
Noname manuscript No.
(will be inserted by the editor)

Top-k overlapping densest subgraphs

Esther Galbrun · Aristides Gionis ·
Nikolaj Tatti

the date of receipt and acceptance should be inserted later

Abstract Finding dense subgraphs is an important problem in graph mining
and has many practical applications. At the same time, while large real-world
networks are known to have many communities that are not well-separated,
the majority of the existing work focuses on the problem of finding a single
densest subgraph. Hence, it is natural to consider the question of finding the
top-k densest subgraphs. One major challenge in addressing this question is how
to handle overlaps: eliminating overlaps completely is one option, but this may
lead to extracting subgraphs not as dense as it would be possible by allowing a
limited amount of overlap. Furthermore, overlaps are desirable as in most real-
world graphs there are vertices that belong to more than one community, and
thus, to more than one densest subgraph. In this paper we study the problem
of finding top-k overlapping densest subgraphs, and we present a new approach
that improves over the existing techniques, both in theory and practice. First,
we reformulate the problem definition in a way that we are able to obtain an
algorithm with constant-factor approximation guarantee. Our approach relies
on using techniques for solving the max-sum diversification problem, which
however, we need to extend in order to make them applicable to our setting.
Second, we evaluate our algorithm on a collection of benchmark datasets and
show that it convincingly outperforms the previous methods, both in terms of
quality and efficiency.

Esther Galbrun
Inria Nancy – Grand Est, France
E-mail: esther.galbrun@inria.fr

Aristides Gionis · Nikolaj Tatti
Helsinki Institute for Information Technology (HIIT) and
Department of Information and Computer Science, Aalto University, Finland
E-mail: aristides.gionis@aalto.fi

Nikolaj Tatti
E-mail: nikolaj.tatti@aalto.fi

2 Esther Galbrun et al.

1. group

2. group

3. group

no groups

1

1112

13

14

18

2

20

22

3
32

4

5
6

78

9

10

34

15

33

16

19

31

21

2324

26

28

30

25

27

29

17

Fig. 1 Densest overlapping subgraphs on Zachary karate club dataset [44]. k = 3, β = 2.

1 Introduction

Finding dense subgraphs is a fundamental graph-mining problem, and has
applications in a variety of domains, ranging from finding communities in social
networks [25,33], to detecting regulatory motifs in DNA [15], to identifying
real-time stories in news [3].

The problem of finding dense subgraphs has been studied extensively in
theoretical computer science [2,8,13,24], and recently, due to the relevance of
the problem in real-world applications, it has attracted considerable attention
in the data-mining community [5,34–36,33]. In a domain where most inter-
esting problems are NP-hard, much of the recent work has leveraged the fact
that under a specific definition of density, the average-degree density, finding
the densest subgraph is a polynomially-time solvable task [19]. Furthermore,
there is a linear-time greedy algorithm that provides a factor-2 approximation
guarantee [8].

The exact polynomial algorithm [19] and its fast approximation counter-
part [8], apply only to the problem of finding the single densest subgraph. On
the other hand, in most applications of interest we would like to find the top-k
densest subgraphs in the input graph. Given an efficient algorithm for finding
the single densest subgraph, there is a straightforward way to extend it in or-
der to obtain a set of k dense subgraphs. This is a simple iterative method, in
which we first find the densest subgraph, remove all vertices contained in that
densest subgraph, and iterate, until k subgraphs are found or only an empty
graph is left.

This natural heuristic has two drawbacks: First it produces a solution in
which all discovered subgraphs are disjoint. Such disjoint subgraphs are often
not desirable, as real-world networks are known to have not well-separated
communities and hubs that may belong to more than one community [26],
and hence, may participate in more than one densest subgraph. Second, when
searching for the top-k densest subgraphs, we would like to maximize a global
objective function, such as the sum of the densities over all k subgraphs and, as

Top-k overlapping densest subgraphs 3

shown by Balalau et al. [5], enforcing disjointness may lead to solutions that
have very low total density, compared to solutions that allow some limited
overlap among the discovered subgraphs.

From the above discussion it follows that it is beneficial to equip a top-
k densest-subgraph discovery algorithm with the ability to find overlapping
subgraphs. This is precisely the problem on which we focus in this paper.
The challenge is to control the amount of overlap among the top-k subgraphs;
otherwise one can find the densest subgraph and produce k−1 slight variations
of it by adding or removing a very small number of vertices — so that the k−1
almost-copies are also very dense.

A simple example that demonstrates the concept of finding the top-k dens-
est subgraphs with overlap is shown in Figure 1. The example is the famous
Zachary karate club dataset [44], and the result is an actual execution of our
algorithm, with k = 3. The importance of allowing overlap between dense sub-
graphs is immediate: subgraphs 1 and 2 overlap on vertices 33 and 34. Had
those vertices been assigned only to subgraph 1, which was discovered first,
subgraph 2 would fall apart.

Our paper follows up on the recent work of Balalau et al. [5]: finding top-
k densest subgraphs with overlap. The main difference of the two papers is
that here we use a distance function to measure overlap of subgraphs and
penalize for overlap as part of our objective, while Balalau et al. are enforcing
a hard constraint. Our approach allows to obtain a major improvement over
the results of Balalau et al., both in theory and in practice. On the theoretical
side, we provide an algorithm with worst-case approximation guarantee, while
the method of Balalau et al. offers guarantees only for certain input cases. On
the empirical side, our method outperforms the previous one in practically all
datasets we experimented, with respect to all measures. In addition, in terms
of computation time, our method is more scalable.

From the technical point of view, our approach is inspired by the re-
sults of Borodin et al. [7] for the max-sum diversification problem. In par-
ticular, Borodin et al. designed a greedy algorithm in order to find, in a
ground set U , a set of elements S that maximizes a function of the form
f (S) +λ

∑
{x,y}:x,y∈S d(x, y), subject to |S| = k. Here f is a submodular func-

tion and d is a distance function. To apply this framework, we set S to be the
set of k subgraphs we are searching for, f to capture the total density of all
these subgraphs, and d to capture the distance between them — the larger
the overlap the smaller the distance.

Yet, the greedy algorithm of Borodin et al. cannot be applied directly; there
are a number of challenges that need to be addressed. The most important is
that, for our problem, the iterative step of the greedy algorithm results in an
NP-hard problem. This is a major difficulty, as the basic scheme of the algo-
rithm of Borodin et al. assumes that the next best item in the greedy iteration
can be obtained easily and exactly. To overcome this difficulty, we design an
approximation algorithm for that subproblem. Then, we show that an approx-
imation algorithm for the greedy step yields an approximation guarantee for
the overall top-k densest-subgraph problem.

4 Esther Galbrun et al.

We apply our algorithm on a large collection of real-world networks. Our
results show that our approach exhibits an excellent trade-off between density
and overlap and outperforms the previous method. We also note that density
and overlap are not comparable measures, and balancing the two is achieved
via the parameter λ. As demonstrated in our experiments, executing the algo-
rithm for a sequence of values of λ creates a density vs. overlap “profile” plot,
which reveals the trade-off between the two measures, and allows the user to
select meaningful values for the parameter λ.

The contributions of our work can be summarized as follows:

– We consider the problem of finding top-k overlapping densest subgraphs
on a given graph. Our problem formulation relies on a new objective that
provides a soft constraint to control the overlap between subgraphs.

– For the proposed objective function we present a greedy algorithm. This
is the first algorithm with an approximation guarantee for the problem of
finding top-k overlapping densest subgraphs.

– We evaluate the proposed algorithm against state-of-the art methods on
a wide range of real-world datasets. Our study shows that our algorithm,
in addition to being theoretically superior, it also outpeforms its main
competitors in practice, in both quality of results and efficiency.

The rest of the paper is organized as follows. We start by reviewing the
related work in Section 2. In Section 3 we define our problem, and in Section 4
we present an overview of background techniques that our approach relies
upon. Our method is presented in Section 5, while the experimental evalu-
ation of our algorithm and the comparison with state-of-the-art methods is
provided in Section 6. Finally, Section 7 is a short conclusion. For convenience
of presentation the proofs of the main claims are given in the Appendix.

2 Related work

Dense-subgraph discovery. As already discussed, the problem of finding
dense subgraphs, and its variations, have been extensively studied in the the-
oretical computer science and graph mining communities. The complexity of
the problem depends on the exact formulation. The quintessential dense graph
is the clique, but finding large cliques is a very hard problem [22]. On the other
hand, if density is defined as the average degree of the subgraph, the problem
becomes polynomial. This was observed early on by Goldberg, who gave an
algorithm based on a transformation to the minimum-cut problem [19]. For
the same problem, Asahiro et al. [4] and Charikar [8] provided a greedy linear-
time factor-2 approximation algorithm, making the problem tractable for very
large datasets.

The previous algorithms do not put any constraint on the size of the densest
subgraph. Requiring the subgraph to be of a certain size makes the problem
NP-hard. Feige et al. show that, for a fixed k, the problem of asking for
the dense subgraph of size exactly k can be approximated within a factor of

Top-k overlapping densest subgraphs 5

O(|V |α), for α < 1
3 [13]. The problems of asking for a densest subgraph of

size at most k or at least k are also NP-hard, and the latter problem can be
approximated within a constant factor [2,24].

Other notions of density have been considered. Tsourakakis et al. pro-
vide algorithms for the problem of finding α-quasicliques and evidence that
such subgraphs are, in practice, “more dense than the densest subgraph” [36].
Recently, Tsourakakis showed that finding triangle-dense subgraphs is also a
polynomial problem, and gave a faster approximation algorithm [35] similar
to Charikar’s approach [8].

