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Abstract. Logic programs with abstract constraint atoms provide a
unifying framework for studying logic programs with various kinds of
constraints. Establishing strong equivalence between logic programs is a
key property for program maintenance and optimization, and for guaran-
teeing the same behavior for a revised original program in any context. In
this paper, we study strong equivalence of logic programs with abstract
constraint atoms. We first give a general characterization of strong equiv-
alence based on a new definition of program reduct for logic programs
with abstract constraints. Then we consider a particular kind of program
revision—constraint replacements addressing the question: under what
conditions can a constraint in a program be replaced by other constraints,
so that the resulting program is strongly equivalent to the original one.

1 Introduction

Logic programming interpreted with answer set semantics or answer set pro-
gramming (ASP), is a declarative programming paradigm for knowledge repre-
sentation, designed for characterizing and solving computationally hard prob-
lems [1, 2]. In ASP, a problem is represented by a logic program and the answer
sets of the program correspond to the solutions to the problem. Answer set
programming with abstract constraint atoms (c-atoms) [3–5] provides a unify-
ing framework for the study of logic programs with various constraints, such as
weight constraints [6], aggregates [7, 8], and global constraints [9].

Strong equivalence within this kind of semantics [10] is one of the key con-
cepts of logic programming. A program (a set of rules) P is strongly equivalent
to a program Q if, for any other program R, the programs P ∪ R and Q ∪ R
have the same answer sets. In order to see whether a set of rules in a program
can always be replaced by another set of rules, regardless of other program
components, one needs to check whether the two sets of rules are strongly equiv-
alent. Strongly equivalent programs are guaranteed to have the same behavior
in any context. Uniform equivalence [11] is a special case of strong equivalence.
Uniformly equivalent programs have the same behavior in any context of facts.
Lifschitz et. al. [10] developed a characterization of strong equivalence using the



logic of here-and-there. Lin [12] presented a transformation by which the strong
equivalence of logic programs is converted to classical entailment. Turner [13]
provided a model-theoretical characterization of the strong equivalence, where
two programs are strongly equivalent if and only if they have the same set of
SE-models. Liu and Truszczyński [11] extended this approach to logic programs
with monotone constraints.

In this paper, we study the characterization of strong equivalence for logic
programs with arbitrary abstract constraint atoms, under the semantics based
on conditional satisfaction [5]. We extend the concept of program reduct to logic
programs with abstract constraint atoms. Using the notion of program reduct,
we define SE-models and UE-models in the standard way employed in [11, 13]
and characterize strong and uniform equivalence by SE-models and UE-models,
respectively. Then, we study strong equivalence of a particular class of program
revisions, viz. constraint replacements, that amount to replacing a constraint in
a program by another constraint or a combination of constraints. Constraint re-
placements can be used as program transformations to decompose a complicated
constraint into simpler parts when doing program development or optimization.
We note that constraint replacements are also a standard technique to imple-
ment complicated constraints in current ASP systems: typically the inference
engine of the system supports a limited set of basic constraints and more in-
volved constraints are compiled to basic ones during grounding [6, 14]. Here, we
are interested in replacements that can be applied in any context, i.e., where
the original program and the modified program are strongly equivalent. Strong
equivalence is particularly valuable because it allows replacements to be done
in either the whole or a part of the program range, while (weak) equivalence
only consider the former. We provide fundamental results on replacement op-
erations by presenting criteria under which a constraint can be replaced with
a conjunction, a disjunction, or a combination of constraints while preserving
strong equivalence. An observation is that replacements with disjunctions are
more involved and require an extra condition compared to those with conjunc-
tions.

This paper is organized as follows. The next section reviews the basic defini-
tions of programs with general abstract constraints under the semantics based
on conditional satisfaction [5]. In Section 3, we characterize strong equivalence
by the SE-models of constraint programs and show that the characterization
generalizes to uniform equivalence. Section 4 applies strong equivalence in the
study of constraint replacements. In Section 5, we address the interconnections
of our results on constraint replacement to existing transformations. Related
work is described in Section 6. Finally, we conclude the paper in Section 7.

