Structured Prediction of Network Response

Hongyu Su
Aristides Gionis
Juho Rousu

Helsinki Institute for Information Technology (HIIT)

HONGYU.SUQAALTO.FI
ARISTIDES.GIONISQAALTO.FI
JUHO.ROUSUQAALTO.FI

Department of Information and Computer Science, Aalto University, Finland

Abstract

We introduce the following network response
problem: given a complex network and an
action, predict the subnetwork that responds
to action, that is, which nodes perform the
action and which directed edges relay the ac-
tion to the adjacent nodes.

We approach the problem through max-
margin structured learning, in which a com-
patibility score is learned between the ac-
tions and their activated subnetworks. Thus,
unlike the most popular influence network
approaches, our method, called SPIN, is
context-sensitive, namely, the presence, the
direction and the dynamics of influences de-
pend on the properties of the actions. The in-
ference problems of finding the highest scor-
ing as well as the worst margin violating net-
works, are proven to be NP-hard. To solve
the problems, we present an approximate in-
ference method through a semi-definite pro-
gramming relaxation (SDP), as well as a
more scalable greedy heuristic algorithm.

In our experiments, we demonstrate that tak-
ing advantage of the context given by the ac-
tions and the network structure leads SPIN
to a markedly better predictive performance
over competing methods.

1. Introduction

With the widespread use and extensive availability of
large-scale networks, an increasing amount of research
has been proposed to study the structure and function
of networks. In particular, network analysis has been

Proceedings of the 31°% International Conference on Ma-
chine Learning, Beijing, China, 2014. JMLR: W&CP vol-
ume 32. Copyright 2014 by the author(s).

applied to study dynamic phenomena and complex in-
teractions, such as information propagation, opinion
formation, adoption of technological innovations, vi-
ral marketing, and disease spreading (De Choudhury
et al., 2010; Kempe et al., 2003; Watts & Dodds, 2007).

Influence models typically consider actions performed
by the network nodes. Examples of such actions in-
clude buying a product or (re)posting a news story
in one’s social network. Often, network nodes per-
form such actions as a result of influence from neigh-
bouring nodes, and a number of different models have
been proposed to quantify influence in a network,
most notably the independent-cascade and the linear-
threshold models (Kempe et al., 2003). On the other
hand, performing an action may also come as a re-
sult to an external (out of the network) stimulus, a
situation that has also been subject to modeling and
analysis (Anagnostopoulos et al., 2008). A typical as-
sumption made by existing models is that influence
among nodes depends only on the nodes that perform
the action and not on the action itself.

A central question in the study of network influence,
is to infer the latent structure that governs the in-
fluence dynamics. This question can be formulated
in different ways. In one case no underlying network
is available (for example, news agencies that do not
link each other) and one asks to infer the hidden net-
work structure, e.g., to discover implicit edges between
the network nodes (De Choudhury et al., 2010; Du
et al., 2012; Eagle et al., 2009; Gomez-Rodriguez et al.,
2010; 2011). However, this problem is an unnecessarily
hard one to solve in many applications. On the other
hand, in many applications the network is known (e.g.,
“follower” links in twitter), and the research question
is to estimate the hidden variables of the influence
model (Goyal et al., 2010; Saito et al., 2008).

The present paper is motivated by the following obser-
vation: the influence between two nodes in the network
does not depend only on the nodes and their connec-

Structured Prediction of Network Response

tions, but also depends on the action under consid-
eration. For example, if v and v represent users in
twitter, v may be influenced from u regarding topics
related to science but not regarding topics related to,
say, politics. Thus, in our view, the influence model
needs to be contezt-sensitive.

We thus consider the following network response prob-
lem: given an action, predict which nodes in the net-
work will perform it and along which edges the ac-
tion will spread. We approach the problem via struc-
tured output learning that models the activated re-
sponse network as a directed graph. We learn a func-
tion for mappings between action descriptions and the
response subnetwork. Given an action, the model is
able to predict a directed subnetwork that is most
favourable to performing the action.

2. Preliminaries

We consider a directed network G = (V, E) where the
nodes v € V represent entities, and edges e = (u,v) €
E represent relationships among entities. As discussed
in the introduction, for each edge (u,v) we assume
that node v can be influenced by node u. In real ap-
plications, some networks are directed (e.g., follower
networks), while other networks are undirected (e.g.,
friendship networks). For simplicity of exposition, and
without loss of generality we formulate our problem for
directed networks; indeed an undirected edge can be
modeled by considering pair of directed edges. In our
experiments we also consider undirected networks.

In addition to other nodes, we allow the nodes to be in-
fluenced by external stimuli, modelled by a root node r,
which is connected to all other nodes in the network,
namely (r,v) € E, for all v € V '\ {r}. Reversely, no
node can influence r, so (v,r) ¢ E, for allv € V' \ {r}.