All of the above papers focus on the problem of finding a single densest
subgraph. Seeking to find the top-k densest subgraphs is a much less studied
problem. Tsourakakis et al. [36] address the question, but they only considered
the näıve algorithm outlined in the introduction—remove and repeat. Balalau
et al. [5] are the first to study the problem formally, and demonstrate that the
näıve remove-and-repeat algorithm performs poorly. Their problem formula-
tion is different than ours, as they impose a hard constraint on overlap. Their
algorithm is also greedy, like ours, but there is no theoretical guarantee. On
the other hand, our formulation allows to prove an approximation guarantee
for the problem of top-k overlapping densest subgraphs. Furthermore, our ex-
perimental evaluation shows that our algorithm finds denser subgraphs for the
same amount of overlap.

Finally, extracting top-k communities that can be described by conjunc-
tions of labels was suggested by Galbrun et al. [16]. In this setup, the com-
munities can overlap but an edge can be assigned to only one community.
In addition, a community should be described with a label set. However, the
algorithm can be easily modified such that it operates without labels and we
use this modified algorithm as one of our baselines.

Community detection. Community detection is one of the most well-studied
problems in data mining. The majority of the works deal with the problem of
partitioning a graph into disjoint communities. A number of different method-
ologies have been applied, such as hierarchical approaches [18], methods based
on modularity maximization [6,11,18,39], graph theory [14], random walks [31,
37,45], label propagation [37], and spectral graph partitioning [23,28,38]. A
popular suite of graph-partitioning algorithms, which is accompanied by high-
quality software, includes the Metis algorithm [23]. The Metis algorithm is one
of the baselines against which we benchmark our approach in our experimental
evaluation.

A considerable amount of work has also been devoted into the problem
of finding overlapping communities. Different methods have been proposed
to address this problem, relying on clique percolation [29], extensions to the
modularity-based approaches [9,20,30], label propagation [21,41], analysis of
ego-networks [12], game theory [10], non-negative matrix factorization [43]
or edge clustering [1]. A comprehensive survey on the topic of overlapping
community detection has been compiled by Xie et al. [40].

6 Esther Galbrun et al.

a b

c d e

f

g h

i

j
W1 W2

W3

Fig. 2 Toy example

Our problem formulation is different than most existing work in community
detection, as we focus solely in subgraph density, while typically community-
detection approaches consider a combination of high density inside the com-
munities and small cuts across communities. In fact, there has been experi-
mental evidence that most real-world networks do not exhibit such structure of
dense and relatively isolated communities [26]. To contrast our approach with
methods for overlapping community detection, we experimentally compare our
algorithm with the state-of-the-art method of Ahn et al. (Links) [1].

3 Preliminaries and problem definition

Throughout the paper we consider a graph G = (V,E), where V is a set of
vertices and E is a set of undirected edges. Given a subset of vertices W ⊆ V ,
we write

E(W) = {(u, v) ∈ E | u, v ∈W} ,

for the edges of G that have both end-points in W , and G(W) = (W,E(W))
for the subgraph induced by W .

As we are interested in finding dense subgraphs of G, we need to adopt a
notion of density.

Definition 1 The density of a graph G = (V,E) is defined as dens(G) =
|E|/|V |.

Note that dens(G) is half of the average degree of G. If the graph G = (V,E)
is known from the context and we are given a subset of vertices W ⊆ V , we
define the density of W by dens(W) = dens(G(W)), that is, the density of
the induced subgraph G(W). Additionally, we refer to the set X ⊆ V that
maximizes dens(X) as the densest subgraph of G.

Next we define the density of a collection of subsets of vertices.

Definition 2 Given a graph G = (V,E) and a collection of subsets of vertices
W = {W1, . . . ,Wk}, Wi ⊆ V , we define the density of the collection W to be
the sum of densities of the individual subsets, that is,

dens(W) =

k∑
i=1

dens(Wi) . (1)

Top-k overlapping densest subgraphs 7

Example 1 Consider the graph given in Figure 2 with three subgraphs W =
{W1,W2,W3}. The collective density of W is then equal

dens(W) = dens(W1) + dens(W2) + dens(W3) =
6

4
+

3

3
+

5

4
=

15

4
.

Our goal is to find a set of subgraphs W with high density dens(W). At
the same time we want to allow overlaps among the subgraphs ofW. Allowing
overlaps without any restriction is problematic though, as the obvious solution
is to find the densest subgraph of G and repeat it k times. Therefore we
need a way to control the amount of overlap among the subgraphs of W. To
control overlaps we use a distance function defined over subsets of vertices.
Let d : 2V × 2V → R+ denote such a distance function. We are then asking
to find a set of subgraphs W so that the overall density dens(W) is high, and
the subgraphs in W are far apart, according to the distance function d .

More precisely, the problem definition that we work with in this paper is
the following.

Problem 1 (Dense-Overlapping-Subgraphs) Given a graph G = (V,E),
a distance function d over subsets of vertices, a parameter λ, and an integer
k, find k subgraphsW = {W1, . . . ,Wk}, Wi ⊆ V , which maximize a combined
reward function

r(W) = dens(W) + λ

k∑
i=1

k∑
j=i+1

d(Wi,Wj) .

A few remarks on our problem definition. First note that the parameter λ
is necessary as the two terms that compose the reward function, density and
distance, are quantitatively and qualitatively different. Even if one normalizes
them to take values in the same range, say, between 0 and 1, they would still
not be directly comparable. In fact, the parameter λ provides a weight between
density and distance. A small value of λ places the emphasis on density and
gives solutions with high overlap, but as λ increases the subgraphs of the
optimal solution need to be more distant, at the expense of the density term.
In our experimental evaluation we illustrate the effect of the parameter λ by
drawing a “profile” of the solution space. By displaying the evolution of the
two terms of the reward function as λ varies, such plots also allow to select
meaningful values for this parameter.

Second, observe that we are not asking to assign every vertex of V in a
subgraph of W. The fraction of vertices assigned to at least one subgraph is
controlled by both parameters λ and k. The higher the value of λ, the less
overlap between the subgraphs, and thus, the higher the coverage. Similarly,
the higher the value of k, the more subgraphs are returned, and thus, coverage
increases.

Finally, we restrict the family of functions used to define the distance be-
tween subgraphs. As is common, we work with metric and relaxed-metric func-
tions.

8 Esther Galbrun et al.

Definition 3 Assume a function d mapping pairs of objects to a non-negative
real number. If there is a constant c ≥ 1 such that (i) d(x, y) = d(y, x), (ii)
d(x, x) = 0, and (iii)

d(x, y) ≤ c(d(x, z) + d(z, y)),

we say that the function d is a c-relaxed metric. If (iii) holds for c = 1, the
function d is a metric.

The distance function we use to measure distance between subgraphs in
this paper is a metric. However, our approach applies more generally to any
c-relaxed metric. We formulate our results in their generality, so that the
dependency on the parameter c of a c-relaxed metric becomes explicit.

4 Overview of background methods

In this section we provide a brief overview of some of the fundamental concepts
and algorithmic techniques that our approach relies upon.

The densest-subgraph problem. We first discuss the problem of finding
the densest subgraph, according to the average-degree density function, given
in Definition 1. This problem of finding the densest-subgraph can be solved
in polynomial time. An elegant solution that involves a mapping to a series
of minimum-cut problems was given by Goldberg [19]. However, since the
fastest algorithm to solve the minimum-cut problem runs in O(|V ||E|) time,
this approach is not scalable to very large graphs. On the other hand, there
exists a linear-time algorithm that provides a factor-2 approximation to the
densest-subgraph problem [4,8]. This is a greedy algorithm, which starts with
the input graph, and iteratively removes the vertex with the lowest degree,
until left with an empty graph. Among all subgraphs considered during this
vertex-removal process, the algorithm returns the densest. Hereinafter, we refer
to this greedy algorithm as the Charikar algorithm.

Max-sum diversification. Our approach is inspired by the results of Borodin
et al. [7] for the max-sum diversification problem, which, in their general form,
extend the classic Nemhauser et al. approximation results [27] for the prob-
lem of submodular function maximization. A brief description of the problem
setting and the methods of Borodin et al. follows.

Let U be a ground set, let d : U × U → R+ be a metric distance function
over pairs of U , and f : 2U → R+ be a monotone submodular function over
subsets of U . Recall that a set function f : 2U → R is submodular if for all
S ⊆ T ⊆ U and u 6∈ T we have f (T ∪ {u})−f (T) ≤ f (S ∪ {u})−f (S) [32]. Also
the function f is monotonically increasing if for all S ⊆ T ⊆ U f (T) ≥ f (S)
holds. For the rest of the paper, we write monotone to mean monotonically
increasing.

The max-sum diversification problem is defined as follows.

Top-k overlapping densest subgraphs 9

Problem 2 (Max-Sum-Diversification) Let U be a set of items, f : 2U →
R+ a monotone submodular function on subsets of U , and d : U × U → R+ a
distance function on pairs of U . Let k be an integer and λ ≥ 0. The goal is to
find a subset S ⊆ U that maximizes

f (S) + λ
∑

{x,y}:x,y∈S

d(x, y) , subject to |S| = k.

Here, λ is a parameter that specifies the desired trade-off between the two
objectives f (·) and d(·, ·). Borodin et al. [7] showed that under the conditions
specified above, there is a simple linear-time factor-2 approximation greedy al-
gorithm for the max-sum diversification problem. The greedy algorithm works
as follows. For any subset S ⊆ U and any element x 6∈ S the marginal gain is
defined as

φ(x;S) =
1

2
(f (S ∪ {x})− f (S)) + λ

∑
y∈S

d(x, y) . (2)

The greedy starts with the empty set S = ∅ and proceeds iteratively. In each
iteration it adds to S the element x which is currently not in S and maximizes
the marginal gain φ(x;S). Note that due to the 1/2-factor in the first term,
φ(x;S) is not equal to the actual gain of the score upon adding x to S. The
algorithm stops after k iterations, when the size of S reaches k. As already
mentioned, this simple greedy algorithm provides a factor-2 approximation to
the optimal solution of the max-sum diversification problem.

