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a b s t r a c t

Several computational approaches have been proposed for inferring the affective state of the user,
motivated for example by the goal of building improved interfaces that can adapt to the user's needs and
internal state. While fairly good results have been obtained for inferring the user state under highly
controlled conditions, a considerable amount of work remains to be done for learning high-quality
estimates of subjective evaluations of the state in more natural conditions. In this work, we discuss how
two recent machine learning concepts, multi-view learning and multi-task learning, can be adapted for
user state recognition, and demonstrate them on two data collections of varying quality. Multi-view
learning enables combining multiple measurement sensors in a justified way while automatically
learning the importance of each sensor. Multi-task learning, in turn, tells how multiple learning tasks
can be learned together to improve the accuracy. We demonstrate the use of two types of multi-task
learning: learning both multiple state indicators and models for multiple users together. We also
illustrate how the benefits of multi-task learning and multi-view learning can be effectively combined in
a unified model by introducing a novel algorithm.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Affective computing seeks to develop more efficient and plea-
sant user interfaces by taking into account the affective state of
the user. For example, the information flow can be tailored by
managing interruptions from e-mail alerts and phone calls when
the user is in deep thought [7], and the affective state can be
used to determine the most suitable time to intervene during a
pedagogical game [8]. Apart from adapting the interface, informa-
tion on the affective state can be used to gain a deeper under-
standing of how users and computers interact. A prerequisite of
affective computing is the ability to recognize users' states of
interest, either by observing the users' actions [26] or by analyzing
physiological signals measured from the user [25,15,6]. In this
work, we study the latter approach and discuss machine learning

solutions for inferring the affective state of the user from physio-
logical signals in unobtrusive and loosely controlled user setups.

During recent years, several databases of physiological mea-
surements in affective computing tasks have been released
[13,22,31], in an attempt to provide high-quality data for learning
and benchmarking state inference models. The state of the art in
the field is that the user's state can be inferred relatively accurately
in highly controlled experiment setups where the stimuli evoke
strong emotional responses [20,24,32]. For less controlled setups,
where the ground truth labels come from user evaluations, some
recent works have obtained positive results [22,2,9,11,33] but in
many cases the prediction accuracies are not yet sufficiently high
for practical use in adaptive interfaces.

We introduce two elements frommachine learning literature to
help improve the user state estimation: multi-view learning and
multi-task learning. Both ideas can be incorporated into many of
the current state estimation methods (for a recent review see
[34]), to obtain better estimates of the user's affective states. We
motivate these concepts for affective computing tasks and demon-
strate their usefulness in learning user states especially when used
in combination.

Multi-view learning studies how data sets having co-occurring
observations can be combined. Most affective computing studies
monitor the user with several sensors or sensor channels, which
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can be considered as such co-occurring sets. Multi-view learning
refers to various strategies for learning a joint model over all
sensor data, to learn how the sources should be combined for
building optimal models. In this paper, we work with a specific
multi-view learning technique called multiple-kernel learning
(MKL) [16], which allows using multiple sensors in any kernel-
based learning algorithm while automatically revealing which
sensors are useful for solving the task. Even though considerable
effort has been put into finding out which physiological sensors
are related to which affective dimensions, this is still useful for all
practical applications with specific sensor hardware. Automatically
learning the sensor importance is especially useful when devel-
oping practical systems for out-of-laboratory conditions.

The other concept,multi-task learning (MTL), studies learning of
several prediction tasks together [5]. Within the scope of state
inference, MTL takes advantage of the data of other users by
learning from the cross-user similarities, without assuming that
the users are identical. This helps particularly when the amount of
labeled training data is limited. Alternatively, learning each output
label, such as arousal and valence, could be considered as a task.
Learning predictive models for all of the labels together is then
useful assuming that all labels are one-dimensional summaries of
a more complex unknown state of the user. The approach will be
particularly useful if the dimensions are not independent.

We present a novel kernel-based model that combines both
multi-view and multi-task aspects. It can be applied to both of the
aforementioned MTL scenarios, and it uses the MKL formulation to
make the approach multi-view. We then apply the model to two
different data collections to study the accuracy of state recogni-
tion. The first collection, taken from Koelstra et al. [22], is an
example of a laboratory-quality data. We have collected the other
data set ourselves under less constrained conditions.

The main goal of the paper is to illustrate the benefits of the
two aforementioned general purpose machine learning techniques
in affective computing applications. To this end, we show how
combining MTL and MKL within a unified model improves the
prediction performance, and also highlight how MKL automati-
cally learns the importance of individual sensors even when
solving multiple inference tasks simultaneously. We demonstrate
the models with generic features instead of carefully selecting the
sensors and features to match the particular affective inference
tasks. This highlights the main advantage of the proposed strategy:
It allows working with a wide set of sensors and tasks, without
requiring much manual labor in incorporating domain-specific
knowledge into the solutions.

2. Inferring the user state

Given the input data from P sensors, the user state inference
task consists of inferring for each data point a set of labels that
jointly characterize the state of the user. We do not assume any
particular emotional model, such as [28]. Instead, we simply
require the states to be represented by a collection of numerical
labels. The labels do not have to be independent; in fact, as will
become more apparent later, the multi-task formulation we
introduce is specifically tailored to capture correlations between
the labels. In the experimental section we use Likert-scale evalua-
tions of valence, arousal, liking, and mental workload as the labels,
but the underlying machine learning techniques would apply to
any other numerical characterizations of the state dimensions.
Even though we resort to binarization of multi-category state
labels to overcome data scarcity, extension of the presented
techniques to multi-class setups is straightforward.

We study user-specific and user-independent setups for each
learning model. The former is trained on data recorded from a

single user and assumes this person to be the eventual user of the
system, whereas the latter learns the models from M earlier users
and assumes the eventual user to be a new one. User-specific
models need to be separately customized to target users. On the
other hand, user-independent models do not require any training
data from the eventual user, and hence can be pre-trained on large
data collections.

For both scenarios, each data sample xi is represented as a

collection of vectors xi ¼ fxðmÞ
i gPm ¼ 1, one for each of the P views

(here sensors), where xðmÞ
i ARDm and Dm is the dimensionality of

the feature representation for the sensor m. The output, character-
ization of the user's state, is given as (here binary) vector of labels
yi ¼ ½yið1Þ;…; yiðTÞ�, where yiðjÞAf71g and T is the number of
labels.

All learning setups considered in this paper are multi-view, due
to the input data coming from P different sensors. MTL, in turn, can
be applied in two different ways. When considering the different
users as different but related tasks we can learn user-specific
models for all users at the same time, separately for each label.
In this case, each task takes as input the measurements taken
from a different user x, and predicts the corresponding label.
Even though the models are learned together in the spirit of multi-
task learning, the output will be a separate model for each user.
Alternatively, we can learn a single user-independent model for all
T labels at once, resulting in a MTL setup where the inputs x are
the same for all tasks but the output labels are different.

