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ABSTRACT
Online social networks are growing and becoming denser.
The social connections of a given person may have very high
variability: from close friends and relatives to acquaintances to
people who hardly know. Inferring the strength of social ties is
an important ingredient for modeling the interaction of users
in a network and understanding their behavior. Furthermore,
the problem has applications in computational social science,
viral marketing, and people recommendation.

In this paper we study the problem of inferring the strength
of social ties in a given network. Our work is motivated by a
recent approach [27], which leverages the strong triadic closure
(stc) principle, a hypothesis rooted in social psychology [13].
To guide our inference process, in addition to the network
structure, we also consider as input a collection of tight com-
munities. Those are sets of vertices that we expect to be con-
nected via strong ties. Such communities appear in di�erent
situations, e.g., when being part of a community implies a
strong connection to one of the existing members.

We consider two related problem formalizations that re�ect
the assumptions of our setting: small number of stc viola-
tions and strong-tie connectivity in the input communities.
We show that both problem formulations are NP-hard. We
also show that one problem formulation is hard to approx-
imate, while for the second we develop an algorithm with
approximation guarantee. We validate the proposed method
on real-world datasets by comparing with baselines that opti-
mize stc violations and community connectivity separately.
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Figure 1: Strong edges in the Karate-club dataset in-
ferred by the algorithmof Sintos andTsaparas [27] (left)
and our method (right) using two teams. The colors of
the edges and the vertices depict the two teams.

1 INTRODUCTION
The growth of online social networks has been an important
factor in shaping our lives for the 21st century. 68 % of adults
in the US, also accounting for those who do not use Internet at
all, are Facebook users.1 Over the past few years, an ecosystem
of online social-network platforms has emerged, serving dif-
ferent needs and purposes: being connected with close friends,
sharing news and being informed, sharing photos and videos,
making professional connections, and so on.

The emergence of such social-networking platforms has
introduced many novel research directions. First, online sys-
tems have enabled recording and studying human behavior at
a very large scale. Second, the speci�c features of the di�erent
systems are changing the way people interact with each other:
new social norms are formed and human behavior is adapt-
ing. Consequently, data collected by online social-network
systems are used to analyze and understand human behavior
and complex social phenomena. Questions of interest include
understanding information-di�usion phenomena, modeling
network evolution and predicting future behavior, identifying
the role of users and network links, and more.

A question of particular importance, which is the focus of
this paper, is the problem of inferring the strength of social

ties in a network. Quantifying the strength of social ties is an
essential task for sociologists interested in understanding com-
plex network dynamics based on pair-wise interactions [13],
or for engineers interested in designing applications related
to viral marketing [7] or friend recommendation [21].
1http://www.pewinternet.org/2016/11/11/social-media-update-2016/
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The problem of inferring the strength of social ties in a
network has been studied extensively in the graph-mining
community [11, 12, 25, 27–29]. While most approaches use
user-level features in order to estimate the social-tie strength
between pairs of users, our approach, inspired by the work
of Sintos and Tsaparas [27], relies on the strong triadic closure

(stc) principle [5, 8, 13]. The stc principle assumes that
there are two types of ties in the social network: strong and
weak. It then asserts that it is unlikely to encounter a triple
of users so that two of the ties are strong while the third is
missing. In other words, two users who have a strong tie to a
third common friend should be acquainted to each other, i.e.,
they should have at least a weak tie to each other.

Sintos and Tsaparas [27] address the problem of inferring
the strength of social ties (i.e., labeling the links of a given
network as strong or weak) by leveraging the stc property
in an elegant manner. They �rst assume that users are more
interested in establishing and maintaining strong ties, as pre-
sumably, this is the reason that they joined the network. Using
this assumption they formulate the link-strength inference
problem by asking to assign the maximal number of strong ties
(or the minimal number of weak ties) so that the stc property
holds. They prove that the problem is NP-hard and they devise
an approximation algorithm for the variant of minimizing the
number of weak ties.