5 The proposed method

As suggested in the previous section, our method for solving Problem 1 and
finding dense overlapping subgraphs relies on the techniques developed for
the max-sum diversification problem. First note that, in the Dense-Over-
lapping-Subgraphs problem, the role of function f is taken by the density
function dens. The density of a collection of subgraphs is a simple summation
(Definition 2) therefore it is clearly monotone and submodular.

The other components needed for applying the method of Borodin et al. [7]
in our setting are not as simple. A number of challenges need to be addressed:

(1) While in the max-sum diversification problem we are searching for a set
of elements in a ground set U , in the Dense-Overlapping-Subgraphs
problem we are searching for a collection of subsets of vertices V . Thus,
U = P(V) (the powerset of V) and the solution space is

(P(V)
k

)
.

(2) Adapting the max-sum diversification framework discussed in the previous
section requires selecting the item in U that maximizes the marginal gain
φ in each iteration of the greedy algorithm. Since U is now the power-
set of V , the marginal gain computation becomes φ(W,W), where W is a
subset of vertices, andW is the set of subgraphs previously selected by the
greedy algorithm. Finding the subgraph W that maximizes the marginal
gain now becomes a difficult computational problem. Thus, we need to

10 Esther Galbrun et al.

extend the framework to deal with the possibility that we are only able to
find a subgraph that maximizes the marginal gain approximately.

(3) We need to specify the distance function d(·, ·) that will be used to measure
overlap between subsets of vertices. There are many natural choices, but
not all are applicable to the general max-sum diversification framework.

Challenges (2) and (3) are intimately connected. The problem of finding the
set of vertices that maximizes the marginal gain φ in each iteration of the
greedy algorithm crucially depends on the distance function d chosen for mea-
suring distance between subgraphs. Part of our contribution is to show how to
incorporate a distance function, which, on the one hand, is natural and intu-
itive, and, on the other hand, makes the marginal gain-maximization problem
tractable. We present our solution in Section 5.2.

But before, we discuss how to extend the greedy algorithm in order to deal
with approximations of the marginal gain-maximization problem and with c-
relaxed metrics.

5.1 Extending the greedy algorithm

Consider the Max-Sum-Diversification problem, defined in Problem 2. To
simplify notation, if X and Y are subsets of U we define

d(X,Y) =
∑
x∈X

∑
y∈Y

d(x, y) and d(X) =
1

2

∑
x,y∈X

d(x, y) ,

so, the objective function in Problem 2 can be written as

r(S) = f (S) + λd(S) .

The algorithm of Borodin et al. [7], discussed in the previous section, is re-
ferred to as Greedy. As already mentioned, Greedy proceeds iteratively: in each
iteration it needs to find the item x∗ of U that maximizes the marginal gain
with respect to the solution set S found so far. The marginal gain is computed
according to Equation (2). The problem is formalized below.

Problem 3 (Gain) Given a ground set U , a monotone, non-negative, and
submodular function f , a c-relaxed metric d , and a set S ⊆ U , find x ∈ U \ S
maximizing

φ(x;S) =
1

2
(f (S ∪ {x})− f (S)) + λd({x} , S) .

Now consider the case where the Gain problem cannot be solved opti-
mally, but instead an approximation algorithm is available. In particular, as-
sume that we have access to an oracle that solves Gain with an approximation
guarantee of α. In this case, the Greedy algorithm still provides an approxi-
mation guarantee for the Max-Sum-Diversification problem. The quality
of approximation of Greedy depends on α as well as the c parameter of the
c-relaxed metric d . We prove the following proposition in Appendix.

Top-k overlapping densest subgraphs 11

Proposition 1 Given a non-negative, monotone and submodular function f ,
a c-relaxed metric d, and an oracle solving Gain with an approximation guar-
antee of α, the Greedy algorithm yields an approximation guarantee of α/(2c).

5.2 Greedy discovery of dense subgraphs

We now present the final ingredients of our algorithm: (i) defining a metric
between subsets of vertices; and (ii) formulating the problem of maximizing
marginal gain, establishing its complexity, and giving an efficient algorithm
for solving it. We first define the distance measure between subgraphs.

Definition 4 Assume a set of vertices V . We define the distance between two
subsets X,Y ⊆ V as

D(X,Y) =

{
2− |X∩Y |

2

|X||Y | if X 6= Y,

0 otherwise.

The distance function D resembles very closely the cosine distance (1 − cosine
similarity), but unlike the cosine distance, the distance function D is a metric.

Proposition 2 The distance function D is a metric.

Proof Clearly, D is symmetric and D(X,X) = 0. To prove the triangle in-
equality consider X,Y, Z ⊆ V . It is easy to see that the triangle inequality
holds if at least two of the three sets are identical. So, assume that X, Y , and

Z are all distinct. Note that 0 ≤ 1− |X∩Y |
2

|X||Y | ≤ 1. This gives

D(X,Y) ≤ 2 ≤ D(X,Z) + D(Z, Y) ,

which is the desired inequality. ut

Example 2 Let us consider again the graph given in Figure 2 with W =
{W1,W2,W3}. We already know that dens(W) = 15/4. Let us adopt D as
our metric. Then we have

D(W1,W2) = D(W2,W3) = 2− 1

3× 4
=

23

12

and D(W1,W3) = 2. We can now compute the reward of W, r(W) = 15
4 +

λ
(
2 + 2× 23

12

)
.

Next we formulate the problem of selecting the set of vertices that max-
imizes the marginal gain, in the iterative step of the greedy process, given a
set of subgraphs selected so far. The following problem statement specializes
Problem 3 in the context of the Dense-Overlapping-Subgraphs problem.
We denote the marginal gain with χ(·; ·), instead of φ(·; ·), to emphasize that
it is a function of a vertex set given a collection of vertex sets.

12 Esther Galbrun et al.

Problem 4 (Dense-Subgraph) Given a graph G = (V,E) and a collection
of vertex sets W = {W1, . . . ,Wk}, Wi ⊆ V , find a set of vertices U ⊆ V and
U /∈ W maximizing the marginal gain

χ(U ;W) =
1

2
dens(U) + λD({U},W) =

1

2
dens(U) + λ

∑
W∈W

D(U,W) .

Example 3 Let us consider again the graph given in Figure 2. Set W ′ =
{W1,W2} and consider adding W3. In this case, the gain is equal to

χ(W3;W ′) =
1

2
dens(W3)+λ(D(W3,W1)+D(W3,W2)) =

1

2
× 5

4
+λ

(
2 +

23

12

)
.

We should stress that χ(W3;W ′) is not equal to the difference in rewards
r(W ′ ∪ {W3})− r(W ′). This is due to the 1/2-factor in the density term.

In the definition of the Dense-Subgraph problem, dens is the density
function given in Definition 1, while D is the subgraph distance function de-
fined above. Had the term λD(·, ·) been absent from the objective, the Dense-
Subgraph problem would have been equivalent with the densest-subgraph
problem, discussed in Section 4. In that case, the problem could be solved in
polynomial time with Goldberg’s algorithm, or approximated efficiently with
Charikar’s algorithm.

However, as we show next, adding the λD(·, ·) term in the objective changes
the complexity of the problem. In other words, in contrast to the densest-
subgraph problem, Dense-Subgraph is not solvable in polynomial time.

Proposition 3 Dense-Subgraph is NP-hard.

Proof We consider the decision version of the problem. The problem is obvi-
ously in NP. To prove the completeness, we will use Regular-Clique. An
instance of Regular-Clique consists of a regular graph (all vertices have
the same degree) and an integer c. We are then asked to decide whether the
graph contains a clique of size at least c [17].

Assume that we are given a d-regular graph G = (V,E) with n = |V | and
m = |E|, and an integer c > 2. Define W as follows: for each (x, y) /∈ E, add
a set {x, y} to W. Finally, set λ = m.

Let U be a subgraph and let p =
(|U |

2

)
− |E(U)| be equal to the number

of non-edges in U . A straightforward calculation shows that the gain χ(U ;W)
can be written as

χ(U ;W) =
|E(U)|
2|U |

+ 2λ|W| − λ(n− d)
1

2
− λp

|U |
.

If we assume that U is a singleton set {u}, then the gain is equal to χ({u};W) =
α = 2λ|W | − λ(n− d)/2.

Let U be the subgraph with the optimal gain. Assume that p ≥ 1. Then,
since |E(U)| ≤ m = λ the gain is at most α − m/(2|U |), which is less than
the gain of a singleton. Hence, p = 0 and the gain is equal to (|U | − 1)/4 + α.

Top-k overlapping densest subgraphs 13

Algorithm 1: DOS; Algorithm for finding top-k overlapping densest
subgraphs (problem Dense-Overlapping-Subgraphs)

Input: G = (V,E), λ, k
Output: set of subgraphs W s.t. |W| = k and maximizing r(W)

1 W ← ∅ ;
2 foreach i = 1, . . . , k do W ←W ∪ Peel(G,W, λ) ;
3 return W ;

Hence, U will be the largest clique. It follows that the graph G contains a
clique of size c if and only if Dense-Subgraph has a solution for which the
gain is at least (c− 1)/4 + α. ut

Despite this hardness result, it is still possible to devise an approximation
algorithm for the Dense-Subgraph problem. Our algorithm, named Peel, is
a variant of the Charikar algorithm for the densest-subgraph problem. Peel,
similar to Charikar, starts with the whole graph and proceeds iteratively, re-
moving one vertex in each step. Peel stops when there is no vertex left, and it
returns the set of vertices that maximizes the gain function, selected among
all vertex sets produced during the execution of the algorithm.

