Next: About this document ...
Up: Fast Algorithms for Bayesian
Previous: Discussion
- 1
-
H. Attias.
Independent factor analysis.
Neural Computation, 11(4):803-851, 1999.
- 2
-
O. Bermond and J.-F. Cardoso.
Approximate likelihood for noisy mixtures.
In Proc. ICA'99, pp. 325-330, Aussois, France, 1999.
- 3
-
J.-F. Cardoso.
Multidimensional independent component analysis.
In Proc. ICASSP'98, pp. 1941-1944, Seattle, WA, 1998.
- 4
-
A. Hyvärinen and P. O. Hoyer.
Emergence of phase and shift invariant features by decomposition of
natural images into independent feature subspaces.
Neural Computation, 2000.
In press.
- 5
-
A. Hyvärinen and E. Oja.
A fast fixed-point algorithm for independent component analysis.
Neural Computation, 9(7):1483-1492, 1999.
- 6
-
H. Lappalainen.
Nonlinear independent component analysis using ensemble learning:
Theory.
In Proc. ICA 2000.
Submitted.
- 7
-
H. Lappalainen.
Ensemble learning for independent component analysis.
In Proceedings of the ICA'99, pp. 7-12, Aussois, France, 1999.
- 8
-
H. Lappalainen, X. Giannakopoulos, A. Honkela, and J. Karhunen.
Nonlinear independent component analysis using ensemble learning:
Experiments and discussion.
In Proc. ICA 2000.
Submitted.
- 9
-
Éric Moulines, J.-F. Cardoso, and E. Gassiat.
Maximum likelihood for blind separation and deconvolution of noisy
signals using mixture models.
In Proc. ICASSP'97, pp. 3617-3620, Munich, Germany, 1997.
- 10
-
R. Vigário, V. Jousmäki, M. Hämäläinen, R. Hari, and E. Oja.
Independent component analysis for identification of artifacts in
magnetoencephalographic recordings.
In Advances in Neural Information Processing Systems 10,
pp. 229-235. MIT Press, 1998.
Harri Lappalainen
2000-03-09