In this paper, in addition to the network structure, we also
consider as a collection of topical communities C1, . . . ,Ck .
We assume that the given communities are tight, that is, each
community Ci represents a set of users with focused interest
at a particular topic. For example, such a tight community
may be (i) a set of users who have been actively involved in a
discussion in the social network about a certain issue, (ii) the
set of scientists who work on ‘deep learning,’ or (iii) the HR
team of a company.

We then require that each given community Ci should be
connected via strong ties. In other words, for every two nodes
in Ci there is a path made of strong ties. This requirement
re�ects the fact that we consider tight communities, as the
examples above. Clearly this constraint is less meaningful if
we consider loose communities, i.e., all facebook users who
like the ‘Friends’ TV series.

Equipped with these assumptions we now de�ne the prob-
lem of inferring the strength of social ties: given a social net-
work G = (V ,E), and a set of tight communities C1, . . . ,Ck ⊆
V , we ask to label all the edges in E as either strong or weak so
that (i) each community Ci is connected via strong ties; and
(ii) the total number of stc violations is minimized. Our prob-
lem de�nition captures two natural phenomena: �rst, tight
communities tend to have a backbone, e.g., being part of a
community implies a strong connection to one of the exist-
ing members. Second, strong ties tend to close triangles, as
postulated by the strong triadic closure principle, and thus,
real-world social networks have relatively few stc violations.
We call a triple of nodes, interconnected by 3 edges, a closed

triangle. A triple with only 2 edges in common is called an
open triangle.

Example. An illustration of our method on the Karate-club
dataset [30] is shown in Figure 1. Our method (right) is con-
trasted with the algorithm of Sintos and Tsaparas [27] (left).
Both approaches use the stc principle, but additionally, our
method requires that certain communities provided as input
are connected with strong ties. In the example, we consider
the two ground-truth communities of the Karate-club dataset.
We observe that the sets of strong ties inferred by the two
methods are fairly similar. We also observe that our method
introduces an stc violation only when it is necessary for en-
suring connectivity. On the other hand, the method of Sintos
and Tsaparas [27] leaves several disconnected singleton nodes,
which is less intuitive. �

We capture the above intuition using two related problem
de�nitions. For the �rst problem (MinViol) we ask to min-
imize the number of stc violations, while for the second
problem (MaxTri) we ask to maximize the number of non-
violated open triangles — there cannot be a violation on a
closed triangle. In both cases we label the network edges so as
to satisfy the connectivity constraint, with respect to strong
edges, for all input communities.

We show that both problems, MinViol and MaxTri, are
NP-hard, even if the input consists of one community. Fur-
thermore, we show that MinViol is hard to approximate to
any multiplicative factor. On the other hand, the problem
MaxTri is amenable to approximation: its objective function
is submodular and non-decreasing, while the connectivity con-
straints can be viewed as an intersection of matroids. Thus,
the classic result of Fisher et al. [10] applies, implying that a
greedy algorithm leads to 1/(k + 1) approximation ratio.

We evaluate our methods on real-world networks and input
communities. Our quantitative results show that our method
achieves a balance between baselines that optimize stc viola-
tions and community connectivity separately, while our case
study suggests the strong edges selected by the method are
meaningful and intuitive.

The remaining paper is as follows. We introduce the nota-
tion and give the problem de�nition in Section 2. We show the
computational hardness in Section 3 and present the approxi-
mation algorithm in Section 4. The related work is discussed in
Section 5, and the experimental evaluation is given in Section 6.
We conclude the paper with remarks in Section 7.

2 PRELIMINARIES AND PROBLEM
DEFINITION

The main input for our problem is an undirected graph G =
(V ,E) with n vertices andm edges. Given a subset of vertices
X ⊆ V and a subset of edges F ⊆ E, we write F (X ) to denote
the edges in F that are connected to vertices in X .

We are interested in labeling the set of edges E. Speci�cally,
we want to label each edge as either strong or weak.

To specify a labeling of edges E it is su�cient to specify
the set of strong edges S ⊆ E. To quantify the quality of a
labeling S ⊆ E, for a given graphG = (V ,E), we use the strong
triadic closure (stc) property. Namely, given a triple (u,v,w )
of vertices such that (u,v ), (v,w ) ∈ S , we say that the triple
violates the stc property if (u,w ) < E. In other words, a
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strong friend of a strong friend must be connected, possibly
with a weak edge. We de�ne viol (S ;G ) to be the number of
stc violations. Typically, G is known from the context, and
we omit it from the notation.