Peel has two main differences when compared to Charikar. First, instead
of removing the minimum-degree vertex in each iteration, Peel removes the
vertex that minimizes the following adjusted degree expression

deg(v;Vi)− 4λ
∑
Wj3v

|Vi ∩Wj |
|Wj |

.

Here Vi stands for the set of vertices that constitute the candidate in the cur-
rent iteration—after removing some vertices in earlier iterations. The intuition
for using this adjusted degree is to lower the gain associated to vertices that
belong to subgraphs selected in earlier steps of the greedy process. Indeed, we
want to favor high-degree vertices but we want to penalize such vertices that
are contained in previously selected subgraphs and thereby generate overlap
with (i.e. reduce the distance to) the current subgraph. A further difficulty is
that we do not know the current subgraph (since we are currently searching
for it!) so we use as a proxy the set of vertices still contained in the candidate
at that step (Vi). Despite making this seemingly crude approximation, as we
will see shortly, the Peel algorithm provides an approximation guarantee to
the Dense-Subgraph problem.

The second difference between Peel and Charikar is the following: it is possi-
ble that Peel returns a subgraph that has been selected previously. This could
happen if the value of the parameter λ is small compared to dense subgraphs
that may be present in the input graph. When Peel returns a previously-
selected subgraph U , it is sufficient to modify U : we can either add one vertex,
remove one vertex, or just replace U with a trivial subgraph of size 3; among
all these options we select the best solution according to our marginal gain
objective χ. A detailed description of this process is given in Algorithm 3.

14 Esther Galbrun et al.

Algorithm 2: Peel; finds a dense subgraph U of the graph G, overlapping
with a collection of previously discovered subgraphs W.

Input: G = (V,E),W, λ
Output: U maximizing χ(U ;W)

1 Vn ← V ;
2 foreach i = n, . . . , 2 do

3 v ← arg minv

{
deg(v;Vi)− 4λ

∑
Wj3v

|Vi∩Wj |
|Wj |

}
;

4 Vi−1 ← Vi \ {v};
5 foreach i = 1, . . . , n do
6 if Vi ∈ W then Vi ← Modify(Vi, G,W, λ);

7 return arg maxVj
{χ(Vj ;W)};

Algorithm 3: Modify; modifies U if U ∈ W
Input: U,G,W, λ
Output: modified U

1 X ← {U ∪ {x} | x /∈ U, U ∪ {x} /∈ W};
2 Y ← {U \ {y} | y ∈ U, U \ {y} /∈ W};
3 if X = ∅ and dens(U) ≤ 5/3 then
4 U ← {a wedge of size 3 not in W};
5 else
6 U ← arg maxC∈X∪Y {χ(C;W)};
7 return U ;

For the quality of approximation of Peel, which is detailed in Algorithm 2,
we can show the following result, which is proved in Appendix.

Proposition 4 Assume that we are given a graph G = (V,E), a collection of
previously discovered vertex sets W and λ > 0. Assume that |W| < |V | and G
contains more than |W| wedges, i.e. connected subgraphs of size 3. Then Peel
yields 2/10 approximation for Dense-Subgraph.

The approximation guarantee of 2/10 is rather pessimistic due to patholog-
ical cases, and we can obtain a better ratio if we consider these cases separately.
In particular, if Peel does not call Modify, then the approximation ratio is 1/2.

If X 6= ∅ during Modify, then the approximation ratio is at least |U |
2(|U |+1) ,

otherwise the ratio is at least 2/10.

We note that the main function of Modify is to allow us to prove a worst-
case approximation guarantee; i.e., for all possible values of λ. In practice, if
Modify is called for a certain value of λ, the user should perceive this as a
signal that λ is too small (as overlaps are not penalized enough) and should
increase it.

Top-k overlapping densest subgraphs 15

5.3 The DOS algorithm

Finally, we consider the specialization of the generic Greedy algorithm stud-
ied above for the problem at hand in this paper. To obtain an algorithm
for the Dense-Overlapping-Subgraphs problem, we instantiate f and d
with functions whose domains consist of collections of vertices. Specifically,
we let f = dens and d = D . The resulting overall algorithm for the Dense-
Overlapping-Subgraphs problem, named DOS, is shown as Algorithm 1.
By combining Propositions 1 and 4 we obtain the following result.

Theorem 1 DOS is an 1
10 -approximation algorithm for the Dense-Over-

lapping-Subgraphs problem.

Computational complexity: DOS consists of k successive runs of Peel, it-
eratively removing the vertex with minimum adjusted degree. To perform this
operation fast, vertices are stored into separate worker queues according to
the previous subgraphs they belong to. Since such vertices incur the same
distance penalty, we keep the queues sorted by degree. There are at most
t = min{2k, |V |} such queues. In practice, the number is much smaller. To
find the next vertex, we compare the top vertex of every worker queue. The
search can be done in O(t) time. Upon deletion of a vertex, updating a sin-
gle adjacent vertex in a worker queue can be done in constant time,1 while
updating the distance penalties can be done in O(k) time. If we are forced
to call Modify, then finding the best subgraph in X and Y can be done in
O(|E| + |V |k) time. In a rare pathological case we are forced to return a
wedge. We can do this by first computing k wedges before invoking DOS. If
we ever need a wedge, we simply select a wedge from this list that is not yet
in W. Consequently, we can execute DOS in O(k(|E|+ |V |(t+ k))) time.

6 Experiments

In this section we report on the experimental evaluation of our proposed al-
gorithm DOS. Our python implementation of the DOS algorithm is publicly
available online.2

First, we explore the behavior of the algorithms in a controlled setting,
using synthetic networks with planted ground-truth subgraphs. Then, we eval-
uate the algorithms on real-world networks for which the ground-truth is not
accessible. In these two parts, we use different evaluation measures, as required
by the distinct goals of the two scenarios.

Algorithms. In both parts, our primary baseline is the MAR algorithm re-
cently proposed by Balalau et al. [5]. Similarly to our approach, their goal is to

1 Here we use the fact that edges are not weighted, and consequently the queue can be
implemented as an array of linked lists of vertices.

2 http://research.ics.aalto.fi/dmg/dos_code.tgz

16 Esther Galbrun et al.

extract dense overlapping subgraphs while controlling the Jaccard coefficient
between the discovered subgraphs.

Both methods MAR and DOS allow/require to adjust the overlap permitted
between subgraphs in the solution. In MAR, this is done by fixing a strict
maximum threshold for the Jaccard coefficient between two subgraphs, while
in DOS, by setting the value of the parameter λ, which balances density and
distance.

For DOS, note that the density of subgraphs vary from dataset to dataset,
while the distance function D is always below 2. Consequently, in practice
it is easier to set the value of λ relative to the density of the first subgraph
discovered by the algorithm. Note that when extracting the first subgraph, λ
has no effect since the distance part of the score given in Problem 4 is 0. Thus,
when running the algorithm we provide a value β and we set λ = βdens(W1).

For MAR, we denote the Jaccard threshold by σ. Note that larger values of
σ result in increased overlap with MAR but larger values of β reduce overlap
with DOS.

6.1 Finding planted subgraphs

In the first part of our experiments, we consider synthetic networks and eval-
uate how well the algorithms are able to recover planted ground-truth sub-
graphs.

Datasets. Our synthetic networks are generated as follows: each network con-
sists of a backbone of five subsets of vertices. We generate networks both with
and without overlaps. In networks without overlap, the subgraphs simply con-
sists of five disjoint subsets of 30 vertices. In configurations with overlap, the
subgraphs are arranged in a circle, they are assigned 20 vertices of their own
plus 10 vertices shared with the subgraph on one side and 10 shared vertices
with the other side.

We consider two families of networks depending on whether connections
are generated using the Erdős-Rényi model with fixed densities between 0.6
and 0.9, or using the Barabási-Albert preferential attachment model.

This way, we obtain four types of noise-free networks. We also consider
noisy variants, that is, networks where noise is added on top of the backbone.
Specifically, we double the number of vertices in the network by adding new
vertices that do not belong to any of the subsets, and the connections are
flipped with the probability of 0.01.

For each of the eight configurations, we generate ten synthetic networks,
each containing five planted subgraphs.3

Statistics. We adopt an approach similar to [42] and compare the sets of
subgraphs detected by the algorithms to the planted ground-truth using the
following measures.

