then C and D are conditionally independent
of A and B given E. Mathematically this means that

P (CD|AB) =
∑

i

P (CD|EiAB)P (Ei|AB) =
∑

i

P (CD|Ei)P (Ei|AB). (24)

It would be possible to consider the situation from the point of view of only the variables
A, B, C and D, but then the model would have a dependence from two variables A
and B to two variables C and D. Figure 1 represents graphically the introduction of a
mediating variable. The nodes correspond to variables and the arrows denote their causal
dependences. Such a graph is called a graphical model [73, 59].

In general, a model with more variables but with simpler dependences is computation-
ally more efficient. Introducing mediating variable E simplifies the dependences because
either only one variable affects two others, as in P (CD|Ei), or two variables affect one,
as in P (Ei|AB). This strategy is a second nature to human beings who constantly try
to organise the world by splitting complex dependences into simpler ones by introducing
hidden, mediating variables, and therefore it is also usually easy to construct models using

26

C

E

B

D

(b)(a)

BA

C

A

D

Figure 1: (a) Graphical representation of the causal structure P (CD|AB). (b) Introduction
of a mediating variable E simplifies the structure.

the same design principle. The mediating variables are not directly observable but can
only be inferred from the dependence structure of the observations. These variables are
therefore often called hidden or latent variables [25].

From a computational point of view, the efficiency is caused by the fact that the poste-
rior probability of the unknown variables will be a product of many simple terms. Taking
the logarithm will then split the product into a sum of many simple terms. Most methods
for approximating the posterior probabilities can make use of this property, including the
ML and MAP estimators, the EM algorithm, Laplace’s method, ensemble learning and
many versions of stochastic sampling.

4.5.3 Supervised vs. unsupervised learning

From a theoretical point of view, supervised and unsupervised learning differ only in the
causal structure of the model. In supervised learning, the model defines the effect one set
of observations, called inputs, has on another set of observations, called outputs. In other
words, the inputs are assumed to be at the beginning and outputs at the end of the causal
chain. The models can include mediating variables between the inputs and outputs.

In unsupervised learning, all the observations are assumed to be caused by latent vari-
ables, that is, the observations are assumed to be at the end of the causal chain. In practice,
models for supervised learning often leave the probability for inputs undefined. This model
is not needed as long as the inputs are available, but if some of the input values are miss-
ing, it is not possible to infer anything about the outputs. If the inputs are also modelled,
then missing inputs cause no problem since they can be considered latent variables as in
unsupervised learning.

Figure 2 illustrates the difference in the causal structure of supervised and unsupervised
learning. It is also possible to have a mixture of the two, where both input observations
and latent variables are assumed to have caused the output observations.

With unsupervised learning it is possible to learn larger and more complex models than
with supervised learning. This is because in supervised learning one is trying to find the
connection between two sets of observations. The difficulty of the learning task increases
exponentially in the number of steps between the two sets and that is why supervised
learning cannot, in practice, learn models with deep hierarchies.

In unsupervised learning, the learning can proceed hierarchically from the observations

27

(b)

Observations (inputs)

Supervised learning

Observations (outputs)

(a)

Observations

Unsupervised learning

Latent variables

Figure 2: The causal structure of (a) supervised and (b) unsupervised learning. In su-
pervised learning, one set of observations, called inputs, is assumed to be the cause of
another set of observations, called outputs, while in unsupervised learning all observations
are assumed to be caused by a set of latent variables.

into ever more abstract levels of representation. Each additional hierarchy needs to learn
only one step and therefore the learning time increases (approximately) linearly in the
number of levels in the model hierarchy.

If the causal relation between the input and output observations is complex — in a
sense there is a large causal gap — it is often easier to bridge the gap using unsupervised
learning instead of supervised learning. This is depicted in figure 3. Instead of finding the
causal pathway from inputs to outputs, one starts building the model upwards from both
sets of observations in the hope that in higher levels of abstraction the gap is easier to
bridge. Notice also that the input and output observations are in symmetrical positions in
the model.

4.5.4 Priors

In order to apply Bayes’ rule to updating the beliefs, there have to be some prior beliefs
to start with. These prior beliefs are needed for the variables which are at the beginning
of the causal chains of the model. In principle the prior probabilities should summarise all
the information there is available. In practice the choice of the model structure is often
practical and does not reflect the exact beliefs of the modeller and the same holds true for
prior probabilities.

Hierarchical model instead of prior. When considering the prior probability for a
variable, the first question to ask is whether the variable is really at the beginning of the
causal chain. Often there are sets of variables for which there is reason to believe that
their values are dependent. This belief is easier to express in terms of model structure
than in terms of prior probability. One can postulate a hidden variable which determines
the probabilities for the set of dependent variables. The problem of determining a prior is
simplified because instead of assigning a separate prior for all variables in the set, only one

28

Observations (inputs)

Latent variables

Observations (outputs)

Figure 3: Unsupervised learning can be used for bridging the causal gap between input and
output observations. The latent variables in the higher levels of abstraction are the causes
for both sets of observations and mediate the dependence between inputs and outputs.

prior is needed for the hidden variable. The process can be iterated and in the end one is
usually left with only a few variables which need a prior.

Uninformative priors. Once all the structural prior knowledge is used, there is typically
not very much information about the variables at the beginning of causal chains. It is then
instructive to consider so called uninformative priors. The name refers to a principle
according to which all models should be “given an equal chance” if there is no information
to choose between them. The principle has theoretical justification only in cases where
symmetries of the problem suggest that the models have the same prior probability. In other
cases, the method can be seen as a practical choice which guarantees that the hypothesis
space is used efficiently and the learning system is initially prepared to believe in any of
the models it can represent.

For real valued parameters, it is usually not a good idea to simply choose a uniform
prior for the parameters. The problem again is that probability density has no importance
per se. A nonlinear transformation of the parameter alters the density differently for
different values of the parameter. This means that a uniform density is not uniform after
the parameter transformation although the reparameterisation does not alter the model in
any way, and shows that it is not possible to assess the uninformative prior for a parameter
without knowing what is the role of the parameter in the model.

It is instructive to consider how much the probability distribution which the model
gives to the observations changes when the parameters of the model change. Let us take
for example the Gaussian distribution parameterised by the mean µ and standard deviation
σ. For this parameterisation, the relative effect of change in µ depends on the variance
σ: if σ is large, then the change in µ has to be large before the probability assignments
for observations change significantly. If σ is small, then a small change in µ causes a
relatively large change in the probability assignments. This is depicted in figures 4a and

29

(b)(a)

(d)(c)

Figure 4: The mean of the distribution changes the same amount in (a) and (b). Similarly,
the changes in variance are equal in (c) and (d). The relative changes are greater in (a)
and (c).

4b. Similarly, figures 4c and 4d illustrate how the relative effect of change in variance
depends on the variance.

The size of change in the observation probabilities caused by the change of parameters
can be measured by the Fisher information matrix I(θ) whose elements Iij(θ) can be
defined as

Iij(θ) = E

{
−∂2 ln p(x|θ′)

∂θ′i∂θ′j | �

′=�

}
(25)

If the parameters change by dθ, then the Kullback-Leibler distance between the old and new
observation probability is dθT I(θ)dθ/2. This means that the Fisher information matrix
induces a metric in a space of parameters. This is known as the information geometry
[1]. In general, it is impossible to find a parameterisation which would make I(θ) constant
because the information geometry is usually not Euclidean.

A uniform density in the information geometry space corresponds to a density which
is proportional to |I(θ)|−1/2. This is the uninformative Jeffreys’ prior. For the Gaussian
density, for instance, this corresponds to a density p(µσ) ∝ 1/σ2. This does not produce a
proper density because the normalising factor would be infinite. The uninformative prior
can nevertheless guide the choice of the prior. For instance, a small adjustment taking into
account a finite range for µ and lnσ will result in a prior which can be normalised.

The Fisher information matrix I(θ) is also important because the posterior densities
tend to be approximately Gaussian and have a covariance proportional to I(θ)−N , where
N is the number of samples. This property can be utilised for modifying the MAP esti-

30

mator by multiplying the posterior density by the volume |I(θ)|−N/2. This results in an
approximation of posterior probability mass whose maximisation has a more solid theoret-
ical justification than the maximisation of density. It is noteworthy that in models lacking
hyperparameters, a combination of Jeffreys’ prior and the modified MAP estimate is equal
to ML estimation.

In the information geometry space, the parameters tend to have spherically symmetric
Gaussian posterior densities and their skewness tends to be smaller than in other param-
eterisations. This property is useful for parametric approximation of posterior densities
because a Gaussian approximation, which is often mathematically convenient, is more valid.
The spherical symmetry, on the other hand, can be utilised in gradient descent algorithms
because it means that the gradient points to the minimum. The gradient computed in
information geometry space is known as the natural gradient and it has been applied to
learning neural networks [2].

5 LINEAR FACTOR ANALYSIS AND ITS EXTENSIONS

This section discusses the standard linear factor analysis model and its non-Gaussian,
nonlinear and dynamical extensions, as well as the algorithms proposed in the literature
for learning these models.

All factor analysis models aim at finding the underlying factors4 which have generated
the observations. Usually the factors are considered to be real valued. The models can be
used, for example, for predicting future observations or analysing the nature of the factors
or dependences between observations.

The linear model is computationally efficient but can capture only part of the structure
in the observations. The extensions aim at capturing more of the structure without overly
compromising the computational efficiency.

5.1 Linear Gaussian factor analysis model

According to the model used in ordinary factor analysis, the observations xi are weighted
sums of underlying latent variables. In other words, the dependences between the different
components in an observation vector are assumed to be caused by common factors. For
consistency with the rest of the thesis, the factors will be denoted by s, although according
to the usual convention they would be denoted by f .

The linear summation model is quite simple and it is reasonable to assume there are
inaccuracies in the model and many other causes for the observations besides the factors
included in the model. The effect of the inaccuracies and other causes is summarised by
Gaussian noise n. In anticipation of the dynamic model, the observations are indexed by
t referring to time, although in the usual factor analysis model, observations at different
time instants are assumed to be independent of each other and the observations therefore
need not form a sequence in time.

The linear factor analysis model can be written as

xi(t) =
∑

j

Aijsj(t) + ai + ni(t), (26)

4The factors are also termed hidden causes, latent variables or sources in the literature.

31

where i indexes different components of the observation vector, j indexes different factors
and Aij are the weightings of the factors, also known as factor loadings. The factors s
and noise n are assumed to have zero mean. The bias in x is assumed to be caused by
a. This is called a generative model since it explicitly gives the hypothesis about how the
observations were generated.

The model can be written in a vector form as

x(t) = As(t) + a + n(t). (27)

Here x, s, a and n are vectors and A is a matrix. This more compact vector form is used
by default throughout the thesis.

If the variances of the Gaussian noise terms ni(t) are denoted by σ2
i , the probability

which the model gives for the observation xi(t) can be written as

p(xi(t)|s(t),A, ai, σ
2
i) =

1√
2πσ2

i

exp

(
− [xi(t) −

∑
i Aijsj(t) − ai]

2

2σ2
i

)
. (28)

This can also be written simply as

x(t) ∼ N(As + a,σ2), (29)

where the vector σ2 contains the variances σ2
i . This notation is used for emphasising that

the covariance matrix of x(t) is diagonal, i.e., the noise on different components is assumed
to be independent.

For mathematical convenience, the factors are assumed to have Gaussian distributions
in the standard factor analysis model. Recall that the Gaussian distribution emerges if a
large number of independent variables are summed linearly. Effectively the Gaussian model
for factors then means that the factors are themselves assumed to be caused by various
other factors. For many purposes this may be a suitable simplification but it means that
the Gaussian factor analysis model is not able to reveal the original independent causes
of the observations even if there would be some. Mathematically, this manifests itself in
the fact that a multivariate Gaussian distribution with equal variances for all factors is
spherically symmetric. Any rotation of the variables will leave the distribution unchanged,
and therefore there is a rotational indeterminacy in the model. If the variances of the factors
differ, the indeterminacy still exists but the corresponding rotation is non-orthogonal.

From a practical point of view this means that the Gaussian model is able to capture
only the second order correlation structure of the components of the observation vectors.
Additional criteria can be used to fix the rotation of the matrix A, but it is usually
not reasonable to directly interpret the factors as the original independent causes of the
observations.

5.1.1 Neural network interpretation of the model

It is somewhat artificial to call the linear factor analysis model a neural network, but it
serves as a good starting point for the later development. The structure of neural networks
is usually represented graphically by showing the computational elements, neurons, of the
network. Each node corresponds to one neuron and the arrows usually denote weighted
sums of the values from other neurons. It should be noted that although this representa-
tion bears resemblance to graphical models, a graphical model represents the conditional

32

(b)

Σ Σ Σ

Observations Observations

Factors

Σ

(a)

= linear neuron
Factors

Σ Σ Σ

Σ

Σ

Σ ΣΣ

Figure 5: (a) The linear factor analysis model can be interpreted as a neural network with
one layer of linear neurons. The arrows represent connections with weights Aij attached
to them. (b) A multi-layer structure can be replaced by a single layer of linear neurons.

dependences while the neural network representation shows the computational structure.
In general, these representations are therefore different.

The linear factor analysis model can be represented as a neural network with two
layers5. On the first layer there are the factors and the second layer consists of linear
neurons which compute a weighted sum of their inputs. A network interpretation of a model
with two-dimensional factors and four-dimensional observations is depicted schematically
in figure 5a. The weights Aij are shown as links between the nodes but the biases ai are
not shown.

Linear neurons as building blocks for larger networks are too simplistic because adding
extra layers of linear neurons does not increase the representational power of the network.
This is easily seen by considering the model

x(t) = B(As(t) + a) + b + n(t), (30)

shown in figure 5b. By setting A′ = BA and a′ = Ba + b the model can be written as

x(t) = A′s(t) + a′ + n(t), (31)

which, interpreted as a neural network, has only one layer of linear neurons.

5There are two conventions for counting the layers. Here the factors are counted as one layer although
they are not computational elements. The alternative is to count only layers of computational elements.
Both conventions agree on how to count hidden layers.

33

5.1.2 Algorithms

Factor analysis is widely used in the social sciences and there is an extensive literature
describing various methods for estimating the factors and then rotating them in order to
yield solutions which have simple interpretations [122, 110, 35, 25, 5]. Principal component
analysis (PCA) is often used as the first stage for finding the factors [63, 58]. We shall call
PCA and related methods signal transformation (ST) approaches. These methods define a
criterion on the factors and then find a transformation from observations to factors which
optimises the criterion. In PCA, the criterion is that the resulting factors are uncorrelated
and have maximal variance. A further requirement of orthogonal A is required to make
the problem well determined.

In many cases ST approaches yield a fair approximation to the result which would be
gained by the Bayesian approach to estimating the factors. Almost always, however, the
ST methods provide only point estimates. From the point of view of this thesis, reference
[9] is relevant because it uses ensemble learning for estimating the posterior probabilities
of the factors and the mapping A.

There are several criteria for the rotation. Varimax, one of the most popular rotation
criteria, aims at maximising the sparsity of the matrix A. In general, the goal of the
rotation is to find a meaningful interpretation of the resulting factors.

5.2 Non-Gaussian factors

The Gaussian model for the factors leads to inability to separate the underlying causes from
each other. This is remedied by considering models where the factors are not restricted
to be Gaussian but have a more general model. These models can be called independent
factor analysis (IFA) models or independent component analysis (ICA) models depending
whether they are seen as extensions of factor analysis or principal component analysis
models (for textbook accounts see, e.g., [76, 34]).

The independence refers to the fact that the non-Gaussian model of the factors enables
factor analysis to find the underlying statistically independent factors which have generated
the observations linearly if they exist. In the ICA community, the factors have been
traditionally called sources because they are not just some arbitrary combinations of the
underlying causes, but ideally at least, the original independent causes. The practical
techniques for estimating the sources are known also as blind source or signal separation.

Other properties apart from fixing the rotation of the factors are largely the same for
the linear non-Gaussian factor analysis as for the linear Gaussian factor analysis. A linear
multi-layer model, for instance, can still be brought down into one linear layer.

5.2.1 Algorithms

Several algorithms for independent component analysis have been proposed in the literature
[61, 17, 95, 51, 3, 52]. Many of the algorithms use the signal transformation approach with
the criterion that the resulting sources be as statistically independent as possible. These
algorithms can be seen as extensions of PCA. Simplifying assumptions can provide very
efficient algorithms, such as FastICA [55, 51]. Some of the algorithms use the natural
gradient which was discussed in section 4.5.4.

MAP estimation does not work for the IFA model unless the linear mapping A is
suitably restricted. This is because the width of the peak of the posterior probability
density of the factors, and thus the posterior probability mass, depends on the matrix A.

34

However, it is possible to take into account the width of the posterior. If the variance
of noise n(t) is assumed to be the same for all observations, then the posterior volume is
proportional to the posterior density and inversely proportional to the determinant |A|.
This has been used in [99], although the method is given a different interpretation.

In most algorithms, a point estimate is used for the linear mapping A. Hyvärinen et
al. have shown that many of these algorithms suffer from overfitting [56]. Publication II
describes how ensemble learning can be applied to IFA. Point estimates are not used for
any parameters and therefore the algorithm is not prone to overfitting. In publication VII,
a new interpretation of the FastICA algorithm is given, which allows one to use the same
idea with ensemble learning, thus yielding a Bayesian version of the FastICA algorithm.
The treatment of the posterior factor distributions is improved from Publication II by
utilising the method applied in [3].

5.3 Nonlinear mapping

An obvious way to extend the representational power of the linear factor analysis model is
to consider the case where the factors can have a nonlinear effect on the observations

x(t) = f(s(t)) + n(t). (32)

Here we replaced the affine mapping As + a by an arbitrary function f(s).

The nonlinear mapping does not change the considerations about the density of the
factors. With the Gaussian model for the factors, the nonlinear mapping yields an extension
of the ordinary factor analysis, that is, there is the same indeterminacy relative to the
rotation of the factors. Nonlinear mapping with non-Gaussian model for the factors yields
an extension of independent factor analysis which is able to recover the underlying factors
if they exist.

5.3.1 Multi-layer perceptron networks

The nonlinear model is very general and can, in principle, represent almost anything.
Again there is the trade-off between representational power and efficiency, raising the
practical problem of finding a suitably restricted subset of functions f which would have
good representational capacity but would also form a space with a structure regular enough
to enable efficient learning in practice.

The choice of the set of functions f depends on the problem at hand, but a possible
choice is the multi-layer perceptron (MLP) network [111, 8, 39]. It has often been found to
provide compact representations of mappings in real-world problems. The MLP network is
composed of neurons which are very close to the ones represented in the case of the linear
network. The linear neurons are modified so that a slight nonlinearity is added after the
linear summation. The output c of each neuron is thus

c = φ

(∑
i

wiai + b

)
, (33)

where ai are the inputs of the neuron and wi are the weights of the neuron. The nonlinear
function φ is called the activation function as it determines the activation level of the
neuron. This refers to interpreting the activation as the pulse rate of biological neurons.

35

Factors

Observations

= nonlinear neuron

Σ

Σ = linear neuron

ΣΣ Σ

φ

φ

φ φ

Figure 6: A graphical representation of the computational structure of an MLP network
with one hidden layer of nonlinear neurons.

Due to the nonlinear activation function, a multi-layer network is not equivalent to any
one-layer structure with the same activation function. In fact, it has been shown that one
layer of suitable nonlinear neurons followed by a linear layer can approximate any nonlinear
function with arbitrary accuracy, given enough nonlinear neurons [49]. This means that
an MLP network is a universal function approximator.

The activation functions most widely used are the hyperbolic tangent tanh(x) and
logistic sigmoid 1/(1 + exp(−x)). They are actually related as (tanh(x) + 1)/2 =
1/(1 + exp(−2x)). These activation functions are used for their convenient mathemat-
ical properties and because they have a roughly linear behaviour around origin, which
means that it is easy to represent close-to-linear mappings with the MLP network.

Figure 6 depicts an MLP network with one layer of linear output neurons and one layer
of nonlinear neurons between the input and output neurons. The middle layers are usually
called hidden layers. Notice that a graphical model of the conditional dependences would
not include the middle layer because the computational units are not unknown variables
of the model whereas the weights would be included as nodes of the model.

The mapping of the network can be compactly described by (34).

x(t) = f(s(t)) + n(t) = Bφ(As(t) + a) + b + n(t). (34)

According to the usual notation with MLP networks, the vector φ denotes a vector of
functions which each operate on one of the components of the argument vector.

5.3.2 Algorithms

The MLP networks belong to the standard tool box of modern neural networks research.
Almost always, however, they are used for supervised learning, to the extent that often
MLP networks are thought to be suitable only for supervised learning.

Since the signal transformation approach has been successfully applied to the deriva-

36

tion of efficient, practical algorithms for linear PCA and ICA, it is natural to try the
same approach for nonlinear models as well. Signal transformation approaches have
been proposed for nonlinear independent component analysis using MLP networks in
[13, 86, 134, 125, 135, 126, 87, 45]. The flexibility of the MLP network makes overfit-
ting a serious problem when point estimates are used. In order to alleviate overfitting,
many of the ST approaches need to restrict the structure of the MLP network.

ML estimation has been applied to a nonlinear factor analysis model containing an MLP
network in [94]. The use of a point estimate causes the same overfitting problem as with
ST approaches. In [85], stochastic sampling has been used for learning a nonlinear factor
analysis model using an MLP network. Due to the large number of unknown variables in
the model, learning is extremely slow. The dynamic nonlinear models proposed in [31, 12]
are discussed in section 5.4. Section 6 summarises the nonlinear factor analysis algorithm
developed in this thesis.

Self-organising map (SOM) [65] and the related method generative topographic map-
ping (GTM) [10] can be interpreted as nonlinear factor analysis models [42, 98, 79, 100].
The parameterisation used for the mapping is rather different from that used in linear
models and MLP networks. Instead of defining weighted products, each neuron specifies
a point in the observation space. The neurons are arranged in a low-dimensional grid and
the grid can be interpreted as the latent space, that is, the coordinates of a neuron specify
the values of the factors.

Self-organising maps have been found useful, computationally efficient tools for visu-
alising the structure of data sets because they find a two-dimensional representation for
high-dimensional observations. However, the parameterisation which is based on specifying
points in the observation space is not well suited for factor analysis when the dimension
of the latent space is even moderately high. This is because the number of neurons in
the grid grows exponentially as a function of the dimension of the latent space. For linear
models and MLP networks the number of parameters grows linearly as a function of the
dimension of the latent space and they are therefore better suited for learning models with
a large number of latent variables.

Auto-associative models. The signal transformation approach aims at estimating the
recognition mapping from observations to factors while generative learning models the
mapping from factors to observations. The third alternative, auto-associative learning,
estimates both at once. The basic idea is to find a mapping, defined by an MLP network
for instance, from observations to themselves through an information bottleneck. This
forces the network to find a compact coding for the observations.

Learning is supervised in the sense that both the inputs and the outputs of an MLP
network are specified. This also means that learning is exponentially slow in the number of
hidden layers. It is, however, possible to use the same strategy as in unsupervised learning;
gradually tightening bottlenecks can be added in the middle of the network as the learning
proceeds. In any case, the learning is slower than with generative models because both
the recognition mapping and the generative mapping need to be learned separately. In
generative learning the recognition mapping can be computed from the generative mapping
by Bayes’ rule.

The information bottleneck is usually implemented simply by restricting the number of
hidden neurons in the middle layer of the network. However, this alone does not restrict
the information content of a real number because the amount of information depends

37

on the accuracy of coding. Using the minimum message length inference or bits-back
argument which leads to ensemble learning, it would be possible to accurately measure
the information content but the resulting algorithm would no longer profit anything from
restricting the recognition mapping to be the one implemented by the MLP network. The
experiments using an MLP network for recognition mapping in [128] show that gradient
descent based inversion of the generative mapping for new observations can profit from the
initial guess provided by an MLP network estimating the recognition mapping, but the
performance of an MLP network is poorer than that found when gradient descent alone is
used.

Examples of the use of auto-associative MLP networks can be found in [40, 48, 47]. From
the point of view of this thesis, references [48, 47] are particularly relevant because they use
flat minimum seach [46], a method which bears resemblance to minimum message length
inference, for measuring the complexity of the MLP network. However, the complexity of
the factors is not measured.

5.4 Dynamic factors

In many cases, observations form a sequence in time, and it is useful to extend the factor
analysis model to take into account the dynamical behaviour of the factors. In physics and
signal processing, these models are in wide use and are called state space models, that is,
the factors in this context are called states.

In the general nonlinear form, the model describes the sequence of observations x(t)
which have been caused by a sequence of states s(t) through a mapping f . In physics,
the state dynamics is often presented as partial differential equations. For our purposes,
discrete-time difference-equations are more appropriate. According to the model, the state
vector is assumed to be mapped nonlinearly on the consecutive state vector through the
function g. Since the model does not aim at representing the complete physical state of the
universe, the state is certainly affected by some other factors besides the previous state.
These external influences are summarised in a noise model m(t), which is also called the
innovation process. The dynamic mapping thus has a form very similar to the mapping
from states to observations:

x(t) = f(s(t)) + n(t) (35)

s(t + 1) = g(s(t)) + m(t). (36)

The distribution of the innovation process m(t) determines whether the model resembles
ordinary or independent factor analysis; the distribution of m(t) has to be non-Gaussian in
order for the model to be able to reveal the possible underlying independent innovation pro-
cesses. The mappings are also often assumed to be functions of observed exogenous inputs
u(t): f(s(t),u(t)) and g(s(t),u(t)). This corresponds to having a mixture of supervised
and unsupervised learning.

5.4.1 Algorithms

A substantial amount of research has been conducted on estimating the states s(t) under
the assumption that the mappings f and g are known. This is called Kalman filtering if the
mappings are linear and extended Kalman filtering if the mappings are nonlinear. Several
textbooks give introductions to the field, for instance, [38, 121, 88].

38

Many of the algorithms for unsupervised learning of the generative mapping f can be
extended to learn also the state dynamics g. An obvious way is to first learn a static model
with only f and then use supervised learning to learn g. However, this procedure has the
disadvantage that during the learning of f , dynamic structure is not taken into account
and therefore the resulting representation does not necessarily make efficient use of the
dynamics.

An early application to learning both f and g together can be found in [118]. However,
both mappings are assumed to be linear. A linear generative mapping f and nonlinear
dynamic mapping g have been used in [16]. Some training samples where the states are
observed are assumed to be available and therefore the method is not wholly unsupervised.

Fully nonlinear learning algorithms have independently been proposed in [31, 12]. In
[31], Gaussian radial basis functions (RBF) [90] are used for modelling the mappings f
and g and the EM algorithm [21] is used for learning parameters of the linear mapping
in the RBF model, in other words, the nonlinearities are not adapted. The structure of
the Gaussian RBF model allows analytical computation of the expectations required for
adapting the linear mapping in the model which makes the approach interesting. The
drawback is that since the nonlinearities are not adapted, the required number of hidden
neurons is exponential in the dimension of latent space.

MLP networks have been used in [12] to model the mappings f and g. First the posterior
density of the states is approximated and then samples are taken from the posterior and
used to estimate the parameters of the MLP network with the ordinary backpropagation
algorithm [111] (see also, e.g., [39, 8]). Point estimates for the parameters of the mappings
and Gaussian models for the innovation process were used in both [31, 12].

Publication VIII shows how the nonlinear factor analysis algorithm developed in this
thesis can be extended to take into account the dynamics of the factors.

6 BAYESIAN NONLINEAR FACTOR ANALYSIS

The motivation for developing methods tailored for unsupervised learning is that to learn
large hierarchical models, unsupervised learning is the most promising approach. A char-
acteristic property of unsupervised learning is the potentially large amount of unknown
variables. This is because the latent variables need to be estimated for each observation
separately. In Bayesian learning, the posterior distribution of these unknown variables
requires to be estimated.

In this section, a nonlinear extension of the factor analysis model is used as an example
of how ensemble learning can be applied to unsupervised learning of this kind of model and
why it should be used in the first place. Ensemble learning is discussed at length in publi-
cation IV and a detailed description of its application to nonlinear factor analysis by MLP
network is given in publication V. In this section, only the main points are summarised.

6.1 Model

The nonlinear factor analysis model described in publication V has the following structure:

• The mapping from factors to observations is modelled by an MLP network with one
hidden layer as described by (34).

• The factors can have Gaussian or mixtures-of-Gaussians models. This corresponds to
a nonlinear extension of linear factor analysis or linear independent factor analysis,

39

respectively. The factors are assumed to be independent.

• Hierarchical models are used for describing the prior information about the parame-
ters. Gaussian distributions are used extensively.

• The variance parameters of the Gaussians are parameterised by the logarithm of the
standard deviation. This yields a roughly Gaussian posterior probability for these
parameters.

6.2 Why simple methods fail

The standard backpropagation algorithm has been used successfully for estimating the
parameters of an MLP network for a long time (see, e.g., [39, 8]). It therefore requires
some explanation why it cannot be used in this case. The basic reason is that in supervised
learning, only the weights of the MLP network are unknown while in unsupervised learning
the inputs to the MLP network are also unknown.

Posterior probability mass is proportional to the volume of the posterior peak which in
turn is proportional to the posterior uncertainty of the unknown variables. With simple
linear models used in factor analysis and independent factor analysis, it is possible to
constrain the linear mapping A so that the posterior uncertainty of the factors is roughly
constant or bounded from below. Even then the simple linear independent factor analysis
algorithms suffer from overfitting as shown in [56]. With nonlinear models it is far more
difficult to ensure that the posterior uncertainty of the factors is constant without posing
very restricting conditions on the allowed nonlinearities (however, see [20] for an example)
and the models are, in any case, more vulnerable to overfitting because they have more
parameters to be estimated.

The severity of overfitting is roughly proportional to the number of those unknown
variables in the model which are given point estimates and inversely proportional to the
number of observations. In supervised learning, a sufficiently large number of observations
can reduce overfitting, assuming that the model structure is predetermined. In unsuper-
vised learning, increasing the number of observations cannot decrease the ratio below the
dimension of latent space divided by the dimension of observations. This is because for
each observation x(t), the corresponding values of latent variables s(t) need to be estimated
separately.

The EM algorithm can be used for learning nonlinear latent variable models as shown
in [31]. The number of variables which are assigned point estimates is then comparable
to supervised learning. Most of the computational cost corresponds to the computation
of the distribution of the factors and the extra computational cost of assigning posterior
distributions to the rest of the parameters as well is not very high.

6.3 Approximation of the posterior

The result of learning is an approximation of the posterior probability of all the unknown
variables given the observations. The unknown variables are the factors s(t), the param-
eters of the mapping f , variance parameters for factors and observation noise and the
parameters of the hierarchical prior. The approximation is needed because the posterior
joint probability of all the unknown variables is very complex due to the large number of
unknowns and the complex structure of the model.

40

In most publications of this thesis, the approximation of the posterior is assumed to
have a maximally factorial form, that is, all the unknown variables are assumed to be inde-
pendent given the observations. This can be seen as a necessary and sufficient extension to
point estimates which is sensitive to posterior probability mass instead of probability den-
sity. Publication VIII shows how some of the most important posterior correlations of the
variables can be included in the approximation without compromising the computational
efficiency. Notice that although the variables are assumed to be independent a priori, they
are dependent a posteriori because the observations induce dependences between them.

Publication I presents the methods in minimum message length framework and therefore
uses a uniform distribution as the approximation for the posterior. Other publications use
the Gaussian distribution which is in general a better approximation to posterior densities.
It is also often possible to choose a parameterisation, such as the logarithmic parameter-
isation of the variance or the “softmax” parametrisation of the mixture coefficients [84],
which makes the Gaussian approximation even more valid.

The cost function in ensemble learning is the Kullback-Leibler information between
the posterior probability and its approximation. Due to the simple factorial form of the
approximation, the cost function and its derivatives can be computed efficiently. The
required computations resemble very much the ones which would be carried out using the
standard backpropagation algorithm for estimating the unknown variables of the model.
The most notable difference is that scalar values are replaced by probability distributions
of the values.

During learning, the approximation of the posterior is adapted by a modification of
gradient descent which utilises the structure of the problem as explained in publication
V. The difference to ordinary point estimation is that the weights and factors are charac-
terised by their mean and variance. This is important as then the algorithm is sensitive to
the probability mass in the posterior probability instead of being sensitive to probability
density. Figure 7 illustrates the adaptation of the posterior probability density instead of
a point estimate for an unknown variable of the model.

6.4 Automatic pruning

A convenient by-product of using a factorial approximation of the posterior density in
ensemble learning is that unused parts of the model are effectively pruned away. The
reason for this is that the learning process aims at fitting the approximation to the true
posterior. It is usually the case that the model has some indeterminacies, which basically
means that several different values for the variables in the model yield exactly the same
probability for the observations. It is then impossible to determine the variables based on
observations.

For ensemble learning this can be a benefit because it allows a choice of parameter
values which make the factorial assumption of the posterior density more valid. In other
words, extra degrees of freedom in the model can be used for improving the approximation
of the posterior density.

If the model has more parameters or factors than are required, some of them are not
well determined which will be reflected in having equal posterior and prior distributions.
In a general case where the variables have posterior correlations, there are some directions
in the variable space which are well determined and others which are not. Figure 8a gives
an example of such a situation. The difference of the two parameters is well determined
while the value of their sum is uncertain.

41

value of the parameter

= Gaussian approximation

= new approximation

= true posterior

Figure 7: During adaptation, the approximation of the posterior is fitted to the true
posterior distribution. The dashed line shows schematically how the approximation could
change in one iteration step. The mean and variance of the approximation are adapted to
fit the true posterior better.

(a) (b)

θ2

θ1

2θ

1θ

Figure 8: Schematic illustrations of posterior densities of two parameters θ1 and θ2. (a)
The sum of the parameters is not determined while the difference is. (b) After rotation, θ1

is left determined and the undetermined θ2 can be pruned away.

42

If indeterminacies have produced degrees of freedom which allow rotation of the param-
eter space, then ensemble learning will try to make the variables posteriorly independent as
shown in figure 8b. This means that the variables tend to be either well determined or not
determined at all. Equation (21) which is the Kullback-Leibler information between the
prior and approximated posterior density of a variable can be used for assessing whether
the variable is actually used by the model. If the posterior is close to the prior, the variable
is not well determined. From the coding point of view, equation (21) can also be inter-
preted as the number of bits used by the model to represent that variable. If very few bits
are used to represent a variable, it is not needed by the model and can be pruned away
without affecting the model.

6.5 Results

Most of the experimental results on nonlinear factor analysis are summarised in publication
V6. Reference [128] presents many of the same experiments and in addition an experiment
which shows how factors can be estimated for new observations which have not been present
during learning. Publication VIII reports experiments with the dynamic extension of the
nonlinear factor analysis algorithm.

In general, the experiments have verified that ensemble learning can be successfully
applied to nonlinear factor analysis using MLP networks. Ensemble learning avoids the
problems related to overfitting which is a severe problem for simpler algorithms. It is also
easy to optimise the structure of the model simply by minimising the cost function. The
number of factors and hidden neurons of the MLP network, for instance, can be reliably
optimised.

It is well known that MLP networks have local minima (see, e.g., [39, 8]). This seems
to be a nearly unavoidable consequence of using complex models with rich representational
capacities. It is recommendable to try several different random initialisations of the network
and choose the result which minimised the cost function.

The experiments with artificial data show that if the structure of the observations
matches the model, then the algorithms developed in this thesis are able to reveal the
original, independent factors. In many realistic cases there is reason to believe that the
underlying structure of the observations is more accurately described as a nonlinear than
linear mapping from underlying factors to observations. Experiments with measurements
from an industrial pulp process reported in publication V have verified this at least for
that data set. With a nonlinear model, far fewer factors are needed to represent the data
than with a linear model.

7 DISCUSSION

7.1 Biological relevance

The methods developed in this thesis can be used for data analysis and are therefore useful
as such. However, the research which has led to these methods has also been inspired by
the biological brain. This section discusses some of the connections between the brain and
the nonlinear factor analysis algorithm.

6Matlab code for running the simulations is available at http://www.cis.hut.fi/projects/ica/bayes/.