2 Preliminaries

We review the answer set semantics for logic programs with arbitrary constraint
atoms, as defined in [5]. The semantics should also be contributed to [15], where



it is defined as a fix-point construction using 3-valued logic. We assume a propo-
sitional language with a countable set of propositional atoms.

An abstract constraint atom (c-atom) is a construct of the form (D,C) where
D is the domain of the c-atom and C the admissible solution set of the c-atom.
The domain D is a finite set of atoms and the admissible solution set C is a
set of subsets of D, i.e., C ⊆ 2D. Given a c-atom A = (D,C), we use Ad and
Ac to refer to sets D and C, respectively. Certain special c-atoms have been
distinguished. A c-atom of the form ({a}, {{a}}) simply denotes a propositional
atom a. A c-atom A is monotone if for every X ⊆ Y ⊆ Ad, X ∈ Ac implies that
Y ∈ Ac, antimonotone if for every X ⊆ Y ⊆ Ad, Y ∈ Ac implies that X ∈ Ac,
and convex if for every X ⊆ Y ⊆ Z ⊆ Ad, X ∈ Ac and Z ∈ Ac implies Y ∈ Ac.

A logic program with c-atoms, also called a constraint program (or program
for short), is a finite set of rules of the form

A← A1, . . . , An. (1)

where A and Ai’s are c-atoms.
For a program P , we denote by At(P ) the set of atoms appearing in P . In

general, negative atoms of the form not A may appear in a rule. Following [5],
a negative c-atom not A in a program is interpreted as, and substituted by,
its complement c-atom A, where Ad = Ad and Ac = 2Ad \ Ac. Due to this
assumption, we consider the programs where no c-atoms appear negatively.

For a rule r of the form (1), we define hd(r) = A and bd(r) = {A1, ..., An},
which are called the head and the body of r, respectively. A rule r is said to be
basic if hd(r) is a propositional atom3. A program P is basic if every rule in it
is basic and normal if every c-atom in it is a propositional atom.

A set of atoms M satisfies a c-atom A, written M |= A, if M ∩ Ad ∈ Ac.
Otherwise M does not satisfy A, written M 6|= A. Satisfaction naturally extends
to conjunctions and disjunctions of c-atoms.

Answer sets for constraint programs are defined in two steps. First, answer
sets for basic programs are defined, based on the notion conditional satisfaction.
Then the answer sets for general programs are defined.

Definition 1. Let S and M be sets of atoms such that S ⊆ M . The set S
conditionally satisfies a c-atom A, w.r.t. M , denoted by S |=M A, if S |= A and
for every I ⊆ Ad such that S ∩Ad ⊆ I and I ⊆M ∩Ad, we have that I ∈ Ac.

Example 1. Let A be the c-atom ({a, b}, {∅, {a}, {a, b}}) and S1 = ∅, S2 = {a},
and M = {a, b}. Then, S1 6|=M A and S2 |=M A. ⊓⊔

Conditional satisfaction extends naturally to conjunctions and disjunctions
of c-atoms. Whenever it is clear by the context, we may use a set of c-atoms to
denote a conjunction or a disjunction of c-atoms.

An operator TP is defined as follows: for any sets S, M , and a basic program
P , TP (S,M) = {a | ∃r ∈ P, hd(r) = a, and S |=M bd(r)}. The operator TP

3 The head can also be ⊥, which denotes the c-atom (D, ∅). Such a rule serves as a
constraint [5]. Rules of this kind are irrelevant for the purposes of this paper.



is monotonic w.r.t its first argument (given that the second argument is fixed).
Answer sets of a basic program P are defined as the (least) fixpoint of TP .

Definition 2. Let P be a basic program and M a set of atoms. The set M is an
answer set of P iff M is a model of P and M = T∞

P (∅,M), where T 0
P (∅,M) = ∅

and T i+1
P (∅,M) = TP (T i

P (∅,M),M), for all i ≥ 0.