In this paper, we formulate a novel kernel-based algorithm that
performs multi-task and multi-view learning in a coupled and
efficient manner. In Sections 2.1–2.3 we review the basics of kernel
based learning and explain the earlier kernel-based multi-task and
multi-view algorithms. Finally, in Section 2.4 we introduce our
new model that combines both approaches.

2.1. Support vector machines (SVMs)

We take the standard support vector machine (SVM) [30] as a
single-task and single-view building block on which we develop
our novel multi-task multi-view learning algorithm. We denote by
fðxi; yiÞgNi ¼ 1 a sample of N independent training instances, where xi
is a D-dimensional input vector with the target output yi, and by
Φ : RD-RS a function that maps the input patterns to a preferably
higher dimensional space. The support vector machine learns a
linear discriminant that predicts the target output of an unseen
test instance x as

f ðxÞ ¼w>ΦðxÞþb;

where w contains the hyperplane parameters and b is the bias
parameter. Using the representer theorem, the discriminant in the
dual form becomes

f ðxÞ ¼ ∑
N

i ¼ 1
αiΦðxiÞ>ΦðxÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

kðxi ;xÞ

þb

where N is the training set size, k : RD � RD-R is the kernel
function that defines a similarity metric for pairs of data instances,
and α is the vector of Lagrange multipliers defined in the domain

A¼ α : ∑
Nr

i ¼ 1
αi ¼ 0; αiAR; 8 i

( )
: ð1Þ

For binary classification yiAf�1; þ1g and squared loss, the corre-
sponding objective function is

JðαÞ ¼ ∑
N

i ¼ 1
αi�

1
2

∑
N

i ¼ 1
∑
N

j ¼ 1
αiαjyiyj kðxi; xjÞþ

δji
2C

 !
;
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where δji ¼ 1 if i¼ j and 0 otherwise. In the training phase, JðαÞ is
maximized with respect to α.

2.2. Multiple kernel learning (MKL)

A good affective computing model utilizes information from all
available sensors, correctly weighting each of the sensors accord-
ing to how useful it is. Instead of manually selecting only a small
subset of most useful sensors, we propose to automatically infer
the best sensors amongst a possibly very rich set of sensors.

Multiple kernel learning is a multi-view learning solution that
automatically learns the importance of the sensors to maximize
the predictive accuracy of kernel-methods (see [16] for a survey).
The idea is to represent each sensor (view) m by one kernel km,
and combine them into a single kernel kη by using a function f η :

RP-R parameterized by η:

kηðxi; xj;ηÞ ¼ f ηðfkmðxðmÞ
i ; xðmÞ

j ÞgP
m ¼ 1

;ηÞ:

An optimal η is learned from data. The different multiple kernel
learning models differ in the way they put restrictions on the
kernel weights η. In this paper, we take a weighted average of the
kernels, with nonnegative weights that sum up to one (i.e., convex
sum): kηðxi; xj;ηÞ ¼∑P

m ¼ 1ηmkmðxðmÞ
i ; xðmÞ

j Þ.
When learning the kernel weights one could also consider some

form of regularization for them, for example to favor sparse solu-
tions. There has been no conclusive evidence that sparse solution
would be more accurate (see [21]), and hence we learn here the
weights of regular MKL without sparsity-inducing regularization.

2.3. Multi-task kernel machines

Multiple learning tasks can be solved more accurately if they
are learned together, by encouraging the tasks to share knowledge
by having similar parameters [3]. This idea has been employed in
SVMs by merging the training instances of all tasks, and learning
the following kernel function [14]:bkðxi; xjÞ ¼ ð1=γþδjiÞkðxi; xjÞ ð2Þ
where γ determines the similarity between the samples of diffe-
rent tasks and δij is 1 if xi and xj are from the same task, and
0 otherwise. Intuitively, the model assumes that samples from all
other tasks can also be used for learning the model but their
similarity is discounted by a factor of γ. For γ ¼ 0 the solution
reduces to assuming all tasks to be identical, whereas γ ¼1 is
equivalent to learning the tasks separately.

The above multi-task formulation has three disadvantages:
(a) it requires all tasks to be in a common input space; (b) it
requires all tasks to have the same output space to be able to
capture them in a single learner, which makes it not applicable for
MTL over labels (multi-output learning); and (c) it requires more
time than training separate (hence small-sample) learners for
each task.

2.4. Multi-task multiple kernel machines (MT-MKL)

We could obtain a multi-task multi-kernel learning method by
simply extending Eq. (2) to multiple kernels:ckη ðxi; xj;ηÞ ¼ ð1=γþδjiÞkηðxi; xj;ηÞ;
and learning the weights η as in standard MKL. However, the
aforementioned disadvantages would still apply.

We propose a novel MT-MKL model that induces similarity
across tasks via kernel combination parameters η, instead of via
the discriminant function as above. It learns a different ηr for each
task r and regularizes them globally. Assuming a single η common

to all tasks as in Rakotomamonjy et al. [27] is then a special case of
our model, which holds the risk of negative transfer if some of the
tasks are only weakly correlated. Parameters of models can be
learned by solving the following min–max optimization problem:

minimize
fηr AEgTr ¼ 1

maximize
fαr AArgTr ¼ 1

ΩðfηrgTr ¼ 1Þþ ∑
T

r ¼ 1
Jrðαr ;ηrÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Oη

ð3Þ

where E ¼ fη : ∑P
m ¼ 1ηm ¼ 1;ηmZ0 8mg denotes the domain of

the kernel combination parameters, Ar is the domain of the
Lagrange multipliers for task r as in Eq. (1), and

Jrðαr ;ηrÞ ¼ ∑
N

i ¼ 1
αr
i �

1
2

∑
N

i ¼ 1
∑
N

j ¼ 1
αr
iα

r
j y

r
i y

r
j krηðxi; xj;ηrÞþ

δji
2C

 !
is the objective function of the kernel-based learner for task r.
Similarity between the kernels is enforced by the regularization
term Ωð�Þ that makes the kernel combination parameters of
different tasks related and penalizes their divergence from each
other. Among many possible choices of regularizers, we illustrate
two: (i) the inner-product regularizer

Ω1ðfηrgTr ¼ 1Þ ¼ �ν ∑
T

r ¼ 1
∑
T

s ¼ 1
η>
r ηs;

and (ii) the ℓ2-norm regularizer

Ω2ðfηrgTr ¼ 1Þ ¼ �ν ∑
T

r ¼ 1
∑
T

s ¼ 1
‖ηr�ηs‖2:

The first regularizer, Ω1ð�Þ, corresponds to the negative total
correlation between the kernel weights of the tasks. Although this
term is concave, efficient optimization is possible thanks to the
bounded feasible sets of the kernel weights. The second alter-
native, Ω2ð�Þ, is the standard ℓ2�norm regularizer that penalizes
the distance of kernel weights in the Euclidean space.