The second ingredient of our model consists of the ac-
tions performed by the network nodes. We write A to
denote the underlying action space, that is, the set of
all possible actions, and we use a to indicate a par-
ticular action in A. We assume that actions in A are
represented using a feature map ¢ : A—F4 to an asso-
ciated inner product space F4. For example, F4 can
be a vector space of dimension k, where each action
a is represented by a k-dimensional vector ¢(a). In
the social-network application discussed in the intro-
duction, where actions a correspond to news articles
posted by users, ¢(a) can be the bag-of-words repre-
sentation of the news article a.

We assume that the network gets exposed to an action
a € A, and in response a subgraph G, = (Va, Ea) C G,
called the response network gets activated. The nodes

(u,a,t =1)
(v,a,t =2)

(w,a,t =5)
a— ¢(a)

Ga — w(Ga) = (appa apnaarm7bpp7prHbnnaCpprcpnycxm7dpp7dpnadnn¢ .-)
=(1,0, 0 1, 0,0, 0, 1, 0, 0, 0, 1, ...)

Figure 1. An action a perfromed by nodes u, v, w of a di-
rected network at times 1, 2, 5, respectively. Nodes = and y
do not perform the action. The action a is represented by
input feature map ¢(a). The response network G, is repre-
sented by output feature map 1(Ga) that encodes the prop-
agation of the action a with respect to edge e (details in the
text). Finally, v is a scaling function (see Sec. 3.4). For in-
stance, y(u) represents a vector of exponentially-decaying
weights for node u with respect to all edges.

Va C V are the ones that get activated and £, C F
is the set of induced edges. We assume that the root
r is always activated, i.e., r € V,. Note that even
though r is directly connected to each node v € Vj,
in every response network G,, some nodes in V, may
exercise on v stronger influence than the influence that
r exercises on v. The nodes that get directly activated
by the root node r as a response to an action are called
the focal points or foci of the response network.

We assume a dataset {(a;, Gai)}j;l of m training ex-

amples, where each example (a;,G,,) consists of an
action a; and the output G,, encoding the response
network activated by a;. Our intention is to build a
model that given a previously unobserved action a,

predicts the response network G,.

3. Model for network responses
3.1. Structured-prediction model

Our method is based on embedding the input and out-
put into a joint feature space and learning in that space
a linear compatibility score

F(a,Ga;w) = (W, p(a,Ga)).

The score F(a,Ga;w) is given by the inner prod-
uct of parameters w and the joint feature ¢(a,Ga).
As the joint feature we will use the tensor product
p(a,Ga) = ¢(a)@1Y(G,) of the input feature map ¢(a)
of action a, and the output feature map ¥(G,) that
represents the response network G, to the action a.
The tensor product ¢(a,Ga) consists of all pairs of
input and output features ¢;;(a, Ga) = ¢i(a);(Ga).

Structured Prediction of Network Response

The output features will encode the activated sub-
graph in the network. We use labels {p,n} to indi-
cate whether nodes perform an action (positive vs.
negative). Similarly, we use edge labels {pp,pn,nn}
to indicate the role of edges in the propagation of ac-
tions. In particular, for each edge (u,v) = e of a re-
sponse network G, and each label ¢ € {pp, pn,nn} we
define the feature 1. ¢(Ga) to be 1 if and only if e
is of type £ in G, (and 0 otherwise). For example,
Y(u,v),pp(Ga) = 1 indicates that both nodes u and v
are activated in G, and u precedes v in the partial
order of activation.

An example of the model is shown in Figure 1. For
the sake of brievity in the figure, we abuse notation
and we use e, to denote 1, ¢(Ga). For instance, in this
example we have ap, = (u,v)pp = 1 since both u and v
are activated and u precedes v in the activation order,
and thus it is possible that « has influenced v.

3.2. Maximum-margin structured learning

The feature weight parameters w of the compatibility
score function F' are learned by solving a regularized
structured-output learning problem

.1 -
min o Iwllz +C > &, (1)
' i=1
st. F(a;,Ga,;; w) > argmax (F(a;, G, ;W)
Gy, €H(G)

+c(Gh,,Gay)) — &,& > 0,¥i = {1,--- ,m}.

The impact of the constraints on the above optimiza-
tion problem is to push the compatibility score of input
a; with output G, above the scores of all competing
outputs G, € H(G) with a margin proportional to
the loss Lo (G, , Ga,) between the correct G, and any
competing subgraph G, . H(G) is the set of directed
acyclic subgraphs of G rooted at r. The slack variable
& is used to relax the constraints so that a feasible
solution can always be found. C' is a slack parame-
ter that controls the amount of regularization in the
model. The objective minimizes an Ls-norm regular-
izer of the weight vector and the slack allocated to
the training set. This is equivalent to maximizing the
margin subject to allowing some data to be outliers.
In practice, the optimization problem (Eq. 1) is tack-
led by marginal dual conditional gradient optimization
(Rousu et al., 2007).

3.3. The inference problem

In the structured prediction model, both in training
and in prediction, we need to solve the problem of find-
ing the highest-scoring subgraph for an action. The

two problems differ only in the definition of the score:
in training we need to iteratively find the subgraph
that violates its margins the most, whilst in predic-
tion we need to find the subgraph with the maximum
compatibility to a given action. We explain our infer-
ence algorithms for the latter problem and note that
the first problem is a straightforward variant.