The answer sets of a (general) program are defined on the basis of the an-
swer sets of a basic program—the instance of the general program. Let P be a
constraint program, r a rule in P of the form (1), and M a set of atoms. The
instance of r, with respect to M , is

inst(r,M) =

{

{a← bd(r) | a ∈M ∩ hd(r)d}, if M |= hd(r);
∅, otherwise.

The instance of P with respect to M , denoted inst(P,M), is the program

inst(P,M) = ∪r∈P inst(r,M)

Definition 3. Let P be a program and M a set of atoms. The set M is an
answer set of P iff M is an answer set of inst(P,M).

3 Characterization of Strong and Uniform Equivalence

We first define the reduct of c-atoms and general constraint programs. Then,
using the reduct, we define SE-models and characterize the strong equivalence
of programs. Finally, we show how these results extend to uniform equivalence.

3.1 Program Reduct

The program reduct plays a very central role in the definition of answer sets for
normal programs [1]. However, it is non-trivial to generalize the reduct (e.g. [16]).
In what follows, we propose a new way of reducing c-atoms themselves, establish
a close connection between conditional satisfaction of c-atoms and satisfaction
of reduced c-atoms, and then extend these ideas to cover rules and programs.

Definition 4. Let A be a c-atom and M a set of atoms. The reduct of A,
w.r.t. M , denoted AM , is the c-atom (AM

d , AM
c ), where AM

d = Ad and the set of
admissible solutions AM

c = {S | S ∈ Ac, S ⊆M, and S |=M A}.

Proposition 1. Let A be a c-atom and S and M be sets of atoms such that
S ⊆M . Then S |=M A iff S |= AM .

Example 2. Let A = ({a, b, c}, {{a}, {a, b}, {a, c}, {a, b, c}}) be a c-atom. Then,
given an interpretation M = {a, b}, we have AM = ({a, b, c}, {{a}, {a, b}}). ⊓⊔

Definition 5. Let P be a basic program and M a set of atoms. The reduct of
P , w.r.t. M , denoted PM , is the program obtained by:



1. removing from P any rules whose bodies are not satisfied by M ;
2. replacing each c-atom with the reduct of the c-atom w.r.t. M , in the bodies

of the remaining rules.

Definition 6. Let P be a program and M a set of atoms. The reduct of P , w.r.t
M , denoted PM , is the reduct of the instance of P w.r.t. M , i.e., inst(P,M)M .

3.2 Strong Equivalence

Strong equivalence can be defined in the standard way using the notion of an-
swer sets from Definition 3, independently of the class of programs. Similarly,
given Definition 6, the notion of SE-models can be adopted—paving the way for
Theorem 1 which characterizes strong equivalence in terms of SE-models.

Definition 7. Programs P and Q are strongly equivalent, denoted P ≡s Q, iff,
for any program R, the programs P ∪R and Q ∪R have the same answer sets.

Definition 8. Let P be a program. A pair of sets (X,Y ) is a strong equivalence
model (SE-model) of P if the following conditions hold: (1) X ⊆ Y ; (2) Y |= P ;
and (3) X |= PY . The set of SE-models of P is denoted by SE(P ).

Theorem 1. Let P and Q be two programs. Then, P ≡s Q iff SE(P ) = SE(Q).

Proof Sketch. We use AS(P ) to denote the set of answer sets of a program P .
( =⇒ ) Let (X,Y ) be an SE-model of P . We show that (X,Y ) is also an SE-

model of Q, by contradiction. Assume that Y 6|= Q. Consider the program R =
{a | a ∈ Y }. We can show that Y ∈ AS(P ∪R) and Y 6∈ AS(Q∪R), contradicting
P ≡s Q. Assume X 6|= QY . Consider the program R = {a | a ∈ X}∪{b← c | b ∈
Y and c ∈ S \X} where S = {a | there is r ∈ QY such that hd(r) = a and X |=
bd(r)}. We can show that Y 6∈ AS(P ∪ R) and Y ∈ AS(Q ∪ R), contradicting
P ≡s Q. So, (X,Y ) ∈ SE(Q). It follows by symmetry that any SE-model of Q
is also an SE-model of P . Therefore SE(P ) = SE(Q).

