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ABSTRACT

A variant of nonlinear blind source separation, the Nonlin-
ear Dynamic Factor Analysis (NDFA) model, is based on
noisy nonlinear mixtures of state variables, which are con-
trolled by nonlinear system dynamics. The problem setting
is blind because both the state variables, the nonlinear mix-
ing model, and the nonlinear dynamics are unknown. As a
special problem we consider the ability of NDFA to detect
abrupt changes in the process dynamics. It is shown ex-
perimentally that NDFA is highly accurate and outperforms
several standard change detection methods in this task.

1. INTRODUCTION

In nonlinear blind source separation (BSS), a collection of
nonlinear combinations of unknown source signals, possi-
bly with additive noise, are observed and the problem is
to estimate the sources from them. Such a problem set-
ting has important applications e.g. in speech, biomedical,
industrial, or financial time series processing. Denoting by
x(t)the vector whose elements are the observed signalsxi(t),
i = 1, ..., n, by s(t) the vector whose elements are the un-
derlying source signalssj(t), j = 1, ..., m, and byn(t) the
additive noise, we have the model

x(t) = f(s(t)) + n(t) (1)

wheref is the nonlinear mapping from the source signals
to the observed signals. The term “blind” refers to the fact
that both the source signals and the nonlinear mapping are
unknown.

The problem cannot be solved unless some assumptions
are made on the sources. In the Nonlinear Dynamic Factor
Analysis (NDFA) model introduced by one of the authors
[1], the source signals are assumed to follow nonlinear dy-
namics according to

s(t) = g(s(t− 1)) + m(t) (2)
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whereg is an unknown function controlling the state changes
andm(t) accounts for modeling errors and noise. Assum-
ing m(t) to be white gaussian noise, the innovation process
for the state vectors(t) is gaussian independent, hence the
model (1) can be seen as a nonlinear generalization of Fac-
tor Analysis. Note that the source signalssj(t) are generally
not independent, which is reasonable if they are the state
space coordinates of some physical multivariate dynamical
states.

An important problem from the point of view of certain
applications, for example estimation and tracking of indus-
trial processes from mixed observations, is to detect changes
in the underlying dynamics. Then we may assume that the
nonlinearityf giving the mapping from the state variables to
the sensors stays constant, but the nonlinearityg controlling
the process dynamics changes. Due to the complexity and
nonlinearity of the mixing model, it may be very difficult to
detect the process change directly from the observed signal
vectorx(t), but the actual state has to be estimated first.

In this work we examine the ability of the NDFA algo-
rithm to detect changes in the process properties. We as-
sume that these changes are caused by an abrupt change of
the dynamical model of the underlying process.

In Section 2, the principle of the NDFA learning algo-
ritm is briefly explained. The experimental setup is cov-
ered in Section 3, showing that in a fairly difficult simulated
case with 3 underlying processes, 5 source signals, and 10
observed signals, the NDFA method can detect an abrupt
change in one of the underlying processes with high accu-
racy, while some standard change detection methods per-
form poorly.

2. THE NDFA ALGORITHM

The NDFA algorithm used here is an extension of the non-
linear factor analysis algorithm [2]. In [1] it is shown how
the approach can be extended to nonlinear state-space mod-
els. This section briefly outlines the model and learning al-
gorithm. A more thorough presentation of the subject will
be given in [3].



2.1. Model structure

The unknown nonlinear mappingsf and g from (1) and
(2) are modeled by multilayer perceptron (MLP) networks
with one hidden layer of sigmoidaltanh nonlinearities. The
function realized by the network can be written in vector no-
tation as

f(s) = B tanh(As + a) + b (3)

where thetanh nonlinearity is applied component-wise.A

andB are the weight matrices anda andb the bias vectors
of the network. The functiong has a similar structure except
that the MLP network is used to model only the change in
the state values and therefore

g(s) = s + D tanh(Cs + c) + d (4)