The coefficient ν determines the influence of the regularizer
on the cost function. A small ν value corresponds to assuming
unrelated tasks (and with ν¼ 0 the model reverts to an indepen-
dent MKL learner for each task), whereas a large value enforces
similar kernel weights across the tasks.

The min–max optimization problem in Eq. (3) can be solved
using a two-step iterative algorithm in a similar way to previous
work on MKL [35–37]. In the first step, kernel weights fηrgTr ¼ 1 are
given, hence we have T single-task single-kernel learning pro-
blems at hand. In the second step, where single-task learners are
given, we update fηrgTr ¼ 1 with respect to Oη by applying projected
gradient-descent subject to two constraints on the kernel weights:
(i) being positive (8r; 8m;ηmr Z0) and (ii) summing up to one
(8r;∑P

m ¼ 1η
m
r ¼ 1). The gradient of the joint objective function of

all task learners Oη is

∂Oη

∂ηrm
¼ �2

∂ΩðηrÞ
∂ηrm

�1
2

∑
N

i ¼ 1
∑
N

j ¼ 1
αr
iα

r
j y

r
i y

r
j krmðxri ; xrj Þþ

δji
2C

 !
;

where the gradient of the regularizer is

∂Ω1ðηrÞ
∂ηrm

¼ �ν ∑
T

s ¼ 1
ηsm

for the inner-product penalty, and

∂Ω2ðηrÞ
∂ηrm

¼ �ν ∑
T

s ¼ 1
2ðηrm�ηsmÞ

for the ℓ2�norm penalty. For faster convergence, step sizes of the
gradient-descent can be tuned at each iteration by line search. The
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iterations are then repeated until convergence. The proposed
method can be summarized as in Algorithm 1. See Gon̈en et al.
[17] for the empirical performance of the method on tasks other
than affective state inference.

Algorithm 1. The proposed Multitask Multiple Kernel Learning
(MT-MKL) algorithm.

Initialize ηr as ð1=P;…;1=PÞ; 8r
repeat

Calculate Kr
η ¼ krηðxi; xjÞNr

i;j ; 8r
Solve a single-kernel machine using Kr

η; 8r
Update ηr in the direction of �∂Oη=∂ηr ; 8r

until convergence

3. Tasks, setups, and measures

We demonstrate off-line analysis with the kernel-based
inference models in two different application scenarios. The
first uses high-quality data from Koelstra et al. [22], and acts as
an example of how good models can be learned when the
stimuli are relatively carefully chosen, the user is monitored
with an extensive set of sensors, and the labeling has been done
with care. We then make a step towards a setup that would be
closer to what could be used for practical affective interfaces,
using a smaller set of relatively unobtrusive sensors and letting
computer scientists that are not experts in psychological experi-
ments, such as ourselves, design the data collection and labeling
schemes.

For assessing model performance, we use

� accuracy: The proportion of correct predictions,
� AUC: Area under receiver operating characteristics curve, and
� macro-F1 score: The average of the harmonic mean of precision

and recall over all output categories.

For user-specific models we compute the leave-one-sample-out
estimate, learning N different models using N�1 data points
for training and evaluating with the left-out sample. For user-
independent models we use a leave-one-user-out procedure,
learning M different models using all the data from M�1 users
and testing with the left-out user. For both setups, we compare the
performance of three kernel-based learners: SVM, MKL, and MT-
MKL. For MT-MKL, we consider the following four alternatives:

� MT-MKL (U1): Users are taken as tasks and Ω1ð�Þ is used for
kernel weight regularization.

� MT-MKL (U2): Users are taken as tasks and Ω2ð�Þ is used for
kernel weight regularization.

� MT-MKL (L1): Label categories are taken as tasks and Ω1ð�Þ is
used for kernel weight regularization.

� MT-MKL (L2): Label categories are taken as tasks and Ω2ð�Þ is
used for kernel weight regularization.

For MT-MKL (L1) and MT-MKL (L2) we evaluate both user-specific
and user-independent learning setups, but for MT-MKL(U1) and
MT-MKL(U2) only the user-specific setup is applicable.

It would also be possible to consider multi-task learning over both
the users and the label categories, so that each userþ label pair would
form a single task. However, such tasks would not be exchangeable
but instead the structure between the tasks should be taken into
account in the learner; for instance, the tasks corresponding to the
same user should be regularized more towards each other than the
tasks corresponding to different users. Hence, we do not consider
such a setup further in this paper, but instead focus on the setups
where all tasks a priori equally related to each other.

We picked the hyperparameters C and ν by cross-validation. The C
was selected from the set f10�3;10�2;…;10þ3g for all models. For
MT-MKL variants, the regularization parameter ν was picked from
the set f10�4;10�3;…;10þ4g. We used the baseline method SVM to
choose either linear or Gaussian kernel, using the same choice for all
MKL methods as well. For both cases, the kernels were normalized to
make the MKL weights more easily interpretable.

4. Experiment 1: high-quality laboratory data

The first data set, named by the authors as DEAP, is taken from
Koelstra et al. [22]. In the experiment, 32 healthy participants
watched 40 music videos of 1 min each and self-reported their
emotional response to each video in four dimensions: valence,
arousal, dominance, and liking (where liking refers to whether the
user liked the video). The original label scales (from 1 to 9) were
binarized by thresholding at level 5. The subjects were monitored
through measurements with an extensive set of sensors, including
full-scalp EEG and six peripheral sensors. We extracted 216 features
from the measurements for each video (see Table 1), a subset of the
features used by Koelstra et al. [22]. We also utilized a dimension-
ality reduction procedure similar to Koelstra et al. [22]. We
computed linear discriminant analysis (LDA) on the training data
for each label separately, then selected the top 25% of features for
each sensor, ranking them by the eigenvalue in the LDA solution.

4.1. Prediction performance

The user-specific learning setup is the same as the one used in
Koelstra et al. [22]; hence, we are able to compare the perfor-
mance of our methods also with the naive Bayes model used there.
In particular, we compare our results against their best variant
using only physiological signals as inputs (they got better results
when incorporating also content-based features, which would not
generalize to any other type of content). We also present the

Table 1
List of features extracted from the DEAP data set, which is a subset of the list given in Koelstra et al. [22].