( ⇐= ) It is easy to show the following statement: for any programs P and
Q, SE(P ∪Q) = SE(P ) ∩ SE(Q), and if SE(P ) = SE(Q), then AS(P ) = AS(Q).
So, given SE(P ) = SE(Q), we have for all programs R, SE(P ∪R) = SE(Q∪R)
and AS(P ∪R) = AS(Q ∪R). Therefore P ≡s Q. ⊓⊔

3.3 Uniform Equivalence

The concept of uniform equivalence is closely related to strong equivalence
(cf. Definition 7). The essential difference is that in uniform equivalence, the
context program R is restricted to be a set of facts. To formalize this, we use a
special rule rD = (D, {D})← for any set of atoms D [11]. Adding the rule rD to
a program is then equivalent to adding each atom a ∈ D as a fact ({a}, {{a}})←.

Definition 9. Programs P and Q are uniformly equivalent, denoted P ≡u Q,
iff, for any set of atoms D, P ∪ {rD} and Q ∪ {rD} have the same answer sets.



The uniform equivalence of finite programs can be characterized similarly as
that in [11] using uniform equivalence models which are a special class of SE-
models. We consider finite programs only as the uniform equivalence of infinite
programs cannot be captured by any class of SE-models in general [17].

Definition 10. Let P be a program. A pair (X,Y ) is a uniform equivalence
model (UE-model) of P if the following conditions hold: (1) (X,Y ) is an SE-
model of P ; (2) for every SE-model (X ′, Y ) of P such that X ⊆ X ′, either
X ′ = X or X ′ = Y . The set of UE-models of P is denoted by UE(P ).

Theorem 2. For any finite programs P and Q, P ≡u Q iff UE(P ) = UE(Q).

4 Constraint Replacements

In this section we consider a particular kind of program revision—constraint
replacement. The idea is that a constraint represented by a c-atom in a logic
program is replaced by either (i) a conjunction of constraints, (ii) a disjunction
of constraints, or (iii) a combination of them. It is then natural to use strong
equivalence as correctness criterion and we establish explicit conditions on which
strong equivalence is preserved. As regards notation, we define the Cartesian
product of two sets of interpretations S1 and S2, denoted S1 × S2, as the set of
interpretations {T1 ∪ T2 | T1 ∈ S1 and T2 ∈ S2}. Using this notion, we are able
to define a basic operation for constructing sets of admissible solutions.

Definition 11. The extension of the set Ac of admissible solutions of a c-atom
A over a set D of atoms, denoted by ext(Ac,D), is ext(Ac,D) = Ac × 2(D\Ad).

Proposition 2. For a c-atom A, a set D of atoms, and an interpretation M ,
the extended projection M ∩ (Ad ∪D) ∈ ext(Ac,D) iff M |= A.

Given a rule r of the form (1) and Ak ∈ bd(r) with 1 ≤ k ≤ n, we write
r[Ak/B1, . . . , Bm] for the result of substituting c-atoms B1, . . . , Bm for Ak, i.e.,

A← A1, . . . , Ak−1, B1, . . . , Bm, Ak+1, . . . , An. (2)

4.1 Conjunctive Encoding

In a conjunctive encoding, the idea is to represent a c-atom A as a conjunction of
c-atoms A1, . . . , Am where each Ai may have a subdomain of Ad as its domain.

Definition 12. A conjunction of c-atoms A1, . . . , Am is a conjunctive encoding
of a c-atom A, denoted A = C(A1, . . . , Am), iff the c-atoms satisfy

1. Ad =
⋃m

i=1(Ai)d; and
2. Ac =

⋂m

i=1 ext((Ai)c, Ad).

The conditions of Definition 12 guarantee important properties for conjunc-
tive encodings as detailed below: The (conditional) satisfaction of c-atoms is
preserved and the same can be observed for the reducts of c-atoms.



Proposition 3. If A = C(A1, . . . , Am), then for any M,N such that M ⊆ N :

1. M |= A iff M |= Ai for each 1 ≤ i ≤ m;
2. M |=N A iff M |=N Ai for each 1 ≤ i ≤ m; and
3. M |= AN iff M |= (Ai)

N for each 1 ≤ i ≤ m.