3 The synthetic networks used in our experiments are available at http://research.ics.
aalto.fi/dmg/dos_synth.tgz

Top-k overlapping densest subgraphs 17

Table 1 Performance of DOS and MAR on synthetic data. For each dataset, we compare
the detected subgraphs to the ground truth using the Normalized Mutual Information (NMI),
F1 scores (F1[t/d] and F1[d/t]) and Omega index (Ω).

method param. NMI F1[t/d] F1[d/t] Ω NMI F1[t/d] F1[d/t] Ω

Erdős-Rényi Barabási-Albert

No overlap, noise-free

DOS 2.0 0.94 0.95 0.93 0.95 0.96 0.87 0.86 0.91
1.0 0.94 0.96 0.96 0.95 0.65 0.75 0.79 0.73
0.5 0.93 0.97 0.97 0.93 0.70 0.64 0.76 0.80

MAR 0.1 1.00 1.00 1.00 1.00 1.00 0.92 0.92 0.95
0.5 1.00 1.00 1.00 1.00 0.81 0.54 0.81 0.88

0.75 0.92 0.82 0.97 0.94 0.79 0.54 0.85 0.86

No overlap, noisy

DOS 2.0 0.84 0.83 0.72 0.87 0.72 0.71 0.69 0.93
1.0 0.69 0.87 0.81 0.62 0.66 0.65 0.70 0.95
0.5 0.81 0.91 0.90 0.95 0.57 0.61 0.68 0.93

MAR 0.1 0.90 0.93 0.88 0.98 0.98 0.90 0.89 0.98
0.5 0.88 0.93 0.92 0.98 0.57 0.67 0.76 0.93

0.75 0.74 0.83 0.87 0.94 0.45 0.57 0.73 0.92

With overlap, noise-free

DOS 2.0 0.27 0.72 0.72 0.41 0.34 0.71 0.69 0.75
1.0 0.27 0.82 0.79 0.20 0.33 0.72 0.73 0.75
0.5 0.25 0.87 0.83 0.22 0.24 0.70 0.72 0.66

MAR 0.1 0.19 0.56 0.51 0.51 0.24 0.56 0.56 0.68
0.5 0.28 0.66 0.70 0.44 0.12 0.58 0.60 0.68

0.75 0.22 0.71 0.72 0.33 0.04 0.53 0.56 0.63

With overlap, noisy

DOS 2.0 0.26 0.58 0.54 0.45 0.34 0.67 0.64 0.93
1.0 0.28 0.74 0.72 0.79 0.31 0.68 0.69 0.92
0.5 0.26 0.87 0.84 0.79 0.21 0.65 0.67 0.90

MAR 0.1 0.16 0.53 0.27 0.84 0.16 0.49 0.37 0.87
0.5 0.12 0.56 0.51 0.83 0.11 0.56 0.58 0.91

0.75 0.04 0.53 0.51 0.79 0.03 0.51 0.54 0.89

NMI : the Normalized Mutual Information between the ground-truth and the
detected subgraphs,

F1[t/d]: the average F1-score of the best-matching ground-truth subgraph to
each detected subgraph (“truth to detected”),

F1[d/t]: the average F1-score of the best-matching detected subgraph to each
ground-truth subgraph (“detected to truth”),

Ω: the Omega index, i.e., the fraction of vertex pairs that share the same
number of communities in the solution and the ground-truth.

18 Esther Galbrun et al.

Table 2 Datasets statistics. For each dataset, we indicate how many graphs it consists of
(#G), the number of edges (|E|) and vertices (|V |), as well as the density (dens(G)) across
all graphs in the collection.

Set #G |E| |V | dens(G)

min max avg min max avg min max avg

DBLP.E2 13 1 427 13 251 6 435.77 721 4 598 2 197.38 1.98 3.69 2.84
DBLP.C 2 10 689 11 208 10 948.50 2 891 3 140 3 015.50 3.40 3.88 3.64
G+.S 41 204 41 123 13 146.22 35 1 842 479.34 3.75 68.52 23.48
G+.L 22 42 810 176 691 96 124.32 1 007 3 799 1 840.68 15.85 103.28 55.05
FB 10 146 30 025 8 508.70 52 1 034 408.90 2.81 40.19 14.31
BKGW 12 555 218 434 46 152.67 358 46 942 11 785.25 1.55 5.38 3.29
XL 4 1 992 636 11 095 298 5 099 402.25 281 903 1 696 415 997 230.25 2.63 7.07 5.29

Each of these four measures takes value between 0 and 1, with values closer to
1 indicating highest similarity between the detected subgraphs and the planted
ground-truth.

Results. The averages of these statistics over ten datasets for each configura-
tion are shown in Table 1. We observe that the MAR algorithm performs better
in the absence of overlap and noise, and is able to recover the ground truth
perfectly in the case of the Erdős-Rényi graphs. This result can be explained
by the fact that MAR handles overlaps with a hard constraint. However, our
method is clearly superior when the backbone communities overlap, and also
more resistant to noise, that is, for graphs that resemble better real-world
application scenarios.

Further experiments, in a setup where the five planted subgraphs have
different sizes, show that the difference between the two algorithms is less
pronounced. In particular, in the absence of overlap and noise, the improved
performance of DOS gets closer to the relatively stable performance of MAR,
while in the presence of overlap and noise the performance of MAR is improved
compared to the balanced case and gets closer to the performance of DOS,
which remains relatively stable.

6.2 Comparison on real-world networks

We now turn to an empirical evaluation of our proposed algorithm on real-
world datasets.

Datasets. We use the following networks.

Co-authorship networks: The first dataset is the DBLP network,4 where ver-
tices represent researchers, and edges represent co-authorship relations.

From this co-authorship network we extract smaller instances. First, we
consider some ego-net graphs. We start with 13 high-profile computer scien-

4 http://dblp.uni-trier.de/xml/

Top-k overlapping densest subgraphs 19

tists,5 and consider their ego-nets of radius 2. We collectively refer to this
collection of ego-nets as DBLP.E2. Second, we consider the subgraphs induced
by researchers who have published in the ICDM and KDD conferences, re-
spectively, giving rise to two networks that form the DBLP.C dataset.

The remaining collections consist of networks distributed via the Stanford
network analysis project.6

Social circles: Ego-nets collected from Google+ users who have shared their
circles are divided into two collections. The first one, G+.S, contains relatively
small ego-nets, having fewer than 42 000 edges, while the second, G+.L, con-
tains ego-nets with larger numbers of edges. The FB collection contains 10
ego-nets representing friend lists from Facebook.

Location-based social networks: We also consider a collection of location-based
networks from Brightkite and Gowalla, two websites that allow there users to
share their location. We extract smaller instances by applying the following
procedure: we assign each user to their most frequent location and divide
the network into 8 broad geographic areas.7 We denote this collection of 16
networks as BKGW.

Large graphs: Finally, denoted by XL, we consider a number of large graphs
that were used by Balalau et al. [5]: web graphs from Stanford and Google,
the YouTube social network, and the internet topology graph from Skitter.

Statistics on all datasets are provided in Table 2.

Statistics. Again we compare our algorithm to its main competitor, the MAR
algorithm. We apply both algorithms on every dataset to extract the top-k
overlapping subgraphs, while varying the overlap parameters β and σ. For
each run we obtain a set of subgraphs W = {W1, . . . ,Wk}. In some cases,
MAR returns fewer than k subgraphs, therefore |W| can be smaller than k.

For each solution W, we compute its coverage, that is, the ratio of vertices
that belong to at least one subgraph C (W) =

∣∣∪ki=1Wi

∣∣/|V |, the average size
of the subgraphs |W | and the average vertex multiplicity over covered vertices,
where the multiplicity of vertex v, denoted as µ(v), is the number of subgraphs
it belongs to.

In addition, for each solution we compute (i) the average density dens(Wi)
over all subgraphs, (ii) the average distance D(Wi,Wj) over all pairs of sub-
graphs, (iii) the average Jaccard distance

J (Wi,Wj) = 1− |Wi ∩Wj |
|Wi ∪Wj |

5 Namely, S. Abiteboul, E. Demaine, M. Ester, C. Faloutsos, J. Han, G. Karypis, J.
Kleinberg, H. Mannila, K. Mehlhorn, C. Papadimitriou, B. Shneiderman, G. Weikum and
P. Yu.

6 http://snap.stanford.edu
7 Namely, Oceania, Latin-America, the USA, Europe, the Middle-East and East Asia

20 Esther Galbrun et al.

over all pairs of subgraphs, and (iv) the modularity

Q(W) =
1

2|E|
∑
W∈W

∑
u,v∈W

(
Auv −

δ(u)δ(v)

2|E|

)
1

µ(u)µ(v)
,

where µ(v) is the number of subgraphs that vertex v belongs to, δ(v) its degree,
and A the graph adjacency matrix.

Results. Tables 3–6 provide summaries of our experimental comparison for
DBLP and G+ datasets. We report the number of subgraphs (|W|), average den-
sity (dens), average distance (D), average Jaccard distance (J), modularity(Q),
coverage (C), average subgraph size (|W |) and average vertex multiplicity
(µ(v)) averaged across all networks in the collection. Results for the remain-
ing collections are similar, and are thus omitted.

The profile of solutions obtained on five networks from different collections,
for a wide range of values of β and σ are shown in Figure 3. Each row cor-
responds to the profile of one network: the ego-net of C. Papadimitriou from
DBLP.E2, the KDD network from DBLP.C, the 1183. . . 6467 ego-net from G+.S,
the 1684 ego-net from FB, and the Brightkite network of Latin-America from
BKGW. The columns show the average distance (D), average Jaccard distance
(J) and coverage (C) of solutions plotted against average density (dens).

For reference, we added three points to the profiles, representing the solu-
tions obtained respectively with three baseline methods which do not allow to
adjust the overlap tolerance. Namely, we considered

Links: The algorithm of Ahn et al. [1] discovers overlapping subgraphs by
performing a hierarchical clustering on the edges rather than the vertices
of the input graph. We consider the top 20 densest subgraphs returned by
this method.

Metis: We apply the popular spectral graph-partitioning algorithm by Karypis
and Kumar [23] to obtain a complete partition of the graph vertices into k
disjoint sets.

Dense This algorithm, used as a baseline by Galbrun et al. [16], extracts dense
subgraphs in the same iterative process similar to the DOS algorithm but
edges are allowed to contribute to at most one subgraph and are assigned
where they benefit most.

At one end of the range of solutions returned by DOS lies the solution that
corresponds to setting λ = 0, i.e., focusing entirely on density. This solution
consists of copies of the densest subgraph. At the other end, for large values
of λ, lies the solution that does not tolerate any overlap.

