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Abstract

Coupled training of dimensionality reduction and classifica-

tion is proposed previously to improve the prediction per-

formance for single-label problems. Following this line of

research, in this paper, we introduce a novel Bayesian su-

pervised multilabel learning method that combines linear di-

mensionality reduction with linear binary classification. We

present a deterministic variational approximation approach

to learn the proposed probabilistic model for multilabel clas-

sification. We perform experiments on four benchmark mul-

tilabel learning data sets by comparing our method with four

baseline linear dimensionality reduction algorithms. Exper-

iments show that the proposed approach achieves good per-

formance values in terms of hamming loss, macro F1, and

micro F1 on held-out test data. The low-dimensional em-

beddings obtained by our method are also very useful for

exploratory data analysis.

1 Introduction

Multilabel learning considers classification problems
where each data point is associated with a set of labels
simultaneously instead of just a single label [25]. This
setup can be handled by training distinct classifiers for
each label separately (i.e., assuming no correlation be-
tween the labels). However, exploiting the correlation
information between the labels may improve the over-
all prediction performance. There are two common ap-
proaches for exploiting this information: (a) joint learn-
ing of the model parameters of distinct classifiers trained
for each label [3, 9, 18, 23, 30, 31, 32] and (b) learning
a shared subspace and doing classification in this sub-
space [10, 11, 15, 19, 20, 26, 28, 33]. In this paper, we are
focusing on the second approach.

Dimensionality reduction algorithms try to achieve
two main goals: (a) removing the inherent noise to im-
prove the prediction performance and (b) obtaining low-
dimensional visualizations for exploratory data analysis.
Principal component analysis (PCA) [16] and linear dis-

criminant analysis (LDA) [5] are two well-known algo-
rithms for supervised and unsupervised dimensionality
reduction, respectively.

We can use any unsupervised dimensionality reduc-
tion algorithm for multilabel learning. However, the
key idea in multilabel learning is to use the correla-
tion information between the labels and we only con-
sider supervised dimensionality reduction algorithms.
As an early attempt, [28] proposes a supervised latent

semantic indexing variant that makes use of multiple
labels. [15] and [26] modify LDA algorithm for multi-
label learning. [20] proposes a probabilistic canonical

correlation analysis method that can also be applied in
semi-supervised settings. [10] and [33] formulate multil-
abel dimensionality reduction as an eigenvalue problem
that uses input features and class labels together.

For supervised learning problems, dimensionality
reduction and prediction steps are generally performed
separately with two different target functions, leading
to low prediction performance. Hence, coupled training
of these two steps may improve the overall system
performance. Coupled training of the projection matrix
and the classifier is studied in the framework of support
vector machines by introducing the projection matrix
into the optimization problem solved [4, 17]. There
are also metric learning methods that are trying to
transfer the neighborhood in the input space to the
projected subspace in nearest neighbor settings [7,8,27].
[22] uses mixture models for each class to obtain better
projections, whereas [13] uses them on both input and
output data. The resulting projections found by these
approaches are not linear and they can be regarded as
manifold learning methods. [29] proposes a supervised
probabilistic PCA and an efficient solution method,
but the algorithm is developed only for real outputs.
[21] formulates a supervised dimensionality reduction
algorithm coupled with generalized linear models for
binary classification and regression, and maximize a
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Figure 1: Bayesian supervised learning with coupled embedding and classification.

target function composed of input and output likelihood
terms using an iterative algorithm.

In this paper, we propose a novel Bayesian super-

vised multilabel learning (BSML) method where the lin-
ear projection matrix and the binary classification pa-
rameters for multilabel learning are learned together to
maximize the prediction performance in the projected
subspace. We make the following contributions: In Sec-
tion 2, we give the graphical model of our approach for
single-label binary classification and introduce a deter-
ministic variational approximation. Section 3 extends
our formulation for multilabel learning and explain the
modified variational approximation. We test our algo-
rithms on four different benchmark multilabel data sets
in Section 4.