The noise termsn(t) andm(t) are assumed to be Gaussian
and white, i.e. the values at different time instants and dif-
ferent components at the same time instant are independent.
Let us denote the observation set byX = (x(1), . . . ,x(T )),
state set byS = (s(1), . . . , s(T )) and all the model parame-
ters byθ. The likelihood of the observations defined by the
model can then be written as

p(X|S, θ) =
∏

i,t

p(xi(t)|s(t), θ)

=
∏

i,t

N(xi(t); fi(s(t)), exp(2vi))
(5)

whereN(x; µ, σ2) denotes a Gaussian distribution over
x with meanµ and varianceσ2, fi(s(t)) denotes theith
component of the output off , andvi is a hyperparameter
specifying the noise variance. The probabilityp(S|θ) of the
statesS is specified similarly using the functiong. All the
parameters of the model have hierarchical Gaussian priors.
For example the noise parametersvi of different compo-
nents of the data share a common prior [2, 3].

The parameterization of the variances throughexp(2v)
wherev ∼ N(α, β) corresponds to log-normal distribution
of the variance. The inverse gamma distribution would be
the conjugate prior in this case but log-normal distribution
is close to it and it is easier to build a hierarchical prior using
log-normal distributions than inverse gamma distribution.

2.2. Posterior approximation and regularization

The goal of ensemble learning is to fit a parametric approx-
imating distributionq(θ,S) to the true posteriorp(θ,S|X).
The misfit is measured by the Kullback-Leibler divergence
between the approximation and the true posterior:

D(q(S, θ)||p(S, θ|X)) = Eq(S,θ)

[
ln

q(S, θ)

p(S, θ|X)

]
(6)

where the expectation is calculated over the approximation
q(S, θ). The Kullback-Leibler divergence is always non-
negative. It attains its minimum of zero if and only if the
two distributions are equal.

The posterior distribution can be written asp(S, θ|X) =
p(S, θ,X)/p(X). The normalizing termp(X) cannot usu-
ally be evaluated, but it is constant with respect to the model
and it is possible to use the cost function

C = D(q(S, θ)||p(S, θ|X))− ln p(X)

= E

[
ln

q(S, θ)

p(S, θ,X)

]
.

(7)

In this work we make use of the fact thate−C is roughly
proportional top(X).

Usually the joint probabilityP (S, θ,X) is a product of
simple terms due to the definition of the model. In this
casep(S, θ,X) = p(X|S, θ)p(S|θ)p(θ) can be written as
a product of univariate Gaussian distributions.

The cost function can be minimized efficiently if a suit-
ably simple factorial form for the approximation is chosen.
We useq(θ,S) = q(θ)q(S), whereq(θ) =

∏
i q(θi) is a

product of univariate Gaussian distributions, i.e. the distri-
bution for each parameterθi is parameterized with meanθi

and variancẽθi. These are the variational parameters of the
distribution to be optimized.

The approximationq(S) takes into account posterior de-
pendences between the values of states at consecutive time
instants. The approximation can be written as a product
q(S) =

∏
i [q(si(1))

∏
t q(si(t)|si(t− 1))]. The valuesi(t)

depends only onsi(t−1) at previous time instant, not on the
othersj(t−1) with j 6= i. The distributionq(si(t)|si(t−1))
is a Gaussian with mean that depends linearly on the previ-
ous value as inµi(t) = si(t) + s̆i(t − 1, t)(si(t − 1) −

si(t − 1)), and variance◦si(t). The variational parameters
of the distribution aresi(t), s̆i(t− 1, t) and ◦si(t).

A positive side-effect of the restrictions on the approx-
imating distributionq(S, θ) is that the nonlinear dynamic
reconstruction problem is regularized and becomes well-
posed. With linearf andg, the posterior distribution of the
statesS would be Gaussian, while nonlinearf andg result
in non-Gaussian posterior distribution. Restrictingq(S) to
be Gaussian therefore favors smooth mappings and regular-
izes the problem. This still leaves a rotational ambiguity
which is solved by discouraging the posterior dependences
betweensi(t) andsj(t− 1) with j 6= i.