43

Although the biological brain does not implement any specific mathematically exact
algorithm, Bayesian learning or others, the framework of Bayesian probability theory is
appropriate for interpreting many of the different functions of the brain (see, e.g., [64]).
Visual perception of shape from shading, for instance, was successfully analysed from the
Bayesian point of view in [27].

On one hand, findings from the neurosciences can teach us how to build better algo-
rithms for learning models from observations, and on the other hand, development of these
algorithms can give valuable insight for interpreting the relevance of the findings. The
model space and priors used by the brain, as well as the particular computational approxi-
mation can be interpreted to be implicitly defined by the genes because they give the brain
the instructions on how to react to different environmental stimuli. The hypothesis space
implicitly defined by the brain is evidently huge, computationally efficient and allows a
rich representation of the environment.

It is obvious that learning is not the only function for the biological brain and explaining
the structures found in the brain requires account to be taken of prediction and action.
It seems plausible that the cerebral cortex is involved in both learning and inference or
planning because the cortex is activated during imaging tasks [68]. However, the following
concentrates only on learning. For textbook accounts on the brain see, e.g., [69, 104, 62].

7.1.1 Cerebral cortex and generative models

The cerebral cortex maintains a model of the environment. Its perceptual machinery con-
stantly seeks explanations for sensory inputs [4]. It seems likely that unsupervised learning
with generative models is the appropriate interpretation which helps understanding many
aspects of the learning taking place in the cortex. It is known that the abstraction level
of representation in the cortex gradually increases from primary sensory areas to higher
cortical areas (see, e.g., [127]) where it is possible to find neurons that react as if they
would bridge different modalities in the manner depicted in figure 3.

At least two independent experimental findings and one theoretical argument supports
generative learning over signal transformation or auto-associative learning. First, the signal
transformation assumption does not predict backward connections and auto-associative
learning predicts roughly equal amounts of forward and backward connections between
different levels of brain areas (forward connection here means the direction from sensory
to higher areas). In reality, there are up to ten times as many backward connections
between cortical areas as there are forward connections (see, e.g., [26]). This fits well with
the generative learning assumption, because backward connections define the meaning of
the representation and forward connections carry the gradient information or error signals
needed to update the representation and for that purpose, gradient information needs not
be very accurate.

Second, the temporal behaviour of the forward signals from visual area V1 to V2 has
been shown to fit well to the interpretation of error signals [105], and also to be modulated
appropriately if the activity of V2 is blocked [50].

Third, in generative learning, the number of connections needs to be proportional to
the number of neurons N while in the signal transformation approach the number of
connections requires to be proportional to N 2 which is much more than actually observed
in the brain. In order for a large network of neurons to learn, the neurons need to have a
way of informing each other when something is already learned to avoid all neurons from
learning the same thing. In generative learning, the forward signals carry the error signals
and therefore a persistent signal indicates that no other neuron is representing the input.

44

In the signal transformation approach, each neuron has to inform all other neurons that
they have learned something. There are short range inhibitory lateral connections in the
cortex, but not enough to support signal transformation interpretation [32]. The purpose
of the inhibitory lateral connections can be, for instance, to assist in finding the correct
activations when error signals arrive [74, 29]. Only those neurons need to be laterally
connected which represent very similar things (as defined by the backward connections)
thus explaining the short range of the lateral connections.

7.1.2 Cortex and nonlinear factor analysis

Interpreted pedantically, MLP networks used in the nonlinear factor analysis model in this
thesis are not realistic neuronal models of the brain. It is clear that the neurons in the
brain are quite different from the ones used in a typical MLP network, but it is possible
to see many of the aspects of the MLP networks as abstractions of the biological brain.
First, biological neurons fire action potentials and the output activation of the neurons in
an MLP network is an idealisation of the firing rate. Secondly, there are various kinds of
interneurons in the cortex which the MLP networks lack. However, it is possible to view
each neuron of an MLP network as an abstraction of one microcolumn or one pyramidal
neuron and several interneurons. In [105], the microcolumns have been interpreted as
Kalman filters.

The representational capacity of the factor analysis model is weaker than that of the
biological brain. To be more specific, the model cannot adequately represent objects and
therefore cannot represent relations between objects. There is much evidence suggesting
that the temporal structure of the firing of biological neurons in the cortex carries infor-
mation related to object representations. In the brain, the object representations seem to
be linked with synchronous activity of the neurons; the neurons which represent features
belonging to one object fire synchronously [24, 37, 36].

Representing only the firing rate of the neurons misses the temporal information and
results in an inability to represent the binding between features which would define objects.
Consequently, the representations also lack relations between objects. This is one of the
most serious drawbacks of most of the current neural network models. Many attempts
have been made to build models with neurons whose activity is represented by firing of
pulses as with biological neurons [80]. Since the real valued abstraction of the firing rate
has served as a good computational simplification, modifications which represent both the
activity and the phase or binding of the neurons have also been proposed (e.g., [23]).

Whether the standard real valued neurons are replaced by firing or more abstracted
neurons, it can be hoped that the lessons learned from the simple neurons used in most
neural network models today will still be useful. This seems realistic since so many aspects
of the real brain can be interpreted from the point of view of simple real valued neurons. If
the brain is the kind of virtual machine built on parallel networks which Dennet proposes
[22], then it seems possible that we can also design similar machines by starting with the
parallel networks discussed in this thesis and then modify them slightly so that sequential
processing is implemented.

7.1.3 Structural development

It takes years for the human brain to mature. Although neural networks researchers are
usually not that patient with their own models, the process by which the connections in

45

the brain grow and adapt can give useful hints on how large hierarchical artificial neural
networks can be learned.

Two basic principles have shown their usefulness in unsupervised learning of MLP
networks. The first is that it is easier to start with a large network and then prune away
unused parts. This is similar to what happens in the biological brain where a significant
number of the neurons die during early development (see, e.g., [69, 104, 62]). There is
evidence that the neurons which die are the ones which fail to find something reasonable
to represent. The same behaviour is automatically implemented by ensemble learning as
discussed, for example, in publication III.

The second principle is the critical period of development during which the connections
are established. This period starts earlier in the lower areas close to sensory areas and
then proceeds to higher levels [104]. Experience with ensemble learning for unsupervised
MLP networks showed that an algorithm which is capable of pruning connections and
neurons needs this procedure for learning hierarchical representations. If the critical period
would be too early, the neurons would be pruned before they have a chance to learn to
represent anything useful because their lower areas would not yet have established a sensible
representation.

Although the neurons in the cortex can have 1,000–10,000 connections [69], one neuron
connects only to a very small fractions of all neurons, that is, the connectivity is sparse. The
MLP networks studied in this thesis had only tens of neurons and it was therefore feasible to
use fully connected layers. However, ensemble learning can also accommodate the pruning
of connections in large networks. The dynamic model of the factors in publication VIII
exhibited signs of sparse connectivity.

In ensemble learning, the pruning is caused by the pressure to make the posterior
probability of the parameters and factors of the model as independent as possible. It can
be argued that this is also a useful strategy for the brain as it would be difficult to keep
track of the posterior dependences of the activities of all the neurons in the brain and even
more difficult to model the posterior dependences of the strengths of the synapses.

7.2 Future trends

A great deal of work still requires to be undertaken in the development of the methods
discussed in this thesis. There are many extensions of the basic MLP structure which can
be utilised. For instance, bilinear neurons that compute weighted products of two inputs
could be useful. In some cases, there is a strong reason to believe that the mapping from
factors to observations includes this type of functions, but with neurons having simple
weighted sums it is difficult, albeit not impossible, to represent such mappings.

One of the strong practical advantages of using the Bayesian framework for learning is
that it is easy to combine different models and algorithms. An example of this was seen in
the development of the treatment of a non-Gaussian factor distribution, where the method
used in publication II was replaced by the one borrowed from [3]. One aspect which could
clearly be improved is taking into account the posterior dependences of the factors. The
simpler approximation could still be used for providing a good initial guess.

This thesis concentrates on real valued representations, but the extensive research con-
ducted with discrete valued representations and observations can be utilised because within
the Bayesian framework, it is straight-forward to combine different models. Likely candi-
date models include belief networks [101], sigmoid belief networks [91, 113], hidden Markov-
models [83], switching state-space models [30] and mixture models [89].

46

Missing observations pose no problem in the Bayesian framework as they can be treated
like any other unknown parameter of the model. This enables unsupervised learning to
be used for similar tasks as supervised learning but without the requirement to prespecify
which of the observations are inputs and which are outputs.

In many large problems the prior knowledge at hand suggests a modular structure
for the MLP network which can be taken into account. It should also be easy to develop
automatic procedures for pruning and model selection because the cost function in ensemble
learning can be reliably used for model selection. When learning large models, this should
be useful, as well as in learning procedures where layers of neurons are added to the network
one by one.

Factors governing the variance of other factors seem likely candidates for building-blocks
for mappings whose learning is computationally efficient but which are representationally
powerful. These models are inspired by the properties of complex cells found in the visual
area V1 (see, e.g., [62]), whose behaviour appears to match well with this function. Models
which have factors resembling complex cells have been proposed, for example, in [66, 14,
29, 54, 53].

In order to match human capabilities, the models will need to represent objects and
relations between objects. Not enough is known about the representation of these things in
the biological brain in order to utilise the knowledge directly for artificial neural network
models. The work done in traditional artificial intelligence research (see, e.g., [112]) can,
however, give good starting points.

One of the most important application areas for the methods developed in this thesis
and a fruitful source of new ideas will probably be the problem of adaptive process control
because many processes have natural representations in terms of real valued state-spaces
and the controlled signals are also often analogue. Learning models of the environment
based on observations is also one of the most demanding problems in reinforcement learning
where an autonomous agent is trying to make decisions based on external rewards (see,
e.g., [124]).

47

REFERENCES

[1] S. Amari, Differential-Geometrical Methods in Statistics. Springer-Verlag, 2nd ed.,
1990.

[2] S. Amari, “Natural gradient works efficiently in learning,” Neural Computation,
vol. 10, no. 2, pp. 251–276, 1998.

[3] H. Attias, “Independent factor analysis,” Neural Computation, vol. 11, no. 4, pp. 803–
851, 1999.

[4] H. B. Barlow, “Cerebral cortex as model builder,” in Models of the visual cortex
(D. Rose and V. G. Dobson, eds.), pp. 37–46, John Wiley & Sons, 1985.

[5] A. Basilevsky, Statistical Factor Analysis and Related Methods: Theory and Applica-
tions. John Wiley & Sons, 1994.

[6] R. A. Baxter and J. J. Oliver, “MDL and MML: Similarities and differences,” Tech.
Rep. TR 207, Department of Computer Science, Monash University, Australia, 1994.

[7] J. M. Bernardo and A. F. M. Smith, Bayesian Theory. Wiley, 1994.

[8] C. M. Bishop, Neural Networks for Pattern Recognition. Clarendon Press, 1995.

[9] C. M. Bishop, “Bayesian PCA,” in Advances in Neural Information Processing Sys-
tems 11, NIPS*98, (Denver, Colorado, USA, Nov. 30–Dec. 5, 1998), pp. 382–388,
The MIT Press, 1999.

[10] C. M. Bishop, M. Svensén, and C. K. I. Williams, “GTM: The generative topographic
mapping,” Neural Computation, vol. 10, no. 1, pp. 215–234, 1998.

[11] G. Boole, An Investigation of the Laws of Thought. Walton and Maberley, 1854.

[12] T. Briegel and V. Tresp, “Fisher scoring and a mixture of modes approach for approx-
imate inference and learning in nonlinear state space models,” in Advances in Neural
Information Processing Systems 11, NIPS*98, (Denver, Colorado, USA, Nov. 30–
Dec. 5, 1998), pp. 403–409, The MIT Press, 1999.

[13] G. Burel, “Blind separation of sources: A nonlinear neural algorithm,” Neural Net-
works, vol. 5, no. 6, pp. 937–947, 1992.

[14] J.-F. Cardoso, “Multidimensional independent component analysis,” in Proc. IEEE
Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP’98, (Seattle, Wash-
ington, USA, May 12–15), pp. 1941–1944, 1998.

[15] G. J. Chaitin, “On the length of programs for computing finite binary sequences,”
Journal of the ACM, vol. 13, no. 4, pp. 547–569, 1966.

[16] A. Cichocki, L. Zhang, S. Choi, and S. Amari, “Nonlinear dynamic independent
component analysis using state-space and neural network models,” in Proceedings of
the First International Workshop on Independent Component Analysis and Signal
Separation, ICA’99, (Aussois, France, Jan. 11–15), pp. 99–104, 1999.

[17] P. Comon, “Independent component analysis — a new concept?,” Signal Processing,
vol. 36, pp. 287–314, 1994.

48

[18] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley & Sons,
1991.

[19] R. T. Cox, “Probability, frequency and reasonable expectation,” American Journal
of Physics, vol. 14, no. 1, pp. 1–13, 1946.

[20] G. Deco and W. Brauer, “Nonlinear higher-order statistical decorrelation by volume-
conserving neural architecture,” Neural Networks, vol. 8, no. 4, pp. 525–535, 1995.

[21] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete
data via the EM algorithm,” Journal of the Royal Statistical Society (Series B),
vol. 39, pp. 1–38, 1977.

[22] D. C. Dennet, Consciousness Explained. Little, Brown and Co., 1991.

[23] H. Dürer and T. Waschulzik, “ESyNN — a model to abstractly emulate synchro-
nization in neural networks,” in Proceedings of the Ninth International Conference
on Artificial Neural Networks, ICANN’99, (Edinburgh, UK, Sep. 7–10), pp. 791–796,
1999.

[24] R. Eckhorn, R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Munk, and H. J. Reit-
boeck, “Coherent oscillations: A mechanism of feature linking in the visual cortex?
Multiple electrode and correlation analyses in the cat,” Biological Cybernetics, vol. 60,
pp. 121–130, 1989.

[25] B. Everitt, ed., An Introduction to Latent Variable Models. Chapman and Hall, 1984.

[26] D. J. Felleman and D. C. V. Essen, “Distributed hierarchical processing in the primate
cerebral cortex,” Cerebral Cortex, vol. 1, no. 1, pp. 1–47, 1991.

[27] W. T. Freeman, “The generic viewpoint assumption in a Bayesian framework,” in
Knill and Richards [64], pp. 365–389, 1996.

[28] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis.
Chapman & Hall, 1995.

[29] Z. Ghahramani and G. E. Hinton, “Hierarchical non-linear factor analysis and topo-
graphic maps,” in Advances in Neural Information Processing Systems 10, NIPS*97,
(Denver, Colorado, USA, Dec. 1–6, 1997), pp. 486–492, The MIT Press, 1998.

[30] Z. Ghahramani and G. E. Hinton, “Variational learning for switching state-space
models,” Neural Computation, vol. 12, no. 4, pp. 963–996, 2000.

[31] Z. Ghahramani and S. T. Roweis, “Learning nonlinear dynamical systems using an
EM algorithm,” in Advances in Neural Information Processing Systems 11, NIPS*98,
(Denver, Colorado, USA, Nov. 30–Dec. 5, 1998), pp. 599–605, The MIT Press, 1999.

[32] D. C. Gilbert, “Circuitry, architecture, and functional dynamics of visual cortex,”
Cerebral Cortex, vol. 3, no. 5, pp. 373–386, 1993.

[33] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, eds., Markov Chain Monte Carlo
in Practice. Chapman & Hall, 1996.

[34] M. Girolami, Self-Organising Neural Networks — Independent Component Analysis
and Blind Source Separation. Springer-Verlag, 1999.

49

[35] R. L. Gorsuch, Factor Analysis. Lawrence Earlbaum Associates, 2nd ed., 1983.

[36] C. M. Gray, “Synchronous oscillations in neuronal systems, mechanisms and func-
tions,” Journal of Computational Neuroscience, vol. 1, pp. 11–39, 1994.

[37] C. M. Gray and W. Singer, “Stimulus-specific neuronal oscillations in orientation
columns of cat visual cortex,” Proc. Natl. Acad. Sci, vol. 86, pp. 1698–1702, 1989.

[38] M. S. Grewal and A. P. Andrews, Kalman Filtering. Prentice-Hall, 1993.

[39] S. Haykin, Neural Networks — A Comprehensive Foundation. Prentice Hall, 2nd ed.,
1998.

[40] R. Hecht-Nielsen, “Replicator neural networks for universal optimal source coding,”
Science, vol. 269, pp. 1860–1863, 1995.

[41] R. Herken, ed., The Universal Turing Machine: a Half-Century Survey. Oxford
University Press, 1988.

[42] M. Herrmann and H. H. Yang, “Perspectives and limitations of self-organising maps
in blind separation of source signals,” in Progress in Neural Information Processing,
Proc. ICONIP’96, (Wan Chai, Hong Kong, Sep. 24–27), pp. 1211–1216, Springer-
Verlag, 1996.

[43] G. E. Hinton and T. J. Sejnowski, eds., Unsupervised Learning: Foundations of
Neural Computation. Computational Neuroscience Series, The MIT Press, 1999.

[44] G. E. Hinton and D. van Camp, “Keeping neural networks simple by minimizing
the description length of the weights,” in Proceedings of the COLT’93, (Santa Cruz,
California, USA, July 26–28), pp. 5–13, 1993.

[45] S. Hochreiter and M. C. Mozer, “An electric field approach to independent compo-
nent analysis,” in Proceedings of the Second International Workshop on Independent
Component Analysis and Blind Signal Separation, ICA 2000, (Helsinki, Finland, June
19–22), pp. 45–50, 2000.

[46] S. Hochreiter and J. Schmidhuber, “Flat minima,” Neural Computation, vol. 9, no. 1,
pp. 1–42, 1997.

[47] S. Hochreiter and J. Schmidhuber, “Feature extraction through LOCOCODE,” Neu-
ral Computation, vol. 11, no. 3, pp. 679–714, 1999.

[48] S. Hochreiter and J. Schmidhuber, “LOCOCODE performs nonlinear ICA without
knowing the number of sources,” in Proceedings of the First International Work-
shop on Independent Component Analysis and Signal Separation, ICA’99, (Aussois,
France, Jan. 11–15), pp. 149–154, 1999.

[49] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are
universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.

[50] J.-M. Hupé, A. C. J. B. R. Payne, , S. G. Lomber, P. Girard, and J. Bullier, “Cortical
feedback improves discrimination between figure and background by v1, v2 and v3
neurons,” Nature, vol. 394, pp. 784–787, 1998.

50

[51] A. Hyvärinen, “Fast and robust fixed-point algorithms for independent component
analysis,” IEEE Transactions on Neural Networks, vol. 10, no. 3, pp. 626–634, 1999.

[52] A. Hyvärinen, “Survey on independent component analysis,” Neural Computing Sur-
veys, vol. 2, pp. 94–128, 1999.

[53] A. Hyvärinen and P. O. Hoyer, “Emergence of phase and shift invariant features
by decomposition of natural images into independent feature subspaces,” Neural
Computation, vol. 12, no. 7, pp. 1705–1720, 2000.

[54] A. Hyvärinen and P. O. Hoyer, “Emergence of topography and complex cell properties
from natural images using extensions of ICA,” in Advances in Neural Information
Processing Systems 12, NIPS*99, (Denver, Colorado, USA, Nov. 29 – Dec. 4, 1999),
pp. 827–833, The MIT Press, 2000.

[55] A. Hyvärinen and E. Oja, “A fast fixed-point algorithm for independent component
analysis,” Neural Computation, vol. 9, no. 7, pp. 1483–1492, 1997.

[56] A. Hyvärinen, J. Särelä, and R. Vigário, “Bumps and spikes: Artifacts generated
by independent component analysis with insufficient sample size,” in Proceedings of
the First International Workshop on Independent Component Analysis and Signal
Separation, ICA’99, (Aussois, France, Jan. 11–15), pp. 425–429, 1999.

[57] E. T. Jaynes, “Probability theory: The logic of science.” Available from
http://bayes.wustl.edu/etj/prob.html, 1996.

[58] I. T. Jolliffe, Principal Component Analysis. Springer-Verlag, 1986.

[59] M. I. Jordan, ed., Learning in Graphical Models. The MIT Press, 1999.

[60] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, “An introduction to
variational methods for graphical models,” in Jordan [59], pp. 105–161, 1999.

[61] C. Jutten and J. Herault, “Blind separation of sources, part I: An adaptive algorithm
based on neuromimetic architecture,” Signal Processing, vol. 24, pp. 1–10, 1991.

[62] E. R. Kandel, J. H. Schwartz, and T. M. Jessell, eds., Principles of Neural Science.
Elsevier, 3rd ed., 1991.

[63] M. Kendall, Multivariate Analysis. Charles Griffin & Co., 1975.

[64] D. C. Knill and W. Richards, eds., Perception as Bayesian Inference. Cambridge
University Press, 1996.

[65] T. Kohonen, Self-Organizing Maps. Springer-Verlag, 2nd, extended ed., 1997.

[66] T. Kohonen, S. Kaski, and H. Lappalainen, “Self-organized formation of various
invariant-feature filters in the Adaptive-Subspace SOM,” Neural Computation, vol. 9,
no. 6, pp. 1321–1344, 1997.

[67] A. N. Kolmogorov, “Three approaches to the quantitative definition of information,”
Problems of Information Transmission, vol. 1, pp. 1–17, 1965. Translated from Prob-
lemy Peredachi Informatsii (in Russian).

51

[68] S. M. Kosslyn, W. L. Thompson, I. J. Kim, and N. M. Alpert, “Topographical
representations of mental images in primary visual cortex,” Nature, vol. 378, pp. 496–
498, 1995.

[69] S. W. Kuffler, J. G. Nicholls, and A. R. Martin, From Neuron to Brain. Sinauer
Associates Inc. Publishers, 2nd ed., 1984.

[70] S. Kullback and R. A. Leibler, “On information and sufficiency,” The Annals of
Mathematical Statistics, vol. 22, pp. 79–86, 1951.

[71] P. S. Laplace, “Mémoire sur la probabilité des causes par les événements,” Mémoires
de l’Académie Royale des Sciences, vol. 6, pp. 621–656, 1774. English translation in
[123].

[72] H. Lappalainen, “Fast fixed-point algorithms for Bayesian blind source separation,”
Publications in Computer and Information Science A56, Helsinki University of Tech-
nology, Espoo, Finland, 1999.

[73] S. Lauritzen, ed., Graphical Models. Oxford University Press, 1996.

[74] D. D. Lee and H. S. Seung, “Unsupervised learning by convex and conic coding,” in
Advances in Neural Information Processing Systems 9, NIPS*96, (Denver, Colorado,
USA, Nov. 2–5, 1996), pp. 515–521, The MIT Press, 1997.

[75] P. M. Lee, Bayesian Statistics: An Introduction. Oxford University Press, 1989.

[76] T.-W. Lee, Independent Component Analysis — Theory and Applications. Kluwer,
1998.

[77] L. A. Levin, “Universal sequential search problems,” Problems of Information Trans-
mission, vol. 9, no. 3, pp. 256–266, 1973.

[78] M. Li and P. M. B. Vitányi, An Introduction to Kolmogorov Complexity and its
Applications. Springer-Verlag, 2nd, extended ed., 1997.

[79] J. K. Lin, D. Grier, and J. D. Cowan, “Faithful representation of separable input
distribution,” Neural Computation, vol. 9, no. 6, pp. 1305–1320, 1997.

[80] W. Maass and C. M. Bishop, eds., Pulsed Neural Networks. The MIT Press, 1999.

[81] D. J. C. MacKay, “A practical Bayesian framework for backpropagation networks,”
Neural Computation, vol. 4, no. 3, pp. 448–472, 1992.

[82] D. J. C. MacKay, “Developments in probabilistic modelling with neural networks—
ensemble learning,” in Neural Networks: Artificial Intelligence and Industrial Appli-
cations. Proceedings of the 3rd Annual Symposium on Neural Networks, (Nijmegen,
Netherlands, Sep. 14–15), pp. 191–198, Springer-Verlag, 1995.

[83] D. J. C. MacKay, “Ensemble learning for hidden Markov models.” Available from
http://wol.ra.phy.cam.ac.uk/, 1997.

[84] D. J. C. MacKay, “Choice of basis for laplace approximation,” Machine Learning,
vol. 33, no. 1, pp. 77–86, 1998.

52

[85] D. J. C. MacKay and M. N. Gibbs, “Density networks,” in Proceedings of Society for
General Microbiology Edinburgh Meeting, 1997.

[86] G. C. Marques and L. B. Almeida, “An objective function for independence,” in
Proceedings of the International Conference on Neural Networks, ICNN’96, (Wash-
ington, DC, USA, June 3–6), pp. 453–457, 1996.

[87] G. C. Marques and L. B. Almeida, “Separation of nonlinear mixtures using pat-
tern repulsion,” in Proceedings of the First International Workshop on Independent
Component Analysis and Signal Separation, ICA’99, (Aussois, France, Jan. 11–15),
pp. 277–282, 1999.

[88] P. S. Maybeck, Stochastic Models, Estimation, and Control, vol. 1. Academic Press,
1979.

[89] G. J. McLachlan and K. E. Basford, Mixture Models. Inference and Applications to
Clustering. Marcel Dekker, 1988.

[90] J. Moody and C. Darken, “Fast learning in networks of locally-tuned processing
units,” Neural Computation, vol. 1, no. 2, pp. 281–294, 1989.

[91] R. M. Neal, “Connectionist learning of belief networks,” Artificial Intelligence,
vol. 56, no. 1, pp. 71–113, 1992.

[92] R. M. Neal, Bayesian Learning for Neural Networks. No. 118 in Lecture Notes in
Statistics, Springer-Verlag, 1996.

[93] R. M. Neal and G. E. Hinton, “A view of the EM algorithm that justifies incremental,
sparse, and other variants,” in Jordan [59], pp. 355–368, 1999.

[94] J.-H. Oh and H. S. Seung, “Learning generative models with the up-propagation
algorithm,” in Advances in Neural Information Processing Systems 10, NIPS*97,
(Denver, Colorado, USA, Dec. 1–6, 1997), pp. 605–611, The MIT Press, 1998.

[95] E. Oja, “The nonlinear PCA learning rule in independent component analysis,” Neu-
rocomputing, vol. 17, no. 1, pp. 25–46, 1997.

[96] J. J. Oliver and R. A. Baxter, “MML and Bayesianism: Similarities and differences,”
Tech. Rep. TR 206, Department of Computer Science, Monash University, Australia,
1994.

[97] J. J. Oliver and D. J. Hand, “Introduction to minimum encoding inference,” Tech.
Rep. TR 205, Department of Computer Science, Monash University, Australia, 1994.

[98] P. Pajunen, “Nonlinear independent component analysis by self-organizing maps,”
in Proceedings of the Sixth International Conference on Artificial Neural Networks,
ICANN’96, (Bochum, Germany, July 16–19), pp. 815–819, 1996.

[99] P. Pajunen, “Blind source separation using algorithmic information theory,” Neuro-
computing, vol. 22, pp. 35–48, 1998.

[100] P. Pajunen and J. Karhunen, “A maximum likelihood approach to nonlinear blind
source separation,” in Proceedings of the Seventh International Conference on Artifi-
cial Neural Networks, ICANN’97, (Lausanne, Switzerland, Oct. 8–10), pp. 541–546,
1997.

53

[101] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan-Kaufman, 1988.

[102] J. W. Pratt, H. Raiffa, and R. O. Schlaifer, Introduction to Statistical Decision The-
ory. The MIT Press, 1995.

[103] S. J. Press, Bayesian Statistics: Principles, Models, and Applications. Wiley, 1989.

[104] P. Rakic and W. Singer, eds., Neurobiology of Neocortex. John Wiley & Sons, 1988.

[105] R. P. N. Rao and D. H. Ballard, “Kalman filter model of the visual cortex,” Neural
Computation, vol. 9, no. 4, pp. 721–763, 1997.

[106] J. Rissanen, “Modeling by shortest data description,” Automatica, vol. 14, no. 5,
pp. 465–471, 1978.

[107] J. Rissanen, “Fisher information and stochastic complexity,” IEEE Transactions on
Information Theory, vol. 42, no. 1, pp. 40–47, 1996.

[108] J. Rissanen and G. G. Langdon, Jr., “Arithmetic coding,” IBM Journal of Research
and Development, vol. 23, no. 2, pp. 149–162, 1979.

[109] J. Rissanen and G. G. Langdon, Jr., “Universal modeling and coding,” IEEE Trans-
actions on Information Theory, vol. 27, pp. 12–23, 1981.

[110] D. Rubin and D. Thayer, “EM algorithms for factor analysis,” Psychometrika, vol. 47,
pp. 69–76, 1982.

[111] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representa-
tions by error backpropagation,” in Parallel distributed processing (D. E. Rumelhart
and J. L. McClelland, eds.), vol. 1, pp. 318–362, The MIT Press, 1986.

[112] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Prentice-Hall,
1995.

[113] L. K. Saul, T. Jaakkola, and M. I. Jordan, “Mean field theory for sigmoid belief
networks,” Journal of Artificial Intelligence Research, vol. 4, pp. 61–76, 1996.

[114] L. J. Savage, The Foundations of Statistics. Dover Publications, 1954.

[115] M. J. Schervish, Theory of Statistics. Springer-Verlag, 1995.

[116] J. Schmidhuber, “Discovering neural nets with low Kolmogorov complexity and high
generalization capability,” Neural Networks, vol. 10, no. 5, pp. 857–873, 1997.

[117] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical
Journal, vol. 27, pp. 379–423 and 623–656, 1948.

[118] R. H. Shumway and D. S. Stoffer, “An approach to time series smoothing and fore-
casting using the EM algorithm,” Journal of Time Series Analysis, vol. 3, no. 4,
pp. 253–264, 1982.

[119] R. J. Solomonoff, “A formal theory of inductive inference. Part I,” Information and
Control, vol. 7, no. 1, pp. 1–22, 1964.

54

[120] R. J. Solomonoff, “A formal theory of inductive inference. Part II,” Information and
Control, vol. 7, no. 2, pp. 224–254, 1964.

[121] H. W. Sorenson, ed., Kalman Filtering: Theory and Application. IEEE Press, 1985.

[122] C. Spearman, ““General intelligence,” objectively determined and measured,” Amer-
ican Journal of Psychology, vol. 15, pp. 201–293, 1904.

[123] S. M. Stigler, “Translation of Laplace’s 1774 memoir on “Probability of causes”,”
Statistical Science, vol. 1, no. 3, pp. 359–378, 1986.

[124] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. The MIT
Press, 1998.

[125] A. Taleb and C. Jutten, “Nonlinear source separation: The post-nonlinear mixtures,”
in Proceedings of the European Symposium on Artificial Neural Networks, ESANN’97,
(Bruges, Belgium, Apr. 16–18), pp. 279–284, 1997.

[126] A. Taleb and C. Jutten, “Source separation in post-nonlinear mixtures,” IEEE Trans-
actions on Signal Processing, vol. 47, no. 10, pp. 2807–2820, 1999.

[127] K. Tanaka, “Inferotemporal cortex and object vision,” Annual Reviews in Neuro-
science, vol. 10, pp. 109–139, 1996.

[128] H. Valpola, X. Giannakopoulos, A. Honkela, and J. Karhunen, “Nonlinear inde-
pendent component analysis using ensemble learning: Experiments and discussion,”
in Proceedings of the Second International Workshop on Independent Component
Analysis and Blind Signal Separation, ICA 2000, (Helsinki, Finland, June 19–22),
pp. 351–356, 2000.

[129] A. Wald, Statistical Decision Functions. Wiley, 1950.

[130] C. S. Wallace and D. M. Boulton, “An information measure for classification,” Com-
puter Journal, vol. 11, no. 2, pp. 185–194, 1968.

[131] C. S. Wallace and P. R. Freeman, “Estimation and inference by compact coding,”
Journal of the Royal Statistical Society (Series B), vol. 49, no. 3, pp. 240–265, 1987.

[132] J. E. Whitesitt, Boolean Algebra and Its Applications. Dover Publications, 1995.

[133] R. R. Yager and L. A. Zadeh, An Introduction to Fuzzy Logic Applications in Intel-
ligent Systems. Kluwer Academic Publishers, 1992.

[134] H. H. Yang, S. Amari, and A. Cichocki, “Information back-propagation for blind
separation of sources from non-linear mixtures,” in Proceedings of the International
Conference on Neural Networks, ICNN’97, (Houston, Texas, USA, June 9–12), 1997.

[135] H. H. Yang, S. Amari, and A. Cichocki, “Information-theoretic approach to blind
separation of sources in non-linear mixture,” Signal Processing, vol. 64, pp. 291–300,
1998.

[136] L. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338–353, 1965.

Publication I-1 55

USING AN MDL-BASED COST FUNCTION
WITH NEURAL NETWORKS

Harri Lappalainen

In Proceedings of the International Joint Conference on Neural Networks, IJCNN’98, (An-
chorage, Alaska, USA, May 4–9), pp. 2384-2389, 1998.

Abstract

The minimum description length (MDL) principle is an information theoretically based
method to learn models from data. This paper presents how to efficiently use an MDL-
based cost function with neural networks. As usual, the cost function can be used to adapt
the parameters in the network, but it can also include terms to measure the complexity of
the structure of the network and can thus be applied to determine the optimal structure.
The basic idea is to convert a conventional neural network such that each parameter and
each output of the neurons is assigned a mean and a variance. This greatly simplifies the
computation of the description length and its gradient with respect to the parameters,
which can then be adapted using standard gradient descent.

1 Introduction

Intuitively, the idea behind MDL is that in order to be able to compress any given data one
has to capture its regularities and structure. There are information-theoretical reasons why
minimising the description length should yield models with good generalisation properties
[5], and it has been shown in practise that description length has strong correlation with
the expected classification error of an independent test set [3].

To understand the principle behind MDL, suppose there is a sender who wants to
transmit a given data to a receiver. We shall assume that the sender will use a two-
part coding scheme: he will first send a model of the data and then the data which is
compressed using the model. The more bandwidth is used for the model the more the
data is compressed. At some point, however, the cost of using a longer model becomes
higher than the gain in compression of the data. Clearly, the length of the model should
not exceed the length of the description of the data without using any model. Figure 1
shows schematically the relation between model complexity and the description length of
the model and the data. Of course it is not necessary to actually code and transmit the
model and the data in order to estimate the optimal model. It is enough to calculate what
would be the description length if the data were compressed.

The terms under- and over-fitting can be seen from MDL point of view. The optimal
model is by our definition the one that has the minimum description length. Under-fitting
means that the complexity of a model is below, and over-fitting that the complexity is
above that of the optimal model.

It is important to recognise that the optimal model is not unique. Before transmitting
the model and the data, the sender and the receiver must have agreed on how the message
is coded, or otherwise the receiver would not know how to interpret it. The description
length of the information used in the interpretation cannot be measured, because we would

56 Publication I-2

simple model complex model

L

O

= L(total)
= L(data)
= L(model)

Figure 1: The relation between model complexity and description length is shown schemat-
ically. Increasing model complexity allows better coding of data, but with the cost of
increasing the length of model description. The best model has the minimum total de-
scription length (point O).

need to know how to interpret the coded interpretation, etc. Therefore there must always
be some aspect of the model whose description length is neglected, namely the coding
scheme. It determines the description length of the data, which means that models can
only be compared with respect to a given coding scheme. Using Bayesian terms, the
coding scheme implicitly defines a prior over the models. It is, however, often much easier
to incorporate prior knowledge in the design of the code than assign a Bayesian prior over
the models.

1.1 MDL-based cost functions for supervised and unsupervised
learning

A common problem in pattern recognition is that one wants to recognise objects in a given
raw data. One might have a large amount of raw data available, but only a small amount
of labelled data. The typical approach is to extract features from the raw data in an
unsupervised manner and then to find a mapping from the features to the corresponding
labels (desired outputs) in a supervised manner. The whole process can be described by
IU → (FU = IS) → DS , where the arrows stands for mappings, I for input, F for feature,
D for desired output, U for unsupervised and S for supervised.

Let us denote the model by M . In supervised learning one wants to find a mapping
from the input data IS to the desired output data DS . The mapping is described by the
model MS , whose structure and parameters are to be estimated. In a conventional neural
network, the cost function C measures the error in the mapping: C(DS − MS(IS)). The
MDL-based cost function for supervised learning is L(DS |MS , IS)+L(MS): the description
length of the output data given the model and the input data plus the description length of
the model. The first term corresponds to C(DS − MS(IS)) and the second term penalises

Publication I-3 57

for the complexity of the model. The input is assumed to be known by both the sender
and the receiver and is not included in the description length.