2 Bayesian Supervised Learning with Coupled

Embedding and Classification

In order to find a better subspace, we propose to couple
dimensionality reduction and binary classification in a
joint probabilistic model. The main idea is to map the
training instances to a subspace and to perform the clas-
sification using the probit model in this projected sub-
space. Performing dimensionality reduction and classi-
fication successively (with two different objective func-
tions) may not result in a predictive subspace and may
have low generalization performance. We should con-
sider the predictive performance of the target subspace
while learning the projection matrix. Figure 1 illus-
trates the proposed probabilistic model for binary clas-
sification with a graphical model and its distributional
assumptions.

The notation we use throughout the manuscript is
as follows: The N is the number of training instances.
The D shows the dimensionality of the input space
and the R gives the dimensionality of the projected
subspace. The D × N data matrix is denoted by X,
where the D × 1-dimensional columns of X by xi. The
D×R matrix of projection variables qfs is denoted by Q,
where the D × 1-dimensional columns of Q by qs. The
D × R matrix of priors φfs is denoted by Φ, where the
D × 1-dimensional columns of Φ by φs. The R × N

matrix of projected variables zsi is represented as Z,
where the R × 1-dimensional columns of Z as zi and
the corresponding N × 1-dimensional rows as zs. The
R× 1 vector of weight parameters ws is denoted by w.
The R × 1 vector of priors ψs is denoted by ψ. The
bias parameter is denoted by b and its prior prior is
denoted by λ. The N × 1 vector of auxiliary variables
ti is represented as t. The N × 1 vector of associated
target values is represented as y, where each element
yi ∈ {−1,+1}. As short-hand notations, all priors
in the model are denoted by Ξ = {λ,Φ,ψ}, where
the remaining variables by Θ = {b,Q, t,w,Z} and
the hyper-parameters by ω = {αλ, βλ, αφ, βφ, αψ, βψ}.
Dependence on ω is omitted for clarity throughout the
manuscript. N (·;µ,Σ) denotes the normal distribution
with the mean vector µ and the covariance matrix
Σ. G(·;α, β) denotes the gamma distribution with the
shape parameter α and the scale parameter β. δ(·)
denotes the Kronecker delta function that returns 1 if
its argument is true and 0 otherwise.

The auxiliary variables between the class labels
and the projected instances are introduced to make
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the inference procedures efficient [1]. Exact inference
for our probabilistic model is intractable and using a
Gibbs sampling approach is computationally expensive
[6]. We instead formulate a deterministic variational
approximation procedure for inference.

The variational methods use a lower bound on the
marginal likelihood using an ensemble of factored poste-
riors to find the joint parameter distribution [2]. Assum-
ing independence between the approximate posteriors in
the factorable ensemble can be justified because there
is not a strong coupling between our model parameters.
We can write the factorable ensemble approximation of
the required posterior as

p(Θ,Ξ|X,y) ≈ q(Θ,Ξ) = q(Φ)q(Q)q(Z)

q(λ)q(ψ)q(b,w)q(t)

and define each factor in the ensemble just like its full
conditional distribution:

q(Φ) =

D∏

f=1

R∏

s=1

G(φfs ;α(φ
f
s ), β(φ

f
s ))

q(Q) =

R∏

s=1

N (qs;µ(qs),Σ(qs))

q(Z) =

N∏

i=1

N (zi;µ(zi),Σ(zi))

q(λ) = G(λ;α(λ), β(λ))

q(ψ) =

R∏

s=1

G(ψs;α(ψs), β(ψs))

q(b,w) = N

([
b

w

]
;µ(b,w),Σ(b,w)

)

q(t) =
N∏

i=1

T N (ti;µ(ti),Σ(ti), ρ(ti))

where α(·), β(·), µ(·), and Σ(·) denote the shape pa-
rameter, the scale parameter, the mean vector, and
the covariance matrix for their arguments, respec-
tively. T N (·;µ,Σ, ρ(·)) denotes the truncated nor-
mal distribution with the mean vector µ, the co-
variance matrix Σ, and the truncation rule ρ(·) such
that T N (·;µ,Σ, ρ(·)) ∝ N (·;µ,Σ) if ρ(·) is true and
T N (·;µ,Σ, ρ(·)) = 0 otherwise.