The properties listed above guarantee that replacing a c-atom in a program by
its conjunctive encoding A1, . . . , Am also preserves SE-models. This observation
leads us to the following results, at both the rule and program levels.

Theorem 3. Let r be a rule of the form (1) and Ak a c-atom in the body bd(r).
If Ak = C(B1, . . . , Bm), then {r} ≡s {r[Ak/B1, . . . , Bm]}.

In the above, the rule r[Ak/B1, . . . , Bm] coincides with (2) and we call this
particular rule the conjunctive rewrite of r with respect to Ak = C(B1, . . . , Bm).
Since ≡s is a congruence relation, i.e., P ≡s Q implies P ∪R ≡s Q ∪R, we can
apply Theorem 3 in any context. In particular, we call a program P ′ a one-step
conjunctive rewrite of P iff P ′ is obtained as (P \ {r})∪{r[Ak/B1, . . . , Bm]} for
Ak ∈ bd(r) and Ak = C(B1, . . . , Bm). This idea easily generalizes for n steps.

Corollary 1. For an n-step conjunctive rewrite P ′ of a program P , P ≡s P ′.

It is also worth pointing out special cases of conjunctive encodings. If each
domain (Ai)d coincides with Ad, then ext((Ai)c, Ad) = (Ai)c and the second
condition of Definition 12 implies Ac =

⋂m

i=1(Ai)c. On the other hand, if the
domains of each Ai and Aj with i 6= j are mutually disjoint, then the second
condition reduces to a Cartesian product Ac = (A1)c× . . .× (Am)c. In other in-
termediate cases, we obtain a natural join Ac = (A1)c ⋊⋉ . . . ⋊⋉ (Am)c condition,
which was introduced by Janhunen et al. [18] to relate the set of answer sets
associated with an entire logic program with those of its component programs.

4.2 Disjunctive Encoding

The idea of a disjunctive encoding is to represent a c-atom A as a disjunction
of c-atoms A1, . . . , Am. However, in contrast with Definition 12, an additional
condition becomes necessary in order to preserve conditional satisfaction of c-
atoms and their reducts.

Definition 13. A disjunction of c-atoms A1, . . . , Am is a disjunctive encoding
of a c-atom A, denoted A = D(A1, . . . , Am), iff the c-atoms satisfy

1. Ad =
⋃m

i=1(Ai)d;
2. Ac =

⋃m
i=1 ext((Ai)c, Ad); and

3. for any subset M of Ad, AM
c =

⋃m
i=1(Ai)

M
c .

Proposition 4. If A = D(A1, . . . , Am), then for any M,N such that M ⊆ N :

1. M |= A iff M |= Ai for some 1 ≤ i ≤ m;
2. M |=N A iff M |=N Ai for some 1 ≤ i ≤ m; and



3. M |= AN iff M |= (Ai)
N for some 1 ≤ i ≤ m.

Because of the general properties of disjunction, we need to be careful about
disjunctive encodings when replacing c-atoms in rules. Rewriting a rule r of the
form (1) with respect to a disjunctive encoding Ak = D(B1, . . . , Bm) results in
m rules r[Ak/B1], . . . , r[Ak/Bm] obtained by substituting Ak by each Bi in turn.
Proposition 4 guarantees the preservation of strong equivalence.

Theorem 4. Let r be a rule of the form (1) and Ak a c-atom in the body bd(r).
If Ak = D(B1, . . . , Bm), then {r} ≡s {r[Ak/B1], . . . , r[Ak/Bm]}.

Hence, in one-step disjunctive rewriting based on Theorem 4, a program P
with r ∈ P would be rewritten as P ′ = (P \ {r}) ∪ {r[Ak/B1], . . . , r[Ak/Bm]}.
This also preserves strong equivalence by Theorem 4. In general, we obtain:

Corollary 2. For an n-step disjunctive rewrite P ′ of a program P , P ≡s P ′.