Given feature weights w and a network G = (V, E),
the prediction for a new input action a is the
maximally-scoring response graph H* = (V EH)

H*(a) = argmax F(a, H;w).
HeH(G)

Writing this problem explicitly, in terms of the param-
eters and the feature maps gives

H*(a) = argmax (w, ¢(a) ® ¢(H))
HeH(G)

= argmax z sy, (e, @), (2)
HEW(G) Chm

where we have substituted sy, (e,a) = >, Wi ¢y, ¢i(a).
We will abbreviate sy, (e, a) to s, (e), as the action a is
fixed for an individual inference problem. The output
response network H can be specified by a node label
Yy € {p,n}, where y, = p if and only if v is activated.
We write H, to emphasize the dependence of the out-
put subgraph H from labelling y. The node labels y,
induce edge labels y.. The score function s(e) can be
interpreted as a score function for the edges, given by
the current input a and weight vector w. The vari-
able y. indicates the possible labels of an edge e, and
for each possible label the score function s(e) assigns
a different score. Depending on the values that y. can
take, the inference problem can be further diverged
into two modes:

Activation mode. We assume y. € {pp,pn} where
Ye = pp implies node v is activated by u via a directed
edge e = (u,v), and y. = pn means that the activation
cannot pass through e. In activation mode, the infer-
ence problem is transformed as finding the maximally
scoring node label ¥, and corresponding edge label y.,
consistent with an activated subgraph H, given a set
of edge scores sy, (€).

Negative-feed mode. In addition to the setting in
activation mode, we also explicitly model the inactive
network by assume y. € {pp, pn,nn}, where by y. = nn
we denote our belief that both u and v should be in-
active given action a. The inference problem is then
to find the maximally scoring node labels and induced
edge labels with regards to an activated subgraph to-
gether with the inactive counterpart given a set of edge
score sy, (€).

Structured Prediction of Network Response

It is not difficult to show that the inference problem
(Eq. 2) is NP-hard. The proof of the following lemma,
which provides a reduction from the MAX-CUT prob-
lem, is given in the supplementary material.

Lemma 1 Finding the graph that mazimizes Eq. (2)
is an NP-hard problem.

To solve the inference problem we propose two algo-
rithms, described on the negative-feed mode. Simi-
lar techniques can be adapted to the activation-mode
by setting edge score spy(e) = 0. The first algorithm
is based on a semidefinite programming (SDP) relax-
ation, similar to the one used for MAX-CUT and sat-
isfiability problems (Goemans & Williamson, 1995).
The spp algorithm offers a constant-factor approxi-
mation guarantee for the inference problem. How-
ever, it requires solving semidefinite programs. Effi-
cient solvers do exist, but the method is not scalable
to large datasets. Besides, it cannot handle the order
of activations. In contrast, our second approach is a
more efficient GREEDY algorithm that models activa-
tion order in a natural way, but it does not provide
any quality guarantee.

The spP inference. Recall that for each edge (u,v) €
E we are given three scores: spp(u,v), Spn(u,v), and
Smn(u,v). The inference problem is to assign a label p
or n for each vertex u € V. If a vertex u is assigned
to label p we say that u is activated. If both vertices
u and v of an edge (u,v) € E are activated, a gain
spp(u, v) incurs. Respectively, the assignments pn and
nn yield gains spa(w,v) and spa(u,v). The objective is
to find the assignments that maximizes the total gain.

We formulate this optimization problem as a quadratic
program. We introduce a variable z,, € {—1,+1}, for
each u € V. We also introduce a special variable
xg € {—1,41}, which is used to distinguish the ac-
tivated vertices. In particular, if xz, = xg we consider
that the vertex u is assigned to label p, and thus it is
activated, while x,, = —x¢ implies that u is assigned to
n and not activated. The network-response inference
problem can now be written as (QP):

1
max —

Z [SPn(u7 U)(l + LTy — LTy — xuxv)
(u,v)EE
+Snn<uv ”U)(l — XLy — LTy + xuxv)
+Spp(ua U)(l + Xy + ToTy + l‘uxv)}v

st Xo, Ty, Xy € {—1,+1}, for all u,v € V.

The intuition behind the formulation of Problem (QP)
is that there is gain spy(u,v) if zg = 2, = —x,, a gain
Sm(u,v) if g = —24 = —,, and a gain spp(u,v) if
To = Ty = Ty

To solve the problem (QP), we use the similar tech-
nique introduced by Goemans & Williamson (1995),
such that each variable z, is relazed to a vector v, €
R™. The relaxed quadratic program becomes (RQP):

max 1 Z [spn (1, V) (1 + VoV, — VoV — Vi Vy)
(u,v)EE
+ 8 (1, 0)(1 — VoV — VoV + Vi Vy)
+5pp (U, V) (1 + Vovy + VoVy + Vi Vy)],
s.t. v; €R" foralli=0,...,n.