We can bound the marginal likelihood using
Jensen’s inequality:

(2.1) log p(y|X) ≥

Eq(Θ,Ξ)[log p(y,Θ,Ξ|X)]− Eq(Θ,Ξ)[log q(Θ,Ξ)]

and optimize this bound by optimizing with respect to
each factor separately until convergence. The approxi-
mate posterior distribution of a specific factor τ can be
found as

q(τ ) ∝ exp
(
Eq({Θ,Ξ}\τ )[log p(y,Θ,Ξ|X)]

)
.

For our model, thanks to the conjugacy, the resulting
approximate posterior distribution of each factor follows
the same distribution as the corresponding factor.

2.1 Inference Details The approximate posterior
distribution of the priors of the precisions for the
projection matrix can be found as a product of gamma
distributions:

q(Φ) =
D∏

f=1

R∏

s=1

G

(
φfs ;αφ +

1

2
,
( 1

βφ
+

˜
(qfs )2

2

)−1
)

where the tilde notation denotes the posterior expecta-

tions as usual, i.e., f̃(τ ) = Eq(τ )[f(τ )]. The approxi-
mate posterior distribution of the projection matrix is
a product of multivariate normal distributions:

q(Q) =
R∏

s=1

N (qs; Σ(qs)Xz̃
s, (diag(φ̃s) +XX⊤)−1).

The approximate posterior distribution of the projected
instances can also be formulated as a product of multi-
variate normal distributions:

q(Z) =

N∏

i=1

N (zi; Σ(zi)(Q̃⊤xi + w̃t̃i − w̃b),

(I+ w̃w⊤)−1).

The approximate posterior distributions of the pri-
ors on the bias and the weight vector can be found in
terms of gamma distributions:

q(λ) = G

(
λ;αλ +

1

2
,
( 1

βλ
+
b̃2

2

)−1
)

q(ψ) =

R∏

s=1

G

(
ψs;αψ +

1

2
,
( 1

βψ
+
w̃2
s

2

)−1
)
.

The approximate posterior distribution of the classifi-
cation parameters is a product of multivariate normal
distributions:

q(b,w) = N

([
b

w

]
; Σ(b,w)

[
1⊤t̃

Z̃t̃

]
,

[
λ̃+N 1⊤Z̃⊤

Z̃1 diag(ψ̃) + Z̃Z⊤

]−1)
.
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Figure 2: Bayesian supervised multilabel learning with coupled embedding and classification.

The approximate posterior distribution of the auxiliary
variables is a product of truncated normal distributions:

q(t) =

N∏

i=1

T N (ti; w̃⊤z̃i + b̃, 1, tiyi > 0)

where we need to find the posterior expectations in order
to update the approximate posterior distributions of the
projected instances and the classification parameters.
Fortunately, the truncated normal distribution has a
closed-form formula for its expectation.

2.2 Convergence The inference mechanism sequen-
tially updates the approximate posterior distributions
of the model parameters and the latent variables until
convergence, which can be checked by calculating the
lower bound in (2.1). The first term of the lower bound
corresponds to the sum of exponential form expectations
of the distributions in the joint likelihood. The second
term is the sum of negative entropies of the approxi-
mate posteriors in the ensemble. The only nonstandard
distribution in the second term is the truncated normal
distributions of the auxiliary variables; nevertheless, the
truncated normal distribution has a closed-form formula
also for its entropy.

2.3 Prediction In the prediction step, we can re-
place p(Q|X,y) with its approximate posterior distri-
bution q(Q) and obtain the predictive distribution of
the projected instance z⋆ for a new data point x⋆ as

p(z⋆|x⋆,X,y) =
R∏

s=1

N (zs⋆;µ(qs)
⊤x⋆, 1 + x

⊤
⋆ Σ(qs)x⋆).