The condition 3 of Definition 13 reveals that, in contrast with conjunctive
encodings, conditional satisfaction is not automatically preserved in the disjunc-
tive case. The next example illustrates that the first two conditions that preserve
the satisfaction of a c-atom are insufficient to preserve strong equivalence.

Example 3. Let P be the following program with an aggregate denoted by A:

p(2)← A. p(1)← . p(−3)← p(2).

The intuitive reading of A is SUM({X | p(X)}) 6= −1 and following [5], it corre-
sponds to a c-atom with Ad = {p(1), p(3), p(−3)} and Ac = 2Ad\{{p(2), p(−3)}}.
It may seem natural to replace A by the disjunction of A1 = SUM({X | p(X)}) >
−1 and A2 = SUM({X | p(X)}) < −1 and, therefore, to rewrite P as P ′:

p(2)← A1. p(2)← A2. p(1)← . p(−3)← p(2).

However, the programs P and P ′ are not strongly equivalent. To check this,
consider M = {p(1), p(2), p(−3)} which is an answer set of P but not that of
P ′. This aspect is captured by the third condition of Definition 13 because AM

c

differs from (A1)
M
c ∪ (A2)

M
c for the interpretation M = {p(1), p(2), p(−3)}. ⊓⊔

There is also one interesting special case of disjunctive encodings conforming
to Definition 13. If the domain of each c-atom Ai coincides with Ad, i.e., (Ai)d =
Ad for each 1 ≤ i ≤ m, then ext((Ai)c, Ad) = (Ai)c for each 1 ≤ i ≤ m as well.
Thus, the sets of admissible solutions are simply related by Ac =

⋃m

i=1(Ai)c.

4.3 Shannon Encodings

Any Boolean function f(a1, . . . , an) can be expanded with respect to its argu-
ment ai using Shannon’s partial evaluation principle:

f(a1, . . . , an) = (ai ∧ f(a1, . . . , ai−1,⊤, ai+1, . . . , an))∨

(¬ai ∧ f(a1, . . . , ai−1,⊥, ai+1, . . . , an)). (3)



The objective of this section is to present Shannon expansion for monotone
c-atoms. The reason for this restriction is that Shannon’s principle cannot be
applied to arbitrary c-atoms in a natural way (see Example 5 for details). In the
case of monotone c-atoms, however, the following can be established.

Proposition 5. If A is a monotone c-atom and a ∈ Ad, then it holds that
A = D(C(a,A+(a)), A−(a)) where a stands for the c-atom ({a}, {{a}}), and

1. A+(a) = (Ad \ {a}, {T \ {a} | T ∈ Ac and a ∈ T}) and
2. A−(a) = (Ad \ {a}, {T | T ∈ Ac and a 6∈ T}).

Given this relationship we may call S(A, a) = D(C(a,A+(a)), A−(a)) as the
Shannon encoding of A with respect to an atom a ∈ Ad. Intuitively, the Shan-
non encoding S(A, a) builds on a case analysis. The part C(a,A+(a)) captures
admissible solutions of A where a is true. The part A−(a) covers cases where a
is false (by default) and hence ({a}, {∅}) is not incorporated. We call A+(a) and
A−(a) the respective positive and negative encodings of A given a ∈ Ad.

Example 4. Consider a monotone c-atom A = ({a, b}, {{a}, {a, b}}) for which
S(A, a) = D(C(a,A+(a)), A−(a)) where the respective positive and negative
encodings of A are A+(a) = ({b}, {∅, {b}}) and A−(a) = ({b}, {}). It is worth
noting that the latter c-atom is never satisfied and if it is used to rewrite any
rule body, the resulting rule can be directly omitted due to inapplicability. ⊓⊔

Given a monotone c-atom A, any atom a ∈ Ad can be used to do the Shannon
encoding. When the identity of a is not important, we simply use S(A, ·) to
denote the appropriate construction, the properties of which are as follows.

Proposition 6. If A is a monotone c-atom, then so are A+(·) and A−(·).

Proposition 7. If A is a monotone c-atom and a ∈ Ad, then for any M,N
such that M ⊆ N :

1. M |= A iff M |= a ∧A+(a) or M |= A−(a);
2. M |=N A iff M |=N a ∧A+(a) or M |=N A−(a); and
3. M |= AN iff M |= a ∧A+(a)N or M |= A−(a)N .