Consider an (n+1)x(n+1) matrix Y whose (u, v) entry
IS Yy,o = Vy - Vy. If V is the matrix having v,,’s as its
columns, i.e., V = [vg...vg], then Y = VIV imply-
ing that the matrix Y is semidefinite, a fact we denote
by Y = 0. Problem (RQP) now becomes (SDP):

k
1
max i uél [SPD(U’ U)(l + Yo,u — Yo, — yu7v)
+Snn(u’ U)<1 —Yo,u — Yo,v + yu,v)
+3pp(ua U)(l + Yo,u T Yo,0 + yw)],
st. Y >=0.

Problem (SDP) asks to find a semidefinite matrix, so
that a linear function on the entries of the matrix is
optimized. This problem can be solved by semidefi-
nite programming within accuracy e, in time that it
is polynomial on k and % After solving the semidefi-
nite program one needs to round each vector v, to the
variable x,, € {—1,+1} in the following way:

1. Factorize Y with Cholesky decomposition to find
V =[vg,vi...vp].

2. Select a random vector r.

3. For each u =0,1,...,n,if vy, - > 0 set x, = 1,
otherwise set z,, = —1.

Let Z be the value of the solution obtained by the
above algorithm. Let Z* be the optimal value of Prob-
lem (QP) and Zg the optimal value of Problem (SDP).
Since Problem (SDP) is a relaxation of Problem (QP)
it is Zr > Z*. Furthermore, it can be shown that for
the expected value of Z it holds E[Z] > (o — €)Zg,
with @ > 0.796 and where expectation is taken over
the choice of r. Thus the above algorithm is a 0.796
approximation algorithm for Problem (QP).

The GREEDY inference. The inference (Eq. 2) is
defined on all edges of the network, which can be ex-
pressed equivalently as a function of activated vertices
(see details in supplementary)

Structured Prediction of Network Response

where VPH is a set of activated vertices. F,,(v;) is the
marginal gain on each node that is comprised partially
from changing edge label from pn to pp on incoming
edges {(vp,v;) | v, € parents(v;)}, and partially from
changing edge label from nn to pn on outgoing edges
{(vi,ve) | ve € parents(v;)} defined as

Fr(vi) = Z

vp Eparents(v;)

Y

v Echildren(v;)

[Spp(Vp; Vi) — Spn(vp, vi)]
[spn(via Uc) - Snn(vi; vc)]~

It is difficult to maximize the sum of marginal gains
as the activated subnetwork is unknown. One can in-
stead compute for each vertex the maximized marginal
gain max,, F,,(v;) in an iterative fashion as long as
F,.(v;) > 0, which leads to a greedy algorithm de-
scribed as follows. The algorithm starts with an ac-
tivated vertex set V¥ = {r}. In each iteration, it
chooses a vertex v; € V/ VPH and adds to VI such that
v; is the current maximizer of F,,(v). The procedure
terminates if the maximized gain is smaller than 0.
EH can be obtained by adding edges e = (v;,v;) € E,
if v,v; € VPH and v; was added to V;H prior to v;.
The time complexity for greedy inference algorithm is
O(|E|log|V|). See supplementary material for details
of the algorithm.

We note that we have not been able to show an approx-
imation guarantee for the quality of solutions produced
by the GREEDY algorithm. A property that it is typi-
cally used to analyse greedy methods is submodularity.
However, for this particular problem submodularity
does not hold (it only holds in the special case of MAX-
CUT, i.e., when syp(€) = spn(e) = 0 and spa(e) = 1).

3.4. Loss functions

Instead of penalizing prediction mistakes uniformly on
the network G, we wish to focus in the vicinity of the
response network. To achieve this effect we scale the
loss accrued on the nodes and edges by their distance
to the children of the root of the response network.

As the loss function in (1) we use symmetric-difference
loss (or Hamming loss), applied to the nodes and the
edges of the subgraphs separately, and scaled by func-
tion g (vg) according distance to the focal point vy.

(6(Gay Gy) =Y £2(Ga, G)y (vk; v)

veV

+ > £8,(Ga, Gu)va(vi; v),
(vv')eER

where (2(Ga,Gp) = [v € VAV, £2(Ga, Gp) = [e €
E,AEp], SAS’ denotes the symmetric difference of

two sets S and S’. We consider the following strategies
to construct the scaling function yg(vg):

Exponential scaling. Mistakes are penalized by A
and) is weighted exponentially according to the short-
est path distance to the focal point vg. Given focal
point vy, edge (v;,v;), and distance matrix D between
the nodes, the scaling function is defined as

1 ifi=0
v (vg;visv5) = ¢ APEDif § £ 0 and D(k,i) < R
NEHD - if D(k,i) > R

where A > 0 is the scaling factor and R > 1 is a
radius parameter. Edges outside the radius have equal
scalings.

Diffusion scaling. The diffusion kernel defines a
distance-based function between nodes v; and v; (Kon-
dor & Lafferty, 2002). The kernel value K (i, j) corre-
sponds to the probability of a random walk from node
v; to node v;. Given the adjacency matrix L of the
network G, the diffusion kernel is computed as

K = lim (I+ BL) = exp(8L),
5§—00 S
where [is the identity matrix and 3 is the a parameter
that controls how much the random walks deviate from
the focal point. Given focal node vy, edge (v;, v;), and
diffusion kernel K the scaling function is defined as

(V3 v4,05) = . o
VG \Vk; Vi, V5) = K (vg,v;) otherwise.