The predictive distribution of the auxiliary variable t⋆
can also be found by replacing p(b,w|X,y) with its
approximate posterior distribution q(b,w):

p(t⋆|X,y, z⋆) =

N

(
t⋆;µ(b,w)⊤

[
1
z⋆

]
, 1 +

[
1 z⋆

]
Σ(b,w)

[
1
z⋆

])

and the predictive distribution of the class label y⋆ can
be formulated using the auxiliary variable distribution:

p(y⋆ = +1|x⋆,X,y) = Φ

(
µ(t⋆)

Σ(t⋆)

)

where Φ(·) is the standardized normal cumulative dis-
tribution function.

3 Bayesian Supervised Multilabel Learning

with Coupled Embedding and Classification

We use the probabilistic model in the previous section
as our base model and extend this model for multilabel
learning. The training instances are again mapped to a
subspace before classification. In order to benefit from
the correlation between the class labels, we assume a
common subspace and perform classification for all la-
bels in that subspace using different classifiers for each
label separately. The predictive quality of the subspace
now depends on the prediction performances for multi-
ple labels instead of a single one. Figure 2 illustrates the
modified probabilistic model for multilabel binary clas-
sification with a graphical model and its distributional
assumptions.
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There are slight modifications in the notation we
described previously: The L is the number of labels
associated with each data instance. The R × L matrix
of weight parameters wso is denoted by W, where the
R × 1-dimensional columns of W by wo. The R × L

matrix of priors ψso is denoted by Ψ, where the R × 1-
dimensional columns of Ψ by ψo. The L × 1 vector of
bias parameters bo is denoted by b. The L × 1 vector
of priors λo is denoted by λ. The L × N matrix of
auxiliary variables toi is represented as T, where the
N × 1-dimensional rows of T as to. The L ×N matrix
of associated target values is represented as Y, where
each element yoi ∈ {−1,+1}. All priors in the model
are denoted by Ξ = {λ,Φ,Ψ}, where the remaining
variables by Θ = {b,Q,T,W,Z}.

There is not a strong coupling between our model
parameters as before and we can write the factorable
ensemble approximation of the required posterior as

p(Θ,Ξ|X,Y) ≈ q(Θ,Ξ) = q(Φ)q(Q)q(Z)

q(λ)q(Ψ)q(b,W)q(T)

where only the last four terms are modified to handle
multilabel learning:

q(λ) =

L∏

o=1

G(λo;α(λo), β(λo))

q(Ψ) =

R∏

s=1

L∏

o=1

G(ψso;α(ψ
s
o), β(ψ

s
o))

q(b,W) =
L∏

o=1

N

([
bo
wo

]
;µ(bo,wo),Σ(bo,wo)

)

q(T) =

L∏

o=1

N∏

i=1

T N (toi ;µ(t
o
i ),Σ(t

o
i ), ρ(t

o
i )).

We can again bound the marginal likelihood using
Jensen’s inequality:

(3.2) log p(Y|X) ≥

Eq(Θ,Ξ)[log p(Y,Θ,Ξ|X)]− Eq(Θ,Ξ)[log q(Θ,Ξ)]

and optimize this bound by optimizing with respect to
each factor separately until convergence. The approx-
imate posterior distribution of a specific factor τ can
also be found as

q(τ ) ∝ exp
(
Eq({Θ,Ξ}\τ )[log p(Y,Θ,Ξ|X)]

)
.

3.1 Inference Details The approximate posterior
distribution of the projected instances can be formu-

lated as a product of multivariate normal distributions:

q(Z) =
N∏

i=1

N

(
zi; Σ(zi)

(
Q̃⊤xi +

L∑

o=1

(
w̃ot̃

o
i − w̃obo

))
,

(
I+

L∑

o=1

w̃ow⊤
o

)−1
)

where the classification parameters and the auxiliary
variables defined for each label are used together.

The approximate posterior distributions of the pri-
ors on the biases and the weight vectors can be found
as products of gamma distributions:

q(λ) =
L∏

o=1

G

(
λo;αλ +

1

2
,
( 1

βλ
+
b̃2o
2

)−1
)

q(Ψ) =
R∏

s=1

L∏

o=1

G

(
ψso;αψ +

1

2
,
( 1

βψ
+

(̃wso)
2

2

)−1
)
.