Expectedly, we observe that the density of the subgraphs returned increases
as the distance decreases, that is, as more overlap is allowed, both algorithms
can find denser subgraphs. However, we note that DOS exploits the overlap
allowance better, returning subgraphs with greater average densities than MAR
for similar values of distance D and Jaccard distance. Additionally, we see that
DOS tends to return larger subgraphs and to achieve better coverage scores.

Top-k overlapping densest subgraphs 21

Table 3 Results for DBLP.E2, k = 20. For each algorithm/parameter pair we report the
number of subgraphs (|W|), average density (dens), average distance (D), average Jaccard

distance (J), modularity(Q), coverage (C), average subgraph size (|W |) and average vertex

multiplicity (µ(v)) averaged across all networks in the collection.

method param. |W| dens D J Q C |W | µ(v)

DOS 1.0 20 5.09 2.00 0.99 0.098 0.71 96 1.33
0.1 20 7.59 1.93 0.90 0.034 0.50 168 3.08

0.01 20 9.72 1.50 0.49 0.008 0.24 232 9.52
0.001 20 10.01 1.06 0.06 0.003 0.11 200 15.91

MAR 0.25 20 4.64 2.00 0.98 0.142 0.63 81 1.22
0.5 20 4.97 1.96 0.93 0.111 0.66 118 1.66

0.75 20 6.28 1.85 0.81 0.066 0.49 140 2.77
0.95 20 8.82 1.55 0.52 0.017 0.21 156 6.92

Table 4 Results for DBLP.C, k = 20. Columns as in Table 3.

method param. |W| dens D J Q C |W | µ(v)

DOS 1.0 20 6.45 2.00 0.99 0.117 0.62 117 1.27
0.1 20 10.92 1.92 0.88 0.049 0.49 216 2.94

0.01 20 14.97 1.40 0.39 0.005 0.17 301 11.97
0.001 20 15.39 1.03 0.03 0.003 0.11 299 18.11

MAR 0.25 20 5.84 2.00 0.99 0.115 0.40 74 1.23
0.5 20 6.69 1.95 0.92 0.098 0.45 114 1.71

0.75 20 8.70 1.84 0.79 0.054 0.34 147 2.85
0.95 20 13.17 1.38 0.36 0.011 0.15 206 9.46

Table 5 Results for G+.S, k = 20. Columns as in Table 3.

method param. |W| dens D J Q C |W | µ(v)

DOS 1.0 20 11.08 2.00 0.99 0.036 0.98 37 1.71
0.1 20 42.81 1.83 0.78 0.010 0.96 130 6.38

0.01 20 67.41 1.22 0.21 0.002 0.55 172 14.67
0.001 20 68.60 1.04 0.04 0.001 0.43 168 18.53

MAR 0.25 14 13.11 1.98 0.96 0.059 0.91 36 1.29
0.5 17 16.45 1.91 0.87 0.038 0.90 42 1.91

0.75 19 27.42 1.75 0.71 0.020 0.79 62 3.55
0.95 20 55.74 1.34 0.32 0.005 0.53 121 10.81

Table 6 Results for G+.L, k = 20. Columns as in Table 3.

method param. |W| dens D J Q C |W | µ(v)

DOS 1.0 20 30.58 2.00 0.99 0.035 0.91 124 1.55
0.1 20 111.37 1.85 0.81 0.010 0.90 406 5.27

0.01 20 175.83 1.25 0.24 0.001 0.45 545 14.10
0.001 20 178.91 1.04 0.04 0.001 0.33 531 18.89

MAR 0.25 20 25.50 1.98 0.96 0.051 0.84 96 1.31
0.5 20 40.77 1.90 0.86 0.032 0.76 128 1.93

0.75 20 72.69 1.73 0.69 0.015 0.62 190 3.57
0.95 20 147.08 1.31 0.30 0.003 0.40 380 11.34

22 Esther Galbrun et al.
D
B
L
P
.
E
2

P
a
p

a
d

im
it

ri
o
u

|E
|=

2
6
1
6

d
en

s(
G

)
=

3
.6

2

6 8 10 12 14
1

1.5

2

MAR

D
O
S

Metis

Links

Dense

Density (dens)

D
is
ta

n
c
e
(D

)

6 8 10 12 14
0

0.5

1

MAR

D
O
S

Metis

Links

Dense

Density (dens)

J
a
c
c
.
d
is
t.

(J
)

6 8 10 12 14

0.2

0.4

0.6

0.8

1

M
AR

D
O
S

Metis

Links

Dense

Density (dens)

C
o
v
e
ra

g
e
(C

)

D
B
L
P
.
C

K
D

D
|E
|=

2
8
9
1

d
en

s(
G

)
=

3
.8

8

5 10 15
1

1.2

1.4

1.6

1.8

2

M
A
R

D
O
S

Metis

Links

Dense

Density (dens)

D
is
ta

n
c
e
(D

)

5 10 15
0

0.2

0.4

0.6

0.8

1

M
A
R

D
O
S

Metis

Links

Dense

Density (dens)

J
a
c
c
.
d
is
t.

(J
)

5 10 15

0.2

0.4

0.6

0.8

1

MAR

D
O
S

Metis

Links

Dense

Density (dens)

C
o
v
e
ra

g
e
(C

)

G
+
.
S

1
1
8
3
..
.6

4
6
7

|E
|=

6
9
4

d
en

s(
G

)
=

4
0
.2

4

20 40 60 80
1

1.5

2

M
AR

D
O
S

Metis Links Dense

Density (dens)

D
is
ta

n
c
e
(D

)

20 40 60 80
0

0.5

1

M
AR

D
O
S

Metis Links
Dense

Density (dens)

J
a
c
c
.
d
is
t.

(J
)

20 40 60 80

0.6

0.7

0.8

0.9

1

M
A
R

DOS

Metis

Links

Dense

Density (dens)

C
o
v
e
ra

g
e
(C

)

F
B

1
6
8
4

|E
|=

7
8
6

d
en

s(
G

)
=

1
7
.8

4

20 40 60
1

1.2

1.4

1.6

1.8

2

MAR

D
O
S

Metis

Links

Dense

Density (dens)

D
is
ta

n
c
e
(D

)

20 40 60
0

0.2

0.4

0.6

0.8

1

MAR

D
O
S

Metis

Links

Dense

Density (dens)

J
a
c
c
.
d
is
t.

(J
)

20 40 60

0.2

0.4

0.6

0.8

1

MAR

D
O
S

Metis

Links

Dense

Density (dens)

C
o
v
e
ra

g
e
(C

)

B
K
G
W

B
K

L
a
ti

n
-A

m
er

ic
a

|E
|=

1
2
1
6

d
en

s(
G

)
=

2
.2

2

5 10 15

1.2

1.4

1.6

1.8

2

M
A
R

D
O
S

Metis

Links

Dense

Density (dens)

D
is
ta

n
c
e
(D

)

5 10 15

0.2

0.4

0.6

0.8

1

M
A
R

D
O
S

Metis

Links

Dense

Density (dens)

J
a
c
c
.
d
is
t.

(J
)

5 10 15

0.2

0.4

0.6

0.8

1

MAR
DOS

Metis

Links

Dense

Density (dens)

C
o
v
e
ra

g
e
(C

)

Fig. 3 Solution profiles for five networks. Each row corresponds to the profile of one net-
work, as indicated on the left.

Top-k overlapping densest subgraphs 23

102 103 104 105 106 107

10−1

101

103

105

LinksDense

Metis

MAR
σ = 0.25

MAR σ = 0.95

DOS
β = 0.1

DOS
β = 0.001

Network size (|E|)

R
u
n
n
in
g
ti
m
e
(s
)

Fig. 4 Running times of DOS and MAR with different values of their overlap parameters, as
well as the three baselines, on networks of increasing sizes sampled from the seven datasets.

6.3 Running times

Finally, we evaluate the scalability of our method. Figure 4 shows running
times for DOS and MAR, as a function of the size of the network, measured
by the number of edges, for different values of their overlap parameters.

The same figure also provide running times for the baseline methods and
we can observe that both MAR and DOS scale better than Links and Dense
but not as well as Metis.

On average, our algorithm is faster than MAR. An added advantage is the
better stability of the running time across values of the overlap parameter,
with the extreme value σ = 0.95 resulting in much larger running time for
MAR. We should also note here that Balalau et al. [5] offer a heuristic that is
faster than MAR, but at the expense of quality.

7 Concluding remarks

We studied the problem of discovering dense and overlapping subgraphs. Our
approach optimizes density as well as the diversity of the obtained collection.
Our solution, inspired by the work of Borodin et al. [7] and Charikar [8], is
an efficient greedy algorithm with an approximation guarantee of 1/10. Our
method improves significantly the previous work on the problem by Balalau
et al. [5]. Not only do we provide an approximation guarantee, while the base-
line is a heuristic, but it also yields practical improvements, both in terms of
quality and efficiency. Our experiments, especially Figure 3, demonstrate that
we obtain denser and more diverse subgraphs.

Our approach has two parameters: the number of subgraphs k and the
parameter λ controlling the relative importance of density and overlap. Since
our method is greedy, the problem of selecting k is somewhat alleviated as the

24 Esther Galbrun et al.

first k subgraphs will remain constant if we increase k. Selecting λ is more
difficult as the relation between the density and the diversity terms is not
obvious. We approach this problem by computing profiles as in Figure 3 by
varying λ and selecting values that provides a good trade-off between density
and overlap.