In unsupervised learning one wants to find features FU which compactly describe the
input data IU . The quality of the features is evaluated by estimating how much informa-
tion about inputs they preserve, that is, how well the inputs can be reconstructed from
the features. We shall consider a generative model MU which defines the reconstruction
mapping: ÎU = MU (FU). The reconstruction error which measures the quality of the fea-
tures is then C(IU − MU (FU)). We shall use vector quantisation to illuminate the use of
a generative model.

In vector quantisation, the model consists of model vectors mi, which directly define
the reconstruction mapping MU : given an index i, the reconstruction is mi. The index
i thus plays the role of the feature. The quality of the feature is measured with the
reconstruction error C, or quantisation error as it is often called in connection with vector
quantisation. The feature is defined as the index that minimises the reconstruction error,
or to put it in other words, the index of the closest model vector: FU = M−1

U (IU) =
arg minF C(IU − MU (F)). The model can be adapted by minimising the reconstruction
error, that is, by moving the closest model vector even closer to the input. The features
and the model are thus both defined as the minimum of the reconstruction error.

In addition to the term measuring the reconstruction error, the MDL-based cost func-
tion for unsupervised learning has terms penalising the complexity of the model and the
features: L(IU |MU , FU) + L(MU) + L(FU). The cost function is used in exactly the same
way as with vector quantisation: the features and the model are found by minimising it.

The features are often considered a subset of the parameters of the model, because they
too have to be estimated from the data and are included in the cost function. The only
difference between the features and the parameters is that the features change for each
input element, whereas the parameters are constant for different data elements.

2 Measuring the description length

Typically neural networks have relatively simple structure but many parameters, and it is
usually easy to design a satisfactory coding for the structure. We shall therefore concentrate
on measuring the description length of the parameters of the model.

If the transmitted data consists of discrete elements with known probabilities, then the
length needed in transmission can be computed. It is well-known that if the probability of
a data element D is P (D), then the transmission of the element D using the optimal code
takes − log2 P (D) bits [9, 8]. We shall hereafter measure information in base e instead of
base 2: − log2 P (D) bits equals − lnP (D) nats, where 1 nat equals log2 e bits.

The output data and the parameters in the network have continuous values instead
of discrete. Communicating a random continuous value at an infinite precision would
require an infinite number of bits, and therefore the values have to be discretised. If the
discretisation is done with precision εx, then the range of values is divided into small
bins with size εx. Suppose we know the probability distribution p(x). If εx is small
enough, p(x) is approximately linear throughout each bin and the probability of each bin
is approximately p(x)εx, which means that the description length L of the value x is

L(x) = − ln p(x)εx = − ln p(x) − ln εx. (1)

Equation 1 shows that in order to compute the description length, each continuos value
must be assigned a probability distribution and an accuracy.

58 Publication I-4

The model is described by its structure, its parameters θ = [θ1, θ2, . . .] and their accu-
racies ε

�

. We shall consider a coding scheme where the model is used to assign a probability
distribution p(D) for each data element D ∈ D. Some of the parameters may also be hyper
parameters which are used to assign probability distribution pθi

for other parameters. The
data is discretised with accuracy εD, but that can be considered an integral part of the
coding scheme. This is because the effect of εD does not depend on the model: it always
adds a constant −N ln εD term in the description length, and can therefore be omitted (N
is the number of data elements). The accuracy of the parameters (ε

�

) does depend on the
model, however, and must be taken into account.

In the literature, several different ways to measure the description length have been
proposed. Our approach dates back to Wallace and Boulton [10] and similar approaches
have been used in [4, 11]. Alternative approaches have been presented e.g. in [6, 7].

Suppose the target value for the parameter vector is θ. Let us denote the actual discre-
tised value by θ̂ and the corresponding round-off error by θ̃ = θ̂−θ. The errors depend on
the locations of the borders between the bins, but there is no reason to favour one discreti-
sation over the others, and therefore we should compute the expectation of the description
length over the distribution of θ̃, which is approximately even in the range [−ε

�

/2, ε

�

/2].
We are also going to assume that the errors are uncorrelated, that is, E{θ̃iθ̃j} = 0.

The expected description length can be approximated by utilising the second order
Taylor’s series expansion of L(θ̂) about θ.

L(θ̂) ≈ L(θ) +
∑

i

∂L

∂θ̂i

θ̃i +
1

2

∑
i

∑
j

∂2L

∂θ̂i∂θ̂j

θ̃iθ̃j (2)

Here the derivatives of L are evaluated at θ. Taking expectation over θ̃ yields the cost
function:

LE(θ, ε

�

)
def
= E˜

�

{L(θ̂)} ≈ L(θ) +
1

2

∑
i

∂2L

∂θ̂2
i

E{θ̃2
i }. (3)

Here we have used E{θ̃i} = 0 for all i and E{θ̃iθ̃j} = 0 for all i �= j. The optimal
parameters θ and their accuracies ε

�

can be solved by minimising the expected description
length LE .

Since the cost function includes second order derivatives of L with respect to the pa-
rameters, it might be troublesome to use it with a large neural network. First the outputs
have to be computed in a feedforward phase as usual. Approximations of the second order
derivatives needed in the cost function can be computed in a process analogous to back-
propagation. It involves two feedback phases: the first one is used to compute the first
order derivatives and the second one to compute the second order derivatives. It is then
laborious to use backpropagation to compute the gradient, because it has to be applied to
all three phases, resulting in a total of six phases.

Fortunately we can overcome these difficulties by recognising that it is not the second
order derivatives we wish to evaluate but the expectation over θ̃.

3 Computing the expectation of the description length
for neural networks

In this section we shall describe a method for computing the expectation of the description
length for neural networks in an efficient feedforward process. We shall first write down the

Publication I-5 59

feedforward equations for the outputs of the neurons and the description length, and then
take expectations of the equations. This results in converted feedforward equations, which
automatically yield the expected description length. It is then easy to use backpropagation
to adapt the parameters. For the sake of simplicity, we shall only consider supervised learn-
ing with multilayer perceptrons (MLP), although the method is general and can be applied
to practically any type of neural network, both supervised and unsupervised learning.

3.1 Feedforward equations

We shall consider a standard MLP-network with input, hidden and output layers. In
order to be able to write the feedforward equations in a compact form, we shall assign all
parameters and outputs of the neurons a unique index. In our notation, ξi can mean either
the value of a parameter or output of a neuron, that is, ξi are used to denote any value
than can be an input for neurons. The set of indices for the parameters is denoted by P
and the transfer functions of the neurons are denoted by fi. The values ξi are defined by
equation 4.

ξi(θ̂, t)
def
=

⎧⎪⎪⎨⎪⎪⎩
θ̂i = θi + θ̃i parameters (i ∈ P)
Di(t) desired outputs
Ii(t) input neurons
fi(ξj |j ∈ Ji) other neurons

(4)

Input and output data is parametrised by time t. We have used a shorthand notation
for the parameters of a function. For example f(ξj |j ∈ {2, 4, 5}) = f(ξ2, ξ4, ξ5). The set
Ji thus contains the indices of the inputs to the neuron i or, equivalently, indices of the
parameters of the function fi. The network is assumed to be strictly feedforward, which
means that j ∈ Ji implies j < i.

For hidden and output neurons the transfer functions fi are like in any conventional
neural network. They can be sums of inputs multiplied by weights, sigmoids, radial basis
functions, etc.

The cost function for supervised learning is L(MS) + L(DS |MS) as explained in sec-
tion 1.1. The description lengths are computed according to equation 1, with the exception
that the terms − ln ε are omitted from L(DS |MS). For each Di we shall assign a function
fj , which is used to compute the terms − ln p(Di). The set of indices for these functions
is denoted by LD. Similarly, the set LP comprises of the indices of functions fj , which
evaluate the terms − ln p(θi). We can now write down the cost function in terms of ξi and
εθi

.

L(θ̂, ε

�

) =
∑

i∈LP

ξi −
∑
i∈P

ln εθi
+

N∑
t=1

∑
i∈LD

ξi(t) (5)

The first two terms correspond to L(MS) and the third term to L(DS |MS).

If a parameter θi does not have an associated neuron in the set LP , it means that we
tacitly assume the probability distribution p(θi) to be constant throughout the range of
values of θi, that is, we assume the value of the parameter to be evenly distributed. It has
to be reminded that although the constant term − ln p(θi) can be omitted when adapting
the parameters and their accuracies, it should still be taken into account when models with
different parametrisations are compared.

60 Publication I-6

I I II

D D

I

Hidden

Output

Desired output

Description length

Input

ff f

f

ff

f

Figure 2: Structure of a MLP network with an MDL-based cost function is shown schemat-
ically. The layers below the dotted line are the same as in a conventional MLP: input,
hidden and output layers. The functions above the dotted line are used to compute the
cost function L.

The structure of the network is shown in figure 2. Desired outputs are marked by D,
input neurons by I, and other neurons by f . The parameters of the network are not shown.
The functions f above the dotted line are the ones used to compute the description length
of the parameters and the data.

3.2 Expectation of the description length

Let us define µi
def
= E˜

�

{ξi}. Taking expectation over θ̃ from equation 4 yields

µi(θ, ε

�

, t) =

⎧⎪⎪⎨⎪⎪⎩
θi

Di(t)
Ii(t)
E{fi(ξj |j ∈ Ji)}

(6)

and expectation from equation 5 yields

LE(θ, ε

�

)
def
= E{L(θ̂, ε

�

)} = ∑
i∈LP

µi −
∑
i∈P

ln εθi
+

N∑
t=1

∑
i∈LD

µi(t). (7)

We have dropped the subscripts from the expectation operators, but they are always taken
over θ̃.

3.3 Expectation of a function

Equations 6 and 7 show that we could compute the expected description length if we knew
how to evaluate the expectations of the functions fi.

Publication I-7 61

Let fi(ξj |j ∈ Ji) be a function whose expectation value we would like to compute. As
before, we shall approximate fi with its second order Taylor’s series expansion. However,
we are not going to expand fi with respect to the discretised parameters θ̂ of the network
but the direct parameters ξj of the function fi. The expansion is thus computed about the
expectation values µj = E{ξj}.

ξi = fi(ξj |j ∈ Ji) ≈ fi(µj |j ∈ Ji) +
∑
j∈Ji

∂fi

∂ξj
(ξj − µj)

+
1

2

∑
j∈Ji

∑
k∈Ji

∂2fi

∂ξj∂ξk
(ξj − µj)(ξk − µk) (8)

Taking expectation from both sides of equation 8 yields

µi = E{fi(ξj |j ∈ Ji)} ≈

fi(µj |j ∈ Ji) +
∑
j∈Ji

vj

2

∂2fi

∂ξj
2 . (9)

Here we have denoted the variance of ξj by vj : vj
def
= E{(ξj −µj)

2}. The first order terms
disappear because E{ξj − µj} = 0. We have also assumed that for all j �= k, either ξj and

ξk are uncorrelated or ∂2fi

∂ξj∂ξk
= 0, which removes the second order cross terms.

3.4 Variance of a function

We still need the variances vj . Since each error θ̃i is evenly distributed in the range
[−εθi

/2, εθi
/2], the variances of the parameters are given by vi = ε2θi

/12. The variance of
the inputs and desired outputs can be assumed to be zero, or they can be assigned some
values if there is prior knowledge about, for example, the equipment used to measure the
values.

In order to compute the variance of the function fi, we shall approximate it with first
order Taylor’s series expansion.

ξi = fi(ξj |j ∈ Ji) ≈ fi(µj |j ∈ Ji) +
∑
j∈Ji

∂fi

∂ξj
(ξj − µj) (10)

According to this approximation, µi = E{ξi} ≈ fi(µj |j ∈ Ji), which yields

vi = E{(ξi − µi)
2} ≈ ∑

j∈Ji

∑
k∈Ji

∂fi

∂ξj

∂fi

∂ξk
E{(ξj − µj)(ξk − µk)} (11)

Again we can drop out the cross terms if all ξj are mutually uncorrelated. This yields our
final approximation for the variance of a function:

vi ≈
∑
j∈Ji

(
∂fi

∂ξj

)2

vj (12)

Notice that when computing the variance, one cannot mix the first and second order
approximation for µi, since that might result in negative values for vi.

62 Publication I-8

3.5 Converted feedforward equations

We shall now collect together the results derived in this section.

µi(θ,σ2, t) =

⎧⎪⎪⎨⎪⎪⎩
θi

Di(t)
Ii(t)

fi(µj |j ∈ Ji) +
∑

j∈Ji

vj

2
∂2fi

∂ξj
2

(13)

vi(θ,σ2, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ2

i = ε2θi
/12

0 (or the variance of Di(t))
0 (or the variance of Ii(t))∑

j∈Ji

(
∂fi

∂ξj

)2

vj

(14)

Substituting εθi
= (12vi)

1/2 into equation 7 yields equation 15 for the expected descrip-
tion length LE .

LE(θ,σ2) =
∑

i∈LP

µi −
∑
i∈P

1

2
ln 12vi +

N∑
t=1

∑
i∈LD

µi(t) (15)

Equations 13 and 14 describe how to convert a standard feedforward network into a
network where the output of each neuron is assigned a mean and a variance. Equation 15
then defines the MDL-based cost function for such a network. The gradient of the cost
function can be computed using standard backpropagation algorithm.

4 Discussion

4.1 Effects of approximations

In the approximation of the means and variances, the inputs of each function are assumed
to be uncorrelated. If there exist i and j such that the value of θi is propagated in more than
one separate route to the parameters of the function fj , then the parameters are correlated
and the computation of mean and variance may be inaccurate. This should not be a very
severe restriction; in an MLP with one hidden layer, for example, no parameter (weight)
affects any output neuron in more than one separate route. Should the approximation turn
out to be too inaccurate, some of the cross terms may be taken into account.

We have assumed that the errors θ̃ made in the discretisation of the parameters are
mutually uncorrelated. It can be argued that the estimate of the description length would
be more accurate if we took into account the dependence between parameters: a change
in the value of one parameter might be partially compensated by a suitable change in the
values of the others. Assuming uncorrelated errors effectively penalises parametrisations
with strong dependencies between parameters, since the description length could be made
shorter using a parametrisation which removes the dependencies. Usually it is desirable to
favour parametrisations with small dependencies, and thus the assumption of uncorrelated
discretisation errors is reasonable.

In order to have a decodable message, the accuracies of the parameter values should be
coded and sent before sending the truncated parameters. Wallace and Freeman [11] argue
that the values and the accuracies of the parameters are not independent, and one can
construct a decodable message with almost the same code length we have used.

Publication I-9 63

4.2 Relation to previous work

If we neglect the effect of finite accuracy to the description length and assume an infinite
precision, then the parameter values that minimise L are the ones that maximise the
posterior probability of the parameters, that is, the maximum a posteriori estimate. They
are not necessarily the same that minimise L when finite accuracy is taken into account,
however. Taking the expectation over θ̃ effectively measures and penalises the sensitivity of
L to the values of the parameters, thus finding a flatter minimum of L, which corresponds
to more probability mass of the posterior density.

Using such MDL-based arguments, Hochreiter and Schmidhuber have arrived in a very
similar algorithm, which they call the flat minimum search (FMS) [2]. Due to the similarity
of the penalty for the complexity of the model, the promising results they have achieved
should be reproductable with our method. Indeed, in preliminary simulations, we have
been able to reproduce the experiment 1 in [2]: noisy classification.

Although the cost function in FMS is very similar to ours, it does not define a description
length, and it is thus difficult to include measures of the complexity of the structure of
the network. The computation of our cost function appears to be more simple, but, on
the other hand, FMS does not assume independence of the parameters of the functions
in the network. In FMS the user has to give an extra parameter, a tolerable error, which
regulates the trade-off between the description length of the parameters and the data. In
our approach, the optimal accuracies for the parameters are estimated directly from the
data.

MDL has been used with neural networks to find representations in an unsupervised
manner in [1, 12, 13]. The main focus therein has been on discrete valued features, such
as the indices of vectors in vector quantisation. This paper concentrates on the coding of
real valued parameters and features, and thus complements the previous work.

References

[1] Geoffrey E. Hinton and Richard S. Zemel. Autoencoders, minimum description length
and Helmholz free energy. In Jack D. Cowan, Gerald Tesauro, and Joshua Alspector,
editors, NIPS 6, pages 3–10, San Francisco, 1994. Morgan Kaufmann.

[2] Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 9(1):1–
42, January 1997.

[3] Bernhard Pfahringer. Compression-based feature subset selection. In P. Turney, editor,
IJCAI-95 Workshop on Data Engineering for Inductive Learning. IJCAI-95 Workshop
Program Working Notes, Montreal, Canada, 1995.

[4] Jorma Rissanen. Modeling by shortest data description. Automatica, 14:465–471,
1978.

[5] Jorma Rissanen. A universal prior for integers and estimation by minimum description
length. Annals of Statistics, 11(2):416–431, 1983.

[6] Jorma Rissanen. Stochastic complexity. Journal of the Royal Statistical Society (Series
B), 49(3):223–239 and 252–265, 1987.

[7] Jorma Rissanen. Fisher information and stochastic complexity. IEEE Transactions
on Information Theory, 42(1):40–47, January 1996.

64 Publication I-10

[8] Jorma Rissanen and G. G. Langdon, Jr. Universal modeling and coding. IEEE
Transactions on Information Theory, 27:12–23, 1981.

[9] Claude E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379–423, July 1948.

[10] C. S. Wallace and D. M. Boulton. An information measure for classification. Computer
Journal, 11(2):185–194, 1968.

[11] C. S. Wallace and P. R. Freeman. Estimation and inference by compact coding.
Journal of the Royal Statistical Society (Series B), 49(3):240–265, 1987.

[12] Richard S. Zemel. A minimum description length framework for unsupervised learning.
PhD thesis, University of Toronto, Canada, 1993.

[13] Richard S. Zemel and Geoffrey E. Hinton. Developing population codes by minimizing
description length. In Jack D. Cowan, Gerald Tesauro, and Joshua Alspector, editors,
NIPS 6, pages 11–18, San Francisco, 1994. Morgan Kaufmann.

Publication II-1 65

ENSEMBLE LEARNING FOR INDEPENDENT
COMPONENT ANALYSIS

Harri Lappalainen

In Proceedings of the First International Workshop on Independent Component Analysis
and Blind Signal Separation, ICA’99, (Aussois, France, Jan. 11-15), pp. 7-12, 1999.

Abstract

In this paper, a recently developed Bayesian method called ensemble learning is applied to
independent component analysis (ICA).

Ensemble learning is a computationally efficient approximation for exact Bayesian anal-
ysis. In general, the posterior probability density function (pdf) is a complex high dimen-
sional function whose exact treatment is difficult. In ensemble learning, the posterior pdf
is approximated by a more simple function and Kullback-Leibler information is used as
the criterion for minimising the misfit between the actual posterior pdf and its parametric
approximation. In this paper, the posterior pdf is approximated by a diagonal Gaussian
pdf.

According to the ICA-model used in this paper, the measurements are generated by a
linear mapping from mutually independent source signals whose distributions are mixtures
of Gaussians. The measurements are also assumed to have additive Gaussian noise with
diagonal covariance.

The model structure and all parameters of the distributions are estimated from the
data.

1 Introduction

Recently there has been a lot of interest in Bayesian methods but few applications for unsu-
pervised learning. One of the most important benefits of Bayesian methods is the possibility
for model comparison. In supervised learning, cross validation or other methods can be
used. For unsupervised learning this is usually not possible, however, since reconstruction
error decreases also for the test set as the complexity of the model increases. The ability to
optimise the structure of the model is thus particularly valuable in unsupervised learning.

Both ensemble learning, first used in [1], and independent component analysis using
mixture of Gaussians model for sources, first used in [2], are existing techniques, but they
have not been combined previously.

The reader is assumed to have basic knowledge about Bayesian probability theory and
ICA.

2 Ensemble learning

Assume we would like to make a prediction, decision, etc., based on measurements and
some kind of models. From the axioms of Bayesian probability theory it follows that all
the models should be used in the process and the models should be weighted according

66 Publication II-2

to the posterior probabilities of the models. This averaging over models is the essence of
Bayesian analysis.

Usually the models include unknown real values and therefore the posterior probability
is expressed by a posterior pdf. Unfortunately the posterior pdf is typically a complex
high dimensional function whose exact treatment is difficult. In practice, it has to be
approximated in one way or another.

In ensemble learning, a parametric computationally tractable approximation – an en-
semble – is chosen for the posterior pdf. Let P denote the exact posterior pdf and Q the
ensemble. The misfit between P and Q is measured with Kullback-Leibler information IKL

between Q and P .

IKL(Q;P) = EQ

{
ln

Q

P

}
The parameters of the ensemble are optimised to fit the posterior by minimising IKL(Q;P).

Ensemble learning was first used in [1] where it was applied to a multi-layer perceptron
with one hidden layer. Since then it has been used e.g. in [3-9].

2.1 Model selection

An important special case of approximation of the posterior pdf is the model selection.
The posterior pdf is typically multimodal, but often almost all of the probability mass is
located around the largest peak of the posterior pdf. When there is a lot of data compared
to the complexity of the models, this is almost always the case. In our case, approximating
the posterior pdf with only one peak is usually reasonably accurate.

Notice that the posterior density itself has no special meaning regarding the averaging
over models; only the probability mass matters. A broad peak with low density can be
more important than a sharp peak with high density. Over-learning results in high but
very narrow peaks. The Kullback-Leibler information automatically takes into account the
probability mass and is therefore robust against over-learning.

3 Model for the measurements

The measurements vectors {x(t)} are assumed to be generated by a linear mapping A from
mutually independent source signals {s(t)} and additive Gaussian noise {v(t)}.

x(t) = As(t) + v(t)

The components vi(t) of the noise are assumed to have means bi and variances e2σi . Another
way to put this is to say that x(t) has Gaussian distribution with mean As(t) + b and
diagonal covariance with components e2σi . Each component Aij of the linear mapping is
assumed to have zero mean and unit variance.

The distribution of each source signal is a mixture of Gaussians (MOG).

p(si(t)|ci, Si, γi) =

∑
j ecijG(si(t);Sij , e

2γij)∑
j ecij

The parameters cij are the logarithms of mixture coefficients, S the means and γ the
logarithms of the standard deviations of the Gaussians1 (here G(a; b, c) denotes a Gaussian
distribution over a with mean b and variance c).

1The Gaussians are parametrised by the logarithms of the standard deviations in order to make the
future assumption of roughly Gaussian posterior pdf valid.

Publication II-3 67

The distributions of parameters cij , Sij , γij , bi and σi are G(cij ; 0, e
2α), G(Sij ; 0, e

2ε),
G(γij ; Γ, e2δ), G(bi;B, e2ε) and G(σi; Σ, e2η).

The prior distribution of the hyperparameters α, ε, Γ, δ, B, β, Σ and η is assumed to
be uniform in the area of reasonable values for the hyperparameters.

To summarise: the eight hyperparameters are assigned flat prior pdfs. The distributions
of other parameters are defined hierarchically from these using Gaussian distributions each
parametrised by the mean and the logarithm of the standard deviation. The joint pdf of
{x(t), s(t), A, b, σ, c, S, γ, α, ε,Γ, δ, B, β,Σ, η} is simply the product of the independent pdfs.

4 Diagonal Gaussian ensemble

Given the measurements, the unknown variables of the model are the source signals, the
mixing matrix, the parameters of the noise and source distributions and the hyperparame-
ters. The posterior P is thus a pdf of all these unknown variables. For notational simplicity,
we shall sometimes denote these n variables by θ1, θ2, . . . , θn.

In order to make the approximation of the posterior pdf computationally tractable, we
shall choose the ensemble Q to be a Gaussian pdf with diagonal covariance. The ensemble
has twice as many parameters as there are unknown variables in the model because each
dimension of the posterior pdf is parametrised by a mean and variance in the ensemble. A
hat over a symbol denotes the mean and a tilde the variance of the corresponding variable.

Q(θ1, . . . , θn) =
n∏

i=1

G(θi; θ̂i, θ̃i)

The factorised ensemble makes the computation of the Kullback-Leibler informa-
tion IKL(Q;P) simple since the logarithm can be split into a sum of terms: the
terms EG(θi){lnG(θi)} = −1/2 ln 2πeθ̃i (entropies of Gaussian distributions) and terms
−EQ{lnPi}, where Pi are the factors of the posterior pdf. Notice that the posterior pdf
factorises into simple terms due to the hierarchical structure of the model; the posterior
pdf equals to the joint pdf divided by a normalising term.

To see how to compute the terms −EQ{lnPi}, let Pi = p(γij |Γ, ε) = G(γij ; Γ, ε).

−EQ{lnPi} = EQ{ (γij − Γ)2e−2ε + ln 2π

2
+ ε} (1)

It is easy to show that this equals to

[(γ̂ij − Γ̂)2 + γ̃ij + Γ̃]e2(ε̃−ε̂) + ln 2π

2
+ ε̂,

since according to the choice of Q, the parameters γij , Γ and ε have independent Gaussian
distributions.

The most difficult terms are the expectations of ln p(si(t)|ci, Si, γi). Approximation for
the expectation of this form is given in appendix A.

The normalising term in the posterior pdf only depends on those variables which are
given, in this case {x(t)}, and can therefore be neglected when minimising the Kullback-
Leibler information IKL(Q;P).

68 Publication II-4

5 Simulations

5.1 Data

Speech data was used for the simulations: 30 s of Finnish speech was digitised with 16
kHz sampling rate and high-pass filtered. Power spectra were computed every 8 ms using
short time Fourier transformations with Hamming windows of length 16 ms. This results
in 3749 vectors of dimension 128. Energy was computed for 34 channels whose spacing
imitates the frequency scale of human ear. Logarithms were taken from the energies after
adding small constants. The final data thus consisted of 3749 vectors of dimension 34.

This particular preprocessing was chosen because it is typical in current speech recog-
nition systems.

5.2 Minimisation

The ensemble Q was fitted to the posterior pdf by minimising IKL(Q;P). The particu-
lar technique for minimisation is not important regarding the results; everybody can use
their favourite algorithm. In these simulations, a variation of Newton’s method was used.
The parameters ŝ(t) and s̃(t) were iterated 15 times for each measurement vector x(t).
Other parameters were updated after going through all the measurements, and this was
iterated 200 times. The number of iterations was chosen conservatively. The details of the
minimisation procedure will be given in [10].

5.3 Results

Several different structures for the model were tested. The number of source signals and
the number of Gaussians in the mixtures was varied. The number of Gaussians in the
mixtures was same for all sources in each network. This is not to say that it would not be
perfectly simple to optimise the number of Gaussians for each source separately.

It turned out that the Kullback-Leibler information was minimised by a network with
23 dimensional source signals whose distributions were mixtures of three Gaussians. There
were 87 292 unknown variables in the model: 86 227 in s(t); 782 in A; 68 in b and σ; 207
in c, S and γ; and 8 in hyperparameters.

Figures 1–3 show the basis vectors, histograms and reconstructed distributions of the
23 source signals of the best network. The ordering in all three figures is the same. The
basis vectors in figure 1 probably do not seem very interesting for someone who is not
working with speech recognition. The basis is fairly close to cosine transformation which
is widely used for processing the spectra in speech recognition.

The histograms in figure 2 and the corresponding distributions in figure 3 show that the
algorithm works. The model has captures the salient features of the source distributions,
some of which are multimodal, skewed or kurtotic.

The second best fit was obtained by a network with two Gaussian in the mixtures, but
the probability mass it captured2 was over 1076 times smaller! It is therefore reasonable
to approximate the whole posterior pdf of all model structures and parameters by an
ensemble with a peak in only one model structure. It is also evident that in this case, any
prior information about the model structure has no significance.

2In [10] it will be explained how the relative probability masses of different models can be compared
using the Kullback-Leibler information computed by the algorithm. See also [9].

Publication II-5 69

10 20 30

−2

0

2

10 20 30

−2

0

2

10 20 30

−2

0

2

10 20 30

−2

0

2

10 20 30

−2

0

2

10 20 30

−2

0

2

10 20 30

−2

0

2

10 20 30

−2

0

2

10 20 30

−2

0

2

10 20 30

−2

0

2

10 20 30

−2

0

2

10 20 30

−2

0

2

10 20 30

−2

0

2

10 20 30

−2

0

2

10 20 30

−2

0

2

10 20 30

−2

0

2

10 20 30

−2

0

2

10 20 30

−2

0

2

10 20 30

−2

0

2

10 20 30

−2

0

2

10 20 30

−2

0

2

10 20 30

−2

0

2

10 20 30

−2

0

2

Figure 1: Each row vector of Â is a 34 dimensional basis vector corresponding to one
source. The frequency increaces from left to right in all the subimages.

For comparison, also models with only one Gaussian in the mixtures were tested. In this
case the logarithmic mixture coefficients cij can be dropped out from the model. The best
model with only one Gaussian was found to have over 101238 times less probability mass.
This shows that the algorithm agrees with human eye: it is clear that the distributions of
at least some of the source signals are far from Gaussian.

6 Discussion

6.1 Benefits

Probably the most important benefit of Bayesian analysis regarding unsupervised learning
is the ability to compare models. Not only can the different ICA-models be compared
to each other, they can also be compared to vector quantisation or any other statistical
models, provided that Bayesian analysis is also applied to these other models.

In ensemble learning, the treatment for missing values is very simple. Since they are
unknown variables, they are included in the ensemble and therefore their distribution will
be estimated similarly as for any other unknown variables.

6.2 Limitations

The method proposed here has limitations due to the simple structure of the ensemble.
The posterior pdf of the unknown variables is often close to Gaussian, but there can be
significant correlations. On the other hand, as the algorithm tries to fit the ensemble to
the posterior pdf, it tries to find a peak in the posterior which would satisfy the diagonality
assumption. In the simulations with only one Gaussian in the mixtures, for instance, the
linear mapping found by the algorithm will orthogonal because that makes the sources
independent in the posterior pdf.

70 Publication II-6

−5 0 5
0

50

100

150

−5 0 5
0

100

200

300

−2 0 2
0

100

200

−5 0 5
0

100

200

300

−2 0 2
0

100

200

−2 0 2
0

100

200

−1 0 1
0

100

200

−1 0 1
0

100

200

−1 0 1
0

100

200

−1 0 1
0

50

100

150

−1 0 1
0

100

200

−1 0 1
0

100

200

300

−1 0 1
0

100

200

−1 0 1
0

100

200

−0.5 0 0.5
0

50

100

150

−0.5 0 0.5
0

50

100

150

−0.5 0 0.5
0

50

100

150

−0.5 0 0.5
0

50

100

150

−0.5 0 0.5
0

50

100

150

−0.2 0 0.2
0

50

100

150

−0.5 0 0.5
0

100

200

−0.2 0 0.2
0

50

100

150

−0.2 0 0.2
0

50

100

150

Figure 2: The histograms of the means ŝi(t) of the sources.

There are two significant cases where the factorial assumption for the ensemble is too
strong. If the row vectors of the linear mapping A are far from orthogonal, the source
signals are correlated in the posterior pdf. Another case is when the amount of noise in
the data is small and there are not very many data samples. In that case the components
of the linear mapping are correlated with the source signals in the posterior pdf.

The limitations can be overcome by adding off-diagonal terms to the covariance matrix
of the ensemble, but then the formulas for the Kullback-Leibler information become more
complicated. Full covariance matrix is, of course, out of the question: the ensemble already
had 174 584 parameters and with full covariance matrix the number would have been almost
7.62 × 109. It is more feasible to try to find model structures which make the off-diagonal
terms in the covariance matrix of the unknown variables small.

6.3 Relation to previous work

Many current ICA-algorithms do not estimate the noise level from the data. The ability to
estimate the noise is not due to the Bayesian analysis, however. It stems from the generative
model used here. Similar models have been used for instance in [2, 11]. The treatment in
the latter is very similar to ours: a factorial ensemble was fitted to the posterior pdf of the
source signals by minimising their Kullback-Leibler information. However, the posterior
did not include other parameters than the sources and only the maximum of the posterior
pdf was used. As argued in section 2.1, large density does not necessarily imply large mass,
and therefore the EM-algorithm used in [11] does not necessarily find a probable model for
the data, and can not, in any case, be used for comparing models with different structures.

6.4 Some generalisations

The most obvious generalisation would be to take into account the significant temporal
correlations. Also, the linear mapping can be replaced by a nonlinear one. An interesting
generalisation is to let the variances of the sources vary in time. According to this model,

Publication II-7 71

−5 0 5
0

1

2

3

−5 0 5
0

5

10

−2 0 2
0

1

2

3

−5 0 5
0

2

4

6

−2 0 2
0

2

4

6

−2 0 2
0

2

4

−1 0 1
0

1

2

3

−1 0 1
0

1

2

3

−1 0 1
0

1

2

3

−1 0 1
0

1

2

3

−1 0 1
0

1

2

3

−1 0 1
0

2

4

−1 0 1
0

1

2

3

−1 0 1
0

2

4

−0.5 0 0.5
0

1

2

−0.5 0 0.5
0

1

2

3

−0.5 0 0.5
0

1

2

−0.5 0 0.5
0

1

2

3

−0.5 0 0.5
0

1

2

3

−0.2 0 0.2
0

0.5

1

1.5

−0.5 0 0.5
0

1

2

3

−0.2 0 0.2
0

0.5

1

1.5

−0.2 0 0.2
0

0.5

1

1.5

Figure 3: The distributions of the sources reconstructed from ĉ, Ŝ and γ̂.

higher lever source signals modulate the variances of source signals.
Simulations with these and other variants will be published in [10]. All these models

have significantly larger probabilities than the simple ICA-models studied in this paper.

References

[1] Geoffrey Hinton and Drew van Camp. Keeping neural networks simple by minimizing
the description length of the weights. In Proceedings of the COLT’93, pages 5–13,
Santa Cruz, California, 1993.

[2] Éric Moulines, Jean-François Cardoso, and Elisabeth Gassiat. Maximum likelihood
for blind separation and deconvolution of noisy signals using mixture models. In
Proceedings of the ICASSP’97, pages 3617–3620, Munich, Germany, 1997.

[3] David J. C. MacKay. Developments in probabilistic modelling with neural networks—
ensemble learning. In Neural Networks: Artificial Intelligence and Industrial Appli-
cations. Proceedings of the 3rd Annual Symposium on Neural Networks, Nijmegen,
Netherlands, 14-15 September 1995, pages 191–198, Berlin, 1995. Springer.

[4] Lawrence K. Saul, Tommi Jaakkola, and Michael I. Jordan. Mean field theory for
sigmoid belief networks. Journal of Artificial Intelligence Research, 4:61–76, 1996.

[5] David J. C. MacKay. Comparison of approximate methods for handling hyperparam-
eters. Neural Computation. Submitted.

[6] David J. C. MacKay. Ensemble learning for hidden Markov models. Available from
http://wol.ra.phy.cam.ac.uk/, 1997.

[7] David Barber and Christopher M. Bishop. Ensemble learning for multi-layer networks.
In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances in Neural Information
Processing Systems 10, pages 395–401. MIT Press, 1998.

72 Publication II-8

[8] David Barber and Bernhard Schottky. Radial basis functions: a bayesian treatement.
In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances in Neural Information
Processing Systems 10, pages 402–408. MIT Press, 1998.

[9] Christopher M. Bishop, Neil Lawrence, Tommi Jaakkola, and Michael I. Jordan. Ap-
proximating posterior distributions in belief networks using mixtures. In M. I. Jordan,
M. J. Kearns, and S. A. Solla, editors, Advances in Neural Information Processing Sys-
tems 10, pages 416–422. MIT Press, 1998.

[10] Harri Lappalainen. Ensemble learning for unsupervised neural networks. Technical
report, Helsinki University of Technology, Laboratory of Computer and Information
Science, 1998. In preparation.

[11] Hagai Attias. Independent factor analysis. Neural Computation, 1998. Submitted.

A Derivations

An approximation for −EQ{ln p(si(t)|ci, Si, γi)} is derived here. The derivation makes use
of the Jensen’s inequality and second order Taylor’s series expansion.