The approximate posterior distribution of the classifi-
cation parameters is a product of multivariate normal
distributions:

q(b,W) =

L∏

o=1

N

([
bo
wo

]
; Σ(bo,wo)

[
1⊤t̃o

Z̃t̃o

]
,

[
λ̃o +N 1⊤Z̃⊤

Z̃1 diag(ψ̃o) + Z̃Z⊤

]−1)
.

The approximate posterior distribution of the auxiliary
variables is a product of truncated normal distributions:

q(T) =
L∏

o=1

N∏

i=1

T N (toi ; w̃
⊤
o z̃i + b̃o, 1, t

o
i y
o
i > 0).

3.2 Convergence The inference mechanism is very
similar to the base model of the previous section and
the lower bound can also be calculated similarly using
(3.2). Exact form of the variational lower bound can be
found in Appendix A.

3.3 Prediction The predictive distribution of the
auxiliary variable to⋆ can be formulated as

p(to⋆|X,Y, z⋆) =

N

(
to⋆;µ(bo,wo)

⊤

[
1
z⋆

]
, 1 +

[
1 z⋆

]
Σ(bo,wo)

[
1
z⋆

])

and the predictive distribution of the class label yo⋆ can
be found as

p(yo⋆ = +1|x⋆,X,Y) = Φ

(
µ(to⋆)

Σ(to⋆)

)
.
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3.4 Computational Complexity Updating the
projection matrix Q is the most time-consuming step,
which requires inverting D × D matrices for the co-
variance calculations and dominates the overall running
time. When D is very large, the dimensionality of the
input space should be reduced using an unsupervised di-
mensionality reduction method (e.g., PCA) before run-
ning the algorithm.

3.5 Inherent Regularization The multiplication of
the projection matrixQ and the supervised learning pa-
rameters W can be interpreted as the model parame-
ters of linear classifiers for the original representation.
However, if L > R, the parameter matrix QW is guar-
anteed to be low-rank due to this decomposition leading
to a more regularized solution. For multivariate regres-
sion estimation, our model can be interpreted as a full
Bayesian treatment of reduced-rank regression [24].

3.6 Effect of Priors The precision priors for the
projection matrix can be modified to decide which fea-
tures should be used or to determine the dimensionality
automatically when generating the projected instances.
Using row-wise sparse priors instead of entry-wise pri-
ors on the projection matrix leads to feature selection,
whereas using column-wise sparse priors on the projec-
tion matrix enables us to determine the dimensionality
of the projected subspace.

4 Experiments

We test our new algorithm BSML on four different data
sets by comparing it with four (one unsupervised and
three supervised) baseline dimensionality reduction al-
gorithms, namely, PCA [16], multilabel dimensionality

reduction via dependency maximization (MDDM) [33],
multilabel least squares (MLLS) [10], and multilabel lin-

ear discriminant analysis (MLDA) [26]. BSML com-
bines dimensionality reduction and binary classification
for multilabel learning in a joint framework. In order
to have comparable algorithms, we perform binary clas-
sification using probit model (PROBIT) on each label
separately, after reducing dimensionality using baseline
algorithms. The suffix +PROBIT corresponds to learn-
ing a binary classifier for each label in the projected
subspace using PROBIT. We also report the classifi-
cation results obtained by training a PROBIT on each
label separately without dimensionality reduction to see
the baseline performance.

We implement variational approximation methods
for both PROBIT and BSML in Matlab, where we
take 500 iterations. These implementations are publicly
available at http://users.ics.tkk.fi/gonen/bsml/.
The default hyper-parameter values for PROBIT and

BSML are selected as (αλ, βλ, αψ, βψ) = (1, 1, 1, 1) and
(αλ, βλ, αφ, βφ, αψ, βψ) = (1, 1, 1, 1, 1, 1), respectively.
We implement our own versions for PCA, MDDM,
MLLS, and MLDA. We use the provided default pa-
rameter values for MDDM, MLLS, and MLDA.