This work opens several new directions for future work. We have shown
that a subproblem, Dense-Subgraph, is NP-hard, however, we did not es-
tablish the hardness of the main problem Dense-Overlapping-Subgraphs.
We conjecture that it is also NP-hard. Another open question is to improve
the approximation guarantee, as well as to study what other types of density
functions and overlap distances can be used in our framework.

References

1. Yong-Yeol Ahn, James P. Bagrow, and Sune Lehmann. Link communities reveal mul-
tiscale complexity in networks. Nature, 466:761–764, 2010.

2. Reid Andersen and Kumar Chellapilla. Finding dense subgraphs with size bounds. In
WAW, pages 25–37, 2009.

3. Albert Angel, Nikos Sarkas, Nick Koudas, and Divesh Srivastava. Dense subgraph
maintenance under streaming edge weight updates for real-time story identification.
VLDB Endowment, 5(6):574–585, 2012.

4. Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. Greedily finding
a dense subgraph. SWAT, pages 136–148, 1996.

5. Oana Denisa Balalau, Francesco Bonchi, TH Chan, Francesco Gullo, and Mauro Sozio.
Finding subgraphs with maximum total density and limited overlap. In WSDM, pages
379–388, 2015.

6. Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre.
Fast unfolding of communities in large networks. Journal of statistical mechanics: theory
and experiment, 2008(10), 2008.

7. Allan Borodin, Hyun Chul Lee, and Yuli Ye. Max-sum diversification, monotone sub-
modular functions and dynamic updates. In PODS, pages 155–166, 2012.

8. Moses Charikar. Greedy approximation algorithms for finding dense components in a
graph. In APPROX, pages 84–95, 2000.

9. Mingming Chen, Konstantin Kuzmin, and Boleslaw Szymanski. Extension of modularity
density for overlapping community structure. In IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining (ASONAM), pages 856–863, 2014.

10. Wei Chen, Zhenming Liu, Xiaorui Sun, and Yajun Wang. A game-theoretic framework
to identify overlapping communities in social networks. Data Mining and Knowledge
Discovery, 21(2):224–240, 2010.

11. Aaron Clauset, M. E. J. Newman, and Cristopher Moore. Finding community structure
in very large networks. Physical Review E, page 066111, 2004.

12. Michele Coscia, Giulio Rossetti, Fosca Giannotti, and Dino Pedreschi. DEMON: a local-
first discovery method for overlapping communities. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 615–623, 2012.

13. Uriel Feige, David Peleg, and Guy Kortsarz. The dense k-subgraph problem. Algorith-
mica, 29(3):410–421, 2001.

14. Gary William Flake, Steve Lawrence, and C. Lee Giles. Efficient identification of web
communities. In ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 150–160, 2000.

15. Eugene Fratkin, Brian T Naughton, Douglas L Brutlag, and Serafim Batzoglou. Mo-
tifcut: regulatory motifs finding with maximum density subgraphs. Bioinformatics,
22(14):e150–e157, 2006.

16. Esther Galbrun, Aristides Gionis, and Nikolaj Tatti. Overlapping community detection
in labeled graphs. DMKD, 28(5-6):1586–1610, 2014.

Top-k overlapping densest subgraphs 25

17. Michael Garey and David Johnson. Computers and intractability: a guide to the theory
of NP-completeness. WH Freeman & Co., 1979.

18. M. Girvan and M. E. J. Newman. Community structure in social and biological net-
works. Proceedings of the National Academy of Sciences, 99:7821–7826, 2002.

19. Andrew V Goldberg. Finding a maximum density subgraph. UCB tech report, 1984.
20. Steve Gregory. An algorithm to find overlapping community structure in networks. In

European Conference on Principles and Practice of Knowledge Discovery in Databases,
pages 91–102, 2007.

21. Steve Gregory. Finding overlapping communities in networks by label propagation. New
Journal of Physics, 12(10), 2010.

22. Johan H̊astad. Clique is hard to approximate within n1−ε. In FOCS, pages 627–636,
1996.

23. George Karypis and Vipin Kumar. Multilevel algorithms for multi-constraint graph par-
titioning. In ACM/IEEE Conference on Supercomputing, pages 1–13. IEEE Computer
Society, 1998.

24. Samir Khuller and Barna Saha. On finding dense subgraphs. In Automata, Languages
and Programming, pages 597–608, 2009.

25. Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew Tomkins. Trawl-
ing the Web for emerging cyber-communities. Computer Networks, 31(11–16):1481–
1493, 1999.

26. Jure Leskovec, Kevin Lang, Anirban Dasgupta, and Michael Mahoney. Community
structure in large networks: Natural cluster sizes and the absence of large well-defined
clusters. Internet Mathematics, 6(1):29–123, 2009.

27. George Nemhauser, Laurence Wolsey, and Marshall Fisher. An analysis of approx-
imations for maximizing submodular set functions–I. Mathematical Programming,
14(1):265–294, 1978.

28. Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and
an algorithm. In Advances in Neural Information Processing Systems (NIPS), pages
849–856, 2001.

29. Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. Uncovering the overlapping
community structure of complex networks in nature and society. Nature, 435:814–818,
2005.

30. J. Pinney and D. Westhead. Betweenness-based decomposition methods for social and
biological networks. In Interdisciplinary Statistics and Bioinformatics, pages 87–90,
2006.

31. Pascal Pons and Matthieu Latapy. Computing communities in large networks using
random walks. Journal of Graph Algorithms Applications, 10(2):284–293, 2006.

32. Alexander Schrijver. Combinatorial optimization. Springer, 2003.
33. Mauro Sozio and Aristides Gionis. The community-search problem and how to plan a

successful cocktail party. In KDD, pages 939–948, 2010.
34. Nikolaj Tatti and Aristides Gionis. Density-friendly graph decomposition. In WWW,

2015.
35. Charalampos Tsourakakis. A novel approach to finding near-cliques: The triangle-

densest subgraph problem. arXiv:1405.1477, 2014.
36. Charalampos Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo, and

Maria Tsiarli. Denser than the densest subgraph: Extracting optimal quasi-cliques with
quality guarantees. In KDD, pages 104–112, 2013.

37. Stijn van Dongen. Graph Clustering by Flow Simulation. PhD thesis, University of
Utrecht, 2000.

38. Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing,
17(4):395–416, 2007.

39. Scott White and Padhraic Smyth. A spectral clustering approach to finding communities
in graph. In SIAM International Conference on Data Mining, pages 76–84, 2005.

40. Jierui Xie, Stephen Kelley, and Boleslaw K Szymanski. Overlapping community detec-
tion in networks: The state-of-the-art and comparative study. ACM computing surveys,
45(4):43, 2013.

41. Jierui Xie, Boleslaw K Szymanski, and Xiaoming Liu. SLPA: Uncovering overlapping
communities in social networks via a speaker-listener interaction dynamic process. In
International Conference on Data Mining Workshops (ICDMW), 2011.

26 Esther Galbrun et al.

42. Jaewon Yang and Jure Leskovec. Community-affiliation graph model for overlapping
network community detection. In ICDM, pages 1170–1175, 2012.

43. Jaewon Yang and Jure Leskovec. Overlapping community detection at scale: a nonneg-
ative matrix factorization approach. In ACM International Conference on Web Search
and Data Mining (WSDM), pages 587–596, 2013.

44. Wayne Zachary. An information flow model for conflict and fission in small groups.
Journal of anthropological research, pages 452–473, 1977.

45. Haijun Zhou and Reinhard Lipowsky. Network Brownian motion: A new method to
measure vertex-vertex proximity and to identify communities and subcommunities. In
Computational Science (ICCS), volume 3038, pages 1062–1069, 2004.

A Proof of Proposition 1

Let us first define h(x;Y) = [f(x ∪ Y)− f(Y)] /2 and

g(x;Y) = h(x;Y) + d(Y ∪ x)− d(Y) = h(x;Y) + d(x, Y) .

For proving the proposition, we will need Lemma 1.

Lemma 1 Let d be a c-relaxed metric. Let X and Y be two disjoint sets. Then

c(|X| − 1)d(X,Y) ≥ |Y |d(X) .

Proof Let y ∈ Y and x, z ∈ X. By definition,

c(d(x, y) + d(z, y)) ≥ d(x, z) .

For a given x ∈ X, there are exactly |X|−1 pairs (x, z) such that x 6= z ∈ X. Consequently,
summing over all x, z ∈ X such that x 6= z gives us

2c(|X| − 1)d(X, y) ≥ 2d(X) .

Summing over y ∈ Y proves the lemma. ut

Proof (Proof of Proposition 1) Let G1 ⊂ · · · ⊂ Gk be the sets during Greedy. Fix 1 ≤ i ≤ k.
Then Gi is the current solution after i-th iteration of Greedy.

Let O be the optimal solution. Write A = O∩Gi, C = O \A, and B = Gi \A. Lemma 1
implies that

c(|A| − 1)d(A,C) ≥ |C|d(A) ,

which in turn implies

|C|i(d(A) + d(A,C)) ≤ ci(|A| − 1)d(A,C) + |C|id(A,C)

= ci(|A| − 1 + |C|)d(A,C)

= ci(k − 1)d(A,C) .

Moreover, Lemma 1 implies that

c(|C| − 1)d(B,C) ≥ |B|d(C)

c(|C| − 1)d(A,C) ≥ |A|d(C) ,

which, together with |C| = |B|+ k − i, implies

|C|id(C) = (k − i)id(C) + |B|id(C)

= (k − i)(|A|+ |B|)d(C) + |B|id(C)

= (k − i)|A|d(C) + |B|kd(C)

≤ c(k − i)(|C| − 1)d(A,C) + ck(|C| − 1)d(B,C)

≤ c(k − i)(k − 1)d(A,C) + ck(k − 1)d(B,C) .