2.3. Evaluating the cost function and updating the pa-
rameters

The parameters of the approximating distribution are opti-
mized with gradient based iterative algorithms. During one
sweep of the algorithm all the parameters are updated once,



using all the available data. One sweep consists of two dif-
ferent phases. The order of the computations in these two
phases is the same as in standard supervised back-propaga-
tion [4] but otherwise the algorithm is different. In the for-
ward phase, the distributions of the outputs of the MLP net-
works are computed from the current values of the inputs.
The value of the cost function is also evaluated. In the back-
ward phase, the partial derivatives of the cost function with
respect to all the parameters are fed back through the MLPs
and the parameters are updated using this information.

When the cost function (7) is written for the model de-
fined above, it splits into a sum of simple terms. Most of
the terms can be evaluated analytically and only the terms
involving the outputs of the MLP networks cannot be eval-
uated exactly. To compute those terms, the distributions of
the outputs of the MLPs are calculated using a truncated
Taylor series approximation for the MLPs. This procedure
is explained in detail in [2, 3]. In the feedback phase, these
computations are simply inverted to evaluate the gradients.

Let us denote the two parts of the cost function (7) aris-
ing from the denominator and numerator of the logarithm
respectively byCp = Eq[− ln p] andCq = Eq[ln q]. The term
Cq is a sum of negative entropies of Gaussians and has the
form

Cq =
∑

i

−
1

2
[1 + ln(2πθ̃i)] +

∑

t,i

−
1

2
[1 + ln(2π

◦

si(t))].

(8)
The terms in the corresponding sum forCp are somewhat
more complicated but they are also relatively simple expec-
tations over Gaussian distributions [2, 1, 3].

An update rule for the posterior variancesθ̃i is obtained
by differentiating (7) with respect tõθi, yielding [2, 3]

∂C

∂θ̃i

=
∂Cp

∂θ̃i

+
∂Cq

∂θ̃i

=
∂Cp

∂θ̃i

−
1

2θ̃i

(9)

Equating this to zero yields a fixed-point iteration:

θ̃i =

[
2
∂Cp

∂θ̃i

]−1

(10)

The posterior meansθi can be estimated from the approxi-
mate Newton iteration [2, 3]

θi ← θi −
∂Cp

∂θi

[
∂2C

∂θ
2

i

]−1

≈ θi −
∂Cp

∂θi

θ̃i (11)

The posterior meanssi(t) and variances◦si(t) of the states
are updated similarly. The update rule for the posterior lin-
ear dependences̆si(t − 1, t) is also derived by solving the
zero of the gradient [1, 3].

2.4. Learning scheme

In general the learning proceeds in batches. After each sweep
through the data the distributionsq(S) andq(θ) are updated.
There are slight changes to the basic learning scheme in the
beginning of training. The hyperparameters governing the
distributions of other parameters are not updated to avoid
pruning away parts of the model that do not seem useful
at the moment. The data is also embedded to have multi-
ple time-shifted copies to encourage the emergence of states
representing the dynamics. The embedded data is given by
zT (t) = [xT (t − d), . . . ,xT (t + d)] and it is used for the
first 500 sweeps.

At the beginning, the posterior means of most of the
parameters are initialized to random values. The posterior
variances are initialized to small constant values. The pos-
terior means of the statess(t) are initialized using a suitable
number of principal components of the embedded dataz(t)
and are kept fixed to these values for the first 50 sweeps
while only the MLP networksf andg are updated. Updates
of the hyperparameters begin after the first 100 sweeps.

3. EXPERIMENTS

3.1. Problem setting

To examine the ability of the NDFA algorithm to detect
changes in the process properties, we made an artificial set
of 8 time seriessi(t), shown in Fig. 1. The time series were
generated in the same manner as was done in [1]. They
were a harmonic oscillator with angular velocity1/3 and
two independent Lorenz processes with three-dimensional
parameter vectors.

The changes in the process model were achieved by chang-
ing the parameters of one of the Lorenz processes. They
were taken to be[3 26.5 1] before and[2 20 1] after the
change, which occurred at the time instantν = 1500. The
parameters of the other Lorenz process were constant and
equal to[4 30 1]. Fig. 1 clearly shows the change in one of
the Lorenz processes.