The scaling function keeps the loss value on the edges
connecting the focal point, and scale other edges by
the weights computed from diffusion kernel. Diffusion
scaling has the effect of shrinking the distance to nodes
that connects to the focal point by many paths.

4. Experimental evaluation

In this section, we evaluate the performance of SPIN
and compare it with the state-of-the-art methods
through extensive experiments. We use two real-world
datasets, DBLP and Memetracker, described below.
Statistics of the datasets are given in Table 1.

DBLP! dataset is a collection of bibliographic infor-
mation on major computer science journals and pro-
ceedings. We extract a subset of original data by us-
ing “inproceedings” articles from year 2000. First, we
construct an undirected DBLP network G by connect-
ing pairs of authors who have coauthored more that p

papers (p = 5,10,15). After that, we generate a set

"http://www.informatik.uni-trier.de/~ley/db/

http://www.informatik.uni-trier.de/~ley/db/

Structured Prediction of Network Response

of experimental networks of different size by perform-
ing snowball sampling (Goodman, 1961). For each ex-
perimental network, we extract all the documents for
which at least one of their authors is a node in the net-
work. We apply LDA algorithm (Blei et al., 2002) on
the titles of extracted documents to generated topics.
Topics are associated with publications, timestamped
by publication dates, and described by bag-of-word
features computed from LDA. In this way, a topic can
be seen as an action and we will study the influence
among authors.

Memetracker? dataset is a set of phrases propa-
gated over prominent online news sites in March 2009.
We construct directed networks G for Memetracker
dataset by connecting two websites via a directed edge
if there are at least five phrases copying from one web-
site to the other. A posted phrase corresponds to an
action, which again is timestamped and represented
with bag-of-word features.

4.1. Experimental setup and metrics

SPIN can be applied to predict action-specific network
response (contenxt-aware) when action representation
¢(a) is given as input. It is also capable of predicting
edge influence scores in context-free mode when ¢(a)
is treated as unknown. For comparison purposes, we
evaluate SPIN against the following the state-of-the-
art methods:

e Support Vector Machine (SVM) is used as a sin-
gle target classifier used to predict the response
network via decomposing it as a bag of nodes and
edges, and predicting each element in the bag.

o Max-Margin Conditional Random Field (MM-
CRF) (Rousu et al., 2007; Su et al., 2010) is a
multi-label classifier that utilizes the structure of
output graph G. The model predicts the node
labels of the network.

e Expectation-Maximization for the independent
cascade model (ICM-EM) (Saito et al., 2008) is a
context-free model that infers the influence prob-
ability of the network given a directed network
and a set of action cascades. Here we use the im-
plementation from Mathioudakis et al. (2011) of
this algorithm, which is publicly available?.

e Netrate (Gomez-Rodriguez et al., 2011) models
the network influence as temporal processes oc-
curs at difference rate. It infers the directed edges
of the global network and estimates the transmis-

2http://Memetracker.org
3https://dl.dropboxusercontent.com/u/21620176/
public_html/spine/index.html

Dataset Training| Feature| Network
Example| Space V] [E]
DBLP S100 440 1190 100 204
DBLP M100 | 478 1127 100 151
DBLP M500 | 2119 3619 500 699
DBLP M700 | 2800 4369 699 952
DBLP M1k 3720 5281 1000 1368
DBLP M2k 6030 7183 2000 2687
DBLP L100 | 509 1274 100 152
DBLP L500 1869 3424 499 701
DBLP L700 | 2620 4300 699 960
DBLP L1k 3560 5405 1000 1368
DBLP L2k 3618 5454 1023 1402
memeS 4632 181 82 325
memeM 4804 179 182 521
memeL 4809 179 333 597

Table 1. Statistics of DBLP and Memetracker datasets.

Data Accuracy Iy Score Time (10%s)

SDP Neg Act SDP Neg Act SDP Neg Act
S100 | 79.9 77.6 72.9| 57.2 56.2 55.5| 16.0 1.5 0.2
M100| 75.8 73.6 68.5| 51.6 53.1 54.5 15.2 1.4 0.2
L100 | 75.1 72.0 67.4| 53.5 56.9 57.2| 13.7 1.6 0.3
Geom| 76.9 74/.3 69.6| 52.0 55.4 55.7 15.0 1.5 0.3

Table 2. Comparison of different inference algorithms.
Geom. is geometric mean of rows.

sion rate of each edge.

To quantitatively evaluate the performance of the
tested methods in predicting node and edge labels, we
adopt two popular metrics: accuracy and Fy score, de-

fined as
_2-P-R

=
1 P+ R)

where P is precision and R is recall. We also define

Predicted Subgraph Coverage (PSC) as

1 m
PSC=——% "> |G,

i=1veV;

where V; is the set of focal points given action a;, n
is the number of nodes in the network, and m is the
number of actions. PSC expresses the relative size of
a correctly predicted subgraph G, in terms of node
predictions that cover the focal points v.