Let gij = − lnG(si(t);Sij , γij). The expectation to be approximated is then

EQ

⎧⎨⎩ln
∑

j

ecij

⎫⎬⎭− EQ

⎧⎨⎩ln
∑

j

ecij−gij

⎫⎬⎭ .

Let us first concider the latter term. The logarithm of the sum is a strictly convex function
of gij . By Jensen’s inequality, moving the expectation inside a convex function cannot
result in increment. Replacing the latter expectation by

Esi(t),ci

⎧⎨⎩ln
∑

j

ecij−ESij,γij
{gij}

⎫⎬⎭
can therefore only result in increment in the approximation. This is safe because we are
trying to minimise the Kullback-Leibler information and approximating it above is thus
conservative.

The expectation ESij ,γij{gij} is similar to equation 1 and equals to

[(si(t) − Ŝij)
2 + S̃ij]e

2(γ̃ij−γ̂ij) + ln 2π

2
+ γ̂ij .

Let us denote this by ĝij(si(t)). At this point, the approximation equals to

Eci

⎧⎨⎩ln
∑

j

ecij

⎫⎬⎭− Esi(t),ci

⎧⎨⎩ln
∑

j

ecij−ĝij(si(t))

⎫⎬⎭ .

The terms inside the expectations are functions of si(t) and ci.
Next, let us concider a second order Taylor’s series expansion about ŝi(t) and ĉi. Notice

that the first order terms and all second order crossterms disappear in the expectations and

Publication II-9 73

only the constant and the pure second order terms remain. This is because the variables
are independent in the ensemble.

The constant term will be

ln
∑

j

eĉij − ln
∑

j

eĉij−ĝij(ŝi(t)) (2)

and the remaining second order terms of cij

Eci

⎧⎨⎩∑
j

(cij − ĉij)
2

2
ζij(1 − ζij)

⎫⎬⎭
and

−Eci

⎧⎨⎩∑
j

(cij − ĉij)
2

2
ξij(1 − ξij)

⎫⎬⎭ ,

where

ζij =
eĉij∑
k eĉik

and

ξij =
eĉij−ĝij(ŝi(t))∑
k eĉik−ĝik(ŝi(t))

.

Taking the expectations yields∑
j

c̃ij

2
[ζij(1 − ζij) − ξij(1 − ξij)]. (3)

The second order term of si(t) will be

Esi(t)

{
(si(t) − ŝi(t))

2

2
(φi + χ2

i − ψi)

}
,

where
φi =

∑
j

ξije
2(γ̃ij−γ̂ij),

χi =
∑

j

ξij(ŝi(t) − Ŝij)e
2(γ̃ij−γ̂ij)

and

ψi =
∑

j

ξij

[
(ŝi(t) − Ŝij)e

2(γ̃ij−γ̂ij)
]2

.

Taking the expectation yields

s̃i(t)

2
(φi + χ2

i − ψi). (4)

At this point, the approximation of the original expectation is thus the sum of terms in
equations 2–4.

74 Publication II-10

Some care has to be taken with the approximation resulting from the Taylor’s series
expansion because it utilises only local information about the shape of the posterior pdf.
For instance, if the mean ŝi(t) happens to be in a valley between two Gaussians, the term
in equation 4 will be negative. It then looks like the Kullback-Leibler information can be
decreased by increasing s̃i(t). This only holds for small s̃i(t), however. At some point
after the distribution of si(t) has become broader than the separation between the two
Gaussians, the Kullback-Leibler information starts to increase as s̃i(t) increases.

In order to avoid the problem, only positive terms of equations 3 and 4 will be included.
The final approximation is thus equation 2 plus the positive terms of equations 3 and 4.

Publication III-1 75

MULTI-LAYER PERCEPTRONS AS NONLINEAR
GENERATIVE MODELS FOR UNSUPERVISED

LEARNING: A BAYESIAN TREATMENT

Harri Lappalainen and Xavier Giannakopoulos

In Proceedings of the Ninth International Conference on Artificial Neural Networks,
ICANN’99, (Edinburgh, UK, Sep. 7–10), pp. 19-24, 1999.

Abstract

In this paper, multi-layer perceptrons are used as nonlinear generative models. The problem
of indeterminacy of the models is resolved using a recently developed Bayesian method
called ensemble learning. Using a Bayesian approach, models can be compared according
to their probabilities. In simulations with artificial data, the network is able to find the
underlying causes of the observations despite the strong nonlinearities of the data.

1 Introduction

Many types of unsupervised learning can be viewed as generative learning where the goal
is to find a model which explains how the observations were generated. The hypothesis
is that there are latent variables which have generated the observations by an unknown
mapping. The goal of the learning is to identify the latent variables and the unknown
mapping.

The success of the model depends on how well it can capture the structure of the
phenomena underlying the observations. Sometimes the process is well characterised by
assuming a discrete latent variable which produces different observations at different states.
Then the generative model used in vector quantisation is appropriate. If there is reason
to assume that several independent latent variables have generated the observations via a
linear mapping, then the model used in independent component analysis suits the problem
well.

In many realistic cases it is reasonable to assume that there are several latent variables
which affect the observations nonlinearly. One example could be the effect of pressure and
temperature on the properties of the end product of a chemical process. Although many
effects in real world are locally linear, the overall effects are almost always nonlinear. Also,
there are usually several factors whose nature and effect on the observations are completely
unknown and whose direct measurement is impossible for practical reasons.

The goal of this work is to develop methods for inferring the hidden causes, the latent
variables, from the observations alone. The nonlinear mapping from the unknown latent
variables to the observations is modelled with the familiar multi-layer perceptron network
(MLP).

2 Bayesian learning

Given the observed data, there are usually more than one way to explain it. With a flexible
model family — like MLP-networks — there is always an infinite amount of explanations

76 Publication III-2

and it could be difficult to choose among them. Choosing too complex a model would
result in overlearning, a situation where one not only finds the underlying causes of the
observations but also makes up meaningless explanations for the noise always present in
real signals. Choosing too simple a model results in underlearning, i.e., would leave some
of the true causes hidden.

The solution to the problem is that no single model should, in fact, be chosen. Prob-
ability theory tells that all the explanations should be taken into account and weighted
according to their posterior probabilities. This approach, known as Bayesian learning,
optimally solves the tradeoff between under- and overlearning.

The posterior probability densities of too simple models are low because they leave much
of the data unexplained while the peaks of the posterior probability density function (pdf)
of too complex models are high but also very narrow. This is because a complex model is
very sensitive to changes in its parameters. Due to the narrow peaks, too complex models
occupy little probability mass and therefore contribute little to expectations weighted by
the probabilities.

2.1 Parametric approximation of the posterior pdf

In practice, exact treatment of the posterior pdf of the models is impossible and the pos-
terior pdf needs to be approximated. The existing methods for doing this can be roughly
divided into stochastic sampling and parametric approximation. Stochastic sampling typ-
ically yields better approximations but is also computationally much more expensive. We
therefore opt for the computationally efficient parametric approximation which usually
yields satisfactory results.

A standard approach for parametric approximation is the Laplace’s method. One varia-
tion was introduced to the neural networks community by MacKay, who called his method
the evidence framework: one first finds a (local) maximum point of the posterior pdf and
then applies a second order Taylor’s series approximation for the logarithm of the posterior
pdf. This amounts to applying the Gaussian approximation to the posterior pdf.

Unfortunately, also Laplace’s method can suffer from overlearning. Recall that too
complex models have very high posterior probability densities. Therefore finding the max-
imum point of the posterior pdf focuses the search on too complex models. In the end, the
second order Taylor’s series approximation will reveal that the peak is narrow, but then it
is already too late.

2.2 Ensemble learning

Ensemble learning [3, 6], also known as variational learning, is a recently developed method
for parametric approximation of posterior pdfs where the search takes into account the
probability mass of the models. Therefore, it does not suffer from overlearning. The basic
idea is to minimise the misfit between the posterior pdf and its parametric approximation.

Let P denote the exact posterior pdf and Q its parametric approximation. The misfit
is measured with the Kullback-Leibler divergence between P and Q and thus the cost
function CKL is

CKL = EQ

{
log

Q

P

}
. (1)

Notice that the Kullback-Leibler divergence involves an expectation over a distribution
and, consequently, is sensitive to probability mass rather than probability density.

Publication III-3 77

3 Model structure

The basic model structure is the ordinary MLP network. It has a slight improvement,
however, and to motivate this, let us first consider how the learning with generative models
looks like in practice.

As usually, we start with a random initialisation of the weights. Then we take the first
observed data vector and find those values of the latent variables which best explain the
observed data. In vector quantisation, for instance, this is very easy. The latent variable
is the index of the model vector which is used for representing the data, and therefore the
best value for the latent variable is simply the index of the closest model vector.

Inverting an MLP network is harder, however, and we are going to use gradient descent
for doing it. Usually back propagation is used for updating the weights, but it can be
used for adapting the unknown inputs, the latent variables as well. Typically the gradient
descent has to be iterated several times in order to find the optimal latent variables.

To put the same thing differently, in supervised learning we are presented with the
inputs and desired outputs. In our case the latent variables play the role of inputs and
the observations play the role of outputs. The difference is that the latent variables are
unknown and to find them, the model has to be inverted.

Once the optimal latent variables are found, the inputs of the MLP network are known
and the learning proceeds as in supervised learning: the weights are adapted so as to make
the mapping from the found latent variables to the observed data even better. Again we can
draw a parallel from vector quantisation: in most learning algorithms the best matching
model vector is moved even closer to the input.

Then we take the next data vector, find the latent variables that best describe the data
by iterating the gradient descent a few times, adapt the weights, and so on.

In the beginning the learning can be slow, however. When the model is random, no
values of the latent variables are able to explain much of the data. The optimal latent
variables can be more or less random, and without sensible inputs it is difficult to adapt
the mapping. It would therefore seem that learning is bound to be slower with unsupervised
generative models than with supervised models.

Luckily, it turns out that the situation is much better because the mapping can be
learned layer by layer starting from the layers closest to the observations. The point is to
create parts of the network only when they may have meaningful input. In this process
the model is refined when getting closer to the solution.

In the beginning, only the linear layer is created, together with first layer latent variables
which act as training wheels for the network. At this point the mapping is linear and the
network quickly finds some meaningful values for the first layer weights.

After the first layer has found a rough representation, the second, nonlinear layer is
added on top of the first layer. Since the first layer weights already have reasonable values,
the second layer learns much faster. Initially the data is represented mainly by the first
layer latent variables, but gradually the second layer latent variables take over and the first
layer latent variables become silent.

We can now formalise the model used in this work. Let x(t) denote the observed data
vector at time t; s1(t) and s2(t) the vectors of latent variables of the first and the second
layer at time t; A and B the matrices containing the weights on the first and the second
layer, respectively; b the vector of biases for the second layer and f the vector of nonlinear
activation functions. As all real signals contain noise, we shall assume that observations
are corrupted by Gaussian noise denoted by n(t). Using this notation, the model for the

78 Publication III-4

observations passes through the three phases described below:

x(t) = As1(t) + n(t) (2)

x(t) = A [f (Bs2(t) + b) + s1(t)]

+n(t) (3)

x(t) = A [f (Bs2(t) + b)] + n(t). (4)

The nonlinearity most often used in MLP networks is the hyperbolic tangent, but it has
a disadvantage from the point of view of this application. It saturates for large values
of its inputs which can cause problems during the inversion of the model. For the sake
of numerical stability, the inverse hyperbolic sine, sinh−1, is chosen instead. It is also a
sigmoidal function but instead of saturating it behaves logarithmically for large values.

The latent variables are assumed to be independent and Gaussian. The independence
assumption is natural as the goal of the model is to find the underlying independent causes
of the observations. If the latent variables were dependent, then they would presumably
have a common cause which should be modelled by yet another latent variable.

Even the Gaussianity assumption is usually not unrealistic. The network has non-
linearities which can transform the Gaussian distributions to virtually any other regular
distribution. This is why with linear models it makes a difference whether the latent vari-
ables are assumed to have Gaussian, as in PCA, or non-Gaussian distributions, as in ICA,
but for nonlinear models these assumptions do not make such a great difference. It may,
of course, sometimes be that an explicit model of a non-Gaussian distribution, e.g., by
mixtures of Gaussians as in [6], is simpler than an implicit model with nonlinearities.

The parameters of the network are: (1) the weight matrices A and B and the vector of
biases b; (2) the parameters of the distributions of the noise, latent variables and column
vectors of the weight matrices; and (3), hyperparameters which are used for defining the
distributions of the biases and the parameters in the group (2). For simplicity, all the
parametrised distributions are assumed to be Gaussian.

This kind of hierarchical description of the distributions of the parameters in the model
is a standard procedure in probabilistic modelling. Its strength is that knowledge about
equivalent status of different parameters can be easily incorporated. All the variances of the
noise components, for instance, have a similar status in the model and this is reflected by
the fact that their distributions are assumed to be governed by common hyperparameters.
Often there is some vague prior information about the distributions of the hyperparameters,
but the amount of information is, in any case, very small compared to the amount of
information in the data. Here the hyperparameters are assigned flat priors.

4 Cost function

The cost function was already outlined in section 2.2. We can now go into more detail.
Let us denote X = {x(t)|t} and S = {s1(t), s2(t)|t} and let θ denote all the unknown
parameters of the model. For notational simplicity, let us denote all the unknown variables
by ξ = {S,θ}. The cost function is then

CKL =

∫
dξQ(ξ) log

Q(ξ)

P (ξ|X)
. (5)

The two things needed for equation 5 are the exact formulation of the posterior density
P (ξ|X) and its parametric approximation Q(ξ).

Publication III-5 79

According to the Bayes’ rule, the posterior pdf of the unknown variables S and θ is

P (S,θ|X) =
P (X|S,θ)P (S|θ)P (θ)

P (X)
.

The term P (X|S,θ) is obtained from equations 2–4; the distribution of the data is the same
as for the noise n(t) except that its mean is corrected by the prediction given by the model.
Let us denote the vector of the means of n(t) by µ and the vector of the variances by σ2.
The distribution P (xi(t)|s1(t), s2(t),θ) is thus Gaussian with mean ai·[f(Bs2+b)+s1]+µi

and variance σ2
i . Here ai· denotes the ith row vector of A. As usually, the noise components

ni(t) are assumed to be independent and therefore P (X|S,θ) =
∏

t,i P (xi(t)|s1(t), s2(t),θ).
The terms P (S|θ) and P (θ) are also products of simple Gaussian distributions and

they are obtained directly from the definition of the model structure. The term P (X) is
not a function of any of the parameters of the model and can be neglected.

The approximation Q(S,θ) needs to be simple for mathematical tractability and com-
putational efficiency. We assume that it is Gaussian density with a diagonal covariance
matrix. This means that the approximation is a product of the independent distributions:
Q(ξ) =

∏
i Qi(ξi). The parameters of each Qi(ξi) are the mean and variance which will be

denoted by ξ̂i and ξ̃i, respectively.
Both the posterior density P (S,θ|X) and its approximation Q(S,θ) are products of

simple Gaussian terms, which simplifies the cost function considerably: it splits into ex-
pectations of many simple terms. The terms of the form EQ{log Qi(ξi)} are the negative

entropies for Gaussians and have the values −(1 + log 2πξ̃i)/2. The most difficult terms
are of the form −EQ{log P (xi(t)|s1(t), s2(t),θ)}. They are approximated by applying the
second order Taylor’s series expansions of the nonlinear activation functions as explained
in [5]. The rest of the terms are expectations of simple Gaussian terms, whose expectations
can be computed as in [6].

The cost function CKL is a function of ξ̂i and ξ̃i, i.e., the posterior means and variances
of the latent variables and the parameters of the network. This is because instead of finding
a point estimate, a whole distribution will be estimated for the latent variables and the
parameters during learning.

5 Simulations

5.1 Data

Artificial data was generated with a randomly initialised MLP network having one hidden
layer with tanh-nonlinearities and a linear output layer. The network had a 2-10-5 structure
and the data thus consisted of a two-dimensional manifold nonlinearly wrapped in five
dimensions. The inputs had Gaussian distributions with unit covariance matrix. The
five-dimensional outputs of the random network were further linearly embedded in a 10-
dimensional space and finally, Gaussian noise was added to the data which consisted of
1000 vectors.

5.2 Learning scheme

Learning was done in batches which had two nested loops. The outer loop went through all
the data vectors. For each data vector, the posterior distribution Q of the latent variables
was adapted in the inner loop of length 15. The distributions of the rest of the model

80 Publication III-6

parameters were updated at the end of each batch. The whole learning consisted of 200
batches.

Only the first, linear layer was generated in the beginning. The second, nonlinear layer
was generated after 20 batches when the first layer had already found a rough representation
for the data. To encourage the growth of the second layer, the standard deviations of the
latent variables of the first layer were reduced by a factor of three after each batch during 10
batches starting from the creation of the second layer. If this phase is left out, the network
easily gets stuck in a local minimum where the training wheels, the latent variables of the
first layer, represent the data while the second layer remains silent.

The posterior variance θ̃i of a parameter contains information about how certain the
network is about the value of the parameter. This gives the network the very interesting
property of being able to effectively prune away useless weights by increasing their posterior
variances and thus decreasing the complexity of the network.

Some care has to be taken in the beginning of the learning since the network might get
stuck in some unwanted local minima. When the weights of the network are random and
the network is not able to find any structure in the data, the weights can get prematurely
pruned away. To prevent this, the posterior variances of the weights and the latent variables
were bounded for the first 50 batches.

5.3 Results

Several different structures were tested for the network and the best one was chosen ac-
cording to the probability mass it occupied in the posterior pdf of all models. The most
probable model had four latent variables and ten hidden units. Despite the difficulty of the
problem, the network was able to discover the underlying causes of the observations. Out
of the four latent variables, two corresponded to the original inputs that had generated the
data while the other two had much smaller variances and were used by the network to rep-
resent the slight discrepancies between the original and the estimated nonlinear generative
models. Notice that the two models used different nonlinearities and therefore can never
be exactly the same.

Figure 1 shows the scatter plots of the four estimated latent variables (x-axes) versus the
two original inputs (y-axes). The first original input (upper row) correlated with the second
latent variable while the second original input correlated with the fourth latent variable.
The figure shows that the first and third latent variables had much smaller variance than
the two others.

For comparison, four independent components extracted by linear ICA 1 are shown in
similar scatter plots in figure 2. As the data is severely nonlinear, linear ICA performs
very poorly. None of the retrieved sources correspond to the original inputs and all four
sources are used for representing the data. These results show that the nonlinearity was
quite strong and, consequently, the problem of finding the underlying latent variables very
difficult.

6 Discussion

The combination of MLP networks, generative learning and full Bayesian analysis is novel
— to the best of our knowledge — although the individual parts have been published

1The FastICA MATLAB-toolbox, available at http://www.cis.hut.fi/projects/ica/fastica/.

Publication III-7 81

Figure 1: Scatter plots of the two original inputs and the posterior means of the four
estimated latent variables.

Figure 2: Scatter plots of the original inputs and the four sources estimated by linear ICA.

earlier. For instance, MLP networks were used as generative models in [7]. The model was
inverted by gradient descent as in this work, but Bayesian analysis was not applied.

Rectified Gaussian belief networks were used as generative models in [2], but the
Bayesian analysis was restricted to the posterior distributions of the latent variables and
stochastic sampling was used instead of parametric approximation. Also [1] neglects the
Bayesian treatment of the parameters of the network. With flexible models having a large
number of parameters, it is important to take into account also the complexity of the
nonlinear mapping. Restricting the Bayesian approach to the latent variables can lead to
problems with overlearning.

Methods based on minimising the description length of the model are closely related,
often equivalent, to Bayesian learning [3, 4, 6] since the description length is by definition
the minus logarithm of the probability mass of the model. The description length of an
auto-associative MLP model was minimised in [4]. The disadvantage of auto-associative
models is that they need to learn both the generative mapping and its inversion and the
learning can thus be slow.

7 Conclusion

Using MLP networks as generative models was proven feasible in simulations with artificial
data. The network was able to retrieve the original inputs which had generated the data.
The difficulty of the problem is apparent from the results obtained with the linear ICA-
model. Bayesian learning was used for solving the indeterminacy of the unknown mapping.

82 Publication III-8

The Bayesian approach is particularly valuable for unsupervised learning due to its
robustness against overlearning and the ability to compare models. Other techniques, such
as cross-validation, are available for supervised learning but they are not applicable for
unsupervised learning.

The Bayesian approach was implemented using ensemble learning, which is an efficient
method for approximating the posterior distributions. Its main advantage over the tradi-
tional Laplace’s method is that the search for good models is focused on those areas of
the model space which occupy large probability mass, as opposed to searching for large
probability densities.

References

[1] Hagai Attias. Hierarchical ICA belief networks. In M. S. Kearns, S. A. Solla, and D. A.
Cohn, editors, Advances in Neural Information Processing Systems 11. MIT Press,
1999. In press.

[2] Zoubin Ghahramani and Geoffrey E. Hinton. Hierarchical non-linear factor analysis and
topographic maps. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances
in Neural Information Processing Systems 10, pages 486–492. MIT Press, 1998.

[3] Geoffrey E. Hinton and Drew van Camp. Keeping neural networks simple by minimizing
the description length of the weights. In Proceedings of the COLT’93, pages 5–13, Santa
Cruz, California, 1993.

[4] Sepp Hochreiter and Jürgen Schmidhuber. LOCOCODE performs nonlinear ICA with-
out knowing the number of sources. In Proceedings of the ICA’99, pages 149–154,
Aussois, France, 1999.

[5] Harri Lappalainen. Using an MDL-based cost function with neural networks. In Pro-
ceedings of the IJCNN’98, pages 2384–2389, Anchorage, Alaska, 1998.

[6] Harri Lappalainen. Ensemble learning for independent component analysis. In Pro-
ceedings of the ICA’99, pages 7–12, Aussois, France, 1999.

[7] Jong-Hoon Oh and H. Sebastian Seung. Learning geneartive models with the up-
propagation algorithm. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances
in Neural Information Processing Systems 10, pages 605–611. MIT Press, 1998.

Publication IV-1 83

ENSEMBLE LEARNING

Harri Lappalainen and James W. Miskin

In Advances in Independent Component Analysis (M. Girolami, ed.), pp. 76-92, Springer-
Verlag, 2000.

Abstract

This chapter gives a tutorial introduction to Ensemble Learning, a recently developed
Bayesian method. For many problems it is intractable to perform inferences using the true
posterior density over the unknown variables. Ensemble Learning allows the true posterior
to be approximated by a simpler approximate distribution for which the required inferences
are tractable.

1 Introduction

When we say we are making a model of a system, we are setting up a tool which can be
used to make inferences, predictions and decisions. Each model can be seen as a hypothesis,
or explanation, which makes assertions about the quantities which are directly observable
and which can only be inferred from their effect on observable quantities.

In the Bayesian framework, knowledge is contained in the conditional probability distri-
butions of the models. We can use Bayes’ theorem to evaluate the conditional probability
distributions for the unknown parameters, y, given the set of observed quantities, x, using

p (y |x) =
p (x |y) p (y)

p (x)
(1)

The prior distribution p (y) contains our knowledge of the unknown variables before we
make any observations. The posterior distribution p (y |x) contains our knowledge of the
system after we have made our observations. The likelihood, p (x |y), is the probability
that the observed data will be observed given a specific set of values for the unknown
parameters.

There is no clear cut difference between the prior and posterior distributions, since
after a set of observations the posterior distribution becomes the prior for another set of
observations.

In order to make inferences based on our knowledge of the system, we need to
marginalise our posterior distribution with respect to the unknown parameters of the
model. For instance in order to obtain the average values of the unknown parameters
we would need to perform the expectation

ȳ =

∫
yp (y |x) dy (2)

Alternatively we may be trying to use our model of the system to make decisions about
which action to take. In this case we would like to choose the action which maximises
some utility function. In this case the expected utility is found by marginalising the utility
function over the posterior density of the models. An example would be hypothesis testing

84 Publication IV-2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

model y

po
st

er
io

r
di

st
rib

ut
io

n
p(

y|
x)

Figure 1: Schematic illustration of overfitting to the data. If the true posterior over the
models, y, is of this form then choosing the model that maximises the posterior probability
will mean choosing the model in the sharp peak. But near the maximum the posterior
density is sharp and so highly dependent on the model parameters. Therefore the model
will explain the observed data very well, but may not generalise to further observations.

where we have a number of explanations for the cause of a set of observed data. By
having a different model for each hypothesis, we could choose the model that maximises
the expected utility.

In this chapter we shall motivate the idea of considering the posterior distribution to be
the result of any experiment instead of just considering a point in the model space. Section
3 will discuss different methods of approximating the posterior when it is intractable to
make inferences based on the true posterior. Section 4 will introduce the idea of using
Ensemble Learning to approximate the true posterior by a simpler separable distribution.
Section 5 will discuss the construction of probabilistic models, both in supervised and
unsupervised learning. Section 6 will give examples of using ensemble learning in both a
fixed form and free form approximation.

2 Posterior averages in action

Probability theory tells us that the optimal generalisation is the one resulting from a
Bayesian approach. Overfitting to the data means that we are making conclusions that
the data does not support. Alternatively underfitting means that our conclusions are too
diffuse.

Overfitting is an artifact resulting from choosing only one explanation (model) for the
observations. Figure 1 shows a hypothetical posterior distribution. If the model is chosen

Publication IV-3 85

(d)(c)

(b)(a)

Figure 2: A schematic illustration of averaging over posterior of models. The data points
are denoted by circles and the black lines show the MLP fit. The dashed lines show the
error bars the model gives. The models in plots a and b assume fairly small noise. The
model in plot c assumes larger noise. The average of the models over the posterior pdf of
the models gives larger error bars in the areas where there are no observations.

to maximise the posterior probability then the model will be chosen to be in the narrow
peak. The problem is that the peak only contains a fraction of the total probability mass.
This means that the model will explain the observations very well, but will be very sensitive
to the values of the parameters and so may not explain further observations. When making
predictions and decisions it is the position of the probability mass that counts and not the
position of a maximum.

In order to solve these problems it is necessary to average over all possible hypotheses.
That is we should average over all possible models, but weight them by the posterior
distribution that we obtain from our observations.

It is important to note that averaging does not mean computing the average of param-
eter values and then using that as the best guess. For instance in digit recognition the
posterior distribution may have a peak in the model for “1”s and in the model for “9”s.
Averaging over the posterior does not mean that you compute the average digit as a “5”
and then use that as the best guess, it means that you should prepare for the possibility
that the digit can be either “1” or “9”.

Figure 2 shows a schematic example of fitting a Multi-Layer Perceptron (MLP) to a
set of data. The data is fairly smooth and has only a little noise, but there is a region of
missing data. The best regularised MLP is able to fit the data quite well in those areas
where there are data points and so the noise level will be estimated to be low. Therefore
the MLP will give tight error bars even in the region where there is no data to support
the fit. This is overfitting because the conclusion are more specific than the data supports.
If we were to later obtain some data in the missing region, it is plausible that it would
lie significantly outside the MLP fit and so the posterior probability of the chosen model
could rapidly drop as more data is obtained.

Instead of chosing a specific MLP it is better to average over several MLPs. In this

86 Publication IV-4

case we would find that there are multiple explanations for the missing data. Therefore
the average fit will give tight error bars where there is data and broad error bars in the
regions where there is no data.

If the estimate for the level of noise in the data were estimated to be too high then
the error bars for the areas with missing data might be good but the error bars for the
areas with data would too broad and we would suffer from underfitting. Alternatively if
the noise level is estimated to be too low, the error bars will be too narrow where there
is data. For intermediate noise levels we could suffer from overfitting in some regions and
underfitting in others.

In order to fix this we could allow the noise level to be part of our model and so the
noise level could vary. The problems with overfitting would now be changed to overfitting
the noise model. The solution is to average the noise under the posterior distribution which
would include the MLP parameters and the noise.

3 Approximations of posterior pdf

As we have shown earlier, the posterior distribution is a synonym for our available knowl-
edge of a system after we have made a set of observations. In order to use this knowledge
we will typically be required to marginalise the posterior or to evaluate expectations of
functions under the posterior distribution. In many problems it is intractable to perform
the necessary integrals.

If we look again at Bayes equation we have

p (y |x) =
p (x |y) p (y)

p (x)
(3)

It is easy to compute one point in the joint density p (x, y) (the numerator of the poste-
rior distribution) but in general evaluating the denominator, p (x), is difficult. Similarly
marginalising the posterior distribution is difficult.

Therefore it is necessary to approximate the posterior density by a more tractable
form for which it is possible to perform any necessary integrals. We cannot take a point
estimate (such as the MAP estimate) because this leads to overfitting as shown earlier.
This is because the MAP estimate does not guarantee a high probability mass in the peak
of the posterior distribution and so the posterior distribution may be sharp around the
MAP estimate. We would like to approximate the probability mass of the posterior.

There are in general two types of approximation that retain the probability mass of the
true posterior distribution. The first type is the stochastic approximation and the second
type is the parametric approximation. In a stochastic approximation (such as Markov-
chain Monte Carlo method) the aim is to perform the integrations by drawing samples
from the true posterior distribution, [3]. The average of any function is then found by
finding the average value of the function given all of the samples from the posterior.

In a parametric approximation (such as Laplace approximation, [6]) the posterior dis-
tribution is approximated by an alternative function (such as a Gaussian) such that it is
much simpler to perform any necessary approximations.

The problem with the stochastic methods is that when performing a stochastic approx-
imation it is necessary to wait until the sampler has sampled from all of the mass of the
posterior distribution. Therefore testing for convergence can be a problem. The problem
with the parametric approach is that the integrals that are being performed are not exactly

Publication IV-5 87

the same as those that would be performed when the true posterior is used. Therefore while
the stochastic approximation has to give the correct answer (eventually) the parametric
approxmation will give an approximate answer soon (it is the ‘quick and dirty’ method).

Model selection can be seen as a special form of approximating the posterior distri-
bution. The posterior distribution could contain many peaks, but when there is lots of
data, most of the probability mass is typically contained in a few peaks of the posterior
distribution. Model selection means using only the most massive peaks and discarding the
remaining models.

4 Ensemble learning

Ensemble learning, [1], is a recently introduced method for parametric approximation of the
posterior distributions where Kullback-Leibler information, [2], [5], is used to measure the
misfit between the actual posterior distribution and its approximation. Let us denote the
observed variables by x and the unknown variables by y. The true posterior distribution
p(y|x) is approximated with the distribution q(y|x) by minimising the Kullback-Leibler
information.

D(q(y|x)||p(y|x)) =

∫
q(y|x) ln

q(y|x)

p(y|x)
dy

=

∫
q(y|x) ln

p(x)q(y|x)

p(x, y)
dy

=

∫
q(y|x) ln

q(y|x)

p(x, y)
dy + ln p(x) (4)

The Kullback-Leibler information is greater than or equal to zero, with equality if and only
if the two distributions, p(y|x) and q(y|x), are equivalent. Therefore the Kullback-Leibler
information acts as a distance measure between the two distributions.

If we note that the term p(x) is a constant over all the models, we can define a cost
function Cy(x) which we are required to minimise to obtain the optimum approximating
distribution

Cy(x) = D(q(y|x)||p(y|x)) − ln p(x) =

∫
q(y|x) ln

q(y|x)

p(x, y)
dy (5)

We shall adopt the notation that the subindex of C denotes the variables that are
marginalised over in the cost function. In general, they are the unknown variables of
the model. The notation also makes explicit that the cost function Cy(x) gives an upper
bound for − ln p(x). Here we use the same notation as with probability distributions, that
is Cy(x|z) means

Cy(x|z) = D(q(y|x, z)||p(y|x, z)) − ln p(x|z)

=

∫
q(y|x, z) ln

q(y|x, z)

p(x, y|z)
dy (6)

and thus yields the upper bound for − ln p(x|z).
Ensemble learning is practical if the terms p(x, y) and q(y|x) of the cost function Cy(x)

can be factorised into simple terms. If this is the case, the logarithms in the cost function
split into sums of many simple terms. By virtue of the definition of the models, the

88 Publication IV-6

likelihood and priors are both likely to be products of simpler distributions, p(x, y) typically
factorises into simple terms. In order to simplify the approximating ensemble, q is also
modelled as a product of simple terms.

The Kullback-Leibler information is a global measure, providing that the approximating
distribution is a global distribution. Therefore the measure will be sensitive to probability
mass in the true posterior distribution rather than the absolute value of the distribution
itself.

Training the approximating ensemble can be done by assuming a fixed parametric form
for the ensemble (for instance assuming a product of Gaussians). The parameters of the
distributions can then be set to minimise the cost function.

An alternative method is to only assume a separable form for the approximating en-
semble. The distributions themselves can then be found by performing a functional min-
imisation of the cost function with respect to each distribution in the ensemble. While this
method must always give ensembles with equivalent or lower misfits than those obtained by
a assuming a parametric form, the distributions that are obtained are not always tractable
and so the fixed form method may be more useful.

4.1 Model selection in ensemble learning

Recall that the cost function Cy(x|H) can be translated into lower bound for p(x|H). Since
p(H|x) = p(x|H)p(H)/p(x), it is natural that Cy(x|H) can be used for model selection also
by equating

p(H|x) ≈ e−Cy(x|H)P (H)∑
H′ e−Cy(x|H′)P (H ′)

. (7)

In fact, we can show that the above equation gives the best approximation for p(H|x) in
terms of Cy,H(x), the Kullback-Leibler divergence between q(y,H|x) and p(y,H|x), which
means that the model selection can be done using the same principle of approximating the
posterior distribution as learning parameters.

Without losing any generality from q(y,H|x), we can write

q(y,H|x) = Q(H|x)q(y|x,H) . (8)

Now the cost function can be written as

Cy,H(x) =
∑
H

∫
q(y,H|x) ln

q(y,H|x)

p(x, y,H)
dy

=
∑
H

Q(H|x)

∫
q(y|x,H) ln

Q(H|x)q(y|x,H)

P (H)p(x, y|H)
dy

=
∑
H

Q(H|x)

[
ln

Q(H|x)

P (H)
+ Cy(x|H)

]
. (9)

Minimising Cy,H(x) with respect to Q(H|x) under the constraint∑
H

Q(H|x) = 1 (10)

Publication IV-7 89

yields

Q(H|x) =
e−Cy(x|H)P (H)∑

H′ e−Cy(x|H′)P (H ′)
. (11)

Substituting this into equation 9 yields the minimum value for Cy,H(x) which is

Cy,H(x) = − ln
∑
H

e−Cy(x|H)P (H) (12)

If we wish to use only a part of different model structures H, we can try to find those H
which would minimise Cy,H(x). It is easy to see that this is accomplished by choosing the
models corresponding to Cy(x|H). A special case is to use only one H corresponding to
the smallest Cy(x|H).

4.2 Connection to coding

The cost function can be derived within MDL framework. The intuitive idea behind MDL
is that in order to be able to encode data compactly one has to find a good model for it.
Coding is not actually done; only the formula for the code length is needed. The optimal
code length of x is L(x) = − log P (x) bits, and therefore coding has a close connection to
the probabilistic framework. Some people prefer to think in terms of coding lengths, some
in term of probabilities.

In coding, the sender and the receiver have to agree on the structure of the message in
advance. This corresponds to having to state one’s priors in the Bayesian framework.

A simple example: let x be the observation to be coded and y be a real valued parameter.
We first encode y with accuracy dy. This part of the message takes L(y) = − log p(y)dy bits.
Then we encode x with accuracy dx using the value y. This takes L(x|y) = − log p(x|y)dx
bits. The accuracy of the encoding of the observations can be agreed on in advance, but
there is a question of how to decide the accuracy dy. The second part of the code would be
shortest if y would be exactly in the maximum likelihood solution. If y is encoded in too
high accuracy, however, the first part of the code will be very long. If y is encoded in too
low accuracy, the first part will be short but deviations from the optimal y will increase
the second part of the code.