As described in the introduction, our goal is to discover a
strong backbone of the graph. At simplest we are looking for
a set of edges that connect the whole graph with strong ties
while minimizing the number of violations.

We also consider the more general setup, where are given
a set of communities (possibly overlapping), each community
is simply a subset of vertices, and the goal is to make sure
that each community is connected on its own with strong ties,
without using outside edges.

More formally, we have the following problem de�nition

Problem 1 (MinViol). Given a graph G = (V ,E) and a set
of communitiesC1, . . . ,Ck ⊆ V , �nd a set of strong edges S ⊆ E
such that each (Ci , S (Ci )) is connected and the number of stc
violations, viol (S ), is minimized.

In the above problem de�nition (Ci , S (Ci )) is the subgraph
of G induced by the vertices in Ci and the edges in S , that is,
S (Ci ) = {(u,v ) ∈ E | u,v ∈ Ci and (u,v ) ∈ S }.

In order for MinViol to have at least one feasible solution,
we assume that (Ci ,E (Ci )) is connected for each Ci .

In addition to minimization version, we consider a maxi-
mization version of the problem. In order to do that, given a
graphG , letT be the number of open triangles inG . We de�ne
tri(S ) = T − viol (S ) to be the number of open triangles that
are not violated.

This leads to the following optimization problem.

Problem 2 (MaxTri). Given a graph G = (V ,E) and a set
of communities C1, . . . ,Ck ⊆ V , �nd a set of strong edges S
such that each (Ci , S (Ci )) is connected, and the number of non-

violated triangles, tri(S ), is maximized.

Note that stc violations can occur only for open triangles.
Therefore, tri(S ) = T −viol (S ) is nonnegative, while it achieves
its maximum value T when there are no stc violations.

Obviously, MinViol and MaxTri have the same optimal
answer. However, we will see that they yield di�erent ap-
proximation results: MinViol cannot have any multiplicative
approximation guarantee (constant or non-constant) while a
greedy algorithm has 1/(k + 1) guarantee for MaxTri.

3 COMPUTATIONAL COMPLEXITY
Our next step is to establish that MinViol (and MaxTri) are
NP-hard. Moreover, we show that MinViol cannot have any
multiplicative approximation guarantee.

Proposition 3.1. Deciding whether there is a solution Min-

Viol with zero violations is NP-complete. Thus, there is no mul-

tiplicative approximation algorithm for MinViol, unless P=NP.
The result holds even if we use only one community.

Proof. To prove the result we will reduce CliqeCover
to MinViol. In an instance of CliqeCover, we are asked to
partition a graph G = (V ,E) to k subgraphs, each one of them
being a clique.

Assume a graph G = (V ,E), where V = {v1, . . . ,vn }, and
an integer k .

For the reduction of CliqeCover to MinViol, we �rst
de�ne a graph H = (W ,A). The vertex set W consists of
2n + k vertices grouped in 3 sets: the �rst set are the original
vertices V , the second set is U with n vertices, the third set is
X containing k vertices.

The edges A are as follows: We keep the original edges
E. For each i = 1, . . . ,n and j = 1, . . . ,k , we add (ui ,vi ),
(vi ,x j ), and (ui ,x j ). Here vi ∈ V , ui ∈ U and x j ∈ X . We also
fully-connect X .

We add one community consisting of the whole graph.
We claim that there is a 0-solution to MinViol if and only if

there is a clique cover for G. Since CliqeCover is NP-hard,
this automatically proves the inapproximability.

Assume �rst that we are given a clique coverP = {P1, . . . , Pk }.
De�ne the following set of strong edges. For each vertex vi ,
let Pj be the clique containing vi ; add edges (ui ,vi ), (vi ,x j )
to S . Finally, add an edge (x1,x j ) for each j = 2, . . . ,k . It is
straightforward to see that the connectivity constraints are
satis�ed. The strong wedges are

ui–vi–x j , for vi ∈ Pj ,

vi–x j–x1, for vi ∈ Pj , and j , 1,
vi–x1–x j , for vi ∈ P1, and j , 1,
x j–x1–xq , for q , j,

vi–x j–v` , for vi ,v` ∈ Pj , and i , `.