Full-scalp EEG from 32 channels: Spectral powers of theta (4–8) Hz, slow alpha (8–10) Hz, alpha (10–12) Hz, beta (12–30) Hz, and gamma (30þ)
Hz bands for each electrode

EOG (Electro-oculogram) and EMG (Electro-myogram): Energy, mean and variance
GSR (Galvanic Skin Response): Mean, mean of the derivative, mean of the positive derivatives, proportion of negatives in the derivative, number of local minima,

and 10 spectral powers within 0–2.4 Hz
Respiration: Band energy ratio, average respiration signal, mean of the derivative, standard deviation, range of greatest breath, 10 spectral powers within 0–2.4 Hz,

and average and median peak to peak time
Plethysmograph: Average and standard deviation of Heart Rate Variability (HRV) and interbeat intervals, energy ratio between 0.04–0.15 Hz and 0.15–0.5 Hz,

spectral power in 0.1–0.2 Hz, 0.2–0.3 Hz, 0.3–0.4 Hz, 0.01–0.08 Hz 0.08–0.15 Hz, and 0.15–0.5 Hz components of HRV
Skin temperature: Mean, mean of the derivative, and spectral power in 0–0.1 Hz and 0.1–0.2 Hz
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baseline results of majority voting (choosing the label that is most
frequent in the training data1) and random guessing according to
the relative frequency of the labels in training data.

We performed our analysis on the same three emotional
dimensions as Koelstra et al. [22]: valence, arousal, and liking.
Average (over the users) test accuracies, AUC, and macro-F1 scores
of our method and the baselines are given in Table 2 (top). Multi-
tasking in either way (over labels, or users) using the inner-
product regularizer brings decent improvement over simpler
models for all labels except liking. MT-MKL(U1) and MT-MKL(L1)
either outperform or are tied with the naive Bayesian model
introduced by Koelstra et al. [22]. While MT-MKL(U2) gives
comparable results to MT-MKL(U1), the ℓ2�norm regularizer per-
forms worse for multi-tasking over labels (MT-MKL(L2)).

We evaluated our methods also on the user-independent setup
for completeness, even though the authors of Koelstra et al. [22]
avoided this setup due to high inter-user variation in their data.
Table 2 (bottom) reveals that the accuracy is lower than in the
user-specific case, as was expected. Nevertheless, the relative
performance of the models is roughly retained, and we still
outperform the chance level.

4.2. Sensor importance

An advantage of MKL is that it gives a direct estimate of sensor
importance in the form of the kernel weights η. It is particularly
useful for relative ranking of the sensors.

Fig. 1(a) shows the kernel weights found by MT-MKL(U1) for
arousal, averaged over the users. EEG is the dominant important
sensor, which is sensible considering that a 32-channel sensor is
much more data-rich than the other singular sensors. The result is
consistent with Koelstra et al. [22] who obtained better results with
EEG than they did with all peripheral sensors combined. GSR and
respiration sensors are the two most informative peripheral sensors,
supporting previous studies such as Alzoubi et al. [1] and Gunes et al.

[18]. It is noteworthy that this is an automatic side result of the
method which required no extra effort from the experimenter.

Fig. 1(b) shows the weights for individual users with ν¼ 0 (the
regular MKL model) and Fig. 1(c) shows the weights obtained with
the multi-task version that chooses the optimal regularization. We
see that the multi-task learning solution makes the weights more
similar, regularizing the individual solutions learned from limited
data, but that it still allows the models for some users to rely more
on GSR that is useful for those particular users. The earlier multi-
task solution by Rakotomamonjy et al. [27] would force those
users to comply with the consensus.

5. Experiment 2: towards real-world usage

In this second example, we took a step towards the kind of data
available in real-world applications. We designed an experiment
with simpler sensors and with fairly low degree of control for the
naturalistic stimulus, but still performed the experiments off-line
in a controlled environment.

5.1. Experimental setup

We constructed an experiment where users performed a pre-
specified set of tasks that reasonably resemble typical tasks of
daily computer use. The tasks were presented as a series of HTML
pages, and the users interacted with the system using a mouse and
a keyboard. A typical page in the experiment showed a question or
puzzle the user was asked to answer, inducing typical processes
such as decision-making and problem solving. Submitting the
answer took the user to the next page. The experimental setup
and the web-interface were designed from a user-centric per-
spective. To this end, we interviewed with three pilot users, and
adjusted the setup based on the findings.

5.1.1. Measurements
We collected data from six healthy male university students

with four devices (see Fig. 2): accelerometer, heart rate belt, eye
tracker, and electroencephalograph (EEG). A 3D acceleration vector
was measured from the nape of the user at 15 Hz frequency. The

Table 2
Test accuracy, AUC, and macro-F1 score of the models on the DEAP data set. The top table shows the results for the user-specific setup and the bottom table for the user-
independent setup. The value of the best performing model (not counting baselines) has been boldfaced in each column. ‘Random’ and ‘Majority’ are baselines, SVM is a
traditional kernel-based learner, MKL denotes a multi-view SVM, and the MT-MKL are multi-task multi-view learners. For the user-specific setup the third row shows the
best results reported in Koelstra et al. [22, Table 7]. MT-MKL(L1) and MT-MKL(U1) correspond to multi-tasking over labels and users using the regularizer Ω1ð�Þ, respectively.
MT-MKL(L2) and MT-MKL(U2) denote the same but uses the regularizer Ω2ð�Þ.

Models Valence Arousal Liking Average

Acc. AUC F1 Acc. AUC F1 Acc. AUC F1 Acc. AUC F1

Random 0.50 0.52 0.49 0.45 0.50 0.45 0.42 0.50 0.42 0.46 0.51 0.45
Majority 0.51 0.50 0.32 0.58 0.50 0.35 0.65 0.50 0.39 0.58 0.50 0.35
DEAP 0.63 N/A 0.61 0.62 N/A 0.58 0.59 N/A 0.54 0.61 N/A 0.58
SVM 0.64† 0.60† 0.62† 0.61 0.53 0.53† 0.65 0.61† 0.57† 0.63† 0.58† 0.57†