We use four widely used benchmark data sets,
namely, Emotions, Medical, Scene, and Yeast, from
different domains to compare our algorithm with the
baseline algorithms using provided train/test splits.
These data sets are publicly available at http://mulan.
sourceforge.net/datasets.html and their character-
istics are summarized in Table 1.

Table 1: Summary of data set characteristics.

Data Set Domain Ntrain Ntest D L

Emotions music 391 202 72 6
Medical text 333 645 1449 45
Scene image 1211 1196 294 6
Yeast biology 1500 917 103 14

Three popular performance measures for multilabel
learning, namely, hamming loss, macro F1, and micro

F1 are used to compare the algorithms. Hamming
loss is the average classification error over the labels.
The smaller the value of hamming loss, the better the
performance. Macro F1 is the average of F1 scores over
the labels. The larger the value of macro F1, the better
the performance. Micro F1 calculates the F1 score over
the labels as a whole. The larger the value of micro F1,
the better the performance.

Figure 3 gives the classification results on Emotions

data set. We perform experiments with R = 1, 2, . . . , 6
for all of the methods except MLDA and with R =
1, 2, . . . , 5 for MLDA. Note that the dimensionality of
the projected subspace can be at most D for PCA, L−1
for MLDA, and L for MDDM and MLLS. There is not
such a restriction for BSML. We see that BSML clearly
outperforms all of the baseline algorithms for all of the
dimensions tried in terms of hamming loss and the per-
formance difference is around two per cent when R = 2.
BSML results with all of the dimensions tried are better
than using the original feature representation without
any dimensionality reduction (i.e., PROBIT). However,
BSML and MLDA+PROBIT seem comparable in terms
of macro F1 and micro F1. Both algorithms achieve sim-
ilar macro F1 and micro F1 values as PROBIT using two
or more dimensions.

Figure 4 shows the classification results on Medical

data set. We perform experiments with R = 1, 2, . . . , 10
for all of the methods. We see that BSML clearly out-
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Figure 3: Comparison of algorithms on Emotions data set.
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Figure 4: Comparison of algorithms on Medical data set.
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Figure 5: Comparison of algorithms on Scene data set.
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performs all of the dimensionality reduction algorithms
in terms of three performance measures. However, the
performance values are not as good as PROBIT due to
the high dimensionality (i.e., D = 1449) and the large
number class labels (i.e., L = 45). The performance dif-
ference between PROBIT and BSML in terms of ham-
ming loss is less than one per cent with only two dimen-
sions. The differences between BSML and the other di-
mensionality reduction algorithms are more significant
when the projected subspace is very low-dimensional.

The classification results on Scene data set are
given in Figure 5. We perform experiments with R =
1, 2, . . . , 6 for all of the methods except MLDA and
with R = 1, 2, . . . , 5 for MLDA. In terms of ham-
ming loss, BSML is better than other dimensional-
ity reduction algorithms with R = 1 and 2. How-
ever, MDDM+PROBIT achieves lower hamming loss
values after two dimensions. All of the dimensional-
ity reduction algorithms get lower hamming loss val-
ues than PROBIT after four dimensions. In terms of
macro F1 and micro F1, BSML is the best algorithm
among dimensionality reduction methods up to four di-
mensions. After four dimensions, MDDM+PROBIT,
BSML, MLLS+PROBIT, and MLDA+PROBIT are
better than PROBIT in terms of both macro F1 and
micro F1.

The classification results on Yeast data set are
shown in Figure 6. We perform experiments with R =
1, 2, . . . , 10 for all of the methods. MDDM+PROBIT
is the best algorithm in terms of hamming loss for
R = 2, whereas BSML is the best one for R = 3 and 4.
After four dimensions, there is no clear outperforming
algorithm. When the projected subspace is one-, two-,
or three-dimensional, BSML is clearly better than all
of the dimensionality reduction algorithms in terms of
macro F1 and micro F1.

We use PROBIT to classify projected instances for
comparing BSML with baseline dimensionality reduc-
tion algorithms in terms of classification performance.
This may add some bias to the comparisons because
BSML contains PROBIT in its formulation. We also
replicate the experiments using k-nearest neighbor as
the classification algorithm after dimensionality reduc-
tion. The classification performances on the four data
sets are very similar to the ones obtained using PRO-
BIT. This shows that the superiority of BSML especially
on very low dimensions can not be explained by the use
of PROBIT only.