Similar to [1] one dimension of each of the three under-
lying processes was hidden, to make the problem more diffi-
cult. Therefore only five linear projections of the eight states
shown in Fig. 1 are present in the observed nonlinear mix-
tures. An arbitrary nonlinear mappingf was implemented
using a random MLP network with inverse hyperbolic sine
activation functions, which produced ten-dimensional ob-
servations from the five inputs. Finally a zero-mean Gaus-
sian noisen(t) was added to the observations. Its standard
deviation was chosen to be0.1, while the standard deviation
of the signal was normalized to unity.

Fig. 2 shows the ten observations that correspond to the
underlying states shown in Fig. 1. Note that the data model
changes at time instantν = 1500, but this change has now
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Fig. 1. Underlying states.

been hidden by the nonlinear mixing model and the additive
noise.

3.2. Learning a dynamical model

For learning the dynamical model of the process using the
NDFA algorithm, the observation signals were divided in
two parts. The first thousand observationsx(t)(1 ≤ t ≤
1000) shown in Fig. 2 were taken as the training data to
learn the model. This part contained observations with con-
stant underlying process dynamics. The second data set
(t > 1000) was composed of two parts with different mod-
els of underlying states and it was used to test the examined
properties of the NDFA.

As reported in [1], different numbers of states, MLP
structures, and its random initializations were tested. Fi-
nally the model which minimized the cost function was taken
for further experiments. It was a model having 10 states, and
both the observation MLP network and the state dynamics
MLP network had one hidden layer of 30 neurons.

The experimental results reported in [1] indicate that
7500 iterations of the NDFA algorithm were sufficient for
learning the states and the observation mappingf . How-
ever, more iterations were needed to learn the underlying
dynamical process. Most of the learning was finished after
100,000 iterations, but some progress was observed even af-
ter 600,000 iterations.

3.3. Detection of the abrupt model change

The ability of the NDFA algorithm to detect model changes
was tested on the second part of the datax(t)(1000 < t ≤
2000). The observations were considered sequentially in

0 500 1000 1500 2000

Fig. 2. Observations.

the order of their appearance and the decision about whether
the change occurred was made at each time instant.

Statess(t) were sequentially estimated for each new ob-
servationx(t) using a few iterations of the NDFA algorithm.
First, an initial guesss(t) = g(s(t − 1)) was made and
then the posterior means and variances ofs(t) were updated.
Mappingsf andg were fixed and not adjusted to new ob-
servations.

Thus, for each new observation we got the value of the
cost functionC(t) which can be used to detect the model
changes. Recall that according to (7), the cost function im-
plicitly includes the term− ln p(Xt) whereXt is the set of
observationsx(τ) for 1 ≤ τ ≤ t. Therefore the difference
of two successive values ofC can be used to estimate the
probability of new data given the previous one:

C(t)− C(t− 1) ≈ − ln p(Xt) + ln p(Xt−1) ⇒

p(x(t)|Xt−1) =
p(Xt)

p(Xt−1)
≈ e−(C(t)−C(t−1))

Fig. 3 shows the values of the cost function estimated
for the datax(t)(1000 ≤ t ≤ 2000) presented in Fig. 2.
It is evident that the NDFA algorithm trained with 600,000
iterations has been able to detect changes in the dynami-
cal model of the data whereas 7500 of the NDFA iterations
were not enough.

Besides the ability to detect changes of the process model,
the NDFA algorithm can find out in which states the changes
took place. Fig. 4a presents the underlying states which
were estimated by the end of the learning phase (1 ≤ t ≤
1000) and during the detection phase (1001 ≤ t ≤ 2000).
The plot shows that only nine out of ten states are actu-
ally used. Two states model the harmonic oscillator dynam-
ics, other four states describe the Lorenz process with con-



1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
−2000

−1000

0

1000

2000

(a) 7,500 iterations

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
−5000

−4000

−3000

−2000

−1000

(b) 600,000 iterations

Fig. 3. Cost function.

stant parameters, and the other three states correspond to the
Lorenz process with changing parameters.