Our metrics are computed both in global context where
we pool all the nodes and edges from the background
network, as well as in local context where we only col-
lect the nodes and edges within certain radius R of
the focal points. The experimental results are from a
five-fold cross validation.

4.2. Experimental results

We examine whether our context-sensitive structure
predictor can boost the performance of predicting net-

http://Memetracker.org
https://dl.dropboxusercontent.com/u/21620176/public_html/spine/index.html
https://dl.dropboxusercontent.com/u/21620176/public_html/spine/index.html

Structured Prediction

of Network Response

Dataset Node Accuracy Node F; Score | Edge Acc pPSC Time (103s)
SVM MMCRF SPIN | SVM MMCRF SPIN| SVM SPIN | SVM MMCRF SPIN| SVM MMCRF SPIN
memeS 73.4 68.0 72.21 39.0 89.8 47.1| 62.7 456 | 234 25.3 33.6| 6.6 2.9 4.1
memeM 82.1 79.0 81.51 29.1 30.1 38.0| 61.1 68.8| 18.6 18.8 28.3| 13.7 3.2 7.3
memeL 89.9 88.3 89.8| 26.7 27.1 35.0| 45.5 80.0| 17.7 18.9 27.6| 199 5.9 11.8
M100 71.2 736 76.7| 49.3 50.8 54.3| 33.3 61.7| 33.3 35.6 34.6| 0.1 0.2 0.1
M500 89.0 91.4 92.0| 18.8 13.5 14.6 | 282 92.6| 29.3 26.4 29.5| 9.0 3.8 3.2
M700 91.9 94.1 92.1| 13.8 7.3 14.2| 26.3 93.0| 29.4 23.9 34.4| 185 8.8 4.4
M1k 941 95.8 94.2| 10.9 3.5 9.3 | 26,6 94.7| 33.7 16.6 35.2| 42.2 14.7 10.4
M2k 96.8 97.6 96.7| 6.2 1.4 8.4 | 253 97.6| 34.6 9.6 14.7| 165.0 88.4 54.1
L100 69.4 72.2 75.7| 51.1 53.1 57.4| 31.6 62.3| 309 31.7 33.4| 0.1 0.2 0.3
L500 859 89.1 86.8| 21.7 15.1 24.7| 279 87.9| 14.2 11.2 19.7| 6.5 3.2 2.1
L700 89.7 924 89.7| 16.2 9.4 17.3| 26.5 90.4| 9.5 6.7 12.5| 16.0 7.8 5.3
Lik 92.4 94.4 915 | 124 64 13.9| 264 92.3| 6.1 4.4 8.4 | 403 13.7 10.4
L2k 92.5 94.5 919 | 12.8 54 12.7| 26.5 93.2| 6.0 29 7.2 | 419 21.9 13.1
Geom. 85.5 86.4 86.6| 19.8 12.6 20.3| 32.6 79.7| 18.9 14.2 21.7| 94 4.6 4.3

Table 3. Comparison of prediction performance on global context. The best in bold-face, the second best in italic.

work responses. We compare SPIN with other meth-
ods in both context-sensitive and context-free prob-
lems. We show that SPIN can perform significantly
better in terms of predicting action-specific network
responses.

Comparison of inference algorithms. Table 2
shows the geometric mean of node accuracy, F}
and running time over parameter space on three
DBLP datasets, where “Neg” and “Act” represent the
GREEDY inference defined on the negative-feed and
the activation modes. SDP is also formulated on the
negative-feed mode. In general, the inference algo-
rithm based on negative-feed mode outperforms acti-
vation mode in terms of accuracy. The difference in
F is smaller in comparison. SDP based inference sur-
passes GREEDY inference in accuracy, however, by a
small margin. In addition, GREEDY inference is almost
10 times faster even on small datasets, where running
time is total time used for cross validation. For the
following experiments, we opted for GREEDY inference
in negative-feed mode as the inference engine of SPIN.

Context-aware prediction. We apply SPIN with
exponential scaling to predict context-sensitive net-
work responses. Comparison of prediction perfor-
mance against SVM and MMCRF is listed in Table 3.
We show that SPIN can dramatically boost the perfor-
mance of all measures except node accuracy: MMCRF
wins in node accuracy, but SPIN is the second best
and the difference is small. In terms of time consump-
tion for training, SPIN is around three times faster
than SVM and two times faster than MMCRF on the
largest M2k dataset.

Context-free network influence prediction. Here
we compare SPIN to methods developed for influence
network prediction, namely Netrate and ICM-EM, on
Memetracker data. To make the comparison fair to the

competition, we convert the network to undirected net-
work and replace action features by a constant value.
For SPIN, we further represent each undirected edge
by two directed edges. The measure of success is
Precision@K, where we ask for top-K percent edge
predictions from each model and compute the preci-
sion. Table 4 shows Precision@K as function of K,
where the performance of SPIN surpasses ICM-EM
and Netrate in all spectrum of K with a noticeable
margin. ICM-EM has the least accurate predictions
of the three, but achieves by far the the best running
time. SPIN and Netrate solve more complex convex
optimization problems, leading more accurate predic-
tions at the cost of more CPU time needed for training,
SPIN being the more efficient on the largest dataset,
memelL.