In addition to performing classification, the pro-
jected subspace found by BSML can also be used for
exploratory data analysis. Figures 7 and 8 show two-
dimensional embeddings of training data points and
classification boundaries for each label obtained by

MLDA and BSML on Emotions data set. The class
labels of this data set corresponds to different emotions
assigned to musical pieces by three experts. We can
see that, with two dimensions, BSML achieves to em-
bed data points in a more predictive subspace than
MLDA. The correlations between different labels are
clearly visible in the embedding obtained, for example,
the positive correlation between labels quiet-still

and sad-lonely and the negative correlation between
labels relaxing-calm and angry-fearful.

5 Discussion

We present a Bayesian supervised multilabel learning
method that couples linear dimensionality reduction
and linear binary classification. We provide detailed
derivations for supervised and semi-supervised learn-
ing using a deterministic variational approximation ap-
proach. Experimental results on four benchmark mul-
tilabel learning data sets show that our model obtains
better performance values than baseline linear dimen-
sionality reduction algorithms most of the time. The
low-dimensional embeddings obtained by our method
can also be used for exploratory data analysis.

The proposed model can be extended in different
directions: First, we can modify the priors on the pro-
jection matrix in order to determine the dimensionality
of the projected subspace automatically. Using column-
wise priors instead of entry-wise priors allows us to dis-
card unnecessary dimensions (i.e., automatic relevance
determination) [14]. Second, we can make use of unla-
beled data points in addition to labeled ones (i.e., semi-
supervised learning) assuming a low-density region be-
tween the classes [12]. Lastly, we can learn a unified sub-
space for multiple input representations (i.e., multitask
learning) by exploiting the correlations between differ-
ent tasks defined on different input features. This exten-
sion also allows us to learn a transfer function between
different feature representations (i.e., transfer learning).
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A Variational Lower Bound for Multilabel

Learning

The variational lower bound of our multilabel learning
model can be written as

L = Eq(Θ,Ξ)[log p(Y,Θ,Ξ|X)]− Eq(Θ,Ξ)[log q(Θ,Ξ)]

where the joint likelihood is defined as

p(Y,Θ,Ξ|X) = p(Φ)p(Q|Φ)p(Z|Q,X)p(λ)p(b|λ)

p(Ψ)p(W|Ψ)p(T|b,W,Z)p(Y|T).

Using these definitions, the variational lower bound
becomes

L = Eq(Φ)[log p(Φ)] + Eq(Φ)q(Q)[log p(Q|Φ)]

+ Eq(Q)q(Z)[log p(Z|Q,X)] + Eq(λ)[log p(λ)]

+ Eq(λ)q(b,W)[log p(b|λ)] + Eq(Ψ)[log p(Ψ)]

+ Eq(Ψ)q(b,W)[log p(W|Ψ)]

+ Eq(Z)q(b,W)q(T)[log p(T|b,W,Z)]

+ Eq(T)[log p(y|T)]− Eq(Φ)[log q(Φ)]

− Eq(Q)[log q(Q)]− Eq(Z)[log q(Z)]

− Eq(λ)[log q(λ)]− Eq(Ψ)[log q(Ψ)]

− Eq(b,W)[log q(b,W)]− Eq(T)[log q(T)]

where the exponential form expectations of the distri-
butions in the joint likelihood can be calculated as

Eq(Φ)[log p(Φ)] =

D∑

f=1

R∑

s=1

(
(αφ − 1)

˜
logφfs −

φ̃
f
s

βφ

− log Γ(αφ)− αφ log βφ

)

Eq(Φ)q(Q)[log p(Q|Φ)] =

R∑

s=1

(
−
1

2
tr(diag(φ̃s)q̃sq

⊤
s )

−
1

2
D log 2π +

1

2
log | diag(φ̃s)|

)