We stress that the Shannon encoding S(A, a) is not even satisfaction pre-
serving if applied to other than monotone c-atoms. This is illustrated below.

Example 5. Consider the antimonotone c-atom A = ({a}, {∅}). We have that
A+(a) = (∅, ∅), A−(a) = (∅, {∅}), and S(A, a) = D(C(a,A+(a)), A−(a)) ≡
(∅, {∅}). Let M = {a}. It is easy to see that M |= S(A, a). But, on the other
hand, we have M 6|= A. ⊓⊔

However, for monotone c-atoms, strong equivalence is additionally preserved
under Shannon encodings. Since S(A, a) is a combination of disjunctive and
conjunctive encodings, our preceding results on rewriting rules and programs
apply. Given a rule r of the form (1), a monotone c-atom Ak in the body



bd(r), and an atom a ∈ (Ak)d, the Shannon rewrite of r consists of two rules
r[Ak/({a}, {{a}}), A+(a)] and r[Ak/A−(a)]. Such replacements are highly ben-
eficial if either A+(a) or A−(a) becomes trivial in one sense (cf. Example 4). If
not, then repeated Shannon rewritings can lead to an exponential expansion.

Theorem 5. Let r be a rule of the form (1), Ak a monotone c-atom in the body
bd(r), and a ∈ (Ak)d an atom. Then {r} ≡s {r[Ak/a,A+(a)], r[Ak/A−(a)]}
where A+(a) and A−(a) are the respective positive and negative encodings of A.

Corollary 3. For an n-step Shannon rewrite P ′ of a program P , P ≡s P ′.

It is also possible to rewrite a program P by mixing conjunctive, disjunctive,
and Shannon rewriting (Shannon rewriting can be only done for monotone c-
atoms). Corollaries 1, 2, and 3 guarantee, on their behalf, that the resulting
program will be strongly equivalent with the original one.

5 Interconnections to Some Existing Encodings

In this section, we work out the interconnections of some existing translations
of c-atoms in the literature to conjunctive and disjunctive encodings. In this
way, we can establish that these transformations preserve strong equivalence by
appealing to the results of Section 4.

Liu and Truszczyński [11] propose a way of representing any convex c-atom A
as a conjunction of two c-atoms A+ and A− that are the upward and downward
closures of A, respectively. These closures are defined by

1. A+
d = A−

d = Ad,
2. A+

c = {T ⊆ Ad | S ⊆ T for some S ∈ Ac}, and
3. A−

c = {T ⊆ Ad | T ⊆ S for some S ∈ Ac}.

It is obvious that A+ is monotone and A− is antimonotone. In addition to
this, the two conditions from Definition 12 can be verified so that A = C(A+, A−)
holds in general. This justifies the statement of Proposition 8 given below. Thus
it follows by Theorem 3 and Corollary 1 that when a convex c-atom A appearing
in a program is replaced by its upward and downward closures A+ and A−, the
resulting program is strongly equivalent to the original one.

Proposition 8. The encoding of convex c-atoms in terms of their upward and
downward closures [11] is a conjunctive encoding.

As regards arbitrary c-atoms, a number of representations have been pro-
posed such as sampler sets [16], the translation of aggregates into propositional
formulas [19, 20], abstract representations [21], and local power sets [22]. Given
a c-atom A, these approaches are essentially based on a disjunctive encoding
A = D(A1, . . . , Am) where each Ai is defined by

1. (Ai)d = Ad and
2. (Ai)c = {T ⊆ Ad | Li ⊆ T ⊆ Gi}



where Li and Gi are least and greatest admissible solutions from Ac such that
(i) Li ⊆ Gi, (ii) each T between Li and Gi also belongs to Ac and (iii) the
range induced by Li and Gi is maximal in this sense. Intuitively, the sets Li and
Ad \Gi consist of atoms that have to be true and false, respectively, in order to
satisfy Ai as well as A. It is obvious that each Ai is convex. For this reason we
call an encoding of this kind as the convex encoding of A. Proposition 9 below
is a consequence of verifying that A and A1, . . . , Am meet the requirements of
Definition 13. So, referring to Theorem 4, given a rule r with an arbitrary c-atom
in its body and a convex encoding A = D(A, . . . , Am) for A, the replacement of
r by r[A/A1], . . . , r[A/Am] leads to a strongly equivalent program.