The good performance of SPIN compared to Netrate
is mostly explained by the fact that Netrate solves a
much harder problem in which the underlying undi-
rected network is assumed to be unknown, while SPIN
is able to leverage the known network structure. In the
experiment reported, the edge predictions from Ne-
trate are filtered against the underlying complex net-
work, in order to excessively penalize influence predic-
tions along non-linked nodes.

Effect of loss scaling. Figure 2 depicts the effect
of parameter \ of the exponential loss scaling to pre-
diction performance on subgraphs of different radius.
SVM (dashed line) is used as the baseline. When
0 < A < 1, the node prediction accuracy (top, left)
and Fy (top, right) decrease by the increasing sub-
graph radius, while A > 1 leads to the opposite behav-
ior allowing larger subgraph to be learned. Predicted
subgraph coverage decreases by incresing A. Edge pre-
diction accuracy (bottom, right) increases monotoni-
cally in A implying that predicting the longer influence

Structured Prediction of Network Response

5 Precision @ K

Dataset | Model | T (10°) —gor——o007 T 30% T 40% | 50% | 60% | 70% | 80% T 90% T T00%
SPIN 550 [82.9 | 81.0 | 76.0 | 74.0 | 74.0 | 70.0 | 69.8 | 67.9 | 66.7 | 64.7

memeS | ICM-EM 001 | 60.3| 635 | 651 | 620 | 62.0 | 61.5 | 622 | 604 | 60.7 | 61.9
NETRATE | 583 | 76.2| 73.8| 70.4 | 68.7| 68.7| 66.8 | 64.9| 634 | 62.9| 61.9

SPIN 552 [82.7 | 72.1 | 70.5 | 69.2 | 69.2 | 67.0 | 66.2 | 65.6 | 64.3 | 64.2

memeM | ICM-EM 0.02 | 56.3 | 55.3 | 56.8 | 57.4 | 574 | 563 | 575 | 57.8 | 58.3 | 58.5
NETRATE | 13.93 | 61.2| 64.6 | 629 | 62.5| 62.5| 624 | 61.2| 60.1| 587 | 585

SPIN 775 | 82.2 | 73.6 | 69.1 | 66.7 | 66.7 | 65.9 | 66.1 | 65.9 | 63.9 | 63.6

memeL | ICM-EM 001 | 521 | 55.7 | 542 | 565 | 56.5 | 56.7 | 57.4 | 58.0 | 57.6 | 57.0
NETRATE | 1263 | 56.5 | 57.8 | 60.0 | 59.3 | 59.3 | 59.4 | 58.9| 58.4 | 57.5 | 57.0

Table 4. Model performance in context-free influence network prediction.

Loss Scaling Node Acc Node F Edge Acc PSC Time (103s)
Meme DBLP Meme DBLP Meme DBLP Meme DBLP Meme DBLP

Dif 5 =0.1 80.8 86.5 40.0 28.6 63.0 80.5 30.2 30.3 68.3 2.7

Dif =05 66.4 86.5 42.5 28.5 40.9 80.5 33.0 30.2 50.9 4.0

Dif 5 =0.8 63.5 86.5 40.9 28.5 39.3 80.5 31.2 30.2 32.6 3.2

Exp A=10.5 80.9 83.9 39.7 28.7 63.1 7T 29.7 24.3 71.0 10.8

Table 5. Comparison of diffusion scaling with exponential scaling.

X X
Z 9 lA A Z 944
c c -
g \ A 03v- 1 v 7 |2 \
g 24 4. 05-%- 3 g "] A
g A 079 5 3 Aol TN
N 4 A
2 . % g - A=
w4 e Mmoo Ry NN
E \Xg,v—‘ o = x z E o Ao PN Az Do Ag
A- “A- - A= R
D o dor NS IO Bt A----Alw A g VTV ey
Il A A 5 v | v SR
o4 . —A o .- v--
3 w7 ——A— A v - y——V—V
S "V y - 94V L =Y
2 y oo LN
S /, Iy -
-qz:; T v 3 2 ,;
v
z T T T T T —Z T T T T T T
1 2 3 4 5 0 1 2 3 4 5
Subgraph Radius Subgraph Radius
[
Al S ¥ —
1 T g e X
S N 2 2 o
< 2 A A 5 : P N
5 Gl ~\A}A\ 3w a7
e AN A ‘~A~.,_ﬁ\éh 8+ .-
S w4 - ----A| g
4 B A A A A E A»/"A’_'A
< v > 84 A—"
S © - B Andeies Akt Znsnsiend K5)
£ a ©
= - v-——V— -v-—--V|5 9
8 P g /;V%Vﬁvafﬁv 3
a Y/ Z < g 4
T v =y
o
T T T T T w T T T T T T

Subgraph Radius Subgraph Radius

Figure 2. The improvement of prediction performance for
different scaling factor A with respect to SVM.

paths is a hard problem for SVM. In Table 5 we ex-
amine the performance of diffusion scaling. The num-
bers reported are geometric means over the different
Memetracker and DBLP datasets. We observe a de-
creased performance when increasing the parameter 3,
which corresponds to smoothing the distance matrix.
This indicates that emphasizing connections between
long-distance nodes makes prediction more difficult, a
finding consistent with the results on exponential scal-
ing. Setting 5 = 0.1 leads to comparable performance
over exponential scaling with A = 0.5, with slight im-
provement on the DBLP datasets.