Eq(Q)q(Z)[log p(Z|Q,X)] =

N∑

i=1

(
−
1

2
z̃⊤i zi + x

⊤
i Q̃z̃i

−
1

2
tr(Q̃Q⊤xix

⊤
i )−

1

2
R log 2π

)

Eq(λ)[log p(λ)] =
L∑

o=1

(
(αλ − 1)l̃ogλo −

λ̃o

βλ
− log Γ(αλ)

− αλ log βλ

)

Eq(λ)q(b,W)[log p(b|λ)] =
L∑

o=1

(
−
1

2
λ̃ob̃2o −

1

2
log 2π

+
1

2
log λ̃o

)

Eq(Ψ)[log p(Ψ)] =

R∑

s=1

L∑

o=1

(
(αψ − 1)l̃ogψso −

ψ̃so
βψ

− log Γ(αψ)− αψ log βψ

)

Eq(Ψ)q(b,W)[log p(W|Ψ)] =

L∑

o=1

(
−
1

2
tr(diag(ψ̃o)w̃ow⊤

o )−
1

2
R log 2π

+
1

2
log | diag(ψ̃o)|

)

Eq(Z)q(b,W)q(T)[log p(T|b,W,Z)] =

L∑

o=1

N∑

i=1

(
−
1

2
(̃toi )

2

+ (w̃⊤
o z̃i + b̃o)t̃oi −

1

2
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tr(w̃ow⊤

o z̃iz
⊤
i ) + 2b̃ow⊤

o z̃i + b̃2o

)

−
1

2
log 2π

)

Eq(T)[log p(y|T)] = 0

and the negative entropies of the approximate posteriors
in the ensemble are given as

Eq(Φ)[log q(Φ)] =

D∑

f=1

R∑

s=1

(−α(φfs )− log β(φfs )

− log Γ(α(φfs ))− (1− α(φfs ))ψ(α(φ
f
s )))

Eq(Q)[log q(Q)] =

R∑

s=1

(
−
1

2
D(log 2π + 1)−

1

2
log |Σ(qs)|

)

Eq(Z)[log q(Z)] =

N∑

i=1

(
−
1

2
R(log 2π+1)−

1

2
log |Σ(zi)|

)
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Eq(λ)[log q(λ)] =
L∑

o=1

(−α(λo)− logβ(λo)− log Γ(α(λo))

− (1− α(λo))ψ(α(λo)))

Eq(Ψ)[log q(Ψ)] =
R∑

s=1

L∑

o=1

(−α(ψso)− log β(ψso)

− log Γ(α(ψso))− (1− α(ψso))ψ(α(ψ
s
o)))

Eq(b,W)[log q(b,W)] =

L∑

o=1

(
−
1

2
(R+ 1)(log 2π + 1)

−
1

2
log |Σ(bo,wo)|

)

Eq(T)[log q(T)] =

L∑

o=1

N∑

i=1

(
−
1

2
(log 2π +Σ(toi ))

− logZo
i

)

where Γ(·) denotes the gamma function and ψ(·) denotes
the digamma function. The only nonstandard distri-
bution we need to operate on is the truncated normal

distribution used for the auxiliary variables. From our
model definition, the truncation points for each auxil-
iary variable are defined as

(loi , u
o
i ) =

{
(−∞, 0) if yoi = −1

(0,+∞) otherwise

where loi and uoi denote the lower and upper truncation
points, respectively. The normalization coefficient, the
expectation, and the variance of the auxiliary variables
can be calculated as

Zo
i = Φ(βoi )− Φ(αoi )

t̃oi = w̃
⊤
o z̃i + b̃o +

φ(αoi )− φ(βoi )

Zo
i

(̃toi )
2 − t̃oi

2
= 1+

αoiφ(α
o
i )− βoi φ(β

o
i )

Zo
i

−
(φ(αoi )− φ(βoi ))

2

(Zo
i )

2

where φ(·) is the standardized normal probability den-
sity function and {αoi , β

o
i } are defined as

αoi = loi − w̃
⊤
o z̃i − b̃o

βoi = uoi − w̃
⊤
o z̃i − b̃o.
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