Top-k overlapping densest subgraphs 27

Combining these two inequalities leads us to

|C|id(O) = |C|id(A) + |C|id(C) + |C|id(A,C)

≤ ck(k − 1)(d(A,C) + d(B,C))

= ck(k − 1)d(Gi, C) .

Submodularity and monotonicity imply∑
v∈C

g(v;Gi) =
∑
v∈C

[h(v;Gi) + d({v} , Gi)]

=
(∑
v∈C

h(v;Gi)
)

+ d(C,Gi)

≥
1

2
[f(O)− f(Gi)] +

i|C|
ck(k − 1)

d(O)

≥
1

2
[f(O)− f(Gk)] +

i|C|
ck(k − 1)

d(O) .

Let ui be the item added at the i + 1th step, Gi+1 = {ui} ∪ Gi. Then, since g(ui;Gi) ≥
αg(v;Gi) for any v ∈ C,

g(ui;Gi) ≥
α

2k
[f(O)− f(Gk)] +

iα

ck(k − 1)
d(O) .

Summing over i gives us

1

2
f(Gk) + d(Gk) =

k−1∑
i=0

g(ui;Gi) ≥
α

2
[f(O)− f(Gk)] +

α

2c
d(O) .

Since α ≤ 1 and c ≥ 1, we have

r(Gk) = f(Gk) + d(Gk) ≥
α

2
f(O) +

α

2c
d(O) ≥

α

2c
r(O) ,

which completes the proof. ut

B Proof of Proposition 4

To prove the proposition we need to first show that Modify does not decrease the gain of a
set significantly.

Lemma 2 Assume a graph G = (V,E). Assume a collection of k distinct subgraphs W of
G, and let U ∈ W. Assume that k < |V | and G contains more than k wedges, i.e. connected
subgraphs of size 3. Let M = Modify(U,G,W, λ). Then χ(V ;W) ≥ 2/5× (χ(U,W) + λ).

Proof Write r = |U | and α = r
r+1

. We will split the proof in two cases. Case 1: Assume

that X, as given in Algorithm 3, is not empty. Select B ∈ X. We will show that

dens(B) ≥ αdens(U) and D(B,W) ≥ α(D(U,W) + I[U = W]),

for any W ∈ W, where I[U = W] = 1 if U = W , and 0 otherwise. This automatically
guarantees that

χ(B;W, λ) ≥ α(χ(U ;W, λ) + λ),

proving the result since α ≥ 1/2 and the gain of M is at least as good as the gain of B.
To prove the first inequality, note that

dens(B) =
|E(B)|
r + 1

≥
|E(U)|
r + 1

= α
|E(U)|
r

= αdens(U) .

28 Esther Galbrun et al.

To prove the second inequality fix W ∈ W, and let p = |W |, q = |W ∩ U |. Define

∆ = D(U,W) + I[U = W] = 2−
q2

rp
=

2rp− q2

rp
,

Let v be the only vertex in B \U . If v /∈W , then D(B,W) ≥ ∆. Hence, we can assume that
v ∈W . This leads to

D(B,W) = 2−
|B ∩W |2

|B||W |

= 2−
(1 + q)2

(1 + r)p
=

2p(1 + r)− (1 + q)2

(1 + r)p
.

Let us define β as the fraction of the numerators,

β =
2p(1 + r)− (1 + q)2

2rp− q2
.

We wish to show that β ≥ 1. Since p ≥ q + 1,

β =
2p(1 + r)− (1 + q)2

2rp− q2
=

2rp− q2 + 2p− 2q − 1

2rp− q2

≥
2rp− q2 + 2(q + 1)− 2q − 1

2rp− q2
=

2rp− q2 + 1

2rp− q2
≥ 1.

The ratio of distances is now

D(B,W)

∆
= β

r

r + 1
≥

r

r + 1
= α.

This proves the first case.
Case 2: Assume that X = ∅. Then we must have Y 6= ∅ and r ≥ 2, as otherwise

|W| ≥ |V |, which violates the assumption of the lemma.
Assume that dens(U) ≥ 5/3. Let B ∈ Y . Removing a single item of U decreases the

density by 1, at most. This gives us

dens(B)

dens(U)
≥

dens(U)− 1

dens(U)
≥

5/3− 1

5/3
=

2

5
.

To bound the distance term, fix W ∈ W, and let p = |W |, q = |W ∩ U |. Let v be the
only vertex in U \ V . Define ∆ = D(U,W) + I[U = W]. If v ∈ W , then we can easily
show that D(V,W) ≥ ∆. Hence, assume that v /∈ W . This implies that q ≤ min p, r − 1, or
q2 ≤ p(r − 1). As before, we can express the distance term as

∆ = 2−
q2

rp
=

2rp− q2

rp
,

and

D(B,W) = 2−
|B ∩W |2

|B||W |
= 2−

q2

(r − 1)p
=

2p(r − 1)− q2

(r − 1)p
.

The ratio is then

D(B,W)

∆
=

2p(r − 1)− q2

2rp− q2
r

r − 1

≥
2p(r − 1)− p(r − 1)

2rp− p(r − 1)

r

r − 1
=
p(r − 1)

rp+ p

r

r − 1
=

r

r + 1
≥ 1/2,

Top-k overlapping densest subgraphs 29

where the first inequality follows from the fact that the ratio is decreasing as function of q.
Assume that dens(U) < 5/3. By assumption there is a wedge B outside W. Since

dens(B) ≥ 2/3, we have dens(B) /dens(U) ≥ 2/5. The distance terms decrease by a factor
of 1/2, since

D(U,W) ≤ 2 = 2× 1 ≤ 2D(B,W) .

Combining the inequalities proves that

χ(B;W, λ) ≥
2

5
χ(U ;W, λ)

which proves the lemma. ut

Proof (Proof of Proposition 4) To prove the proposition, we will first form a new graph H,
and show that the density of a subgraph in H is closely related to the gain. This then allows
us to prove the statement.

Let us first construct the graph H: given a vertex v let us define

s(v) = −
∑
v∈Wj

2λ

|Wj |
.

Let H = (V,E′, c) be a fully connected weighted graph with self-loops where the weight of
an edge c(v, w) is

c(v, w) = I[(v, w) ∈ E]−
∑

j|v,w∈Wj

4λ

|Wj |
,

for v 6= w, and c(v, v) = s(v).
Next, we connect the gain of set of vertices U (w.r.t. G) with the weighted density of U

in H. Given an arbitrary set of vertices U , we will write c(U) to mean the total weight of
edges in H. Each c(v, w), for v ∈ w, participates in degH(v;U) and degH(w;U), and each
c(v, v) = s(v) participates (once) in degH(v;U). This leads to

2c(U) =
∑
v∈U

degH(v;U) + s(v).

We can express the (weighted) degree of a vertex in H as

degH(v;U) = s(v) +
∑
w∈U
w 6=v

c(v, w) = degG(v;U)−
∑

j|v∈Wj

2λ

|Wj |
−
∑
w∈U
w 6=v

∑
j|v,w∈Wj

4λ

|Wj |

= degG(v;U)− λ
∑

j|v∈Wj

4|U ∩Wj | − 2

|Wj |
.

(3)

Write k = |W|. These equalities lead to the following identity,

dens(U ;H) + 4λk =
1

|U |
c(U) + 4λk

= 4λk +
1

2|U |
∑
v∈U

degH(v;U) + s(v)

= 4λk + dens(U ;G)−
1

2|U |
∑
v∈U

λ
∑

j|v∈Wj

4|U ∩Wj |
|Wj |

= dens(U ;G)− 2λ

k∑
j=1

2−
|U ∩Wj |2

|U ||Wj |

= 2χ(U ;W, λ) + ε(U,W),

(4)

30 Esther Galbrun et al.

where ε(U,W) is a correction term, equal to 2λ if U ∈ W, and 0 otherwise.
Let O be the densest subgraph in H. Next we show that during the for-loop Peel finds

a graph whose density clost to dens(O;H). Let o be the first vertex in O deleted by Peel.
We must have

degH(o;O) ≥ dens(O;H) ,

as otherwise we can delete o from O and obtain a better solution. Let R = Vi be the graph at
the moment when o is about to be removed. Let us compare degH(o;O) and degH(o;R). We
can lower-bound of the second term of the right-hand side in Equation (3) by −4kλ− s(v).
Since O ⊆ R, this gives us

degH(o;O) ≤ degG(o;O) ≤ degG(o;R)

≤ degH(o;R) + s(o) + 4kλ.

To upper-bound the first two terms, note that by definition of Peel, the vertex o has the
smallest degH(o;R) + s(o) among all the vertices in R. Hence,

degH(o;R) + s(o) ≤
∑
v∈R

degH(v;R) + s(v)

|R|
= 2

c(R)

|R|
= 2dens(R;H) .

To complete the proof, let O′ be the graph outside W, maximizing the gain. Due to
Eq. 4, we have

2χ
(
O′;W, λ

)
= dens

(
O′;H

)
+ 4kλ ≤ dens(O;H) + 4kλ

≤ 2dens(R;H) + 8kλ = 2(dens(R;H) + 4kλ)

= 4χ(R;W, λ) + 2ε(R;W).

Let S be the set returned by Peel.
If R /∈ W, then ε(R;W) = 0. Moreover, R is not modified, and is one of the graphs that

is tested for gain. Consequently, χ(S;W) ≥ χ(R;W), proving the statement.
If R ∈ W, then it is modified by Modify to, say, R′. Lemma 2 implies that 5/2 ×

χ(R′,W) ≥ χ(R;W) + ε(R;W). Since, χ(S;W) ≥ χ(R′;W), this completes the proof. ut