MKL 0.63† 0.60† 0.60† 0.61 0.56† 0.54† 0.64 0.54 0.53† 0.63† 0.56† 0.56†

MT-MKL(U1) 0.66† 0.64† 0.63† 0.63 0.58† 0.57† 0.64 0.56† 0.55† 0.64† 0.59† 0.58†

MT- MKL(U2) 0.62† 0.64 0.53† 0.61 0.67 0.57† 0.64 0.60 0.52† 0.63† 0.64† 0.54†

MT-MKL(L1) 0.65† 0.64† 0.61† 0.65 0.55 0.57† 0.65 0.53 0.56† 0.65† 0.57† 0.58†

MT-MKL(L2) 0.63† 0.61† 0.58† 0.63 0.52 0.51† 0.65 0.52 0.51† 0.64† 0.55† 0.53†

Random 0.49 0.48 0.48 0.52 0.49 0.48 0.55 0.48 0.48 0.52 0.48 0.48
Majority 0.57 0.50 0.28 0.59 0.50 0.29 0.67 0.50 0.33 0.61 0.50 0.30
SVM 0.57 0.58† 0.55† 0.56† 0.56† 0.51† 0.67 0.54† 0.45† 0.60 0.56† 0.50†

MKL 0.59 0.61† 0.55† 0.56† 0.54† 0.53† 0.66† 0.48 0.51† 0.60 0.54† 0.53†

MT-MKL(L1) 0.59 0.60† 0.55† 0.58 0.55† 0.52† 0.66 0.50 0.51† 0.61 0.55† 0.53†

MT-MKL(L2) 0.60† 0.60† 0.56† 0.56 0.54 0.46† 0.65 0.51 0.42† 0.60 0.55† 0.48†

† Significantly above majority voting (paired t-test, po0:05). Not calculated for DEAP since performance scores for individual cross-validation trials are not publicly
available.

1 Note that Koelstra et al. [22] defined majority voting as the most frequent
label in the whole data. This would not correspond to a valid classifier, since it uses
test data.
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heart rate belt recorded RR-intervals (the time between two
consecutive R waves in the electrocardiogram (ECG)) at 2 Hz
frequency. The eye tracker followed the pupil diameter with an
infrared camera attached to a PC monitor at 50 Hz frequency. The
EEG device measured one-channel EEG from the FP1 location of
the International 10–20 system at 512 Hz frequency.

5.1.2. Interface and user tasks
The experimental setup consisted of five different phases, as

summarized in Fig. 3. The first and last phases were baseline
measurements, where the participant was presented with no
stimulus and was instructed to relax and sit still. In the second
phase, the subject filled in a background survey which included
open answer and multiple choice questions about age, gender and
language proficiency. The third part contained eight multiple
choice preference questions, where the choices were presented
as four images. The fourth phase consisted of 10 arithmetic and
logic puzzles of increasing difficulty, designed to elicit mental
workload. After each puzzle, the user was given feedback on
whether his answer was correct. During the experiment, unex-
pected events and interruptions such as simulated failures in
submitting forms and incorrect performance feedback were
inserted to evoke frustration and arousal.

5.1.3. Labeling affective states and mental workload
We obtained the ground-truth state labels from a 7-point

numerical scale. The scale is a simplified version of the Self
Assessment Manikin [4] for arousal and valence, and corresponds
to one-dimensional Mental Load sub-scale of NASA's Task Load
Index (NASA TLX) [19] for mental workload. The labels were
collected by self-evaluation, similar to D'Mello and Graesser [12].
The user was shown each page again immediately after the
experiment, this time including three sets of radio button selec-
tors, one for each label.

We analyzed this data set as similar as possible to the DEAP
data set to keep the outcomes comparable. We extracted one data
point of 38 features (8 EEG and 30 peripheral) from the time
period of each question/puzzle (see Table 3), and formed the views

Fig. 1. (a) Average (over the users) kernel weights found by MT-MKL(U1) for inferring arousal, showing that EEG is clearly the most useful sensor. (b) Sensor weights found
by MKL for each individual user sorted by the weight of the EEG sensor. (c) Sensor weights found by MT-MKL(U1). Weight increases as the color goes from blue through
yellow to red. This figure is best viewed in colors. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Fig. 2. A test user wearing the sensors. The headset is a one-channel EEG device,
the eye-tracker is integrated in the desktop monitor, and the accelerometer can be
seen attached to the nape of the user. A heart rate belt is under the shirt.

Fig. 3. A flow diagram of the experiment, showing sample screenshots of the user
interface. The experiment lasted 25 min on average, including transitions between
the phases.
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by grouping features according to the sensors they come from.
As in the previous experiment, we binarized the output labels. We
infer low vs high level using the mid-point as the discretization
threshold.

5.2. Prediction performance

Table 4 shows the accuracies, AUC, and F1 scores of all models
and baselines. For the user-specific setup (top) MT-MKL(L1), the
multi-task solution over labels, outperforms the other models in
majority of the performance metrics. The fact that MT-MKL(L1)
is better than MT-MKL(U1) could be due to that inter-subject
variance is too large to benefit from information transfer across
users given only 33 samples per user. Regularizing the kernel
weights withΩ1ð�Þ yields marginally better performance thanwith
Ω2ð�Þ. Standard SVM performs fairly well, since it is less likely to
overfit on small data sets compared to the more complex alter-
natives. For the user-independent setup (bottom) the results are
similar; MT-MKL variants outperform the rest in general, whereas
standard SVM is good for arousal. The choice of the kernel weight
regularizer does not have a significant effect on performance.
Again the accuracy of all methods is, on average, lower than in the
user-specific case.

5.3. Sensor importance

The kernel weights of MT-MKL(U1), averaged over users for
each task, are given in Fig. 4. Body motion and pupil diameter
sensors have higher contribution to affect inference than EEG and
ECG, supporting previous work [10,29]. The result provides further
evidence towards using them in future real-world applications,
especially as both are relatively unobtrusive. Another intuitive

result is that the single-channel EEG is far less useful than the full-
scalp EEG used in the first experiment.

To further illustrate how MKL automatically infers the sensor
importance we conducted a semi-artificial study where we com-
plemented the four real sensor streams with artificial noise
sensors. The weights given for the real sensors, the ones conveying
information on the user state, should then be large while the
weights for the noise sensors should be driven towards zero. We
created the noise sensors by randomly shuffling the indices of the
actual sensor data, in order to break the correlation with the
output labels while still retaining the nature of each sensor data.
We compare the total weight MKL gives for the true sensors with
the alternative approach that directly assigns the sensor weights
based on averaged feature-weights of linear regression (imple-
mented as Bayesian ℓ1-regularized regression [23]). Irrespective of
the norm used for averaging the weights, the MKL solutions are
superior especially for a high number of noisy sensors, as demon-
strated in Fig. 5.

6. Computational time

For practical application of affective computing models the
computational time is also important. All of the models discussed
in this paper are reasonably fast to train, especially compared to
the time it takes to collect the sensor data, and after the training
the time needed for making the predictions is negligible. Hence, all
would be practically feasible for affective computing systems.