It is evident that the NDFA method has captured the
changes of the underlying state dynamics. It can be proved
by splitting the cost function and considering the contribu-
tions of different states. Combining the terms of the cost
function it can be presented in the following form:

C =
∑

i

C(si) + Cx + c

whereC(si) includes the terms originating fromq(si(t)|si(t−
1)) and p(si(t)|s(t − 1), θ), Cx includes the terms from
p(X|S, θ) andc includes the rest of the terms originating
from the parameters. During the detection phasec is con-
stant since the parameters are not updated.

Fig. 4b shows the state contributionsC(si) obtained for
this problem. It is easy to see that the characteristics of
the state contribution have changed after the change instant
ν = 1500. The contribution has increased for those states
that correspond to the underlying process with changing dy-
namics.

3.4. Performance and comparisons

In order to assess the change detection performance of the
NDFA algorithm and to compare it with other methods, the
process changes were repeatedly simulated over 100 tri-
als. Based on these results, the method was compared to
some well-known classical methods for change detection.
These algorithms control the current mean of the process.
They were chosen since more complicated methods, which
try to find a model of observations (e.g. a nonlinear auto-
regressive model), have proved to work poorly in this par-
ticular problem.

0 500 1000 1500 2000

(a)

1000 1500 2000
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Fig. 4. Reconstructed states (a) and their contribution to
cost function (b).

All the used methods are based on the following deci-
sion rule for the change detection problem:

dt =

{
1, gt ≥ h
0, gt < h

(12)

wheregt is a statistic following the state of the observed
process,h is a chosen threshold, and the decision variable
dt = 0(respectively 1) means that at timet the decision ”no
change” (respectively ”change”) is made.

Due to fluctuations in thegt statistic, sometimes false
detections occur. Letν, as before, denote the time instant
when the change actually takes place in a given simula-
tion andN the time instant when an algorithm makes the
”change” decision according to the above decision rule. We
can then define the probability of false detection as

Pf = P (N < ν) (13)

In practice, this can be estimated from the trials by counting
the relative frequency of false detections.

Another performance measure is the speed with which
a decision rule detects a (true) change, or the average time
distance between the true changeν and the detected change
N :

D = E(N − ν|N ≥ ν, ν) (14)

Both measures (13) and (14) of course depend on the deci-
sion thresholdh, which was varied in the simulations over
a suitable range.

In the comparisons, the following decision statisticsgt

were considered:

1. NDFA statistics

gt = C(t)−min
k≤t

C(k)



2. nonsequential (fixed-size sample (FSS)) strategy based
on the repeated Neyman-Pearson test

gt(m) = ‖St
t−m+1‖

Sk
l =

k∑

i=l

(x(i)− µ)

3. FSS-strategy based on the Bayesian statistics suggested
by Chernoff and Zacks [5]

gt(m) = ‖

m∑

i=1

(i− 1)(x(t−m + i)− µ)‖

4. Shewhart chart generalization for multi-dimensional
processes [6, 7]

gt(m) = m(x̄− µ)T R−1(x̄ − µ)

x̄ = 1/m

m∑

i=1

x(t−m + i)

In these equations,µ andR are the mean and the covariance
matrix estimated on the training datax(t) and the sample
size for moving averagesm was chosen to be 80. Note that
statistics 2–4 are heuristical generalizations of the corre-
sponding procedures originally designed for one-dimensional
processes.

Fig. 5 shows the simulation results. TheD -measure of
Eq. (14) is plotted against the false detection probabilityPf

of Eq. (13). Each indicated point on the curves gives one
(Pf , D) pair for a given value of the decision thresholdh
in the rule (12). Thus, one curve corresponds to one of the
algorithms with different values of thresholdh. The closer
a curve is to the origin, the faster the algorithm can detect
the change with low false detection rate. The NDFA method
outperforms the classical ones. It is evident that the standard
algorithms are not able to detect the change properly, due to
the complexity and nonlinearity of the process, while the
NDFA method is highly accurate in this problem, giving a
D value close to zero with very low false detection rates.
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