Level 4 (upper level) Suomeksi

Derivation of some lemmas in Boolean algebra

It is shown here, step by step, how one can derive a set of lemmas from the axioms

There exist elements 0 and 1, which are not equal. [A1]
AB = BA A+B = B + A [A2]
A(B+C) = (AB)+(AC) A+(BC) = (A+B)(A+C) [A3]
1A = A 0+A = A [A4]
A¬A = 0 A+¬A = 1 [A5]

The derivation of each lemma is presented only for one of the dual formulas. The derivation of the missing formulas can be obtained by exchanging sum and product, 0 and 1, and a and b in the numbers of axioms.

L1: ¬¬A = A

¬¬A = [A4a]
1¬¬A = [A2a]
¬¬A1 = [A5b]
¬¬A(A+¬A) = [A3a]
¬¬AA + ¬¬A¬A = [A2a]
A¬¬A + ¬A¬¬A = [A5a]
A¬¬A + 0 = [A5a]
A¬¬A + A¬A = [A3a]
A(¬¬A+¬A) = [A2b]
A(¬A+¬¬A) = [A5b]
A1 = [A2a]
1A = [A4a]
A

L2: AA = A (and A+A = A)

AA = [A4b]
0 + AA = [A5a]
A¬A + AA = [A3a]
A(¬A + A) = [A2b]
A(A + ¬A) = [A5b]
A1 = [A2a]
1A = [A4a]
A

L3: ¬0 = 1 (and ¬1 = 0)

¬0 = [A4b]
0 + ¬0 = [A5b]
1

L4: AB = 0 & A+B = 1 => B = ¬A

B = [A4a]
1B = [A2a]
B1 = [A5b]
B(A+¬A) = [A3a]
BA + B¬A = [A2a]
AB + ¬AB = [AB = 0]
0 + ¬AB = [A5a]
A¬A + ¬AB = [A2a]
¬AA + ¬AB = [A3a]
¬A(A+B) = [A+B = 1]
¬A1 = [A2a]
1¬A = [A4a]
¬A

L5: 0A = 0 (and 1+A = 1)

0A = [A4b]
0 + 0A = [A5a]
A¬A + 0A = [A2a]
A¬A + A0 = [A3a]
A(¬A+0) = [A2b]
A(0+¬A) = [A4b]
A¬A = [A5a]
0

L6: A(A + B) = A (and A + AB = A)

A(A+B) = [A3a]
AA + AB = [L2a]
A + AB = [A4a]
1A + AB = [A2a]
A1 + AB = [A3a]
A(1+B) = [L5b]
A1 = [A2a]
1A = [A4a]
A

L7: A(BC) = (AB)C (and A+(B+C) = (A+B)+C)

A(BC) = [A4b]
0 + A(BC) = [A5a]
A¬A + A(BC) = [A3a]
A(¬A+BC) = [L6a]
[A(A+C)](¬A+BC) = [L6b]
[(A+AB)(A+C)](¬A+BC) = [A3b]
[A+(AB)C][(¬A+B)(¬A+C)] = [A4a]
[A+(AB)C]{[1(¬A+B)](¬A+C)} = [A5b]
[A+(AB)C]{[(A+¬A)(¬A+B)](¬A+C)} = [A2b]
[A+(AB)C]{[(¬A+A)(¬A+B)](¬A+C)} = [A3b]
[A+(AB)C][(¬A+AB)(¬A+C)] = [A3b]
[A+(AB)C][¬A+(AB)C] = [A2b]
[(AB)C+A][(AB)C+¬A] = [A3b]
(AB)C + A¬A = [A5a]
(AB)C + 0 = [A2b]
0 + (AB)C = [A4b]
(AB)C

L8: ¬A(AB) = 0 (and ¬A+(A+B) = 1)

¬A(AB) = [L7a]
(¬AA)B = [A2a]
(A¬A)B = [A5a]
0B = [L5a]
0

L9: ¬(AB) = ¬A+¬B (and ¬(A+B) = ¬A¬B)

(AB)(¬A+¬B) = [A3a]
(AB)¬A + (AB)¬B = [A2a]
¬A(AB) + ¬B(BA) = [L8a]
0 + 0 = [A4b]
0

AB+(¬A+¬B) = [A2b]
(¬A+¬B) + AB = [A3b]
[(¬A+¬B)+A][(¬A+¬B)+B] = [A2b]
[A+(¬A+¬B)][B+(¬B+¬A)] = [L1]
[¬¬A+(¬A+¬B)][¬¬B+(¬B+¬A)] = [L8b]
11 = [A4a]
1

(AB)(¬A+¬B) = 0 & AB+(¬A+¬B) = 1 => [L4]
¬(AB) = ¬A+¬B

L10: AB = 1 => A = 1 (and A+B = 0 => A = 0)

A = [A4a]
1A = [A2a]
A1 = [A5b]
A(B+¬B) = [A3a]
AB + A¬B = [AB = 1]
1 + A¬B = [L5b]
1


Level 4 (upper level) Suomeksi

Last updated 15.10.1998
Harri Lappalainen

<Harri.Lappalainen@hut.fi>