Table 5 reports average training durations per unit learning task.
For multitask methods we divide the durations by the number of
tasks they jointly learn, to provide a fair comparison to single-task
methods. These durations include the time taken by the cross-
validation procedure needed for choosing the hyperparameters. The

Table 3
List of features for the second experiment.

3D body motion (calculated separately for each dimension), and pupil diameter: Mean and standard deviation, mean of the derivative, mean, median,
and maximum peak-to-peak interval, standard deviation of fixation duration

EEG: Spectral power in 0.5–2.75 Hz, 3.5–6.75 Hz, 7.5–9.20 Hz, 10.0–11.75 Hz, 13.0–16.75 Hz, 18.0–29.75 Hz, 31.0–39.75 Hz, and 41.0–49.75 Hz
ECG: Mean and standard deviation of the HRV, energy ratio between 0.04–0.15 Hz and 0.15–0.5 Hz, spectral powers in 0.1–0.2 Hz, 0.2–0.3 Hz, 0.3–0.4 Hz, 0.01–0.08 Hz,

0.08–0.15 Hz, and 0.15–0.5 Hz components of HRV

Table 4
Test accuracy, AUC, and macro-F1 score of the models for Experiment 2. The top table shows the results for the user-specific setup and the bottom table for the user-
independent setup. The value of the best performing model in each column has been boldfaced. See Table 2 for explanations of the methods.

Models Valence Arousal Mental Wkld Average

Acc. AUC F1 Acc. AUC F1 Acc. AUC F1 Acc. AUC F1

Random 0.51 0.51 0.50 0.47 0.47 0.46 0.52 0.47 0.46 0.50 0.49 0.47
Majority 0.58 0.50 0.29 0.47 0.50 0.35 0.73 0.50 0.37 0.67 0.50 0.33
SVM 0.63 0.65 0.58† 0.69 0.54 0.48† 0.75 0.74† 0.58† 0.69 0.64† 0.55†

MKL 0.62 0.66† 0.58† 0.69 0.45 0.46 0.78 0.78† 0.68† 0.70 0.63† 0.58†

MT-MKL(L1) 0.67 0.70† 0.64† 0.62 0.57 0.53† 0.79 0.79† 0.64† 0.69 0.69† 0.60†

MT-MKL(L2) 0.64 0.65† 0.60† 0.63 0.51 0.54 0.77 0.77† 0.65† 0.68 0.65† 0.60†

MT-MKL(U1) 0.61 0.66† 0.58† 0.70 0.49 0.51 0.77 0.79† 0.66† 0.69 0.65† 0.58†

MT-MKL(U2) 0.63 0.65† 0.60† 0.69 0.48 0.46 0.77 0.77† 0.65† 0.70 0.63† 0.57†

Random 0.46 0.46 0.45 0.48 0.48 0.47 0.52 0.52 0.48 0.49 0.49 0.47
Majority 0.55 0.50 0.27 0.48 0.50 0.33 0.58 0.50 0.29 0.60 0.50 0.30
SVM 0.53 0.50 0.52† 0.65 0.65† 0.49† 0.53 0.63 0.49† 0.57 0.59† 0.50†

MKL 0.54 0.53 0.52† 0.68 0.63† 0.40† 0.54 0.70† 0.50† 0.59 0.62† 0.47†

MT-MKL(L1) 0.60 0.58 0.58† 0.69 0.65† 0.40† 0.64 0.76† 0.59† 0.65 0.66† 0.52†

MT-MKL(L2) 0.58 0.57 0.55† 0.67 0.61† 0.42† 0.66 0.76† 0.62† 0.64 0.65† 0.53†

† Significantly above majority voting (paired t-test, po0:05).
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MT-MKL methods are generally the slowest because they need to
validate over a two-dimensional grid to pick not only C but also the
ν parameter.

7. Discussion

In this study, we investigated the benefits of multi-task and
multi-view learning for pattern classification problems of affective
computing and human–computer interaction. We believe that
these concepts fit naturally to the needs of typical affective state
recognition setups, especially when used together. We exemplified
the concepts by introducing a new kernel-based learning model
that combines the two aspects.

Multi-view learning tells how data coming from different
sensors should be combined. The MKL technique used in this
paper allows automatically learning the importance of individual
sensors (or sensor channels), which simplifies the development of
robust inference solutions with novel hardware. Multi-task learn-
ing, in turn, exploits the correlations between multiple state labels
while learning the models. It is also useful in case where data are
scarce which is a common problem in user-specific modeling

setups. Our new model combines both aspects, by mutually
regularizing the kernel weights of multiple tasks towards each
other.

The primary empirical result of the paper is that the MKL
strategies automatically reveal the importance of the sensors,
providing intuitive ranking for the sensors in both experiments.
We also showed in an artificially constructed example that the
MKL strategies are more efficient in ignoring faulty or noisy
sensors compared to inferring the importance from a linear
regression model. In terms of accuracy, the proposed computa-
tional methods are sufficient for inferring the state labels better
than chance, but we were not able to demonstrate statistically
significant gain compared to the Naive Bayes and SVM, both of
which are accurate classifiers for these kinds of setups. The experi-
ments still suggest that a reliable gain could be demonstrated
under more extensive testing: The MT-MKL variants give the best
accuracy, AUC, and macro-F1 scores averaged over all of the results.

Among the two alternatives considered for regularizing the
kernel weights of learning tasks, the inner-product regularizer
Ω1ð�Þ was observed to provide marginally more stable perfor-
mance thanΩ2ð�Þ. A possible reason for this outcome could be that
being a first-order term, Ω1ð�Þ acts as a stronger regularizer than
the second-order Ω2ð�Þ. This induces a stronger bias to the learner,
making it less sensitive to high noise levels, which is typical to
affective computing data sets including the ones presented above.

An interesting future direction is to consider real online infer-
ence of user states; for real-world use automatic selection of
sensor importance is even more critical as the sensors may not
work in all conditions, and it is also possible to apply multi-
task learning over more diverse setups, for example conside-
ring different contexts as tasks. The methods proposed here are

Fig. 4. Sensor weights on the second experiment, averaged over the users for the MT-MKL(U1) model, reveal that body motion (acceleration) is the most important sensor,
followed by pupil measurements. (a) Valence. (b) Arousal. (c) Mental Wkld.

Fig. 5. The relative importance assigned for the four true sensors when learning
the model with Q noise sensors not associated with the affective labels. Both MT-
MKL(U1) and MKL assign much higher weight for the true sensors than the
alternative method estimating the sensor weights by averaging linear regression
weights, irrespective of the norm (ℓ1, ℓ2, or ℓ1) used for regularizing the model.
The difference is particularly clear for large Q and statistically significant (paired
t-test, po0:05) for QZ8. The black dashed line shows the chance level of assigning
equal weight to each sensor.