5. Discussion

We have presented a novel approach, based on struc-
tured output learning, to the problem of modelling
influence in networks. In contrast to previous state-of-
the-art approaches, such as Netrate and ICM-EM, our
proposal, named SPIN, is a context-sensitive model.
SPIN does not try to force global influence parame-
ters, but instead it incorporates the action space into
the learning process and makes predictions tailored
to the action under consideration. Our method can
provide a useful tool in market research or other ap-
plication scenarios when actions arise from a high-
dimensional space, and one wants to make predictions
for actions not seen before. Another benefit of our ap-
proach, compared to other state-of-the-art methods, is
that our method does not make explicit assumptions
regarding the underlying propagation model. Addi-
tionally, action responses are explicitly formulated as
directed acyclic subgraphs, and the model is capable
of predicting the complete subgraph structure. We
proved that the inference problem of SPIN is NP-
hard, and we provided an approximation algorithm
based on semidefinite programming (SDP). In addi-
tion, we developed a greedy heuristic algorithm for
the inference problem that scales linearly in the size of
the network, with time consumption in the same ball-
park as Netrate. With extensive experiments we show
that SPIN can dramatically boost the performance of
action-based network-response prediction. SPIN can
also be applied in context-free prediction where it cap-
tures the edge influence weight of the network.

Structured Prediction of Network Response

References

Anagnostopoulos, Aris, Kumar, Ravi, and Mahdian,
Mohammad. Influence and correlation in social net-
works. KDD, 2008.

Blei, D., Ng, A., and Jordan, M. Latent dirichlet al-
location. In Dietterich, T., Becker, S., and Ghahra-
mani, Z. (eds.), Advances in Neural Information
Processing Systems 14. MIT Press, 2002.

De Choudhury, Munmun, Mason, Winter A, Hofman,
Jake M, and Watts, Duncan J. Inferring relevant
social networks from interpersonal communication.

WWW, pp. 301-310, 2010.

Du, Nan, Song, Le, Smola, Alex, and Yuan, Ming.
Learning Networks of Heterogeneous Influence.
NIPS, 2012.

Eagle, Nathan, Pentland, Alex Sandy, and Lazer,
David. Inferring friendship network structure by us-
ing mobile phone data. Proceedings of the National
Academy of Sciences, 106(36):15274-15278, 2009.

Goemans, Michel and Williamson, David. Improved
approximation algorithms for maximum cut and sat-

isfiability problems using semidefinite programming.
JACM, 42(6), 1995.

Gomez-Rodriguez, Manuel, Leskovec, Jure, and
Krause, Andreas. Inferring Networks of Diffusion
and Influence. KDD, 2010.

Gomez-Rodriguez, Manuel, Balduzzi, David, and
Scholkopf, Bernhard. Uncovering the Temporal Dy-
namics of Diffusion Networks. ICML, 2011.

Goodman, Leo A. Snowball sampling. The annals of
mathematical statistics, 32(1):148-170, 1961.

Goyal, Amit, Bonchi, Francesco, and Lakshmanan,
Laks VS. Learning influence probabilities in social
networks. WSDM, 2010.

Kempe, David, Kleinberg, Jon, and Tardos, Eva. Max-
imizing the spread of influence through a social net-
work. In KDD, 2003.

Kondor, I.LR. and Lafferty, J. D. Diffusion kernels on
graphs and other discrete structures. In Proceedings
of the ICML, 2002.

Mathioudakis, Michael, Bonchi, Francesco, Castillo,
Carlos, Gionis, Aristides, and Ukkonen, Antti. Spar-
sification of influence networks. KDD, 2011.

Rousu, J., Saunders, C., Szedmak, S., and Shawe-
Taylor, J. Efficient algorithms for max-margin struc-
tured classification. Predicting Structured Data, pp.
105-129, 2007.

Saito, Kazumi, Nakano, Ryohei, and Kimura,
Masahiro. Prediction of information diffusion
probabilities for independent cascade model. In
Knowledge-Based Intelligent Information and Engi-
neering Systems (KES), 2008.

Su, Hongyu, Heinonen, Markus, and Rousu, Juho.
Structured output prediction of anti-cancer drug ac-
tivity. In Proceedings of the 5th IAPR international
conference on Pattern recognition in bioinformatics,
PRIB’10, 2010.

Watts, Duncan J and Dodds, Peter Sheridan. Influen-
tials, networks, and public opinion formation. Jour-
nal of consumer research, 34(4):441-458, 2007.