Proposition 9. The convex encoding based on the representations of c-atoms
in [16, 19–22] is a disjunctive encoding.

6 Related Work

The characterizations of strong equivalence in [10, 12, 11, 13] provide the basis
to determine the strong equivalence of normal programs under the answer set
semantics [1]. For constraint programs under the answer set semantics, strong
equivalence can be determined by translating the constraint programs to normal
programs, then applying the previous characterizations. Given a constraint pro-
gram, note that the resulting normal program may be exponential in the size of
the original program [20, 8, 23]. The characterization of strong equivalence de-
veloped in this paper makes it possible to determine whether strong equivalence
holds without such a potentially exponential translation.

Example 6. Let P be a program consisting of the rule: b ← A, where A is
the aggregate COUNT({X | p(X)}) ≤ k and p(X) is defined over the domain
D = {p(1), ..., p(n)}.

Let N be a set of atoms such that |N ∩ D| ≤ k and b ∈ N . Let M be
any subset of N with b 6∈ M . It can be determined, without enumerating the
admissible solutions of A, that M 6|= PN , since M |=N A and b 6∈ M . So,
(M,N) does not satisfy the third condition in the definition of SE-models. Then
(M,N) 6∈ SE(P ). So, for any program Q that has (M,N) as its SE-model, we
can conclude that P 6≡s Q.

On the other hand, to determine the strong equivalence of P and Q using the
characterizations of strong equivalence for normal programs, one has to translate
P to a normal program whose size is possibly exponential in the size of P (a
straightforward translation consists of O

(

n
k

)

rules). ⊓⊔

The concept of program reduct (Definition 5) developed in this paper leads
to a simple definition of answer sets for (disjunctive) constraint programs, where
a rule head could be a disjunction of c-atoms. Given a (disjunctive) constraint
program P and a set of atoms M , M is an answer set of P if and only if M
is a minimal model of the program reduct PM . It can be verified that the pro-
gram reduct and the answer sets coincide with the generalized Gelfond-Lifschitz



transformation and answer sets defined in [21]. Note, however, the simplicity of
our definition.

Program revisions under strong and uniform equivalence have been studied
in [24] for disjunctive logic programs. In that research, the concept of revision is
motivated to remove redundant rules in a program. In contrast, we study a wider
class of programs with constraint atoms and the question how such constraint
atoms can be replaced by others, independently of the embedding program.

7 Conclusion and Directions of Future Work

We propose the concept of reduct for logic programs with arbitrary abstract
constraint atoms (c-atoms), based on which we give a characterization of strong
equivalence and uniform equivalence of logic programs with c-atoms. This ex-
tends previous work on logic programs with monotone c-atoms [11]. We study
strong equivalence of a particular class of program revisions: constraint replace-
ments. We provide criteria under which a c-atom can be replaced by a conjunc-
tion of c-atoms, a disjunction c-atoms, or a combination of them while preserving
strong equivalence. These results provide the basis to check if a constraint can
be replaced with other constraints in any program context.

For the future work, it would be interesting to extend our results to programs
with concrete constraints such as aggregate programs [7, 25]. Another promising
direction is that to investigate the strong equivalence of logic programs embed-
ded within other reasoning mechanisms, such as constraint programming (CP)
[26–28], description logics [29], and SAT modulo theories [30]. These embeddings
make it possible to exploit the strengths of other reasoning mechanisms in ASP
for solving complex real world problems. In the embedding approach, it is a com-
mon practice to replace a part of a program with components of other reasoning
mechanisms to model and solve different kinds of problems. The study of strong
equivalence in this context may provide insights and approaches to program
optimization, system implementation, and efficient answer set computation.
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