Table 5
Average training durations of the algorithms in comparison per unit learning task
in seconds. MT-MKL variants are approximately 3.5 times slower than MKL.

Experiment 1 Experiment 2

User-
specific

User-
independent

User-
specific

User-
independent

SVM 0.1 0.9 0.04 0.5
MKL 0.3 14.9 0.24 17.1
MT-MKL(L1) 1.6 93.0 1.29 10.9
MT-MKL(L2) 1.7 90.4 1.22 9.5
MT-MKL(U1) 2.5 N/A 1.26 N/A
MT-MKL(U2) 2.4 N/A 1.28 N/A
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computationally light in the inference stage, and the training
algorithms are also fairly effective and could possibly be extended
for real-time learning as well.

Acknowledgments

We acknowledge support from Nokia Research Center, Academy of
Finland (project number 133818 and the Finnish Centre of Excellence
in Computational Inference Research (COIN)), and PASCAL2 European
Network of Excellence. We gratefully thank Dr. Ville Ojanen, Dr. Jari
Kangas, and Maija Nevala, MSc, for their help in designing the experi-
ment and discussing the modeling aspects. Our special thanks go to
Maija Nevala for her help with implementing the experimental setup.

References

[1] O. Alzoubi, R.A. Calvo, R.H. Stevens, Classification of EEG for affect recognition:
an adaptive approach, in: Proceedings of 22nd Australasian Joint Conference
on Advances in Artificial Intelligence, 2009, pp. 52–61.

[2] I. Arroyo, D.G. Cooper, W. Burleson, B.P. Woolf, K. Muldner, R. Christopherson,
Emotion sensors go to school, in: Proceedings of Conference on Artificial
Intelligence in Education, IOS Press, Amsterdam, The Netherlands, 2009,
pp. 17–24.

[3] J. Baxter, A Bayesian/information theoretic model of learning to learn via
multiple task sampling, Mach. Learn. 28 (1) (1997) 7–39.

[4] M.M. Bradley, P.J. Lang, Measuring emotion: the self-assessment manikin and
the semantic differential, J. Behav. Ther. Exp. Psychiatr. 25 (1) (1994) 49–59.

[5] R. Caruana, Multitask learning, Mach. Learn. 28 (1) (1997) 41–75.
[6] G. Chanel, J.J.M. Kierkels, M. Soleymani, T. Pun, Short-term emotion assess-

ment in a recall paradigm, Int. J. Human–Comput. Stud. 67 (8) (2009) 607–627.
[7] D. Chen, R. Vertegaal, Using mental load for managing interruptions in

physiologically attentive user interfaces, in: Extended Abstracts on Human
Factors in Computing Systems, 2004, pp. 1513–1516.

[8] C. Conati, H. Maclaren, Empirically building and evaluating a probabilistic
model of user affect, User Model. User-Adapt. Interact. 19 (2009) 267–303.

[9] C. Conati, H. Maclaren, Modeling user affect from causes and effects, in:
Proceedings of International Conference on User Modeling, Adaptation, and
Personalization, UMAP '09, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 4–15.

[10] C. Conati, C. Merten, Eye-tracking for user modeling in exploratory learning
environments: an empirical evaluation, Knowl.-Based Syst. 20 (6) (2007) 557–574.

[11] S. D'Mello, A. Graesser, Mind and body: dialogue and posture for affect
detection in learning environments, in: Proceedings of Conference on Artificial
Intelligence in Education: Building Technology Rich Learning Contexts That
Work, IOS Press, Amsterdam, The Netherlands, 2007, pp. 161–168.

[12] S. D'Mello, A. Graesser, Automatic detection of learner's affect from gross body
language, Appl. Artif. Intell. 23 (2) (2009) 123–150.

[13] E. Douglas-Cowie, R. Cowie, I. Sneddon, C. Cox, O. Lowry, M. Mcrorie,
J.-C. Martin, L. Devillers, S. Abrilian, A. Batliner, N. Amir, K. Karpouzis, The
humaine database: addressing the collection and annotation of naturalistic
and induced emotional data, in: Proceedings of 2nd International Conference
on Affective Computing and Intelligent Interaction, 2007, pp. 488–500.

[14] T. Evgeniou, M. Pontil, Regularized multi-task learning, in: Proceedings of
International Conference on Knowledge Discovery and Data Mining, ACM,
New York, USA, 2004, pp. 109–117.

[15] A. Girouard, E. Solovey, L. Hirshfield, K. Chauncey, A. Sassaroli, S. Fantini,
R. Jacob, Distinguishing difficulty levels with non-invasive brain activity
measurements, in: Proceedings of 12th IFIP International Conference on
Human–Computer Interaction: Part I, 2009, pp. 440–452.

[16] M. Gönen, E. Alpaydın, Multiple kernel learning algorithms, J. Mach. Learn.
Res. 12 (2011) 2211–2268.

[17] M. Gönen, M. Kandemir, S. Kaski, Multitask learning using regularized multi-
ple kernel learning, in: Proceedings of 18th International Conference on
Neural Information Processing (ICONIP), Lecture Notes in Computer Science,
2011, pp. 500–509.

[18] H. Gunes, B. Schuller, M. Pantic, R. Cowie, Emotion representation, analysis and
synthesis in continuous space: a survey, in: Proceedings of IEEE International
Conference on Automatic Face Gesture Recognition and Workshops, 2011,
pp. 827–834.

[19] S.G. Hart, L.E. Stavenland, Development of NASA-TLX (Task Load Index): results
of empirical and theoretical research, in: Human Mental Workload, Elsevier,
Amsterdam, The Netherlands, 1988, pp. 139–183.

[20] J. Kim, E. André, Emotion recognition based on physiological changes in music
listening, IEEE Trans. Pattern Anal. Mach. Intell. 30 (12) (2008) 2067–2083.

[21] M. Kloft, U. Brefeld, Sonnenburg, Sor̈en, A. Zien, Lp-norm multiple kernel
learning, J. Mach. Learn. Res. 12 (3) (2011) 953–997.

[22] S. Koelstra, C. Mühl, M. Soleymani, A. Yazdani, J.-S. Lee, T. Ebrahimi, T. Pun, A.
Nijholt, I. Patras, DEAP: a database for emotion analysis using physiological
signals, IEEE Trans. Affect. Comput., 2014, in press.

[23] K. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press,
Cambridge, MA, USA, 2012.

[24] R. Picard, E. Vyzas, J. Healey, Toward machine emotional intelligence: analysis
of affective physiological state, IEEE Trans. Pattern Anal. Mach. Intell. 23 (10)
(2001) 1175–1191.