The bits-back argument, [1], overcomes the problem by using infinitesimally small dy
but picking the y from a distribution q(y) and encoding a secondary message in the choice
of y. Since the distribution q(y) is not needed for decoding x, both the sender and the
receiver can run the same algorithm for determining q(y) from x. After finding out q(y),
the receiver can decode the secondary message which can have − log q(y)dy bits. As these
bits will be got back in the end, the expected message length is

L(x) = Eq{− log p(x|y)dx − log p(y)dy + log q(y)dy}
= D(q(y)||p(y|x)) − log p(x)dx = Cy(x) − log dx . (13)

The amount of bits used for individual parameter θ can be measured by looking at
D(q(θ)||p(θ))

It is interesting to notice that although the message has two parts, y and x, if q(y)
is chosen to be p(y|x), the expected code length is equal to that of the optimal one-
part message where the sender encodes x directly using the marginal probability p(x) =∫

p(x|y)p(y)dy.

90 Publication IV-8

4.3 EM and MAP

Expectation maximisation (EM) algorithm can be seen as a special case of ensemble learn-
ing. The set-up in EM is the following: Suppose we have a probability model p(x, y|θ). We
observe x but y remains hidden. We would like to estimate θ with maximum likelihood, i.e.,
maximise p(x|θ) w.r.t. θ, but suppose the structure of the model is such that integration
over p(x, y|θ) is difficult, i.e., it is difficult to evaluate p(x|θ) =

∫
p(x, y|θ)dy.

What we do is take the cost function Cy(x|θ) and minimise it alternately with respect
to θ and q(y|x, θ). The ordinary EM algorithm will result when q(y|x, θ) has a free form in

which case q(y|x, θ) will be updated to be p(y|x, θ̂), where θ̂ is the current estimate of θ.
The method is useful if integration over ln p(x, y|θ) is easy, which is often the case. This
interpretation of EM was given by [4].

EM algorithm can suffer from overfitting because only point estimates for the param-
eters θ are used. Even worse is to use maximum a posterior (MAP) estimator where one
finds the θ and y which maximise p(y, θ|x). Unlike maximum likelihood estimation, MAP
estimation is not invariant under reparametrisations of the model. This is because MAP
estimation is sensitive to probability density which changes nonuniformly if the parameter
space is changed nonlinearly.1

MAP estimation can be interpreted in ensemble learning framework as min-
imising Cy,θ(x) and using delta-distribution as q(y, θ|x). This makes the integral∫

q(y, θ|x) ln q(y, θ|x)dydθ infinite. It can be neglected when estimating θ and y because it

is constant with respect to ŷ and θ̂, but the infinity of the cost function shows that delta
distribution, i.e. a point estimator, is a bad approximation for a posterior density.

5 Construction of probabilistic models

In order to apply the Bayesian approach for modelling, the model needs to be given in
probabilistic terms, which means stating the joint distribution of all the variables in the
model. In principle, any joint distribution can be regarded as a model, but in practice, the
joint distribution will have a simple form.

As an example, we shall see how a generative model turns into a probabilistic model.
Suppose we have a model which tells how a sequence �y = y(1), . . . , y(t) transforms into
sequence �x = x(1), . . . , x(t).

x(t) = f(y(t), θ) + n(t) (14)

This is called a generative model for �x because it tells explicitly how the squence �x is
generated from the sequence �y through a mapping f parametrised by θ. As it is usually
unrealistic to assume that it would be possible to model all the things affecting �x exactly,
the models typically include a noise term n(t).

If y(t) and θ are given, then x(t) has the same distribution as n(t) except that it is
offset by f(y(t), θ). This means that if n(t) is Gaussian noise with variance σ2, equation 14
translates into

x(t) ∼ N(f(y(t)), σ2) (15)

1MAP estimation can be made invariant under reparametrisations by fixing the parametrisation. A
natural way to do this is to use a parametrisation which makes the Fisher information matrix of the model
constant. Then it is probable that the peaks in the posterior have approximately similar widths and are
more or less symmetrical.

Publication IV-9 91

which is equivalent to

p(x(t)|y(t), θ, σ) =
1√

2πσ2
e−

[x(t)−f(y(t),θ)]2

2σ2 . (16)

The joint density of all the variables can then be written as

p(�x, �y, θ, σ) = p(�y, θ, σ)
∏

t

p(x(t)|y(t), θ, σ) . (17)

Usually also the probability p(�y, θ, σ) is stated in a factorisable form making the full joint
probability density p(�x, �y, θ, σ) a product of many simple terms.

In supervised learning, the sequence �y is assumed to be fully known, also for any future
data, which means that the full joint probability p(�x, �y, θ, σ) is not needed, only

p(�x, θ, σ|�y) = p(�x|�y, θ, σ)p(θ, σ|�y) . (18)

Typically �y is assumed to be independent of θ and σ, i.e., p(�y, θ, σ) = p(�y)p(θ, σ). This also
means that p(θ, σ|�y) = p(θ, σ) and thus only p(�x|�y, θ, σ), given by the generative model
equation 14, and the prior for the parameters p(θ, σ) is needed in supervised learning.

If the probability p(�y) is not modelled in supervised learning, it is impossible to treat
missing elements of the sequence �y. If the probability p(�y) is modelled, however, there
are no problems. The posterior density is computed for all unknown variables, including
the missing elements of �y. In fact, unsupervised learning can be seen as a special case
where the whole sequence �y is unknown. In probabilistic framework, the treatment of any
missing values is possible as long as the model defines the joint density of all the variables
in the model. It is, for instance, easy to treat missing elements of sequence �x or mix freely
between supervised and unsupervised learning depending on how large part of the sequence
�y is known.

5.1 Priors and hyperpriors

In the above model, the parameters θ and σ need to be assigned a prior probability and
in a more general situation typically also a prior probability for the model structure would
also be needed.

In general, prior probabilities for variables should reflect the belief one has about the
variables. As people may have difficulties in articulating these beliefs explicitly, some rules
of thumb have been developed.

A lot of research has been conducted on uninformative priors. The term means that in
some sense the prior gives as little information as possible about the value of the parameter,
and as such is a good reference prior although with complex models it is usually impractical
to compute the exact form of the uninformative prior.

Roughly speaking, uninformative prior can be defined by saying that in a parametri-
sation where moving a given distance in parameter space always corresponds the similar
change in the probability distribution the model defines, the parameters are uniformly
distributed.

A simple example is provided by a Gaussian distribution parametrised by mean µ and
variance σ2. Doubling the variance always results in a qualitatively similar change in
the distribution. Similarly, taking a step of size σ in the mean always corresponds to
a similar change in the distribution. Reparametrisation by µ′ = µ/σ and v = lnσ will

92 Publication IV-10

give a parametrisation where equal changes in parameters correspond to equal changes in
distribution. A uniform prior on µ′ and v would correspond to the prior p(µ, σ) ∝ 1/σ2 in
the original parameter space. If there is additional knowledge that µ sould be independent
of σ, then µ and v give the needed parameters and the prior is p(µ) ∝ 1 and p(σ) ∝ 1/σ.

None of the above uninformative priors can actually be used because they are improper,
meaning that they are not normalisable. This can easily be seen by considering a uniform
distribution between ±∞. These priors are nevertheless good references and hint useful
parametrisations for models.

Often it is possible to utilise the fact that the model has a set of parameters which have
a similar role. It is, for instance, reasonable to assume that all biases in an MLP network
have a similar distribution. This knowledge can be utilised by modelling the distribution
by a common parametrised distribution. Then the prior needs to be determined to these
common parameters, called hyperparameters but as they control the distribution of a set
of parameters, there should be less hyperparameters than parameters. The process can be
iterated until the structural knowledge has been used. In the end there are usually only a
few priors to determine and since there is typically a lot of data, these priors are usually
not significant for the learining process.

For some it may be helpful to think about the prior in terms of coding. By using the
formula L(x) = − ln p(x), any probabilites can be translated into encoding. In coding
terms, the prior means the aspects of the encoding which the sender and the receiver have
agreed upon prior to the transmission of data.

6 Examples

6.1 Fixed form Q

Let us model a set of observations, �x = x(1), . . . , x(t), by a Gaussian distribution
parametrised by mean m and log-std v = lnσ. We shall approximate the posterior distribu-
tion by q(m, v) = q(m)q(v), where both q(m) and q(v) are Gaussian. The parametrisation
with log-std is chosen because the posterior of v is closer to Gaussian than the posterior
of σ or σ2 would be. (Notice that the parametrisation yielding close to Gaussian posterior
distributions is connected to uninformative priors discussed in section 5.1.)

Let the priors for m and v be Gaussian with means µm and µv and variances σ2
m and

σ2
v , respectively. The joint density of the observations and the parameters m and v is

p(�x,m, v) =

[∏
t

p(x(t)|m, v)

]
p(m)p(v) . (19)

As we can see, the posterior is a product of many simple terms.

Let us denote by m̄ and m̃ the posterior mean and variance of m.

q(m; m̄, m̃) =
1√
2πm̃

e−
(m−m̄)2

2m̃ (20)

The distribution q(v; v̄, ṽ) is analogous.

Publication IV-11 93

The cost function is now

Cm,v(�x) =

∫
q(m, v) ln

q(m, v)

p(�x,m, v)
dmdv =∫

q(m, v) ln q(m)dmdv +

∫
q(m, v) ln q(v)dmdv +

−
N∑

t=1

∫
q(m, v) ln p(x(t)|m, v)dmdv +

−
∫

q(m, v) ln p(m)dmdv −
∫

q(m, v) ln p(v)dmdv . (21)

We see that the cost function has many terms, all of which are expectations over q(m, v).
Since the approximation q(m, v) is assumed to be factorised into q(m, v) = q(m)q(v),
it is fairly easy to compute these expectations. For instance, integrating the term∫

q(m, v) ln q(m)dmdv over v yields
∫

q(m) ln q(m)dm, since ln q(m) does not depend on v
and. Since q(m) is assumed to be Gaussian with mean m̄ and variance m̃, this integral is,
in fact, minus the entropy of a Gaussian distribution and we have∫

q(m) ln q(m)dm = −1

2
(1 + ln 2πm̃) . (22)

A similar term, with m̃ replaced by ṽ, comes from
∫

q(m, v) ln q(v)dmdv.
The terms where expectation is taken over − ln p(m) and − ln p(v) are also simple since

− ln p(m) =
1

2
ln 2πσ2

m +
(m − µm)2

2σ2
, (23)

which means that we only need to be able to compute the expectation of (m − µm)2 over
the Gaussian q(m) having mean m̄ and variance m̃. This yields

E{(m − µm)2} = E{m2} − 2E{mµm} + E{µ2
m} =

m̄2 + m̃ − 2m̄µm + µ2
m = (m̄ − µm)2 + m̃ (24)

since the variance can be defined by m̃ = E{m2} − E{m}2 = E{m2} − m̄2 which shows
that E{m2} = m̄2 + m̃. Integrating the equation 23 and substituting equation 24 thus
yields

−
∫

q(m) ln p(m)dm =
1

2
ln 2πσ2

m +
(m̄ − µm)2 + m̃

2σ2
. (25)

A similar term, with m replaced by v, will be obtained from − ∫
q(v) ln p(v)dv.

The last terms are of the form − ∫
q(m, v) ln p(x(t)|m, v)dmdv. Again we will find out

that the factorisation q(m, v) = q(m)q(v) simplifies the computation of these terms. Recall
that x(t) was assumed to be Gaussian with mean m and variance e2v. The term over which
the expectation is taken is thus

− ln p(x(t)|m, v) =
1

2
ln 2π + v + (x(t) − m)2e−2v . (26)

The expectation over the term (x(t)−m)2e−2v is easy to compute since m and v are assumed
to be posteriorly independent. This means that it is possible to take the expectation

94 Publication IV-12

separately from (x(t) − m)2 and e−2v. Using a similar derivation as in equation 24 yields
(x(t)−m̄)2 +m̃ for the first term. The expectation over e−2v is also fairly easy to compute:∫

q(v)e−2vdv =
1√
2πṽ

∫
e−

(v−v̄)2

2ṽ e−2vdv =
1√
2πṽ

∫
e−

(v−v̄)2+4vṽ
2ṽ dv =

1√
2πṽ

∫
e−

v2−2vv̄+v̄2+4vṽ
2ṽ dv =

1√
2πṽ

∫
e−

[v+(2ṽ−v̄)]2+4v̄ṽ−4ṽ2

2ṽ =

1√
2πṽ

∫
e−

[v+(2ṽ−v̄)]2

2ṽ e2ṽ−2v̄dv = e2ṽ−2v̄ . (27)

This shows that taking expectation over equation 26 yields a term

−
∫

q(m, v) ln p(x(t)|m, v)dmdv =
1

2
ln 2π + v̄ + [(x(t) − m̄)2 + m̃]e2ṽ−2v̄ . (28)

Collecting together all the terms, we obtain the following cost function

Cm,v(�x; m̄, m̃, v̄, ṽ) =

N∑
t=1

1

2
[(x(t) − m̄)2 + m̃]e2ṽ−2v̄ + Nv̄ +

(m̄ − µm)2 + m̃

2σ2
m

+
(v̄ − µv)2 + ṽ

2σ2
v

+ lnσmσv +

N

2
ln 2π − 1

2
ln m̃ṽ − 1 (29)

Assuming σ2
m and σ2

v are very large, the minimum of the cost function can be solved
by setting the gradient of the cost function C to zero. This yields the following:

m̄ =
1

N

∑
t

x(t) (30)

m̃ =

∑
t(x(t) − m̄)2

N(N − 1)
(31)

v̄ =
1

2N
+

1

2
ln

1

N − 1

∑
t

(x(t) − m̄)2 (32)

ṽ =
1

2N
(33)

In case σ2
m and σ2

v cannot be assumed very large, the equations for v̄ and ṽ are not that
simple, but the solution can still be obtained by solving the zero-point of the gradient.

Figure 3 shows a comparison of the true posterior distribution and the approximate
posterior. The data set consisted of 100 points drawn from a model with m = 1 and
σ = 0.1. The contours in both distributions are centred in the same region, a model that
underestimates m.The contours for the two distributions are qualitatively similar although
the true distribution is not symmetrical about the mean value of v.

6.2 Free Form Q

Instead of assuming the form for the approximate posterior distribution we could instead
derive the optimal separable distribution (the functions that minimise the cost function
subject to the constraint that they be normalised).

Publication IV-13 95

−3 −2.8 −2.6 −2.4 −2.2 −2
0.95

1

1.05

log−std v

m
ea

n
m

−3 −2.8 −2.6 −2.4 −2.2 −2
0.95

1

1.05

log−std v

m
ea

n
m

Figure 3: Comparison of the true and approximate posterior distributions for a test set
containing 100 data points drawn from a model with m = 1 and σ = 0.1. The plot on the
left shows the true posterior distribution over m and v. The plot on the right shows the
approximate posterior distribution consisting of a diagonal Gaussian distribution.

Instead of learning the log-std v = lnσ, we shall learn the inverse noise variance β =
σ−2. The prior on β is assumed to be a Gamma distribution of the form

p (β) =
1

Γ (cβ)
b
cβ

β β(cβ−1) exp (−bββ) (34)

Setting bβ = cβ = 10−3 leads to a broad prior in lnβ, this is equivalent to assuming that
σv is large in the log-std parametrisation.

The cost function that must be minimised is now

C = D(q(x,m, β)||P (x|m,β)) − lnP (m,β)

=

∫
q(m,β) ln

q(m,β)

P (x,m, β)
dmdβ (35)

If we assume a separable posterior, that is q(m,β) = q(m)q(β) and substitute our priors
into the cost function we obtain

C =

∫
q(m)q(β) ln

q(m)q(β)

[
∏

t P (x(t)|m,β)] P (m)P (β)
dmdβ

=

∫
q(m)q(β) [ln q(m) + ln q(β) − lnP (m) − lnP (β)

−
∑

t

(
1

2
ln

β

2π
− β (x(t) − m)

2

2

)]
dmdβ (36)

Assuming we know q(β) we can integrate over β in C (dropping any terms that are inde-
pendent of m) to obtain

C =

∫
q(m)

[
ln q(m) − lnP (m) −

∑
t

(
− β̄ (x(t) − m)

2

2

)]
dm (37)

96 Publication IV-14

where β̄ is the average value of β under the distribution q(β). We can optimise the cost
function with respect to q(m) by performing a functional derivative.

∂C

∂q(m)
= 1 + ln q(m) − lnP (m) −

∑
t

(
− β̄ (x(t) − m)

2

2

)
+ λm

= 0 (38)

where λm is a Lagrange multiplier introduced to ensure that q(m) is normalised. Rear-
ranging we see that

ln q(m) = −1 − 1

2
ln 2πσ2

m − (m − mum)2

2σ2
m

= +
∑

t

(
− β̄ (x(t) − m)

2

2

)
+ λm (39)

and so the approximate posterior distribution is a Gaussian with variance m̃ =(
σ−2

m + T β̄
)−1

and mean m̄ = m̃
(

µm

σ2
m

+ β̄
∑

t x(t)
)
.

We can obtain the optimum form for q(β) by marginalising the cost function over m
and dropping terms independent of β.

C =

∫
q(β) [ln q(β) − lnP (β)

−
∑

t

⎛⎝1

2
lnβ −

β
(
(x(t) − m̄)

2
+ m̃

)
2

⎞⎠⎤⎦ dβ (40)

Again we can perform a functional derivative to obtain

∂C

∂q(β)
= 1 + ln q(β) − lnP (β)

−
∑

t

⎛⎝1

2
lnβ −

β
(
(x(t) − m̄)

2
+ m̃

)
2

⎞⎠ + λβ

= 0 (41)

and so

ln q(β) = −1 +
∑

t

⎛⎝1

2
lnβ −

β
(
(x(t) − m̄)

2
+ m̃

)
2

⎞⎠ + lnP (β) + λβ (42)

So the optimal posterior distribution is a Gamma distribution, with parameters b̂β =

bβ +
∑

t((x(t)−m̄)2+m̃)
2 and ĉβ = cβ + T

2 . Therefore the expectation of β under the posterior

distribution is β̄ =
ĉβ

b̂β
.

The optimal distributions for m and β depend on each other (q(m) is a function of β̄
and q(β) is a function of m̄ and m̃) so the optimal solutions can be found by iteratively
updating q(m) and q(β).

Publication IV-15 97

40 60 80 100 120 140 160
0.95

1

1.05

inverse variance β

m
ea

n
m

40 60 80 100 120 140 160
0.95

1

1.05

inverse variance β

m
ea

n
m

Figure 4: Comparison of the true and approximate posterior distributions for a test set
containing 100 data points drawn from a model with m = 1 and σ = 0.1. The plot on the
left shows the true posterior distribution over m and β. The plot on the right shows the
approximate posterior distribution derived by obtaining the optimal free form separable
distribution.

A general point is that the freeform optimisation of the cost function will typically lead
to a set of iterative update equations where each distribution is updated on the basis of
the other distributions in the approximation.

We can also see that if the parametrisation of the model is chosen appropriately the
optimal separable model has a similar form to the prior model. If the prior distributions
are Gaussians the posterior distributions are also Gaussians (likewise for Gamma distribu-
tions). If this is the case then we can say that we have chosen conjugate priors.

Figure 4 shows a comparison of the true posterior distribution and the approximate
posterior. The data set is the same as for the fixed form example. The contours in both
distributions are centred in the same region, a model that underestimates m. The contours
for the two distributions are qualitatively similar, the approximate distribution also shows
the assymmetric density.

7 Summary

In Ensemble Learning, the search for good models is sensitive to high probability mass and
so the problems of over-fitting inherent to maximum likelihood and maximum posterior
probability methods are removed.

The approximation of the posterior distribution assumes some degree of factorisation
of the true distribution in order to make the approximation more tractable. Additionally
the fixed form approximation also assumes some functional form of the factors.

It is often possible to affect the correctness of the approximation by the choice of
parameterisation of the model. Also, the learning process tries to make the approximation
more correct.

The free form approximation of the separable distribution will often result in Gaussian,
Gamma, etc distributions if the parametrization of the model is chosen suitably. Therefore
the optimisation process will suggest a parametrization for the problem.

98 Publication IV-16

References

[1] Geoffrey E. Hinton and Drew van Camp: ‘Keeping neural networks simple by mini-
mizing the description length of the weights’. In: Proceedings of the COLT’93, (Santa
Cruz, California, 1993) pp. 5–13

[2] S. Kullback and R. A. Leibler: ‘On information and sufficiency’. The Annals of Math-
ematical Statistics 22, pp. 79–86 (1951)

[3] Radford M. Neal: ‘Bayesian Learning for Neural Networks’. Lecture Notes in Statistics
No. 118 (Springer-Verlag, 1996)

[4] Radford M. Neal and Geoffrey E. Hinton: ‘A view of the EM algorithm that justifies
incremental, sparse and other variants’. In: Learning in Graphical Models. ed. by
Michael I. Jordan (1998)

[5] Claude E. Shannon: ‘A mathematical theory of communication’. Bell System Technical
Journal 27, pp. 379–423 and 623–656 (1948)

[6] S. M. Stigler: ‘Translation of Laplace’s 1774 memoir on “Probability of causes”’. Sta-
tistical Science, 1(3), pp. 359–378 (1986)

Publication V-1 99

BAYESIAN NONLINEAR INDEPENDENT
COMPONENT ANALYSIS BY MULTI-LAYER

PERCEPTRONS

Harri Lappalainen and Antti Honkela

In Advances in Independent Component Analysis (M. Girolami, ed.), pp. 93–121, Springer-
Verlag, 2000.

Abstract

In this chapter, a nonlinear extension to independent component analysis is developed.
The nonlinear mapping from source signals to observations is modelled by a multi-layer
perceptron network and the distributions of source signals are modelled by mixture-of-
Gaussians. The observations are assumed to be corrupted by Gaussian noise and therefore
the method is more adequately described as nonlinear independent factor analysis. The
nonlinear mapping, the source distributions and the noise level are estimated from the data.
Bayesian approach to learning avoids problems with overlearning which would otherwise
be severe in unsupervised learning with flexible nonlinear models.

1 Introduction

The linear principal and independent component analysis (PCA and ICA) model the data
as having been generated by independent sources through a linear mapping. The difference
between the two is that PCA restricts the distribution of the sources to be Gaussian,
whereas ICA does not, in general, restrict the distribution of the sources.

In this chapter we introduce nonlinear counterparts of PCA and ICA where the gener-
ative mapping form sources to data is not restricted to be linear. The general form of the
models discussed here is

�x(t) = f(�s(t)) + �n(t) . (1)

The vectors �x(t) are observations at time t, �s(t) are the sources and �n(t) the noise. The
function f() is a parametrised mapping from source space to observation space. It can be
viewed as a model about how the observations were generated from the sources.

Just as their linear counterparts, the nonlinear versions of PCA and ICA can be used
for instance in dimension reduction and feature extraction. The difference between linear
and nonlinear PCA is depicted in Fig. 1. In the linear PCA the data is described with a
linear coordinate system whereas in the nonlinear PCA the coordinate system is nonlinear.
The nonlinear PCA and ICA can be used for similar tasks as their linear counterparts, but
they can be expected to capture the structure of the data better if the data points lie in a
nonlinear manifold instead of a linear subspace.

Usually the linear PCA and ICA models do not have an explicit noise term �n(t) and
the model is thus simply

�x(t) = f(�s(t)) = A�s(t) +�b . (2)

100 Publication V-2

Figure 1: On the left hand side the data is described with a linear coordinate system. On
the right hand side the coordinate system is nonlinear

The corresponding PCA and ICA models which include the noise term are often called fac-
tor analysis and independent factor analysis (FA and IFA) models. The nonlinear models
discussed here can therefore also be called nonlinear factor analysis and nonlinear indepen-
dent factor analysis models.

In this chapter, the distribution of sources is modelled with Gaussian density in PCA
and mixture-of-Gaussians density in ICA. Given enough Gaussians in the mixture, any
density can be modelled with arbitrary accuracy using the mixture-of-Gaussians density,
which means that the source density model is universal. Likewise, the nonlinear mapping
f() is modelled by a multi-layer perceptron (MLP) network which can approximate any
nonlinear mapping with arbitrary accuracy given enough hidden neurons.

The noise on each observation channel (component of data vectors) is assumed to
be independent and Gaussian, but the variance of the noise on different channels is not
assumed to be equal. The noise could be modelled with a more general distribution, but
we shall restrict the discussion to the simple Gaussian case. After all, noise is supposed to
be something uninteresting and unstructured. If the noise is not Gaussian or independent,
it is a sign of interesting structure which should be modelled by the generative mapping
from the sources.

2 Choosing Among Competing Explanations

Each model with particular values for sources, parameters and noise terms can be con-
sidered as an explanation for the observations. Even with linear PCA and ICA there are
infinitely many possible models which explain the observations completely. With flexible
nonlinear models like an MLP network, the number of possible explanations is — loosely
speaking — even higher (although mathematically speaking, ∞2 would still be ‘only’ ∞).

An example of competing explanations is given in Fig. 2. The data is sampled from

Publication V-3 101

Figure 2: The data is generated by two independent evenly distributed sources as shown
on the left. Given enough hidden neurons, an MLP network is able to model the data as
having been generated by a single source through a very nonlinear mapping, depicted on
the right

an even distribution inside a square. This is equivalent to saying that two independent
sources, each evenly distributed, have generated the data as shown on the left hand side of
the figure. If we only look at the probability of the data, the nonlinear mapping depicted on
the right hand side of the figure is even better explanation as it gives very high probabilities
to exactly those data points that actually occurred. However, it seems intuitively clear that
the nonlinear model in Fig. 2 is much more complex than the available data would justify.

The exact Bayesian solution is that instead of choosing a single model, all models are
used by weighting them according to their posterior probabilities. In other words, each
model is taken into account in proportion with how probable they seem in light of the
observations.

If we look at the predictions the above two models give about future data points, we
notice that the more simple linear model with two sources predicts new points inside the
square but the more complex nonlinear model with one source predicts new points only
along the curved line. The prediction given by the more simple model is evidently closer to
the prediction obtained by the exact Bayesian approach where the predictions of all models
would be taken into account by weighting them according to the posterior probabilities of
the models.

With complex nonlinear models like MLP networks, the exact Bayesian treatment is
computationally intractable and we are going to resort to ensemble learning, which is
discussed in Chap. 61. In ensemble learning, a computationally tractable parametric ap-
proximation is fitted to the posterior probabilities of the models.

In Sect. 6.4.22 it is shown that ensemble learning can be interpreted as finding the most
simple explanation for the observations3. This agrees with the intuition that in Fig. 2, the
simple linear model is better than the complex nonlinear model.

1Refers to publication IV.
2Refers to section 4.2 of publication IV.
3The complexity of the explanation is defined as the number of bits it takes to encode the observation

using the model. In this case one would measure the total code length of the sources �s(t), the parameters

of the mapping and the noise �n(t).

102 Publication V-4

The fact that we are interested in simple explanations also explains why nonlinear ICA
is needed at all if we can use nonlinear PCA. The nonlinearity of the mapping allows the
PCA model to represent any time-independent probability density of the observations as
originating from independent sources with Gaussian distributions. It would therefore seem
that the non-Gaussian source models used in the nonlinear ICA cannot further increase
the representational power of the model. However, for many naturally occurring processes
the representation with Gaussian sources requires more complex nonlinear mappings than
the representation with mixtures-of-Gaussians. Therefore the nonlinear ICA will often find
a better explanation for the observations than the nonlinear PCA.

Similar considerations also explain why to use the MLP network for modelling the
nonlinearity. Experience has shown that with MLP networks it is easy to model fairly
accurately many naturally occurring multidimensional processes. In many cases the MLP
networks give a more simple parametrisation for the nonlinearity than, for example, Taylor
or Fourier series expansions.

On the other hand, it is equally clear that the ordinary MLP networks with sigmoidal
nonlinearities are not the best models for all kinds of data. With the ordinary MLP
networks it is, for instance, difficult to model mappings which have products of the sources.
The purpose of this chapter is not to give the ultimate model for any data but rather to give
a good model for many data, from which one can start building more sophisticated models
by incorporating domain-specific knowledge. Most notably, the source models described
here do not assume time-dependencies, which are often significant.

3 Nonlinear Factor Analysis

This section introduces a nonlinear counterpart of principal component analysis. As ex-
plained in Sect. 1, the model includes a noise term and we shall therefore call it nonlinear
factor analysis. Learning is based on Bayesian ensemble learning which is introduced in
Chap. 64. In order to keep the derivations simple, only Gaussian probability distributions
are used which allows us to utilise many of the formulas derived in Sect. 6.6.15.

The posterior probability density of the unknown variables is approximated by a Gaus-
sian distribution. As in Chap. 66, the variances of the Gaussian distributions of the model
are parametrised by logarithm of standard deviation, log-std, because then the posterior
distribution of these parameters will be closer to Gaussian which then agrees better with
the assumption that the posterior is Gaussian.

3.1 Definition of the Model

The schematic structure of the mapping is shown in Fig. 3. The nonlinearity of each hidden
neuron is the hyperbolic tangent, which is the same as the usual logistic sigmoid except
for a scaling. The equation defining the mapping is

�x(t) = f(�s(t)) + �n(t) = B tanh(A�s(t) + �a) +�b + �n(t) . (3)

The matrices A and B are the weights of first and second layer and �a and �b are the
corresponding biases.

4Refers to publication IV.
5Refers to section 6.1 of publication IV.
6Refers to publication IV.

Publication V-5 103

x(t)Observations

s(t)Sources

Figure 3: The mapping from sources to observations is modelled by the familiar MLP
network. The sources are on the top layer and observations in the bottom layer. The
middle layer consists of hidden neurons each of which computes a nonlinear function of the
inputs

The noise is assumed to be independent and Gaussian and therefore the probability
distribution of x(t) is

�x(t) ∼ N(f(�s(t)), e2�vx) (4)

Each component of the vector �vx gives the log-std of the corresponding component of �x(t).

The sources are assumed to have zero mean Gaussian distributions and again the vari-
ances are parametrised by log-std �vs.

�s(t) ∼ N(0, e2�vs) (5)

Since the variance of the sources can vary, variance of the weights A on the first layer can
be fixed to a constant, which we choose to be one, without loosing any generality from
the model. This is not case for the second layer weights. Due to the nonlinearity, the
variances of the outputs of the hidden neurons are bounded from above and therefore the
variance of the second layer weights cannot be fixed. In order to enable the network to shut
off extra hidden neurons, the weights leaving one hidden neuron share the same variance
parameter7.

B ∼ N(0, e2�vB) (6)

The elements of the matrix B are assumed to have a zero mean Gaussian distribution with
individual variances for each column and thus the dimension of the vector �vB is the number
of hidden neurons. Both biases �a and �b have Gaussian distributions parametrised by mean
and log-std.

7A hidden neuron will be shut off if all leaving weights are close to zero. Thinking in coding terms, it
is easier for the network to encode this in one variance parameter than to encode it independently for all
the weights.

104 Publication V-6

The distributions are summarised in (7)–(12).

�x(t) ∼ N(f(�s(t)), e2�vx) (7)

�s(t) ∼ N(0, e2�vs) (8)

A ∼ N(0, 1) (9)

B ∼ N(0, e2�vB) (10)

�a ∼ N(ma, e2va) (11)

�b ∼ N(mb, e
2vb) (12)

The distributions of each set of log-std parameters are modelled by Gaussian distributions
whose parameters are usually called hyperparameters.

�vx ∼ N(mvx
, e2vvx) (13)

�vs ∼ N(mvs
, e2vvs) (14)

�vB ∼ N(mvB
, e2vvB) (15)

The prior distributions of ma, va, mb, vb and the six hyperparameters mvs
, . . . , vvB

are
assumed to be Gaussian with zero mean and standard deviation 100, i.e., the priors are
assumed to be very flat.

3.2 Cost Function

In ensemble learning, the goal is to approximate the posterior pdf of all the unknown
values in the model. Let us denote the observations by X. Everything else in the model
is unknown, i.e., the sources, parameters and hyperparameters. Let us denote all these
unknowns by the vector �θ. The cost function measures the misfit between the actual
posterior pdf p(�θ|X) and its approximation q(�θ|X).

The posterior is approximated as a product of independent Gaussian distributions

q(�θ|X) =
∏

i

q(θi|X) . (16)

Each individual Gaussian q(θi|X) is parametrised by the posterior mean θ̄i and variance θ̃i

of the parameter.

The functional form of the cost function C�θ(X; �̄θ,
�̃
θ) is given in Chap. 68. The cost

function can be interpreted to measure the misfit between the actual posterior p(�θ|X) and

its factorial approximation q(�θ|X). It can also be interpreted as measuring the number
of bits it would take to encode X when approximating the posterior pdf of the unknown
variables by q(�θ|X).

The cost function is minimised with respect to the posterior means θ̄i and variances θ̃i

of the unknown variables θi. The end result of the learning is therefore not just an estimate
of the unknown variables, but a distribution over the variables.

The simple factorising form of the approximation q(�θ|X) makes the cost function com-
putationally tractable. The cost function can be split into two terms, Cq and Cp, where the

former is an expectation over ln q(�θ|X) and the latter is an expectation over − ln p(X, �θ).

8Refers to publication IV.

Publication V-7 105

It turns out that the term Cq is not a function of the posterior means θ̄i of the param-
eters, only the posterior variances. It has a similar term for each unknown variable.

Cq(X;
�̃
θ) =

∑
i

−1

2
ln 2πeθ̃i (17)

Most of the terms of Cp are also trivial. The Gaussian densities in (8)–(15) yield terms
of the form

− ln p(θ) =
1

2
(θ − mθ)

2e−2vθ + vθ +
1

2
ln 2π (18)

Since θ, mθ and vθ are independent in q, the expectation over q yields

1

2
[(θ̄ − m̄θ)

2 + θ̃ + m̃θ]e
2ṽθ−2v̄θ + v̄θ +

1

2
ln 2π . (19)

Only the term originating from (7) needs some elaboration. Equation (7) yields

− ln p(x) =
1

2
(x − f)2e−2vx + vx +

1

2
ln 2π (20)

and the expectation over q is

1

2
[(x − f̄)2 + f̃]e2ṽx−2v̄x + v̄x +

1

2
ln 2π (21)

The rest of this section is dedicated on evaluating the posterior mean f̄ and variance f̃ of the
function f . We shall begin from the sources and weights and show how the posterior mean
and variance can be propagated through the network yielding the needed posterior mean
and variance of the function f at the output. The effect of nonlinearities g of the hidden
neurons are approximated by first and second order Taylor’s series expansions around the
posterior mean. Apart from that, the computation is analytical.

The function f consists of two multiplications with matrices and a nonlinearity in
between. The posterior mean and variance for a product u = yz are

ū = E{u} = E{yz} = E{y}E{z} = ȳz̄ (22)

and

ũ = E{u2} − ū2 = E{y2z2} − (ȳz̄)2 =

E{y2}E{z2} − ȳ2z̄2 = (ȳ2 + ỹ)(z̄2 + z̃) − ȳ2z̄2 , (23)

given that y and z are posteriorly independent. According to the assumption of the fac-
torising form of q(�θ|X), the sources and the weights are independent and we can use the
above formulas. The inputs going to hidden neurons consist of sums of products of weights
and sources, each posteriorly independent, and it is therefore easy compute the posterior
mean and variance of the inputs going to the hidden neurons; both the means and variances
of a sum of independent variables add up.

Let us now pick one hidden neuron having nonlinearity g and input ξ, i.e., the hidden
neuron is computing g(ξ). At this point we are not assuming any particular form of g
although we are going to use g(ξ) = tanh ξ in all the experiments; the following derivation
is general and can be applied to any sufficiently smooth function g.

106 Publication V-8

s(t)Sources

x(t)Observations

Figure 4: The converging paths from two sources are shown. Both input neurons affect
the output neuron through two paths going through the hidden neurons. This means that
the posterior variances of the two hidden neurons are neither completely correlated nor
uncorrelated and it is impossible to compute the posterior variance of the output neuron
without keeping the two paths separate. Effectively this means computing the Jacobian
matrix of the output with respect to the inputs

In order to be able to compute the posterior mean and variance of the function g, we are
going to apply the Taylor’s series expansion around the posterior mean ξ̄ of the input. We
choose the second order expansion when computing the mean and the first order expansion
when computing the variance. The choice is purely practical; higher order expansions could
be used as well but these are the ones that can be computed from the posterior mean and
variance of the inputs alone.