[25] R.W. Picard, Affective Computing, MIT Press, Cambridge, MA, USA, 1997.
[26] A. Piolat, T. Olive, J. Roussey, O. Thunin, J. Ziegler, SCRIPTKELL: a tool for

measuring cognitive effort and time processing in writing and other complex
cognitive activities, Behav. Res. Methods 31 (1) (1999) 113–121.

[27] A. Rakotomamonjy, R. Flamary, G. Gasso, S. Canu, ℓp�ℓq penalty for sparse
linear and sparse multiple kernel multi-task learning, IEEE Trans. Neural Netw.
22 (8) (2011) 1307–1320.

[28] J.A. Russell, A circumplex model of affect, J. Personal. Soc. Psychol. 39 (6)
(1980) 1161–1178.

[29] N. Savva, N. Bianchi-Berthouze, Automatic recognition of affective body
movement in a video game scenario, in: International Conference on Intelli-
gent Technologies for Interactive Entertainment, 2011, pp. 149–158.

[30] B. Schol̈kopf, A.J. Smola, Learning with Kernels: Support Vector Machines,
Regularization Optimization, and Beyond, MIT Press, Cambridge, MA, USA, 2002.

[31] M. Soleymani, J. Lichtenauer, T. Pun, M. Pantic, A multi-modal affective
database for affect recognition and implicit tagging, IEEE Trans. Affect.
Comput. 3 (1) (2011) 42–55.

[32] J. Wagner, J. Kim, E. Andre, From physiological signals to emotions: imple-
menting and comparing selected methods for feature extraction and classi-
fication, in: Proceedings of IEEE International Conference on Multimedia and
Expo, 2005, pp. 940–943.

[33] A. Yazdani, J.-S. Lee, J.-M. Vesin, T. Ebrahimi, Affect recognition based on physio-
logical changes during the watching of music videos, ACM Trans. Interact. Intell.
Syst. 2 (1) (2012) 7:1–7:26.

[34] Z. Zeng, M. Pantic, G. Roisman, T. Huang, A survey of affect recognition
methods: audio, visual, and spontaneous expressions, IEEE Trans. Pattern
Anal. Mach. Intell. 31 (1) (2009) 39–58.

[35] A. Rakotomamonjy, F. Bach, S. Canu, Y. Grandvalet, et al., SimpleMKL, J. Mach.
Learn. Res. 9 (2008) 2491–2521.

[36] M. Varma, B.R. Babu, More generality in efficient multiple kernel learning, in:
Proceedings of International Conference on Machine Learning (ICML), ACM,
New York, USA, 2009, pp. 1065–1072.

[37] Zenglin Xu, Rong Jin, Haiqin Yang, Irwin King, Michael R. Lyu, Simple and
efficient multiple kernel learning by group lasso, in: Proceedings of Interna-
tional Conference on Machine Learning (ICML), 2010, pp. 1175–1182.

Melih Kandemir received his B.Sc. and M.Sc. degrees in
computer engineering from Hacettepe University,
Ankara, Turkey, in 2005 and Bilkent University, Ankara,
Turkey, in 2008, respectively. He joined the Statistical
Machine Learning and Bioinformatics research group of
Aalto University School of Science, Espoo, Finland, in
2008 and earned his Ph.D. degree in 2013. Since 2013,
he is with Heidelberg Collaboratory for Image Proces-
sing (HCI), Heidelberg University, Heidelberg, Germany.
Bayesian modeling, weakly supervised learning, medi-
cal image analysis, digital pathology, and neuroinfor-
matics are among his research interests.

Akos Vetek is a Principal Researcher at the Media
Technologies Laboratory of Nokia Research Center. His
research interests include multimodal interaction,
intelligent user interfaces, sensors, and wearables.

Mehmet Gönen received the B.Sc. degree in industrial
engineering, the M.Sc. and the Ph.D. degrees in com-
puter engineering from Bogaziçi University, Istanbul,
Turkey, in 2003, 2005, and 2010, respectively. He did
his postdoctoral work at the Helsinki Institute for
Information Technology HIIT, Department of Informa-
tion and Computer Science, Aalto University, Espoo,
Finland. He is currently a Senior Research Scientist at
Sage Bionetworks, Seattle, WA, USA. His research inter-
ests include support vector machines, kernel methods,
Bayesian methods, optimization for machine learning,
dimensionality reduction, information retrieval, and
computational biology applications.

M. Kandemir et al. / Neurocomputing 139 (2014) 97–106 105

http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref3
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref3
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref4
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref4
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref5
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref6
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref6
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref8
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref8
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref10
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref10
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref12
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref12
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref16
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref16
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref20
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref20
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref21
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref21
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref21
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref23
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref23
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref24
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref24
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref24
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref25
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref26
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref26
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref26
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref27
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref27
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref27
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref27
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref28
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref28
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref30
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref30
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref30
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref31
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref31
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref31
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref33
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref33
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref33
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref34
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref34
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref34
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref35
http://refhub.elsevier.com/S0925-2312(14)00502-5/sbref35


Arto Klami received his Ph.D. degree in computer
science from Helsinki University of Technology in
2008 and worked as a postdoctoral researcher in Aalto
University until 2012. Currently he works as an Acad-
emy Research Fellow (2013–2018) at Department of
Computer Science and Helsinki Institute for Informa-
tion Technology HIIT in University of Helsinki. His
research interests include statistical machine learning,
nonparametric Bayesian models, and integrated analy-
sis of heterogeneous data sources.

Samuel Kaski is the director of Helsinki Institute for
Information Technology HIIT, a joint research institute
of Aalto University and University of Helsinki, and a
professor of computer science at the Aalto University.
His research field is statistical machine learning and
computational data analysis, current application areas
being in bioinformatics, neuroinformatics and proac-
tive interfaces. He has published about 150 peer
reviewed articles in these fields.

M. Kandemir et al. / Neurocomputing 139 (2014) 97–106106


	Multi-task and multi-view learning of user state
	Introduction
	Inferring the user state
	Support vector machines (SVMs)
	Multiple kernel learning (MKL)
	Multi-task kernel machines
	Multi-task multiple kernel machines (MT-MKL)

	Tasks, setups, and measures
	Experiment 1: high-quality laboratory data
	Prediction performance
	Sensor importance

	Experiment 2: towards real-world usage
	Experimental setup
	Measurements
	Interface and user tasks
	Labeling affective states and mental workload

	Prediction performance
	Sensor importance

	Computational time
	Discussion
	Acknowledgments
	References