ḡ(ξ) ≈ g(ξ̄) +
1

2
g′′(ξ̄)ξ̃ (24)

g̃(ξ) ≈ [g′(ξ̄)]2ξ̃ (25)

After having evaluated the outputs of the nonlinear hidden neurons, it would seem that
most of the work has already been done. After all, it was already shown how to compute
the posterior mean and variance of a weighted sum and the outputs of the network will be
weighted sums of the outputs of the hidden neurons. Unfortunately, this time the terms in
the sum are no longer independent. The sources are posteriorly independent by virtue of
the approximation q(�θ|X), but the values of the hidden neurons are posteriorly dependent
which enforces us to use a more complicated scheme for computing the posterior variances
of these weighted sums. The posterior means will be as simple as before, though.

The reason for the outputs of the hidden neurons to be posteriorly dependent is that
the value of one source can potentially affect all the outputs. This is illustrated in Fig. 4.
Each source affects the output of the whole network through several paths and in order
to be able to determine the variance of the outputs, the paths originating from different
sources need to be kept separate. This is done by keeping track of the partial derivatives
∂g(ξ)
∂si

. Equation (26) shows how the total posterior variance of the output g(ξ) of one of
the hidden neurons can be split into terms originating from each source plus a term g̃∗(ξ)
which contains the variance originating from the weights and biases, i.e., those variables
which affect any one output through only a single path.

g̃(ξ) = g̃∗(ξ) +
∑

i

s̃i

[
∂g(ξ)

∂si

]2

(26)

Publication V-9 107

When the outputs are multiplied by weights, it is possible to keep track of how this affects
the posterior mean, the derivatives w.r.t. the sources and the variance originating from
other variables than the sources, i.e., from weights and biases. The total variance of the
output of the network is then obtained by

f̃ = f̃∗ +
∑

i

s̃i

[
∂f

∂si

]2

, (27)

where f denotes the components of the output and we have computed the posterior variance
of the outputs of the network which is needed in (21). To recapitulate what is done,
the contributions of different sources to the variances of the outputs of the network are
monitored by computing the Jacobian matrix of the outputs w.r.t. the sources and keeping
this part separate from the variance originating from other variables.

The only approximations done in the computation are the ones approximating the effect
of nonlinearity. If the hidden neurons were linear, the computation would be exact. The
nonlinearity of the hidden neurons is delt with by linearising around the posterior mean
of the inputs of the hidden neurons. The smaller the variances the more accurate this ap-
proximation is. With increasing nonlinearity and variance of the inputs, the approximation
gets worse.

Compared to ordinary forward phase of an MLP network, the computational complexity
is greater by about a factor of 5N , where N is the number of sources. The factor five is
due to propagating distributions instead of plain values. The need to keep the paths
originating from different sources separate explains the factor N . Fortunately, much of the
extra computation can be made into good use later on when adapting the distributions of
variables.

3.3 Update Rules

Any standard optimisation algorithm could be used for minimising the cost function

C(X; �̄θ,
�̃
θ) with respect to the posterior means �̄θ and variances

�̃
θ of the unknown vari-

ables. As usual, however, it makes sense utilising the particular structure of the function
to be minimised.

Those parameters which are means or log-std of Gaussian distributions, e.g., mb, mvB
,

va and vvx
, can be solved in the same way as the parameters of Gaussian distribution where

solved in Sect. 6.1. Since the parameters have Gaussian priors, the equations do not have
analytical solutions, but Newton-iteration can be used. For each Gaussian, the posterior
mean and variance of the parameter governing the mean is solved first by assuming all
other variables constant and then the same thing is done for the log-std parameter, again
assuming all other variables constant.

Since the mean and variance of the output of the network and thus also the cost
function was computed layer by layer, it is possible to use the ordinary back-propagation
algorithm to evaluate the partial derivatives of the part Cp of the cost function w.r.t. the
posterior means and variances of the sources, weights and biases. Assuming the derivatives
computed, let us first take a look at the posterior variances θ̃.

The effect of the posterior variances θ̃ of sources, weights and biases on the part Cp

of the cost function is mostly due to the effect on f̃ which is usually very close to linear
(this was also the approximation made in the evaluation of the cost function). The terms
f̃ have a linear effect on the cost function, as is seen in (21), which means that the over all

108 Publication V-10

effect of the terms θ̃ on Cp is close to linear. The partial derivative of Cp with respect to θ̃
is therefore roughly constant and it is reasonable to use the following fixed point equation
to update the variances:

0 =
∂C

∂θ̃
=

∂Cp

∂θ̃
+

∂Cq

∂θ̃
=

∂Cp

∂θ̃
− 1

2θ̃
⇒ θ̃ =

1

2
∂Cp

∂θ̃

. (28)

The remaining parameters to be updated are the posterior means θ̄ of the sources,
weights and biases. For those parameters it is possible to use Newton iteration since the
corresponding posterior variances θ̃ actually contain the information about the second order
derivatives of the cost function C w.r.t. θ̄. It holds

θ̃ ≈ 1
∂2C
∂θ̄2

(29)

and thus the step in Newton iteration can be approximated

θ̄ ← θ̄ −
∂Cp

∂θ̄
∂2C
∂θ̄2

≈ θ̄ − ∂Cp

∂θ̄
θ̃ . (30)

Equation (29) would be exact if the posterior pdf p(�θ|X) were exactly Gaussian. This
would be true if the mapping f were linear. The approximation in (29) is therefore good

as long as the function f is roughly linear around the current estimate of �̄θ.

3.3.1 Avoiding Problems Originating from Approximation of the Nonlinearity
of the Hidden Neurons

The approximations in (24) and (25) can give rise to problems with ill defined posterior
variances of sources or first layer weights A or biases �a. This is because the approximations
take into account only local behaviour of the nonlinearities g of the hidden neurons. With
MLP networks the posterior is typically multimodal and therefore, in a valley between two
maxima, it is possible that the second order derivative of the logarithm of the posterior
w.r.t. a parameter θ is positive. This means that the derivative of the Cp part of the cost

function with respect to the posterior variance θ̃ of that parameter is negative, leading to
a negative estimate of variance in (28).

It is easy to see that the problem is due to the local estimate of g since the logarithm
of the posterior eventually has to go to negative infinity. The derivative of the Cp term

w.r.t. the posterior variance θ̃ will thus be positive for large θ̃, but the local estimate of g
fails to account for this.

In order to discourage the network from adapting itself to areas of parameter space
where the problems might occur and to deal with the problem if it nevertheless occurred,
the terms in (24) which give rise to negative derivative of Cp with respect to θ̃ will be

neglected in the computation of the gradients. As this can only make the estimate of θ̃
in (28) smaller, this leads, in general, to increasing the accuracy of the approximations in
(24) and (25).

3.3.2 Stabilising the Fixed-Point Update Rules

The adaptations rules in (28) and (30) assume other parameters to be constant. The
weights, sources and biases are updated all at once, however, because it would not be

Publication V-11 109

computationally efficient to update only one at a time. The assumption of independence is
not necessarily valid, particularly for the posterior means of the variables, which may give
rise to instabilities. Several variables can have a similar effect on outputs and when they
are all updated to the values which would be optimal given that the others stay constant,
the combined effect is too large.

This type of instability can be detected by monitoring the directions of updates of in-
dividual parameters. When the problem of correlated effects occurs, consecutive updated
values start oscillating. A standard way to dampen these oscillations in fixed point algo-
rithms is to introduce a learning parameter α for each parameter and update it according
to the following rule:

α ←
{

0.8α if sign of change was different
min(1, 1.05α) if sign of change was same

(31)

This gives the following fixed point update rules for the posterior means and variances of
the sources, weights and the biases:

θ̄ ← θ̄ − αθ̄

∂Cp

∂θ̄
θ̃ (32)

θ̃ ← 1[
2

∂Cp

∂θ̃

]αθ̃
θ̃1−αθ̃ (33)

The reason why a weighted geometric rather than arithmetic mean is applied to the poste-
rior variances is that variance is a scale parameter. The relative effect of adding a constant
to the variance varies with the magnitude of the variance whereas the relative effect of
multiplying by a constant is invariant.

3.3.3 Using Additional Information for Updating Sources

With sources, it is possible to measure and compensate some of the correlated effects in the
updates. Recall that the Jacobian matrix of the output �f of the network w.r.t. the sources
was computed when taking into account the effects of multiple paths of propagating the
values of sources. This will be used to compensate the assumption of independent updates,
in addition to the learning rates α.

Suppose we have two sources whose effect on outputs are positively correlated. As-
suming the effects independent means that the step will be too large and the actual step
size should be less than what the Newton iteration suggests. This can be detected from
computing the change resulting in the outputs and projecting it back for each source inde-
pendently to see how much each source alone should change to produce the same change
in the outputs. The difference between the change of one source in the update and change
resulting from all the updates can then be used to adjust the step sizes in the update.

Two examples of correction are depicted in Fig. 5. The left hand side graph shows
a case where the effects of sources on the outputs are positively correlated and the right
hand side graph has negatively correlated effects. Current output of the network is in the
origin O and the minimum of the cost function is in point A. Black arrows show where the
output would move if the sources were minimised independently. The combined updates
would then take the output to point B.

As the effects of sources on �x are correlated, point B, the resulting overall change in
�x, differs from point A. Projecting the point B back to the sources, comparison between

110 Publication V-12

B

D
C

OO
D

A

C

B

A

Figure 5: Illustration of the correction of error resulting from assuming independent up-
dates of the sources. The figures show the effect two sources have on the outputs. On the
left hand side the effects of sources on �x are positively correlated and consequently the step
sizes are overestimated. On the right hand side the effects are negatively correlated and
the step sizes are underestimated

the resulting step size C and the desired step size D can be used for adjusting the step
size. The new step size on the source would be D/C times the original. With positively
correlated effects the adjusting factor D/C is less then one, but with negatively correlated
sources it is greater than one. For the sake of stability, the corrected step is restricted to
be at most twice the original.

4 Nonlinear Independent Factor Analysis

The nonlinear factor analysis model introduced in the previous section has Gaussian dis-
tributions for the sources. In this section we are going to show how that model can easily
be extended to have mixture-of-Gaussians models for sources. In doing so we are largely
following the method introduced in [1] for Bayesian linear independent factor analysis.
The resulting model is a nonlinear counterpart of ICA or, more accurately, a nonlinear
counterpart of independent factor analysis because the model includes finite noise. The
difference between the models is similar to that between linear PCA and ICA because the
first layer weight matrix A in the network has the same indeterminacies in nonlinear PCA
as in linear PCA. The indeterminacy is discussed in the introductory chapter9.

According to the model for the distribution of the sources, there are several Gaussian
distributions and at each time instant, the source originates from one of them. Let us
denote the index of the Gaussian from which the source si(t) originates by Mi(t). The
model for the distribution for the ith source at time t is

p(si(t)|θ) =
∑

Mi(t)

P (Mi(t)|θ)p(si(t)|θ,Mi(t)) , (34)

where p(si(t)|θ,Mi(t) = j) is a time-independent Gaussian distribution with its own mean
mij and log-std vij . The probabilities P (Mi(t)|θ) of different Gaussians are modelled with

9Refers to the introductory chapter of Advances in Independent Component Analysis.

Publication V-13 111

time-independent soft-max distributions.

P (Mi(t) = j|θ) =
ecij∑
j′ ecij′

(35)

Each combination of different Gaussians producing the sources can be considered a
different model. The number of these models is enormous, of course, but their posterior
distribution can still be approximated by a similar factorial approximation which is used
for other variables.

Q(M|X) =
∏

Mi(t)

Q(Mi(t)|X) (36)

Without losing any further generality, we can now write

q(si(t),Mi(t)|θ) = Q(Mi(t)|θ)q(si(t)|θ,Mi(t)) , (37)

which yields

q(si(t)|θ) =
∑

j

q(Mi(t) = j|θ)Q(si(t)|θ,Mi(t) = j) . (38)

This means that the approximating ensemble for the sources has a form similar to the prior,
i.e., an independent mixture of Gaussians, although the posterior mixture is different at
different times.

Due to the assumption of factorial posterior distribution of the models, the cost function
can be computed as easily as before. Let us denote Q(Mi(t) = j|θ) = ṡij(t) and the
posterior mean and variance of q(si(t)|θ,Mi(t) = j) by s̄ij(t) and s̃ij(t). It easy to see that
the posterior mean and variance of si(t) are

s̄i(t) =
∑

j

ṡij(t)s̄ij(t) (39)

s̃i(t) =
∑

j

ṡij(t)[s̃ij(t) + (s̄ij(t) − s̄i(t))
2] . (40)

After having computed the posterior mean s̄i and variance s̃i of the sources, the compu-
tation of the Cp part of the cost function proceeds as with nonlinear factor analysis in the
previous section. The Cq part yields terms of the form

q(si(t)|X) ln q(si(t)|X) =∑
j

ṡij(t)q(si(t)|Mi(t) = j,X) ln
∑

j

ṡij(t)q(si(t)|Mi(t),X) =

∑
j

ṡij(t)q(si(t)|Mi(t) = j,X) ln ṡij(t)q(si(t)|Mi(t),X) =

∑
j

ṡij(t)[ln ṡij(t) + q(si(t)|Mi(t) = j,X) ln q(si(t)|Mi(t) = j,X)] (41)

and we have thus reduced the problem to a previously solved one. The terms
q(si(t)|Mi(t),X) ln q(si(t)|Mi(t),X) are the same as for the nonlinear factor analysis and

112 Publication V-14

otherwise the equation has the same form as in model selection in Chap. 610. This is not
surprising since the terms Q(Mi(t)|X) are the probabilities of different models and we are,
in effect, therefore doing factorial model selection.

Most update rules are the same as for nonlinear factor analysis. Equations (39) and
(40) bring the terms ṡij(t) for updating the means mij and log-std parameters vij of the
sources. It turns out that they both will be weighted with ṡij , i.e., the observation is used
for adapting the parameters in proportion to the posterior probability of that observation
originating from that particular Gaussian distribution.

5 Experiments

5.1 Learning Scheme

The learning scheme for all the experiments was the same. First, linear PCA is used to
find sensible initial values for the posterior means of the sources. The method was chosen
because it has given good results in initialising the model vectors of a self-organising map
(SOM). The posterior variances of the sources are initialised to small values. Good initial
values are important for the method since the network can effectively prune away unused
parts as will be seen in the experiments later on. Initially the weights of the network have
random values and the network has quite bad representation for the data. If the sources
were adapted from random values also, the network would consider many of the sources
useless for the representation and prune them away. This would lead to a local minimum
from which the network would not recover.

Therefore the sources are fixed at the values given by linear PCA for the first 50 iter-
ations through the whole data. This is long enough for the network to find a meaningful
mapping from sources to the observations, thereby justifying using the sources for the
representation. For the same reason, the parameters controlling the distributions of the
sources, weights, noise and the hyperparameters are not adapted during the first 100 iter-
ations. They are adapted only after the network has found sensible values for the variables
whose distributions these parameters control.

In all simulations, the total number of iterations is 7500, where one iteration means
going through all the observations. For nonlinear independent factor analysis simulations,
a nonlinear subspace is estimated with 2000 iterations by the nonlinear factor analysis after
which the sources are rotated with a linear ICA algorithm. In these experiments, FastICA
was used [4]. The rotation of the sources is compensated by an inverse rotation to the
first layer weight matrix A. The nonlinear independent factor analysis algorithm is then
applied for the remaining 5500 iterations.

5.2 Helix

Let us first take a look at a toy problem which shows that it is possible to find a nonlinear
subspace and model it with an MLP network in an unsupervised manner. A set of 1000
data points, shown on the left plot of Fig. 6, were generated from a normally distributed
source s into a helical subspace. The z-axis had a linear correspondence to the source and
the x- and y-axes were sine and cosine: x = sin(πs), y = cos(πs) and z = s. Gaussian
noise with standard deviation 0.05 was added to all three data components.

10Refers to publication IV.

Publication V-15 113

−1

0

1

−1

0

1

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−1

0

1

−1

0

1

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 6: The plot on the left shows the data points and the plot on the right shows
the reconstructions made by the network together with the underlying helical subspace.
The MLP network has clearly been able to find the underlying one-dimensional nonlinear
subspace where the data points lie

One-dimensional nonlinear subspaces were estimated with the nonlinear independent
factor analysis algorithm. Several different numbers of hidden neurons and initialisations
of the MLP networks were tested and the network which minimised the cost function was
chosen. The best network had 16 hidden neurons. The original noisy data and the means
of the outputs of the best MLP network are shown in Fig. 6. It is evident that the network
was able to learn the correct subspace. Only the tails of the helix are somewhat distorted.
The network estimated the standard deviations of the noise on different data components
to be 0.052, 0.055 and 0.050. This is in close correspondence with the actual noise level of
0.05.

This problem is not enough to demonstrate the advantages of the method since it does
not prove that the method is able to deal with high dimensional latent spaces. This problem
was chosen simply because it is easy to visualise.

5.3 Nonlinear Artificial Data

5.3.1 Gaussian Sources

The following experiments with nonlinear factor analysis algorithm demonstrate the ability
of the network to prune away unused parts. The data was generated from five normally dis-
tributed sources through a nonlinear mapping. The mapping was generated by a randomly
initialised MLP network having 20 hidden neurons and ten output neurons. Gaussian
noise with standard deviation of 0.1 was added to the data. The nonlinearity for the hid-
den neurons was chosen to be the inverse hyperbolic sine, which means that the nonlinear

114 Publication V-16

0 1 2 3 4 5 6 7 8 9
−7

−6

−5

−4

−3

−2

−1

0

Number of linear PCA components

R
em

ai
ni

ng
 e

ne
rg

y
on

 lo
g−

sc
al

e

Figure 7: The graph shows the remaining energy in the data as a function of the number
of extracted linear PCA components. The total energy is normalised to unity (zero on
logarithmic scale). The data has been generated from five Gaussian sources but as the
mapping is nonlinear, the linear PCA cannot be used for finding the original subspace

factor analysis algorithm using MLP network with tanh-nonlinearities cannot use exactly
the same weights.

Figure 7 shows how much of the energy remains in the data when a number of linear
PCA components are extracted. This measure is often used to deduce the linear dimension
of the data. As the figure shows, there is no obvious turn in the curve and it would be
impossible to deduce the nonlinear dimension.

With the nonlinear factor analysis by MLP networks, not only the number of the sources
but also the number of hidden neurons in the MLP network needs to be estimated. With
the Bayesian approach this is not a problem, as is shown in Figs. 8 and 9. The cost function
exhibits a broad minimum as a function of hidden neurons and a saturating minimum as
a function of sources. The reason why the cost function saturates as a function of sources
is that the network is able to effectively prune away unused sources. In the case of ten
sources, for instance, the network actually uses only five of them.

The pressure to prune away hidden neurons is not as big which can be seen in Fig. 10.
A reliable sign of pruning is the amount of bits which the network uses for describing a
variable. Recall that it was shown in Sect. 6.4.2 that the cost function can be interpreted
as the description length of the data. The description length can also be computed for
each variable separately and this is shown in Fig. 10. The MLP network had seven input
neurons, i.e., seven sources, and 100 hidden neurons. The upper left plot shown clearly
that the network effectively uses only five of the sources and very few bits are used to
describe the other two sources. This is evident also from the first layer weight matrix A
on the upper right plot, which shows the average description length of the weights leaving
each input neuron.

The lower plot of Fig. 10 also shows the average description length of the weight matrix
A, but now the average is taken row-wise and thus tells how many bits are used for

Publication V-17 115

15 20 25 30 35 40 45
18

18.5

19

19.5

20

20.5

21

21.5

22

Number of hidden neurons

C
os

t f
un

ct
io

n
/ 1

00
0

Figure 8: The value of the cost function is shown as a function of the number of hid-
den neurons in the MLP network modelling the nonlinear mapping from five sources to
the observations. Ten different initialisations were tested to find the minimum value for
each number of hidden neurons. The cost function exhibits a broad and somewhat noisy
minimum. The smallest value for the cost function was obtained using 30 hidden neurons

1 2 3 4 5 6 7 8 9 10
18

20

22

24

26

28

30

Number of sources

C
os

t f
un

ct
io

n
/ 1

00
0

Figure 9: The value of the cost function is shown as a function of the number of sources.
The MLP network had 30 hidden neurons. Ten different initialisations were tested to find
the minimum value for each number of sources. The cost function saturates after five
sources and the deviations are due to different random initialisation of the network

116 Publication V-18

1 2 3 4 5 6 7
0

2

4

6

8

Index of source

A
ve

ra
ge

 n
um

be
r

of
 b

its

Description length of the sources

1 2 3 4 5 6 7
0

2

4

6

8

Index of source

A
ve

ra
ge

 n
um

be
r

of
 b

its

Description length of the weights A

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

Index of hidden neuron

A
ve

ra
ge

 n
um

be
r

of
 b

its

Description length of the weights A

Figure 10: The network is able to prune away unused parts. This can be monitored by
measuring the description length of different variables. The sources and hidden neurons
are sorted by decreasing description length

describing the weights arriving to each hidden neuron. It appears that about six or seven
hidden neurons have been pruned away, but the pruning is not as complete as in the case of
sources. This is because for each source the network has to represent 1000 values, one for
each observation vector, but for each hidden neuron the network only needs to represent
five plus twenty (the effective number of inputs and outputs) values and there is thus much
less pressure to prune away a hidden neuron.

5.3.2 Non-Gaussian Sources

The following experiments demonstrate the ability of the nonlinear independent factor
analysis algorithm to find the underlying latent variables which have generated the obser-
vations.

In these experiments, a similar scheme was used to generate data as with the Gaussian
sources before. Now a total of eight sources was used with four sub-Gaussian and four
super-Gaussian sources. The generating MLP network was also larger, having 30 hidden
neurons and 20 output neurons. The super-Gaussian sources were generated by taking a
hyperbolic sine, sinhx, from a normally distributed random variable and then normalising
the variance to unity. In generating sub-Gaussian sources, inverse hyperbolic sine, sinh−1 x,
was used instead of sinhx.

Publication V-19 117

−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

Figure 11: Original sources are on the x-axis of each scatter plot and the sources estimated
by a linear ICA are on the y-axis. Signal to noise ratio is 0.7 dB

Several different numbers of hidden neurons were tested in order to optimise the struc-
ture of the network, but the number of sources was assumed to be known. This assumption
is reasonable since it is possible to optimise the number of sources simply by minimising
the cost function as the experiments with the Gaussian sources show. The network which
minimised the cost function turned out to have 50 hidden neurons. The number of Gaus-
sians in each of the mixtures modelling the distribution of each source was chosen to be
three and no attempt was made to optimise this.

The results are depicted in Figs. 11, 12 and 13. Each figure shows eight scatter plots,
each of which corresponds to one of the eight sources. The original source which was
used for generating the data is on the x-axis and the estimated source in on the y-axis
of each plot. Each point corresponds to one data vector. The upper plots of each figure
correspond to the super-Gaussian and the lower plots to the sub-Gaussian sources. Optimal
result would be a straight line which would mean that the estimated values of the sources
coincide with the true values.

Figure 11 shows the result of a linear FastICA algorithm [4]. The linear ICA is able to
retrieve the original sources with 0.7 dB signal to noise ratio. In practise a linear method
could not deduce the number of sources and the result would be even worse. The poor
signal to noise ratio shows that the data really lies in a nonlinear subspace.

Figure 12 depicts the results after 2000 iterations with nonlinear factor analysis followed
by a rotation with a linear FastICA. Now the signal to noise ratio is 13.2 dB and the sources
have clearly been retrieved. Figure 13 shows the final result after another 5500 iterations
with nonlinear independent factor analysis algorithm. The signal to noise ratio has further
improved to 17.3 dB.

It would also be possible to avoid using the nonlinear independent factor analysis al-
gorithm by running first 7500 iterations with linear factor analysis algorithm and then
applying the linear ICA. The disadvantage would be that the cost function would not take
into account the non-Gaussianity. The signal to noise ratio after 7500 iterations with linear
factor analysis algorithm followed by the linear ICA was 14.9 dB, which shows that taking

118 Publication V-20

−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

Figure 12: Scatter plots of the sources after 2000 iterations of nonlinear factor analysis
followed by a rotation with a linear ICA. Signal to noise ratio is 13.2 dB

the non-Gaussianity into account during estimation of the nonlinear mapping helps the
nonlinear independent factor analysis algorithm to find better estimates for the sources.

5.4 Process Data

This data set consists of 30 time series of length 2480 measured from different sensors from
an industrial pulp process. An expert has preprocessed the signals by roughly compensating
for time lags of the process which originate from the finite speed of pulp flow through the
process.

In order to get an idea of the dimensionality of the data, linear factor analysis was
applied to the data. The result is shown in Fig. 14. The same figure shows also the
results with nonlinear factor analysis. It appears that the data is quite nonlinear since the
nonlinear factor analysis is able to explain as much data with 10 components as the linear
factor analysis with 21 components.

Several different numbers of hidden neurons and sources where tested with different
random initialisations with nonlinear factor analysis and it turned out that the cost function
was minimised for a network having 10 sources and 30 hidden neurons. The same network
was chosen for nonlinear independent factor analysis, i.e., after 2000 iterations with linear
factor analysis the sources were rotated with FastICA and each source was modelled with
a mixture of three Gaussian distributions. The resulting sources are shown in Fig. 15.

Figure 16 shows the 30 original time series of the data set, one time series per plot,
and in the same plots below the original time series are the reconstructions made by the
network, i.e., the posterior means of the output of the network when the inputs were the
estimated sources shown in Fig. 15. The original signals shown great variability but the
reconstructions are strikingly accurate. In some cases it even seems that the reconstruction
is less noisy than the original signal. This is somewhat surprising since the time depen-
dencies in the signal were not included in the model. The observation vectors could be
arbitrarily shuffled and the model would still give the same result.

Initial studies are pointing to the direction that the estimated source signals can have

Publication V-21 119

−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

Figure 13: The network in Fig. 12 has been further trained for 5500 iterations with non-
linear independent factor analysis. Signal to noise ratio is 17.3 dB

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of sources

R
em

ai
ni

ng
 e

ne
rg

y

linear FA
nonlinear FA

Figure 14: The graph shows the remaining energy in the process data as a function of the
number of extracted components in linear and nonlinear factor analysis

120 Publication V-22

Figure 15: The ten estimated sources from the industrial pulp process. Time increases
from left to right

meaningful physical interpretations. The results are encouraging but further studies are
needed to verify the interpretations of the signals.

6 Comparison with Existing Methods

The idea of representing the data with a nonlinear coordinate system is by no means new
and several algorithms for learning the coordinate system have been proposed.

6.1 SOM and GTM

Self-organising maps (SOM) [5] and generative topographic mapping (GTM) [2] define
a nonlinear coordinate system by stating the coordinates of lattice points called model
vectors. The methods are in wide use, particularly the computationally efficient SOM, but
the dimension of the latent space is normally quite small. Two-dimensional latent space is
the most typical one because it allows an easy visualisation for human users.

The disadvantage of SOM and GTM is that the number of parameters required to
describe the mapping from latent variables to observations grows exponentially with the
dimension of the latent space. Our main motivation for using MLP network as the nonlinear
mapping is that its parametrisation scales linearly with the dimension of the latent space.
In this respect the mapping of MLP network is much closer to a linear mapping which
has been proven to be applicable for very high dimensional latent spaces. SOM and GTM
would probably be better models for the helical data set in Sect. 5.2, but the rest of the
experiments have latent spaces whose dimensions are so large that SOM or GTM models
would need very many parameters.

6.2 Auto-Associative MLPs

Auto-associative MLP networks have been used for learning similar mappings as we have
done. Both the generative model and its inversion are learned simultaneously, but sep-
arately without utilising the fact that the models are connected. This means that the
learning is much slower than in this case where the inversion is defined as a gradient
descent process.

Much of the work with auto-associative MLPs uses point estimates for weights and
sources. As argued in the beginning of the chapter, it is then impossible to reliably choose
the structure of the model and problems with over- or underlearning may be severe. Hochre-
iter and Schmidhuber have used and MDL based method which does estimate the distri-
bution of the weights but has no model for the sources [3]. It is then impossible to measure
the description length of the sources.

Publication V-23 121

Figure 16: The 30 original time series are shown on each plot on top of the reconstruction
made from the sources shown in Fig. 15

6.3 Generative Learning with MLPs

MacKay and Gibbs briefly report using stochastic approximation to learn a generative MLP
network which they called a density network because the model defines a density of the
observations [6]. Although the results are encouraging, they do not prove the advantages of
the method over SOM or GTM because the model is very simple; noise level is not estimated
from the observations and the latent space had only two dimensions. The computational
complexity of the method is significantly greater than in the parametric approximation of
the posterior presented here, but it might be possible to combine the methods by finding
initial approximation of the posterior probability with parametric approximation and then
refining it with more elaborate stochastic approximation.

In [7], a generative MLP network was optimised by gradient based learning. The cost
function was reconstruction error of the data and a point estimate was used for all the
unknown variables. As argued in Sect. 2, this means that it is not possible to optimise
model structure and the method is prone to overfitting.

122 Publication V-24

7 Discussion

7.1 Validity of the Approximations

The posterior pdf of all the unknown variables was approximated with a Gaussian density
with diagonal covariance, which means that the variables were assumed independent given
the observations. The Gaussianity assumption is not severe since the parametrisation is
chosen so as to make the posterior close to Gaussian. If the hidden neurons were linear, the
posterior of the sources, weights and biases would, in fact, be exactly Gaussian. Gaussian
approximation therefore penalises strong nonlinearities to some extent.

The posterior independence seems to be the most unrealistic assumption. It is probable
that a change in one of the weights can be compensated by changing the values of other
weights and sources, which means that they have posterior dependencies.

In general, the cost function tries to make the approximation of the posterior more
accurate, which means that during learning the posterior will also try to be more inde-
pendent. In PCA, the mapping has a degeneracy which will be used by the algorithm to
do exactly this. In linear PCA the mapping is such that the sources are independent a
posteriori. In the nonlinear factor analysis, the dependencies of the sources are different in
different parts of the latent space and it would be reasonable to model these dependencies.
Computational load would not increase significantly since the Jacobian matrix computed
in the algorithm can be used also for estimating the posterior interdependencies of the
sources. For the sake of simplicity, the derivations were not included here.

It should be possible to do the same for the nonlinear independent factor analysis,
but it would probably be necessary to assume the different Gaussians of each source to be
independent. Otherwise the posterior approximation of Q(M|X) would be computationally
too intensive.

The other approximation was done when approximating the nonlinearities of the hidden
neurons by Taylor’s series expansions. For small variances this is valid and it is therefore
good to check that the variances of the inputs for the hidden neurons are not outside the
range where the approximation is valid. In the computation of the gradients, some terms
were neglected to discourage the network from adapting itself to areas of parameter space
where the approximation is inaccurate. Experiments have proven that this seems to be
working. For the network which minimised the cost function in Fig. 8, for instance, the
maximum variance of the input for a hidden neurons was 0.06. Even this maximum value
is safely below the values where the approximation could become too inaccurate.

7.2 Initial Inversion by Auxiliary MLP

During learning, both the sources and the mapping of the network evolve together. When
the network is presented new data, it is necessary to find the estimates of the sources
corresponding to the new data. This can be difficult using similar update process as was
used in learning because it is possible that during learning the network develops local
minima which make later inversion difficult.

Experiments have shown that it is possible to learn an auxiliary MLP network which
will estimate the mapping from observations to sources and can thus be used to initialise
the sources given new data. The resulting system with two MLP networks resembles auto-
associative MLP network. As was argued before, learning only the generative model is
faster than learning a deeper auto-associative MLP with both the generative model and

Publication V-25 123

its inverse. Initial experiments have also shown that updates of the sources after the
initialisation with the auxiliary MLP network lead to better estimates of the sources.

7.3 Future Directions

In principle, both the nonlinear factor analysis and independent factor analysis can model
any time-independent distribution of the observations. MLP networks are universal ap-
proximators for mappings and mixture-of-Gaussians for densities. This does not mean,
however, that the models described here would be optimal for any time-independent data
sets, but the Bayesian methods which were used in the derivation of the algorithms al-
low easy extensions to more complicated models. It is also easy to use Bayesian model
comparison to decide with model is most suited for the data set at hand.

An important extension would be the modelling of dependencies between consecutive
sources �s(t) and �s(t + 1) because many natural data sets are time series. For instance
both the speech and process data sets used in the experiments clearly have strong time-
dependencies.

In the Bayesian framework, treatment of missing values is simple which opens up inter-
esting possibilities for the nonlinear models described here. A typical pattern recognition
task can often be divided in unsupervised feature extraction and supervised recognition
phases. Using the proposed method, the MLP network can be used for both phases. The
data set for the unsupervised feature extraction would have only the raw data and the
classifications would be missing. The data set for supervised phase would include both
the raw data and the desired outputs and the network. From the point of view of the
method presented here, there is no need to make a clear distinction between unsupervised
and supervised learning phases as any data vectors can have any combination of missing
values. The network will model the joint distribution of all the observations and it is not
necessary to specify which of the variables will be the classifications and which are the raw
data.

Acknowledgements

The authors wish to thank M.Sc. Xavier Giannakopoulos for his help with the simulations
with the nonlinear independent factor analysis and M.Sc. Esa Alhoniemi for his help with
the pulp process data.

References

[1] Hagai Attias. Independent factor analysis. Neural Computation, 11(4):803–851, 1999.

[2] Christopher M. Bishop, Markus Svensén, and Christopher K. I. Williams. GTM: The
generative topographic mapping. Neural Computation, 10(1):215–234, 1998.

[3] Sepp Hochreiter and Jürgen Schmidhuber. LOCOCODE performs nonlinear ICA with-
out knowing the number of sources. In Proceedings of the ICA’99, pages 149–154,
Aussois, France, 1999.

[4] A. Hyvärinen and E. Oja. A fast fixed-point algorithm for independent component
analysis. Neural Computation, 9(7):1483–1492, 1997.

124 Publication V-26

[5] Teuvo Kohonen. Self-Organizing Maps. Springer, 1995.

[6] David J. C. MacKay and Mark N. Gibbs. Density networks. In Jim Kay, editor,
Proceedings of Society for General Microbiology Edinburgh meeting, 1997.

[7] Jong-Hoon Oh and H. Sebastian Seung. Learning generative models with the up-
propagation algorithm. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances
in Neural Information Processing Systems 10, pages 605–611. MIT Press, 1998.

Publication VI-1 125

NONLINEAR INDEPENDENT COMPONENT
ANALYSIS USING ENSEMBLE LEARNING:

THEORY

Harri Valpola

In Proceedings of the Second International Workshop on Independent Component Analysis
and Blind Signal Separation, ICA 2000, (Helsinki, Finland, June 19–22), pp. 251–256,
2000.

Abstract

A nonlinear version of independent component analysis is presented. The mapping from
sources to observations is modelled by a multi-layer perceptron network and the distribu-
tions of sources are modelled by mixtures of Gaussians. The posterior probability of all
the unknown parameters is estimated by ensemble learning. In this paper, we present the
theory of the method, and in a companion paper experimental results.

1 Introduction

This paper presents a nonlinear independent component analysis (ICA) algorithm. In much
of the ICA research the mapping from the sources s(t) to the observations x(t) has been
assumed to be linear, but here we consider a more general model where the observations
are assumed to be generated by a nonlinear mapping f from the sources as shown in (1).

x(t) = f(s(t)) + n(t) (1)

The observations are assumed to be corrupted by Gaussian noise n(t). The sources are
assumed to be generated by an i.i.d. process and the distribution of each of the sources is
modelled by a mixture of Gaussians (MOG) and the nonlinear mapping f is modelled by
a multi-layer perceptron (MLP) network.

It is well known that the problem of determining the nonlinearity f is indeterminate,
that is, there exists an infinite number of different nonlinearities which can produce ob-
servations with the same distribution from some independent sources [2]. The Bayesian
approach does not suffer from the indeterminacy because a posterior probability can be
assigned to all the nonlinear models. Here we use ensemble learning which is a computa-
tionally efficient approximation to the full Bayesian treatment [4]. Although each model
will have some probability of being responsible for generating the data, typically almost all
probability is concentrated on a very small subset of models. It suffices to approximate this
high probability region of the posterior probability of the models. In ensemble learning, a
parametric approximation is fitted to the posterior probability.

The model structure is presented in Sect. 2. The cost function and details about how to
efficiently evaluate it are discussed in Sect. 3. Finally, the learning algorithm is introduced
in Sect. 4. This paper is accompanied by [5] which demonstrates the feasibility of the
method in simulations with artificial and natural data sets and discusses other existing
nonlinear ICA algorithms as well as the limitations and possible extensions of the algorithm
described here.

126 Publication VI-2

2 Model Structure

The nonlinear mapping f is modelled by a multi-layer perceptron (MLP) network having
two layers.

f(s(t)) = Bg(As(t) + a) + b (2)

The activation function for each of the nonlinear hidden neurons is the hyperbolic tangent,
that is, g(y) = tanh(y). In addition to the weight matrices A and B, both the hidden
neurons and the linear output neurons have biases, denoted by a and b, respectively.

In order to apply the Bayesian approach, each unknown variable in the network is
assigned a probability density function (pdf). We apply the usual hierarchical definition
of priors. For many parameters, for instance the biases a, it is difficult to assign a prior
distribution but we can utilise the fact that each bias occurs in a similar role in the network
by assuming that the distribution for each element of vector a has the same, albeit unknown
distribution which is then modelled by a parametric distribution. These new parameters
need to be assigned a prior also, but there are far fewer of them.

The noise n(t) is assumed to be independent and Gaussian with a zero mean. The
variance can be different on different channels, and hence the algorithm can be more
accurately be called nonlinear independent factor analysis. Given s(t), the variance of x(t)
is due to the noise. Therefore x(t) has the same distribution as the noise except with the
mean f(s(t)).

The distribution of each of the sources is modelled by a mixture of Gaussians. We can
think that for each source si(t) there is a discrete process which produces a sequence Mi(t)
of indices which tell from which Gaussian each si(t) is originated. Each Gaussian has its
own mean and variance and the probability of different indices is modelled by a soft-max
distribution.

The model is defined by the following set of distributions:

x(t) ∼ N(f(s(t)), exp(2vn)) (3)

P (Mi(t) = l) = exp(cil)/
∑
l′

exp(cil′) (4)

si(t) ∼ N(msil, exp(2vsil)) (5)

A ∼ N(0, 1) (6)

B ∼ N(0, exp(2vB)) (7)

a ∼ N(ma, exp(2va)) (8)

b ∼ N(mb, exp(2vb)) (9)

vn ∼ N(mvn
, exp(2vvn

)) (10)

c ∼ N(0, exp(2vc)) (11)

ms ∼ N(0, exp(2vms
)) (12)

vs ∼ N(mvs
, exp(2vvs

)) (13)

vB ∼ N(mvB
, exp(2vvB

)) (14)

The prior distributions of ma, va, mb, vb and the eight hyperparameters mvn
, . . . , vvB

are
assumed to be Gaussian with zero mean and standard deviation 100, that is, the priors are
assumed to be very flat.

Publication VI-3 127

The parametrisation of all the distributions is chosen such that the resulting parameters
have a roughly Gaussian posterior distribution. This is because the posterior will be mod-
elled by a Gaussian distribution. For example, the variance of the Gaussian distributions
is parametrised on a logarithmic scale.

Model indeterminacies are handled by restricting some of the distributions. There is a
scaling indeterminacy between the matrix A and the sources, for instance. This is taken
care of by setting the variance of A to unity instead of parametrising and estimating it. For
the second layer matrix B there is no such indeterminacy. The variance of each column of
the matrix is exp(2vBj). The network can effectively prune out some of hidden neurons by
setting the outgoing weights of the hidden neurons to zero, and this is easier if the variance
of the corresponding columns of B can be given small values.

3 Cost Function

The goal is to estimate the posterior pdf of all the unknown variables of the model. This
is done by ensemble learning which amounts to fitting a simple, parametric approximation
to the actual posterior pdf [4]. The cost function C is the misfit between the approxima-
tion and the actual posterior and is measured by the Kullback-Leibler information which
is sensitive to the probability mass of densities. This is the most important advantage
over maximum a posteriori (MAP) estimation which is computationally less expensive but
is sensitive to probability density, not mass. This is why MAP estimation suffers from
overfitting, which would be a serious problem since there are so many estimated variables,
while ensemble learning is able avoid it.

For the time being, let us denote the set of all observations vectors x(t) by X and
denote all the other parameters by a vector θ. The actual posterior pdf is thus p(θ|X) =
p(X,θ)/p(X). The joint pdf p(X,θ) is obtained from the definition of the model in (3)–(14)
and p(X) is a normalising factor which does not depend on the unknown variables.

Let us denote the approximation of the posterior pdf by q(θ). In order for the cost
function to be computable in practice, a simple factorial form needs to be chosen for the
approximation q(θ). The maximally factorial form would be

q(θ) =
∏

i

q(θi) . (15)

Notice that we have used the usual notation with probability density functions where q
with different arguments are taken to be different functions.

The assumption of factorial q(θ) is equivalent to assuming the unknown variables in-
dependent given the observations. This is not true, of course, but we have to make this
approximation in order to obtain a practical algorithm. The only exception to this maxi-
mally factorial form is that the index Mi(t) of the Gaussian and the corresponding source
si(t) are allowed to have posterior dependency, that is, the terms q(Mi(t), si(t)) are not
further factorised.

The approximation q(θi) should be chosen so that it fits the actual posterior as closely
as possible. This is accomplished by choosing q(θi) to be Gaussian for other variables
than sources and for sources choosing q(Mi(t), si(t)) = Q(Mi(t))q(si(t)|Mi(t)), where
q(si(t)|Mi(t)) is Gaussian.

Let us denote the mean and variance of q(θi) by θ̄i and θ̃i, respectively. The result of
learning is then an estimate of θ̄ and θ̃ which tell the posterior mean and variance of all
the unknown variables.

128 Publication VI-4

The term p(X) is constant with respect to the unknown parameters. Instead of the pure
Kullback-Leibler information K(q(θ)||p(θ|X)) it is therefore possible to use the following
cost function:

C(θ̄, θ̃) = K(q(θ)||p(θ|X)) − ln p(X) =∫
q(θ) ln

q(θ)

p(θ|X)
dθ − ln p(X) =∫

q(θ) ln
q(θ)

p(X,θ)
dθ . (16)

Notice that the variables Mi(t) are discrete and those terms are summed over, not in-
tegrated over, in the Kullback-Leibler information. For simplicity this is omitted from
(16).

Due to simple factorial forms of q(θ) and p(X,θ) the cost function splits into simple
terms which are easy to compute. Consequently, it is also easy to differentiate the cost
function with respect to θ̄ and θ̃ and use the derivatives for constructing the learning
algorithm.

3.1 Terms of the Cost Function

Almost all the distributions appearing in our model are assumed to be Gaussians, and con-
sequently almost all the terms appearing in the cost function are expectations of logarithms
of Gaussian distributions. We shall use the second layer biases a as an example. For each
element ai, there is one term in q(θ) and p(X,θ), namely the terms q(ai) and p(ai|ma, va).
The cost function therefore includes terms

∫
q(θ) ln q(ai)dθ and − ∫

q(θ) ln p(ai|ma, va)dθ.
In the first expectation the terms q(ai) only depends on ai which means that we can
integrate over the other variables and we have∫

q(θ) ln q(ai)dθ =

∫
q(ai) ln q(ai)dai . (17)

The same happens for the other integral:

−
∫

q(θ) ln p(ai|ma, va)dθ =

−
∫

q(ai)q(ma)q(va) ln p(ai|ma, va)daidmadva . (18)

Recall that q(ai) is Gaussian with mean āi and variance ãi. This means that the integral
in (17) yields simply ∫

q(ai) ln q(ai)dai = −1

2
ln 2πeãi . (19)

The integral in (18) also fairly easy and it can be shown that the result is

−
∫

q(ai)q(ma)q(va) ln p(ai|ma, va)daidmadva =

1

2
[(āi − m̄a)2 + ãi + m̃a] exp(2ṽa − 2v̄a) + v̄a +

1

2
ln 2π . (20)

Publication VI-5 129

Again the result is based on the fact that q(ai), q(ma) and q(va) are Gaussian with means
āi, m̄a, v̄a and variances ãi, m̃a, ṽa, respectively.

The following terms are the only ones whose expectations in (16) give different results
than (19) or (20): q(Mi(t), si(t)), p(Mi(t)|ci), p(si(t)|Mi(t),msi,vsi) and p(xk(t)|θ).

The index Mi(t) is discrete and therefore we have a summation instead of integration
in the cost function. Let us denote ṡil(t) = Q(Mi(t) = l) and denote the mean and
variance of the Gaussian q(si(t)|Mi(t) = l) by s̄il(t) and s̃il(t). Then the expectations of
ln q(Mi(t), si(t)) in (16) are given by

∑
l

∫
q(θ) ln q(Mi(t) = l, si(t))dθ =∑

l

Q(Mi(t) = l)[lnQ(Mi(t) = l) +∫
q(si(t)|Mi(t) = l) ln q(si(t)|Mi(t) = l)dsi(t)] =∑

l

ṡil(t)[ln ṡil(t) − 1

2
ln 2πes̃il(t)] . (21)

For the expectation of − ln p(Mi(t)|ci) we shall first evaluate the following integral:

−
∫

q(ci) ln p(Mi(t) = l|ci)dci =

−
∫

q(ci)[cil − ln
∑
l′

exp(cil′)]dci =

− c̄il +

∫
q(ci) ln

∑
l′

exp(cil′)dci (22)

The resulting integral can be approximated by applying a second order Taylor’s series
expansion of ln

∑
l′ exp(cil′) with respect to cil′ around the posterior mean c̄il′ . This yields

the following approximation for the integral:

−
∫

q(ci) ln p(Mi(t) = l|ci)dci ≈

− c̄il +
1

2

∑
l′

φil′(1 − φil′)c̃il′ , (23)

where φil = exp(c̄il)/
∑

l′ exp(c̄il′). Now we see that the expectation of − ln p(Mi(t)|ci) is

−
∑

j

ṡil

∫
q(ci) ln p(Mi(t)|ci)dci ≈

−
∑

l

ṡilc̄il +
1

2

∑
l′

φil′(1 − φil′)c̃il′ . (24)

Since both q(si(t)|Mi(t)) and p(si(t)|Mi(t),msi,vsi) are Gaussian, the terms

130 Publication VI-6

− ln p(si(t)|Mi(t),msi,vsi) have expectations which are similar to (20):

−
∑

l

ṡil

∫
q(si(t)|Mi(t) = l)q(msil)q(vsil)

ln p(si(t)|Mi(t) = l,msil, vsil)dsi(t)dmsildvsil , (25)

which equals to the sum of terms

1

2
[(s̄il(t) − m̄sil)

2 + s̃il(t) + m̃sil] exp(2ṽsil − 2v̄sil) +

v̄sil +
1

2
ln 2π (26)

weighted by ṡil.
The observations xk(t) are known — unless there are missing values — which means

that there are no terms of the form ln q(xk(t)). The expectations of − ln p(xk(t)|θ) are
the most difficult terms in the cost function. If the posterior mean and variance of the
function fk(s(t)) are known — let us denote them by f̄k(t) and f̃k(t) for short — then the
expectation has a form similar to (20):

1

2
[(xk(t) − f̄k(t))2 + f̃k(t)] exp(2ṽnk − 2v̄nk) +

v̄nk +
1

2
ln 2π . (27)

3.2 Posterior Mean and Variance of f(s(t))

This section describes how to compute the posterior mean and variance of the outputs
fk(s(t)) of the MLP network. Ordinarily the inputs, weights and biases of an MLP network
have fixed values. Here the inputs s(t), weights A, B and the biases a, b have posterior
distributions which means that we also have a posterior distribution of the outputs. One
way to evaluate the posterior mean and variance is to propagate distributions instead of
fixed values through the network. Whole distributions would be quite tricky to deal with,
and therefore we are going to characterise the distributions by their mean and variance
only.

The sources have mixture-of-Gaussians distributions for which it is easy to compute
the mean and variance:

s̄i(t) =
∑

l

ṡil(t)s̄il(t) (28)

s̃i(t) =
∑

l

ṡil(t)[s̃il(t) + (s̄il(t) − s̄i(t))
2] . (29)

Then the sources are multiplied with the first layer weight matrix A and the bias a is
added. Let us denote the result by yj(t) = aj +

∑
i Ajisi(t). Since the sources, weights

and biases are all mutually independent a posteriori, the following equations hold:

ȳj(t) = āj +
∑

i

Ājis̄i(t) (30)

ỹj(t) = ãj +∑
i

Ā2
jis̃i(t) + Ãji[s̄

2
i (t) + s̃i(t)] . (31)

Publication VI-7 131

Equation (31) follows from the identity

var(α) = 〈α2〉 − 〈α〉2 . (32)

For computing the posterior mean of the output gj(yj(t)) of a hidden neuron, we shall
utilise the second order Taylor’s series expansion of gj around the posterior mean ȳj(t) of
its input. This means that we approximate

gj(yj(t)) ≈ gj(ȳj(t)) + (yj(t) − ȳj(t))g
′
i(ȳj(t)) +

1

2
(yj(t) − ȳj(t))

2g′′i (ȳj(t)) . (33)

Since the posterior mean of yj(t) is by definition ȳj(t), the second term vanishes when
evaluating the posterior mean, while the posterior mean of (yj(t)− ȳj(t))

2 is by definition
the posterior variance ỹj(t). We thus have

ḡj(yj(t)) ≈ gj(ȳj(t)) +
1

2
ỹj(t)g

′′
j (ȳj(t)) . (34)

The second order expansion was chosen because those are the terms whose posterior mean
can be expressed in terms of posterior mean and variance of the input. Higher order terms
would have required higher order cumulants of the input, which would have increased the
computational complexity with little extra benefit.

For the posterior variance of gj(yj(t)) the second order expansion would result in terms
which need higher than second order knowledge about the inputs. Therefore we shall use
the first order Taylor’s series expansion which then yields the following approximation for
the posterior variance of gj(yj(t)):

g̃j(yj(t)) ≈ [g′j(ȳj(t))]
2ỹj(t) . (35)

The next step is to compute the mean and variance of the output after the second layer
mapping. The outputs are given by fk(t) = bk +

∑
j Bkjgj(t). The equation for the

posterior mean f̄k(t) is similar to (30):

f̄k(t) = b̄k +
∑

j

B̄kj ḡj(t) . (36)

The equation for the posterior variance f̃k(t) is more complicated than (31), however, since
si(t) are independent a posterior but gj(t) are not. This is because each si(t) affects several
— potentially all — gj(t). In other words, each si(t) affects each fk(t) through several
paths which interfere. This interference needs to be taken into account when computing
the posterior variance of fk(t).

We shall use a first order approximation of the mapping f(s(t)) for measuring the
interference. This is consistent with the first order approximation of the nonlinearities gj

and yields the following equation for the posterior variance of fk(t):

f̃k(t) ≈
∑

i

(
∂fk(t)

∂si(t)

)2

s̃i(t) + b̃k +∑
j

B̄2
kj g̃

∗
j (t) + B̃jk[ḡ2

j (t) + g̃j(t)] , (37)

132 Publication VI-8

where the posterior means of the partial derivatives are obtained by the chain rule

∂fk(t)

∂si(t)
=

∑
j

∂fk(t)

∂gj(t)

∂gj(t)

∂yj(t)

∂yj(t)

∂si(t)
=

∑
j

B̄kjg
′
j(ȳj(t))Āji (38)

and g̃∗j (t) denotes the posterior variance of gj(t) without the contribution from the sources.
It can be computed as follows:

ỹ∗
j (t) = ãj +

∑
i

Ãji[s̄
2
i (t) + s̃i(t)] (39)

g̃∗j (t) ≈ [g′j(ȳj(t))]
2ỹ∗

j (t) . (40)

Notice that s̃i(t) appears in (39) and g̃j(t) appears in (37). These terms do not contribute
to interference, however, because they are the parts which are randomised by multiplication
with Aji or Bkj and randomising the phase destroys the interference, to use an analogy
from physics.

4 Update Rules

In the previous section we derived all the equations needed for the computation of the cost
function. Given the posterior means θ̄ and variances θ̃ and discrete posterior probabilities
ṡil(t), we can compute the cost function which measures the quality of the approximation
of the posterior pdf of the unknown variables. Any standard optimisation algorithm could
be used for minimising the cost function, but it is sensible to utilise the particular form
of the function. Due to lack of space, we shall only outline the update rules but a more
detailed description can be found in [3].

Let us denote C = Cq + Cp, where Cq is the part originating from the expectation of
ln q(θ) and Cp is the part originating from expectation of − ln p(X,θ). We shall see how

it is possible to derive efficient fixed point algorithms for θ̄ and θ̃ assuming that we have
computed the gradients of Cp with respect to the current estimates of θ̄ and θ̃.

Since Cq has a term −1/2 ln 2πeθ̃ for each θ̃ whose posterior is approximated by Gaus-

sian q(θ), solving for ∂C/∂θ̃ = 0 yields an update rule for θ̃:

0 =
∂Cp

∂θ̃
+

∂Cq

∂θ̃
=

∂Cp

∂θ̃
− 1

2θ̃
⇒ θ̃ =

1

2
∂Cp

∂θ̃

. (41)

Now suppose ln p(X,θ) is roughly quadratic with respect to θ:

− ln p(X,θ) ≈ α + (θ − θopt)
2β . (42)

Then Cp would be

Cp ≈ α + [(θ̄ − θopt)
2 + θ̃]β (43)

and hence the derivatives with respect to θ̄ and θ̃ would be

∂Cp

∂θ̄
= 2(θ̄ − θopt)β (44)

∂Cp

∂θ̃
= β . (45)

Publication VI-9 133

As Cq does not depend on θ̄, the optimal value for θ̄ is evidently θopt and solving for that
we obtain an update rule for θ̄:

θ̄new = θopt = θ̄old −
∂Cp

∂θ̄

2
∂Cp

∂θ̃

= θ̄old − ∂Cp

∂θ̄
θ̃ . (46)

Since this update rule makes a quadratic approximation of the cost function C, it can be
viewed as Newton iteration which assumes that θ̄ is the only variable which changes be-
cause the quadratic approximation does not take into account the cross terms ∂2C/∂θi∂θj .
In practice all the weights A and B, for instance, are adapted simultaneously and each
weight affects the optimal value of the other weights. In [3] it is explained how it is pos-
sible to compensate for the error which results in the invalid assumption of independent
adaptations.

4.1 Update Rules for Posterior Source Distributions

The posterior distributions of the sources are effectively approximated by mixtures of
Gaussians which means that the above update rules are not directly applicable for them.
The new values for discrete posterior probabilities of the source indices ṡil(t) and the
posterior means s̄il(t) and variances s̃il(t) of the Gaussians corresponding to different source
are most easily solved by making a quadratic approximation for Cf based on the derivatives
∂Cf (t)/∂s̄i(t) and ∂Cf/∂s̃i(t), where Cf denotes the sum of terms of the form (27).

The usefulness of this approximation is based on the fact that the cost function tries
to minimise the misfit between the approximation and the actual posterior. If we can
solve the actual posterior and show that it can be described by our parametric approxima-
tion, we know that the cost function will be minimised by setting the parameters of the
approximation to values corresponding to the actual posterior.

In this case, making a second order approximation for Cf is equivalent to approximating
p(X|si(t)) by an unnormalised Gaussian distribution. Since the prior p(si(t)) is a mixture
of Gaussians and the posterior will be given by p(si(t)|X) = p(X|si(t))p(si(t))/p(X), we
notice that the posterior is also a mixture of Gaussians since a Gaussian multiplied with an
unnormalised Gaussian will produce another unnormalised Gaussian and the normalising
factor p(X) will then make sure that the posterior is a normalised mixture of Gaussians.
From the resulting mixture of Gaussians one can then determine the values for ṡil(t), s̄il(t)
and s̃il(t). In [1], a similar method without approximations was used for a linear model.
Due to the linearity of the mapping, ln p(X|si(t)) is quadratic and no approximations are
needed.

4.2 Avoiding Problems Originating from Approximations

When constructing a learning algorithm which is based on approximations of the cost
function, it is important to make sure that learning does not drive the network into areas
of the parameter space where the approximations are no longer valid.

The approximations in (34) and (35) are based on a roughly quadratic or linear be-
haviour of the nonlinearities. This assumption is quite good if the posterior variance ỹj(t)
of the inputs to the hidden neurons is not very large.

Since the approximations take into account only local behaviour of the nonlinearities gj

and MLP networks typically have multimodal posterior distributions, there must be areas
of the parameter space where the second order derivative of the posterior probability with

134 Publication VI-10

respect to one of the parameters θ is positive. This means that ∂Cp/∂θ̃ is negative which in
turn means that it appears that the cost function can be made arbitrarily small by letting
θ̃ grow.

It is easy to see that the problem is due to the local estimate of g since the logarithm
of the posterior eventually has to go to negative infinity. The derivative ∂Cp/∂θ̃ will thus

be positive for large θ̃, but the local estimate of gj fails to account for this.
In order to discourage the network from adapting itself into areas of parameter space

where the problems might occur and to deal with the problem if it nevertheless occurred,
the terms in (34) which have negative contribution to ∂Cp/∂θ̃ will be neglected in the

computation of the gradients. As this can only make the estimate of θ̃ in (41) smaller, this
leads, in general, to increasing the accuracy of the approximations in (34) and (35).

5 Computational Complexity

Most of the computation in the forward phase is spent in (38). The computation of the
gradients of (38) is also where most computation of the backward phase takes place. We
have previously tried making the assumption that the outputs of the hidden neurons are
independent a posteriori which then obviates the need of equation (38) because (37) can
be replaced by an equation similar to (31). Simulations have shown that this assumption is
too inaccurate. The computational complexity of this algorithm is proportional to IJKT ,
where I, J , K and T denote the source dimension, the number of hidden neurons, the
number of outputs and the number of observation vectors. In a typical case K > I
which means that the computational complexity of the second layer dominates and the
computational complexity is higher than in ordinary back-propagation by a factor I.

References

[1] H. Attias. Independent factor analysis. Neural Computation, 11(4):803–851, 1999.

[2] A. Hyvärinen and P. Pajunen. Nonlinear independent component analysis: Existence
and uniqueness results. Neural Networks, 12(2):209–219, February 1999.

[3] H. Lappalainen and A. Honkela. Bayesian nonlinear independent component analysis
by multi-layer perceptrons. In M. Girolami, ed., Advances in Independent Component
Analysis. Springer, Berlin, 2000. In Press.

[4] H. Lappalainen and J. W. Miskin. Ensemble learning. In M. Girolami, ed., Advances
in Independent Component Analysis. Springer, Berlin, 2000. In Press.

[5] H. Valpola, X. Giannakopoulos, A. Honkela, and J. Karhunen. Nonlinear independent
component analysis using ensemble learning: Experiments and discussion. In Proc. ICA
2000. In press.

Publication VII-1 135

FAST ALGORITHMS FOR BAYESIAN
INDEPENDENT COMPONENT ANALYSIS

Harri Valpola and Petteri Pajunen

In Proceedings of the Second International Workshop on Independent Component Analysis
and Blind Signal Separation, ICA 2000, (Helsinki, Finland, June 19–22), pp. 233–237,
2000.

Abstract

Fast algorithms for linear blind source separation are developed. The fast convergence is
first derived from low-noise approximation of the EM-algorithm given in [1], to which a
modification is made that leads as a special case to the FastICA algorithm [2]. The modi-
fication is given a general interpretation and is applied to Bayesian blind source separation
of noisy signals.

1 Introduction

We consider the problem of finding linearly mixed source signals s(t) = [s1(t), . . . , sm(t)]T

from observed noisy linear mixtures

x(t) = As(t) + n(t).

The mixing matrix A is unknown and n(t) is additive noise. When we consider a finite
number of observed mixture samples, we may write the data model in matrix form as

X = AS + N

Each time-indexed matrix contains a sequence of vector samples, e.g.

S = [s(1), s(2), . . . , s(M)]

To find the mixing matrix A, it is necessary that the source signals possess certain statistical
properties. For example, it is sufficient that the source signals are not Gaussian. It is also
sufficient that the possibly Gaussian sources have time dependencies, together with some
other conditions.

2 EM-algorithm for Independent Component Analysis

In the signal model only the vectors x(t) are observed. Everything else is unknown and
must be estimated using the data. In general, the task is to compute the joint posterior
distribution for all the unknown parameters conditioned by the mixtures x(t).

A more simple case is when the maximum likelihood estimate is used for some on
the parameters. This can be done by the EM-algorithm where the computation alternates
between computing the posterior distribution of one set of variables given the current point
estimate of the other set of variables (E-step) and then using the posterior distribution of

136 Publication VII-2

the first set of variables to compute a new maximum likelihood estimate of the second set
of variables (M-step).

When EM-algorithm is applied to ICA, usually the full posterior distribution is com-
puted for sources and the maximum likelihood estimate is used for the rest of the param-
eters. This means that in the E-step we need to compute the posterior distribution of the
sources s given x,A and the noise covariance σ2I

p(s|A,x, σ2I)

and use it to update our estimates.
Using the matrix notation for the finite number of samples, i.e. X and S, we can write

the M-step (see [3]) re-estimation for the mixing matrix as

Â = RxsR
−1
ss

where the posterior correlation matrices are

Rxs =
1

M

∑
i

x(i) E{sT (i)|x(i),A, σ2I} = XŜT /M

Rss =
1

M

∑
E{s(i)sT (i)|x(i),A, σ2I} = ŜS

T
/M .

The expectations are taken over the posterior distribution of the sources.
We will consider here the case where σ2 is small. If we further assume that the mixtures

are prewhitened, we can constrain the mixing matrix to be orthogonal and we can assume
that the sources have unit variance. This makes Rss a unit matrix.

In [1] the EM-algorithm is derived as a low-noise approximation for the case of square
mixing matrix A. First, the posterior mean p(s|A,x, σ2I) is obtained as

ŝ = E{s|A,x, σ2I} ≈ s0 + σ2(AT A)−1f(s0)

where f(·) is the derivative ∂ log pi(si)
∂si

and s0 = A−1x. Since we assumed that the mixing

matrix is orthogonal, we can omit the term (AT A)−1 and we get

ŝ = E{s|A,x, σ2I} ≈ s0 + σ2f(s0)

Substituting the above approximations we get

Â = XŜT /M

≈ XST
0 /M + σ2XF(ST

0)/M

= A + σ2XF(ST
0)/M

As the authors mention in [1], this approximation leads to an EM-algorithm which
converges slowly with low noise variance σ2. They also point out that there is no visible
“noise-correction”. It is precisely this point that we will address in the next section.

3 Fast EM-algorithm by Filtering of Gaussian Noise

With low noise variance σ2 the convergence of the EM-algorithm to the optimal value takes
a time proportional to 1/σ2. We will next show how the re-estimation step can be modified

Publication VII-3 137

so that the convergence rate will be independent of σ2 which yields a significant speedup
if σ2 is small.

Consider the case that we estimate the sources one at a time and that the sources
are assumed to be whitened and the mixing matrix A orthonormal. Denote one of the
source signals in the optimal solution as ŝopt. By optimality we mean that the standard
EM-algorithm will eventually converge to âopt = XŝT

opt with ŝopt = E{s|âopt,X, σ2I}.
When we have not yet found the optimal vector âopt, we have

s0 = αsopt + βsG

where α2 + β2 = 1. The noise sG is mostly due to the other sources and to a small extent
the Gaussian noise in the data. We can think that the E-step filters away the noise by
making use of the knowledge about the prior distribution of s. This gives one point of view
into the slow convergence: in low noise case most of the unwanted signal sG is due to other
sources and a slow convergence results. From this point of view, it is obvious that we can
speed up the convergence if we can filter away also that part of sG which is due to other
sources.

When we are far from the optimal solution, it is natural to assume that β ≈ 1 and
α ≈ 0. Since a and s0 are linearly related, we get

αâopt = â − βâG ≈ â − âG.

If we can compute aG, we can adjust the vector a to take into account the apparent
noise due to other sources. By the central limit theorem, the distribution of the sum
of contributions from several other sources approaches Gaussian as the number of other
sources increases. This leads to the following modification: we may estimate âG using the
same re-estimation whose result will be approximately

âG ≈ a + σ2XGF(s0G)/M.

where XG is the set of mixtures replaced by Gaussian noise with the same covariance as
X and s0G is the source obtained as aT XG. The Gaussian source s0G is the projection
of Gaussian noise to the subspace spanned by a and therefore represents the contribution
of the other sources and some Gaussian noise to the estimated source s0. As derived
above, we can eliminate much of this noise by updating a using the difference â − âG

which is then normalized. The normalization can be done, since scaling of the sources is
an undeterminacy in ICA.

Taking the difference yields approximately

â − âG ≈ σ2[XF(s0)
T − XGF(s0G)T]/M

which shows that the normalization cancels the effect of σ2 from the learning rule:

ânew =
â − âG

‖â − âG‖ .

We assumed above that there was a lot of Gaussian noise by approximating β ≈ 1. It
turns out that the above modification does not affect the optimal solutions of the algorithm,
i.e., if âopt is a fixed point of the original EM-algorithm, it is also a fixed point of the
modified algorithm. This follows immediately from the fact that âG is always parallel to

138 Publication VII-4

a since XG is spherically symmetric. To get a rough idea about why this is so, suppose
there is a vector b which is orthogonal to a, i.e., bT a = 0. Then

bT âG ≈ bT a + bT XGF(s0G) = s′0GF(s0G) = 0 .

The last step follows from the fact that s′0G is a projection to an orthogonal direction form
s0G and by Gaussianity of XG, statistically independent form F(s0G). But since this must
hold for all b which are orthogonal to a, it follows that âG has to be parallel to a.

In the next section we add validity to the result by showing that FastICA algorithm
follows from this procedure.

4 FastICA as EM-Algorithm with Filtering of Gaus-
sian Noise

The FastICA algorithm [2] can be interpreted as performing the above described noise
removal. In FastICA the requirement of whitening the sources is also made and therefore
Rss = I and (AT A)−1 = I. Then, the sources can be found one by one and we can consider
a single column a of the mixing matrix A.

To derive the FastICA algorithm from the modified EM-algorithm, it is sufficient to
note that the term XGF(s0G)T /M = as0GF (s0G)T /M is Cfa where Cf is a constant that
depends only on the nonlinear function f(·). Then the update rule is

â − âG = XF(sT
0) − Cfa

ânew =
â − âG

‖â − âG‖
which is the FastICA algorithm, where the constant Cf is the expectation E{s0Gf(s0G)}.

The choice of fixed nonlinearity f(·) is implicitly connected to the distribution of the
sources s. The derivation of the EM-algorithm required that

f(s) =
∂ log p(s)

∂s

However, we see that f(·) has certain degrees of freedom due to taking the difference
XF(sT

0)−XGF(sT
0G). Expanding f polynomially we obtain p(s) = exp(a+bs+cs2+dg(s))

where g′(s) = f(s) and g(s) contains all the powers of f higher than two and possibly lower
moments too. This representation follows since in the update rule constants and linear
terms of f(·) will cancel out. Therefore they will appear in the distribution p(s) in the
exponent with the power raised by one due to integration. Since p(s) must be a probability
density, the constant a will be fixed by the requirement

∫
p(s)ds = 1. Mean and variance

of s will determine the constants b and c, since the sources are required to be zero-mean
and whitened (variance is fixed to unity). There is one free parameter d left, which means
that there is not only one distribution corresponding to f(·) but a family of p(s). Typically
the family includes both super- and sub-Gaussian densities, which is why the same f(·)
can be used for both cases.

5 Application to General ICA Algorithms

The procedure giving faster convergence derived in previous sections is a general approach
and FastICA was seen to be a special case. Since the faster convergence was achieved

Publication VII-5 139

by comparing the re-estimation step to Gaussian noise removal, the approach is valid for
any situation where the general noisy ICA model holds with Gaussian noise and linear
mixtures. It is not required that the E-step uses the approximation ŝ ≈ s0 + σ2f(s0);
instead, it can be any method that can use s0 to compute ŝ. Denote this estimation by

ŝ = g(s0) .

Then it is always possible to replace the source with Gaussianized source s0G and obtain

ŝG = g(s0G) .

Having estimated two sets of sources, we can apply any method whatsoever to estimate the
mixing matrix using the newly estimated sources. This gives us two new estimates of the
vectors â and âG of the mixing matrix. The final estimate is obtained as the normalized
difference as above.

6 Application to Bayesian Noisy ICA

Above, noise was assumed to have a small variance to justify certain approximations.
Therefore the result was not strictly an algorithm for noisy ICA since the approximations
get worse with increasing noise variance. Below, we will consider a speedup modification
for Bayesian noisy ICA. The Bayesian approach adopted here gives certain important
advantages:

• noise can have a finite variance

• source densities need not be fixed a priori; they can be estimated

• the number of sources can be estimated

• model comparison is possible

Specifically the source distributions are modeled as mixtures of Gaussians and the
posterior is approximated using ensemble learning. The treatment of the source distribution
is similar to [4] which uses a factorial approximation of the posterior source distributions
in connection with the EM-algorithm. The modification would be directly applicable to
the algorithm in [4], but we will consider an algorithm where all the posterior distribution
is estimated for all parameters, i.e., point estimates are not used at all.

6.1 Overview of the Bayesian ICA Algorithm

In [5], it is described how to use ensemble learning for the noisy ICA model. The posterior
distribution is over all unknown parameters, including the mixing matrix A. In ensemble
learning, a factorial approximation q(S,A, . . .) is fitted to the actual posterior distribution
p(S,A, . . . |X) by minimising the Kullback-Leibler information between them, i.e., the cost
function which is minimized during learning is

I(q; p) = Eq{log(q/p)} .

The algorithm is computationally efficient when the approximation q(·) of the posterior
probability p(·|X) is chosen to be factorial. This can be seen as an extension of the factorial

140 Publication VII-6

EM-algorithm in [4], where q(·) included only the posterior distribution of the sources. For
further details, see for instance [6, 7], where ensemble learning is applied to nonlinear ICA.

The ICA algorithm based on ensemble learning works in much the same way as EM-
algorithm. First the distribution of the sources is computed by using the current estimate
of the distribution of the other parameters. Then the distribution of the other parameters
is computed using this distribution of the sources. The posterior distributions of the
parameters are approximated by Gaussian distribution which means that for each element
of the mixing matrix A, the posterior mean and variance is estimated. The modification
will be applied to the posterior mean of the mixing matrix.

For each vector of the mixing matrix, the modified posterior mean will be the normal-
ized difference between the posterior mean estimated from the original sources and the
Gaussianized sources. The iteration is then repeated by estimating the posteriors of the
sources again, using the new parameter distribution.

In practice, the algorithm is performed in deflatory manner, that is, the sources are ex-
tracted one by one. The mixtures are prewhitened and then the mixing matrix is estimated
one column a at a time.

A heuristic stabilization is added to ensure convergence. This is achieved by updating
the vector a to be a linear combination αanew + (1−α)aold. The coefficient α is increased
when consecutive corrections to a have a positive inner product which means that they do
not change to opposite directions. Otherwise, α is decreased.

7 Experiments

The Bayesian ICA algorithm was tested on MEG data, which is identical to the data used
in [8]. The data has 122 channels of measurements over two minutes digitized at 148 Hz.
The measurements contain signals resulting in the electrical activity of the brain but also
signals which can be considered artifacts. These include signals caused by muscular activity,
eye movements, cardiac rhythm and even a signal caused by a digital watch that the test
subject was wearing. Since it can be assumed that most of the artifacts are independent
of the brain activity, it is hoped that ICA can find the artifacts.

The Bayesian ICA algorithm was used to separate 30 sources from the 122 measures
channels. The results obtained were comparable to those reported in [8]. In figure 1, five
measurements and five non-Gaussian sources found by the algorithm are illustrated.

The modification of the estimate of a by the estimate aG typically reduces the conver-
gence time by a factor of ten; the iteration typically converged in 30 iterations.

8 Discussion

First we considered the EM-algorithm for finding independent components with low noise.
The problem of slow convergence was noted and an improvement was proposed. When
finding the sources one at a time, the contributions of the unwanted sources was treated as
noise, which leads to faster convergence. Although the approach was found to be implicitly
the same as in the FastICA algorithm, it is valid for other situations too. In Bayesian ICA
for i.i.d. sources, the modification can be applied as proposed. Other possibilities include
finding groups of components that are not mutually independent but are independent
related to other components not in the group. The independent components are then
projections to multidimensional subspaces instead of one-dimensional projections. This has

Publication VII-7 141

Figure 1: Above: five MEG measurements. Below: five separated sources found by the
Bayesian ICA algorithm.

been proposed e.g. in [9, 10]. The modification proposed in this paper applies to this case
too, since the contributions of sources not in the group can be regarded as approximately
Gaussian noise.

Further work includes finding more general principles, where the modification could be
derived for other cases, such as time-dependent sources or nonlinear ICA.

References

[1] O. Bermond and J. Cardoso, “Approximate likelihood for noisy mixtures,” in
Proc. Int. Workshop on Independent Component Analysis and Signal Separation
(ICA’99), (Aussois, France), pp. 325–330, January 1999.

[2] A. Hyvärinen and E. Oja, “A fast fixed-point algorithm for independent component
analysis,” Neural Computation, vol. 9, no. 7, pp. 1483–1492, 1997.

[3] E. Moulines, J. Cardoso, and E. Gassiat, “Maximum likelihood for blind separation
and deconvolution of noisy signals using mixture models,” in IEEE Int. Conf. Acous-
tics, Speech, and Signal Processing, pp. 3617–3620, 1997.

[4] H. Attias, “Independent factor analysis,” Neural Computation, vol. 11, no. 4, pp. 803–
851, 1999.

[5] H. Lappalainen, “Ensemble learning for independent component analysis,” in
Proc. Int. Workshop on Independent Component Analysis and Signal Separation
(ICA’99), (Aussois, France), pp. 7–12, January 1999.

[6] H. Lappalainen, “Nonlinear independent component analysis using ensemble learn-
ing: Theory,” in Proc. Int. Workshop on Independent Component Analysis and Signal
Separation (ICA2000), (Helsinki, Finland), June 2000.

142 Publication VII-8

[7] H. Lappalainen, X. Giannakopoulos, A. Honkela, and J. Karhunen, “Nonlinear inde-
pendent component analysis using ensemble learning: Experiments and discussion,”
in Proc. Int. Workshop on Independent Component Analysis and Signal Separation
(ICA2000), (Helsinki, Finland), June 2000.

[8] R. Vigario, V. Jousmäki, M. Hämäläinen, R. Hari, and E. Oja, “Independent compo-
nent analysis for identification of artifacts in magnetoencephalographic recordings,” in
Advances in Neural Information Processing Systems 10 (NIPS’97), (Cambridge, MA),
pp. 229–235, MIT Press.

[9] J.-F. Cardoso, “Multidimensional independent component analysis,” in
Proc. Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP’98), vol. 4,
(Seattle, Washington, USA), pp. 1941–1944, May 1998.

[10] A. Hyvärinen and P. O. Hoyer, “Emergence of phase and shift invariant features by
decomposition of natural images into independent feature subspaces,” Neural Compu-
tation, 2000. (in press).

Publication VIII-1 143

UNSUPERVISED LEARNING OF NONLINEAR
DYNAMIC STATE-SPACE MODELS

Harri Valpola

Publications in Computer and Information Science A59, Helsinki University of Technology,
Espoo, Finland, 2000.

Abstract

This technical report describes how the nonlinear factor analysis algorithm introduced in
[4] can be extended by taking into account the dynamics of the factors. The resulting
algorithm represents the observations as having been generated by a nonlinear dynamical
system. The internal states and the nonlinear mappings describing the nonlinear system
are assumed to be unknown and they are estimated from the observations. Experiments
with artificial data verify that the algorithm is able to reconstruct the dynamics of the
underlying process which has generated the observations.

1 Introduction

This technical report describes how the nonlinear factor analysis (NLFA) algorithm [4] can
be extended by modelling the dynamics of the factors. The goal is to find factors which
not only represent the observations compactly but are also predictable. Only those parts
which differ from the NLFA algorithm are explained and this report should therefore be
read together with [4].

Like in NLFA, learning is unsupervised and is based on uncovering regularities in the
observations. NLFA can capture static regularities within observation vectors x(t) but
discards any temporal structure present in the sequence of observations. Including a model
of the dynamics of the factors results in a nonlinear dynamic factor analysis (NDFA) model
which can capture both static and temporal structure of the observations.

The generative model for the observations x(t) is as follows:

x(t) = f(s(t)) + n(t) (1)

s(t) = g(s(t − 1)) + m(t) (2)

The observations x(t) are assumed to have been generated by the factors s(t) through a
nonlinear mapping f . It is reasonable to assume that the model misses some of the factors
affecting the observations and that the nonlinear mapping is somewhat inaccurate. The
error caused by these imperfections is modelled by i.i.d. Gaussian noise n(t). The nonlinear
mapping f is modelled by a multi-layer perceptron (MLP) network.

The model for the dynamics of the factors has almost the same structure as the ob-
servation model. The observations are assumed to have been generated by the factors at
the previous time instant. This means that the factors can be interpreted as the states of
a dynamical system. The noise m(t) of the dynamic model is often called process noise
or innovation process. Similar models have been proposed in [2, 7] where the nonlinear

144 Publication VIII-2

ss(t-1) (t+1)(t) s

xx (t+1)(t-1) x(t)

Figure 1: The causal relations assumed by the model are depicted by solid arrows. Ob-
servations x(1), . . . , x(t), . . . give information about the values of the factors. The flow
of information to the factor s(t) is represented by dashed arrows. Bayes’ rule is used for
reversing the arrows.

mappings are modelled by radial basis functions [6] and in [1] where the nonlinearities are
modelled by MLP networks.

As the dynamic model (2) has the same functional form as observation model (1),
similar sets of hyperparameters can be used for both models. Learning could also be
achieved with the same algorithm which was used for NLFA in [4]. Some minor changes
are made, however, which take into account the fact that the dynamic mapping g can
usually be expected to be closer to identity mapping than zero and the model of the
dynamics induces posterior correlations to the factors.

Section 2 discusses the properties of the state-space model used in this report and
some of its alternatives. Section 3 introduces the modifications to the learning algorithm.
Results of simulations are reported in section 4.

2 Predictable factors and state-space models

Models are tools which enable making inferences based on observations. One of their most
important applications is prediction. The model can be used to infer the expected state of
the world in the future or predict the expected consequences of various actions.

In unsupervised learning, the goal is to find a compact representation for the observa-
tions. The benefit is that it is often easier to find the connection between two subsets of
observations using the compact representations than directly between the observations. In
this case we are interested in the connection which can be made in the temporal domain.

NLFA can find compact representation for the observations. It does not take into
account the temporal behaviour of the observations, but it can be expected that it is
often easier to predict the future factors from the past factors than directly the future
observations from the past observations. It would therefore be possible to first use NLFA
to find a compact representation for observations x(t) in terms of factors s(t) and then find
the mapping from the past factors s(t − 1), s(t − 2), . . . , to the current factor s(t).

The drawback of this approach would be that in the first stage, learning does not
explicitly aim at finding factors which facilitate the prediction. This can be remedied
simply by combining the stages and letting the learning of factors take into account both
the accuracy of description of the observations and the prediction of future factors.

The model defined by (1) and (2) does exactly this. Learning of factors s(t) takes
into account three sources of information: 1) the factors should be able to represent the
observations x(t), 2) the factors should be able to predict the factors s(t + 1) at the next

Publication VIII-3 145

s (t)

s (t)

(b)(a)

s (t)3

2

1s(t-1)s(t-2)s(t-3) s(t)

3

2

1

s (t-1)

s (t-1)

s (t-1)

Figure 2: (a) The factor s(t) depends on the three previous values s(t − 3), s(t − 2) and
s(t − 1). (b) This dynamics can be transformed into an equivalent state representation
where s1(t) corresponds to s(t) while s2(t) and s3(t) store the values s(t− 1) and s(t− 2),
respectively.

time step and 3) the factors should be well predicted by the factors s(t−1) at the previous
time step. This is depicted in figure 1.

As (2) shows, the model assumes that the factors s(t) can be predicted from the im-
mediately preceding factors s(t− 1) without knowing the factors in the more distant past.
This does not restrict the class of dynamical processes which can be modelled because any
model with long range dependencies can be converted into an equivalent model with only
one step dependencies but larger number of factors. This means that the factors store all
the information needed for predicting the dynamic behaviour of the process and therefore
the factors can be interpreted as the state of the dynamical system.

Figure 2 gives an example about how a model with three step delays can be transformed
into an equivalent state representation with only one step delays but more factors. In this
case the two extra factors s2(t) and s3(t) store the values s(t − 1) and s(t − 2), but they
could, for instance, store the first and second time derivatives of s(t) as well. The benefit
of using the state representation is that the model can learn the structure of the memory.

3 Model and learning algorithm

The functional form and learning algorithm for the nonlinear dynamic factor analysis
(NDFA) model proposed in this report are very close to the ones introduced for NLFA
in [4]: the mappings f and g are modelled by MLP networks and a gradient based learning
algorithm is used for iteratively updating the approximation of the posterior probability
of the unknown variables. There are some modifications, however, which take into account
the fact that the mapping g models the dynamics of the factors.

First of all, it can be expected that the values of the factors s(t) are close to the values
at the previous time step s(t−1). This prior knowledge can be taken into account by using
the MLP network to model only the change in factors instead of trying to learn the whole
mapping from s(t − 1) to s(t). The functional form of the dynamic mapping g is thus

g(s(t − 1)) = s(t − 1) + Dtanh[Cs(t − 1) + c] + d , (3)

while the observation mapping is

f(s(t)) = Btanh[As(t) + a] + b . (4)

It should be noted that the MLP network modelling the dynamics can learn to overrule
the term s(t − 1) if it turns out that the value of the factor at time t − 1 does not bear
information about the value of the factor at time t.

146 Publication VIII-4

3.1 Improved approximation of the posterior probability

In [4], the posterior probability of the unknown variables was approximated as Gaussian
distribution with diagonal covariance matrix. This means that the unknown variables were
approximated to be independent given the observations. Notice that this assumption is
false even if the unknown variables are assumed to be independent a priori. For instance,
the factors are assumed to be independent a priori but observations induce dependencies
between them. These dependencies are strongest for factors at the same time instant,
that is, si(t) and sj(t) have a posterior dependence but si(t1) and sj(t2) can be nearly
independent when t1 is far from t2.

The NLFA model has an indeterminacy of the rotation of the factors and the model
can utilise this by choosing the rotation which makes the factors independent not only a
priori but also a posteriori. However, the inclusion of the dynamic model causes posterior
dependencies between factors at different time steps and these dependencies do not vanish
for any rotation or any other mapping of the factor space. The smaller the process noise
the stronger the dependence will be.

Taking into account the full posterior covariance between s(t− 1) and s(t) is computa-
tionally costly if the dimension of the factor space is large. In practice, the most significant
posterior correlations are the posterior autocorrelations of the factors, that is, the correla-
tions between si(t − 1) and si(t). They can be taken into account without increasing the
computational complexity significantly.

In [4], the approximation of the posterior probability of the factors had the factorial
form

q(S|X) =
∏
i,t

q(si(t)|X) , (5)

where S denotes the factors and X the observations. The approximations q(si(t)|X) were
Gaussian with mean s̄i(t) and variance s̃i(t). For the dynamical model introduced in this
report, the approximation has the form

q(S|X) =
∏
i,t

q(si(t)|si(t − 1),X) , (6)

where q(si(t)|si(t − 1),X) is Gaussian and depends linearly on si(t − 1):

q(si(t)|si(t − 1),X) = N(si(t)|s̄i(t) + s̆i(t, t − 1)[si(t − 1) − s̄i(t − 1)],
◦
si (t)) . (7)

Here N(ξ|µ, σ2) denotes a Gaussian distribution over ξ with mean µ and variance σ2.

Given si(t − 1), the posterior variance of si(t) is
◦
si (t) and the posterior mean is

s̄i(t) + s̆i(t, t − 1)[si(t − 1) − s̄i(t − 1)]. The approximate posterior q(si(t)|si(t − 1),X) is

thus parametrised by the mean s̄i(t), linear dependence s̆i(t, t − 1) and variance
◦
si (t) as

defined by (7), whereas in NLFA the posterior of the factor was parametrised by mean and
variance alone.

It is easy to see by induction that if the past values of the factors are marginalised out,
the posterior mean of si(t) is s̄i(t) and posterior variance s̃i(t) is

s̃i(t) =
◦
si (t) + s̆2

i (t, t − 1)s̃i(t − 1) . (8)

Notice that the marginalised variances s̃i(t) are computed recursively in a sweep forward
in time.

Publication VIII-5 147

3.2 Feedforward and backward computations

The feedforward computations start with the parameters of the posterior approximation
of the unknown variables of the model. For the factors, the parameters of the posterior
approximation are the posterior mean s̄i(t), the posterior variance

◦
si (t) and the depen-

dence s̆i(t, t − 1). The end result of the feedforward computations is the value of the cost
function C.

The first stage of the computations is the iteration of (8) to obtain the marginalised
posterior mean s̄i(t) and variance s̃i(t) of the factors. Thereafter the computations proceed
like in the NLFA algorithm: the means and variances are propagated through the MLP
networks. The final stage, the computation of the cost function, differs only in the terms∫

q(si(t)|si(t − 1),X) ln q(si(t)|si(t − 1),X)dsi(t) and − ∫
q(θ|X) ln p(si(t)|θ)dθ. In the

NLFA algorithm, the former had the form

ln 2πes̃i(t) , (9)

but now they have the form

ln 2πe
◦
si (t) . (10)

The latter terms can be shown to yield

1

2

[
(s̄i(t) − ḡi(t))

2+
◦
si (t) +

(
s̆i(t, t − 1) − ∂gi(t)

∂si(t − 1)

)2

s̃i(t − 1) + g̃∗i (t)

]
e2ṽi−2v̄i +

v̄i +
1

2
ln 2π , (11)

where the ith component of the vector g(s(t − 1)) is denoted by gi(t) and the variance
parameter of the ith factor by vi, and by g̃∗i (t), the posterior variance of gi(t) without the
contribution of si(t− 1), that is, assuming si(t− 1) fixed. Notice that if s̆i(t, t− 1) is zero,

the term inside the square brackets takes the form (s̄i(t) − ḡi(t))
2+

◦
si (t) + g̃i(t) because

g̃∗i (t) is defined to be g̃i(t) − [∂gi(t)/∂si(t − 1)]2s̃i(t − 1).

In the feedbackward phase, the gradient of the cost function C w.r.t. the parameters of
the posterior approximation is computed by the back-propagation algorithm, that is, the
steps of the feedforward computations are reversed and the gradient of the cost function
is propagated backwards to the parameters of the posterior approximation. Since the
essential modification to the feedforward phase of NLFA algorithm is (8), this is also the
essential modification in the backward computations.

The cost function is a function of parameters of the posterior approximation. In the
computation of the cost function, the marginalised posterior variances s̃i(t) of the factors
are used as intermediate variables and hence the gradient is also computed through these
variables. Let us use the notation C(s̃i(t)) to mean that C is considered to be a function
of the intermediate variables s̃i(1), . . . , s̃i(t) in addition to the parameters of the posterior
approximation. The gradient computations resulting from (8) by the chain rule are then
as follows:

∂C

∂
◦
si (t)

=
∂C(s̃i(t))

∂
◦
si (t)

+
∂C(s̃i(t))

∂s̃i(t)

∂s̃i(t)

∂
◦
si (t)

=
∂C(s̃i(t))

∂
◦
si (t)

+
∂C(s̃i(t))

∂s̃i(t)
(12)

148 Publication VIII-6

∂C

∂s̆i(t, t − 1)
=

∂C(s̃i(t))

∂s̆i(t, t − 1)
+

∂C(s̃i(t))

∂s̃i(t)

∂s̃i(t)

∂s̆i(t, t − 1)
=

∂C(s̃i(t))

∂s̆i(t, t − 1)
+ 2

∂C(s̃i(t))

∂s̃i(t)
s̆i(t, t − 1)s̃i(t − 1) (13)

∂C(s̃i(t))

∂s̃i(t)
=

∂C(s̃i(t + 1))

∂s̃i(t)
+

∂C(s̃i(t + 1))

∂s̃i(t + 1)

∂s̃i(t + 1)

∂s̃i(t)
=

∂C(s̃i(t + 1))

∂s̃i(t)
+

∂C(s̃i(t + 1))

∂s̃i(t + 1)
s̆2

i (t + 1, t) (14)

The terms ∂C(s̃i(t))/∂
◦
si (t) and ∂C(s̃i(t))/∂s̆i(t, t − 1) can be computed from (10) and

(11) while ∂C(s̃i(t + 1))/∂s̃i(t) also includes terms originating from the mappings f and g
as their feedforward computation starts with the posterior means s̄i(t) and variances s̃i(t).

In the adaptation, the posterior means s̄i(t) of the factors are treated as in the NLFA
algorithm except for the correction in the step size which is discussed in section 3.3. The
variances

◦
si (t) are adapted like s̃i(t) in the NLFA. The posterior dependence s̆i(t, t − 1)

is adapted by solving ∂C/∂s̆i(t, t − 1) = 0 which yields

s̆i(t, t − 1) =

∂gi(t)
∂si(t−1)e

2ṽi−2v̄i

2∂C(s̃i(t))
∂s̃i(t)

+ e2ṽi−2v̄i

. (15)

Equation (15) shows that s̆i(t, t−1) depends on ∂C(s̃i(t))/∂s̃i(t) which in turn depends on
s̆i(t + 1, t) as (14) shows. This means that the update of the dependencies s̆i(t, t − 1) and
the computation of the gradient w.r.t. the marginalised variance s̃i(t) are done recursively
backward in time which is the counterpart of (8) where the marginalised variances are
computed recursively forward in time.

3.3 Correction of the step size

In the NLFA algorithm, the step sizes of the updates of the posterior means s̄i(t) of the
factors were corrected by taking into account the correlated effects of the updates. In
NLFA the update of the posterior means s̄i(t) affect the cost function through terms which
result from the prior for factor si(t) and likelihood p(x(t)|s(t)). The likelihood results in
several terms, one for each component of the observation vector x(t). The problem was
that the update rule gives the optimal value for each s̄i(t) assuming that otherwise the
posterior approximation stays fixed but this assumption is violated because for efficiency,
all posterior means and variances are updated at once. This was remedied by utilising the
Jacobian matrix of f(s(t)) w.r.t. s(t).

In the NDFA algorithm the situation is slightly more complex as the “prior” p(s(t)|s(t−
1)) of the factors s(t) is also affected by the factors at the previous time step, but essentially
the same procedure can be used: first the effect of all the proposed updates of the posterior
means of factors on x(t) and s(t) is computed, then the step is projected back to the
factors. This is compared with the result which would be obtained assuming that each of
the posterior means of the factors is the only parameter of the posterior approximation to
change. The size of the update is then corrected by the ratio of the assumed and actual
effect of the proposed updates just as in the NLFA algorithm.

Publication VIII-7 149

3.4 Initialisation of the factors

In the NLFA algorithm, the factors were initialised to the principal components of the
observations. This could also be used in NDFA, but the drawback would be that the
initialisation would only aim at factors which give a good representation for the observa-
tions but would not explicitly aim at factors which can predict the future factors and can
themselves be predicted from the past factors.

Phase space embedding methods are standard techniques in the analysis of nonlinear
dynamical systems and they can also be applied here. In short, the idea is that the internal
state of a (deterministic) dynamical system is embedded in the sequence of observations.
It may be impossible to deduce the state s(t) of the system from one measurement x(t)
alone. Under suitable conditions, however, a sequence [x(t)x(t − 1)x(t − 2) . . . x(t − D)]
of observations contains all the information needed to reconstruct the original state if the
number D of delays is large enough [8].

The solution used here is to initialise the factors to principal components of a sequence
of observations. In general, the state of a dynamical system is nonlinearly embedded in
the sequence, but principal component analysis can nevertheless find a good starting point
for the factors. To be more specific, instead of computing the principal components from
x(t), they are computed from y(t) = [xT (t) xT (t − 1) . . . xT (t − D)]T .

The NLFA algorithm could be used1 for extracting a state which is nonlinearly em-
bedded in y(t). This would amount to computing the principal components of y(t), then
using the NLFA algorithm to further refine the extracted factors and finally learning the
dynamic model for x(t) starting from the factors given by the NLFA algorithm. However,
here the dynamic model is included already in the second phase: the NDFA algorithm is
used for finding factors which can represent the concatenated observations y(t).

The benefit of this procedure is that using the concatenated observations y(t) as ob-
servations promotes the algorithm to find factors which can represent not only the original
observations x(t) but also their time behaviour. Once these factors have appeared and the
dynamic mapping g(t) has adapted, the factors representing the dynamics have support
from the dynamic mapping and the time lagged part of y(t) can be dropped away leaving
only x(t). If the learning starts directly with x(t), there is the danger that some of the
factors describing the dynamics will be effectively pruned away.

4 Results

4.1 Problem setting

The working hypothesis to be tested was that the NDFA algorithm should be able to find a
representation for the observations which facilitates the prediction of the observations, i.e.,
a representation where modelling the dynamics of the underlying data generating process
is easier than directly for the original observations.

Data was generated by first defining the underlying dynamic process and then mapping
some of the states of the process onto observations by one of the random MLP networks
which were used in [4].

The underlying dynamic process was constructed by combining three independent dy-
namic processes. One of the processes was harmonic oscillator with angular velocity 1/3.
The harmonic oscillator has a two-dimensional state representation and linear dynamics.

1This was suggested by Dr. J. P. Barnard (personal communication).

150 Publication VIII-8

−15
−10

−5
0

5
10

15

−30
−20

−10
0

10
20

5

10

15

20

25

30

35

40

45

Figure 3: Time evolution of the state resulting from the Lorenz system with σ = 3, ρ = 26.5
and β = 1.

Notice, however, that if the harmonic oscillator is modelled with linear dynamics, the gain
has to be exactly one. Otherwise the oscillations will either decay or grow exponentially for
gains less than or greater than one, respectively. A robust model for a harmonic oscillator
with a constant amplitude therefore needs to be nonlinear.

The two other processes were chosen to be Lorenz processes [5]. The Lorenz system
has a three-dimensional state space whose dynamics is governed by the following set of
differential equation:

dz1

dt
= σ(z2 − z1) (16)

dz2

dt
= ρz1 − z2 − z1z3 (17)

dz3

dt
= z1z2 − βz3 (18)

The parameter vectors [σ ρ β] for the processes were chosen to be [3 26.5 1] and [4 30 1].
The time evolution of the state for the first Lorenz process is shown in figure 3.

The ability to find the underlying factors which have generated the observations was
already demonstrated in [4]. To make the problem more difficult, one dimension of each
of the three elementary processes was hidden. As the original process has a total of eight
states, five states are left from which the data was generated nonlinearly. In [4], some of the
experiments used a random MLP network with inverse hyperbolic sine activation functions

Publication VIII-9 151

to generate ten-dimensional observations from five inputs. The same MLP network was
used here. Like in [4], the data set consisted of 1000 observation.

Figure 4 shows the eight states of the underlying dynamical system, the five projections
made from them and the noisy observations obtained from the projections by the random
MLP network. The standard deviation of the observation noise was 0.1 while the standard
deviation of the signal was normalised to unity.

4.2 Finding the underlying process

The NDFA algorithm was used for learning a dynamic model of the observations. Several
different random initialisations of the MLP networks and structures of the model were
tested. For the first 500 iterations, the concatenated vector y(t) = [x(t−2)T . . . x(t+2)T]T

was used instead of x(t) as the observation vectors. After that, y(t) was replaced by x(t)
and the observation MLP was reduced accordingly. The cost function was found to be
minimised by a model where there were ten factors and both the observation MLP network
and the factor dynamics MLP network had one hidden layer of 30 neurons.

After 7500 iterations the model had learned a dynamic process which was able to
represent the observations. The standard deviation of the observations was estimated to
be 0.106 on the average which is in reasonably good agreement with the actual value of
0.1. In order to test the quality of the dynamic model learned by the algorithm, 1000 new
values were predicted for the factors using the estimated mapping g. The factors are shown
in the upper part of figure 5.

The experiments with NLFA reported in [4] indicated that 7500 iterations were sufficient
for learning the factors and the observation mapping. It turned out that more iterations are
needed to fully learn the underlying dynamical process. Most of the learning was finished
after 100,000 iterations, but some progress was observed even after 600,000 iterations. The
simulation was not continued beyond that, however. In any case, the experiment confirms
that ensemble learning is robust against overlearning, i.e., there is no need to control the
complexity of the resulting mappings by early stopping of learning. The lower part of
figure 5 shows the factors in the end of learning.

Visual inspection of the plots in figure 5 confirms that the NDFA algorithm has been
able to capture the characteristics of the dynamics of the data-generating process. It also
shows that only nine out of ten factors are actually used in the end. However, it is difficult
to compare the estimated dynamics with the original by looking only at the predicted
factors s(t). This is because the model learned by the NDFA uses a state representation
which differs from the original.

Two processes can be considered equivalent if their state representations differ only by
an invertible nonlinear transformation. As the original underlying states of the process are
known, it is possible to examine the dynamics in the original state space. An MLP network
was used for finding the mapping from the learned ten-dimensional factors to the original
eight-dimensional states. The mapping was then used for visualising the dynamics in the
original state space.

Figure 6 shows the reconstruction of the original states made from the predicted states
s(t). First of all, it is evident that the factors contain all the required information about the
state of the underlying process because the reconstructions are quite good for 1 ≤ t ≤ 1000
even after 7500 iterations. Initially the dynamics is not modelled accurately enough to
simulate the long term behaviour of the process, but in the end, the dynamics of all three
underlying subprocesses are captured.

152 Publication VIII-10

0 200 400 600 800 1000

0 200 400 600 800 1000

0 200 400 600 800 1000

Figure 4: Each plot shows a time series. The eight plots on the top show the eight states
on which the dynamics of the underlying process is defined. The process is composed of
two Lorenz processes, each of which has three states, and a harmonic oscillator which has
two states. Five projections from the eight states are used for generating the observa-
tions. These are shown in the middle. The ten plots on the bottom of the figure are the
noisy observations which are obtained by instantaneous nonlinear mapping from the five
projections.

Publication VIII-11 153

After 7,500 iterations

0 200 400 600 800 1000 1200 1400 1600 1800 2000

After 600,000 iterations

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 5: The ten plots on the top show the factors s(t) after 7500 iterations and the
ten plots on the bottom show the factors after 600,000 iterations. The first 1000 values
have been estimated based on the observations and the following 1000 values have been
predicted using s(t) = g(s(t − 1)), i.e., without the innovation process.

4.3 Prediction accuracy

An obvious way to assess the quality of the learned model is to see on how long term the
predictions given by the model are accurate. It should be noted that since the Lorenz
process is chaotic, it is numerically impossible to predict it exactly in the distant future.
The best that can be hoped for is to capture the overall aspects of the long-term behaviour.
Figure 6 confirms that this is accomplished by the NDFA algorithm.

For comparison, the prediction of the future observations was tested with a nonlinear
auto-regressive (NAR) model

x(t) = h(x(t − 1),x(t − 2), . . . ,x(t − D)) + n(t) . (19)

Several strategies were tested and the best performance was given by an MLP network
with 20 inputs and one hidden layer of 30 neurons. The inputs to the MLP network were

154 Publication VIII-12

After 7,500 iterations

0 200 400 600 800 1000 1200 1400 1600 1800 2000

After 600,000 iterations

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 6: The original eight-dimensional state of the underlying process used for generating
the observations is reconstructed from the predicted factors s(t) shown in figure 5. After
7500 iterations the model can follow the dynamics for a while and after 600,000 iterations
the essential characteristics of the dynamics are captured with high fidelity as can be seen
by comparing the original latent variables (1 ≤ t ≤ 1000) to the following 1000 predicted
states.

the principal components extracted from the sequence of ten past observations, that is,
D was ten. Figure 7 shows the performance of this NAR model. It is evident that the
prediction of new observations is a challenging problem. Principal component analysis used
in the model can extract features which are useful in predicting the future observations
but clearly the features are not good enough for modelling the long-term behaviour of the
observations.

Both the NAR model and the model used in NDFA algorithm contain noise process
which can be taken into account in the prediction by Monte-Carlo simulation. Figure 8
shows the results obtained by 100 runs of Monte-Carlo simulation. The average predicted
observations are compared to the actual continuation of the process. The figure shows
the average cumulative squared prediction error. Since the variance of the noise on the
observations is 0.01, the results can be considered perfect if the average squared prediction
error is 0.01. The signal variance is 1, which gives the practical upper bound of the
prediction accuracy. The figure confirms that the NDFA algorithm has been able to model

Publication VIII-13 155

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 7: The ten plots show the original observations x(t) (1 ≤ t ≤ 1000) and the result
of prediction made by a nonlinear auto-regressive model (t ≥ 1001). The noise process was
omitted like in the results shown in figures 5 and 6.

the dynamics of the process as the short-term average prediction error is close to the noise
variance. Even the long-term prediction falls below the signal variance which indicates
that at least some part of the process can be predicted in the more distant future. The
steady progress made during learning is also evident.

Figures 9–12 show the results of the Monte-Carlo simulations for individual time series.
Each plot shows the averages µ and the range µ ± σ as obtained from the simulations.
Here σ stands for the standard deviation. Figure 9 depicts the predicted continuation of
the factors s(t). In figure 10, these are mapped to the original state space while figures 11
and 12 show the predicted observations obtained by the NDFA algorithm and NAR model,
respectively, together with the true continuation.

5 Discussion

5.1 Independent and weakly coupled processes

The experiments show that the NDFA algorithm is able to extract predictable factors
from the observations. The 1000 observations given for the algorithm can span the ten
dimensional factor space only sparsely which indicates that the MLP network must have
been able to generalise very well. This is possible since the observations were generated by
lower-dimensional independent processes and the dynamics of the whole system can thus
be expressed as a sum of the individual simple dynamics. This type of a mapping is easy
to model with an MLP network.

The innovation process has a Gaussian prior which means that there is a rotational
degeneracy in the model as certain rotations map the diagonal Gaussian density onto
another diagonal Gaussian density. The rotation can be absorbed in the linear mappings of
the MLP networks thus resulting in an equivalent model. However, the factors extracted by
the algorithm are clearly very close to the original undelying time series used in generating
the data. Each factor can be attributed to one process and none of the factors is a mixture

156 Publication VIII-14

of the states of different elementary processes as would be expected if the algorithm would
randomly settle to one of the equivalent rotations of the factor space.

The reason is that the approximation of the posterior probability of the factors cannot
represent all the degenerate solutions equally well. The approximation assumes each factor
to be independent of the other factors given the observations. The dynamic mapping
induces posterior correlations which violate this assumption but the learning algorithm
finds the solution which is closest to the assumption. It turns out that this is achieved
by separating the underlying processes, thus yielding sparse dynamic couplings between
different factors.

5.2 Future directions

In this work, adaptation of the approximation of the posterior density was done in batches,
i.e., all the observations were processed before adaptation. It would be straight-forward
to derive an on-line version of learning, however. For each new sample the new posterior
approximation q(θ|Xt+1) would be adapted by minimising the misfit between the new
approximation and p(x(t + 1)|θ)q(θ|Xt)/p(x(t + 1)|Xt). Here θ denotes all the unknown
variables of the model, including factors, parameters of the mappings and hyperparameters.
This type of on-line learning would be essentially a version of Kalman filtering [3].

The nonlinear dynamic model used here is universal in the sense that in principle any
data generating process can be modelled by it with any given precision. The significance
of this property is mostly theoretical since in practice the amount of observations limit
the complexity of models which can be reliably learned from the data. The generalisation
ability of the models can be improved by prior knowledge about the model structure. This
should also make it easier to identify the factors with physical quantities of the observed
system.

Like the NLFA algorithm, the proposed NDFA algorithm scales quadratically as a
function of the dimension of factor space and several times larger factor spaces than in
the experiments reported here are thus computationally feasible. However, with high-
dimensional nonlinear models the interpretation of the results can be rather difficult. Due
to the approximation made in the posterior, the algorithm was shown to extract factors each
of which can be identified with one of the underlying independent processes. This should
happen more reliably if the prior model would also promote sparse temporal couplings
between the underlying factors, e.g., by using a sparse prior on the weight matrices of the
MLP networks. Use of non-Gaussian model for the innovation process m(t) should also
aid at the interpretation of the results in a similar way as non-Gaussian model of factors
in linear factor analysis.

Another example of using prior knowledge could be implementation of memories with
specific structure. The state representation can in principle learn any memory, but learning
complex structures can be difficult in practice. It is also possible that some of the states
or control signals of the underlying dynamical process are directly measured and they can
then be included in the model as known external inputs.

6 Acknowledgements

This work was funded by the EU project BLISS. The author wishes to acknowledge the
contribution of Mr. Juha Reunanen who assisted in doing many of the preliminary simu-
lations which led to this work. The author would also like to thank Dr. J. P. Barnard for

Publication VIII-15 157

suggesting the use of NLFA for extracting the embedded state of a dynamical system.

References

[1] T. Briegel and V. Tresp. Fisher scoring and a mixture of modes approach for approx-
imate inference and learning in nonlinear state space models. In M. S. Kearns, S. A.
Solla, and D. A. Cohn, editors, Advances in Neural Information Processing Systems 11,
pages 403–409, Denver, Colorado, USA, Nov. 30–Dec. 5, 1998, 1999. The MIT Press.

[2] Z. Ghahramani and S. T. Roweis. Learning nonlinear dynamical systems using an
EM algorithm. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in
Neural Information Processing Systems 11, pages 599–605, Denver, Colorado, USA,
Nov. 30–Dec. 5, 1998, 1999. The MIT Press.

[3] M. S. Grewal and A. P. Andrews. Kalman Filtering. Prentice-Hall, Englewood Cliffs,
New Jersey, 1993.

[4] H. Lappalainen and A. Honkela. Bayesian nonlinear independent component analysis by
multi-layer perceptrons. In M. Girolami, editor, Advances in Independent Component
Analysis, pages 93–121. Springer-Verlag, Berlin, 2000.

[5] E. N. Lorenz. Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20:130–
141, 1963.

[6] J. Moody and C. Darken. Fast learning in networks of locally-tuned processing units.
Neural Computation, 1(2):281–294, 1989.

[7] S. T. Roweis and Z. Ghahramani. An EM algorithm for identification of nonlinear
dynamical systems. In S. Haykin, editor, Kalman Filtering and Neural Networks. To
appear.

[8] F. Takens. Detecting strange attractors in turbulence. In D. A. Rand and L.-S. Young,
editors, Dynamical Systems and Turbulence, pages 366–381. Springer-Verlag, Berlin,
1981.

158 Publication VIII-16

1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100
10

−2

10
−1

10
0

NAR
7,500 iter.
30,000 iter.
150,000 iter.
600,000 iter.

Figure 8: The average cumulative squared prediction error is computed for the predictions
made using the NDFA algorithm after 7500 (dotted with triangles), 30,000 (dash-dotted),
150,000 (dashed) and and 600,000 iterations (solid) as well as by a nonlinear auto-regressive
model (solid with dots). The predictions are based on 100 Monte-Carlo simulations of the
estimated dynamics. Taking into consideration the observation noise whose variance is
0.01, the prediction obtained by the NDFA algorithm in the end of learning is excellent up
to t = 1010 and fairly good up to t = 1022. The NAR model is quite inaccurate already
after t ≥ 1003.

Publication VIII-17 159

1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100

Figure 9: The factors s(t) have been predicted by Monte-Carlo simulations. The mean µ
(dashed) and range µ ± σ (solid) obtained from the simulation runs are shown.

1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100

Figure 10: The factors in figure 9 are mapped on the original state space. The mean
(dotted) and range (dashed) together with the true continuation (solid) are shown. Due to
the chaotic nature of the Lorenz system, the state cannot be predicted for distant future.
Notice, however, how the model has been able to predict the timing of the oscillations for
the first and fourth states although the sign is uncertain.

160 Publication VIII-18

1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100

Figure 11: The factors in figure 9 are projected onto the observations by the estimated
mapping f . The mean (dotted) and range (dashed) together with the true continuation
(solid) are shown.

1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100

Figure 12: Monte-Carlo simulations with the NAR model have been used for predicting the
observations. The mean (dotted) and range (dashed) together with the true continuation
(solid) are shown.