None of these wedges induce a violation, the last one follows
from the fact that P is a clique cover. Thus viol (S ) = 0.

To prove the other direction, let S be the set of strong edges
such that viol (S ) = 0.

Let i = 1, . . . ,n. To satisfy the connectivity, (ui ,x j ) ∈ S or
(ui ,vi ) ∈ S (or both) for some j. De�ne Y =

{
vi ; (ui ,x j ) ∈ S

}

and Z = V \ Y .
Let vi ∈ Z . Since (ui ,vi ) ∈ S , all edges adjacent to vi in

E are weak. Thus, to satisfy the connectivity, we must have
(vi ,x j ) ∈ S .

De�ne two families A and B, each of k sets, by

Aj =
{
vi ∈ Y ; (ui ,x j ) ∈ S

}
and

Bj =
{
vi ∈ Z ; (vi ,x j ) ∈ S

}
.

Write A0 = B0 = ∅, and de�ne a family P of k disjoint sets by
Pj = (Aj ∪ Bj ) \ Pj−1. P covers V since each vertex in V is in
Aj or Bj for some j.

We claim that P is a clique cover. To see this, letvi ,v` ∈ Pj .
If vi ∈ Y and v` ∈ Z , then ui–x j–v` is a violation since
i , `. If vi ,v` ∈ Y , then ui–x j–u` is a violation, or i = `. If
vi ,v` ∈ Z , then either i = ` or (vi ,v` ) ∈ E. This shows that
P is a clique cover. �

Corollary 3.2. The MaxTri problem is NP-hard. The result
holds even if we use only one community.
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Algorithm 1: Greedy algorithm for MaxTri
1 S ← E; A← E;
2 while A , ∅ do
3 e = argmaxe ∈A tri(S \ {e});
4 if S \ {e} satis�es the connectivity constraints then
5 S ← S \ {e};
6 A← A \ {e};
7 return S ;

4 APPROXIMATION ALGORITHM
In the previous section we saw that the problems MinViol and
MaxTri are NP-hard, even for one community, and addition-
ally, MinViol is hard to approximate to any multiplicative fac-
tor. In this section we show that MaxTri can be approximated
with 1/(k + 1) guarantee, where k is the number of commu-
nities in the input. As an important consequence, if we have
one community, we can �nd a solution with approximation
guarantee 1/2. Furthermore, it follows that if all communities
are edge-disjoint, our algorithm yields a 1/2 approximation
guarantee.

To prove the approximation algorithm we argue that tri(·)
is submodular with respect to weak edges. Moreover, the
connectivity constraint of each community can be viewed as
a matroid. Thus, satisfying all the connectivity constraints is
an intersection of matroids.

These properties allow us to use a classic result of maximiz-
ing a submodular function over an intersection of k matroids:
Fisher et al. [10] showed that a greedy algorithm leads to
1/(k + 1) approximation ratio. Here the greedy algorithms
starts with none of the edges being weak, that is, all edges
are strong. We �nd a strong edge, say e , inducing the most
violations. We convert e to a weak edge if the connectivity
constraints allow it. Otherwise, we let e being strong. The
pseudo-code is given in Algorithm 1.

Note that our problem formulation is agnostic with respect
to whether strong edges should be maximized or minimized.
In Algorithm 1 strong edges are kept, even if they are not
crucial for connectivity, as long as they do not induce any
violations. This behavior is in line with the idea of Sintos and
Tsaparas [27], who aim to maximize the number of strong
edges. It is in contrast, however, with our second baseline, the
algorithm of Angluin et al. [1], who want to �nd a minimum
set of edges to ensure connectivity. If we wish to obtain a
minimal number of strong edges, we can continue the main
iteration in Algorithm 1 and convert to weak all edges that
are not necessary for connectivity and do not create any stc
violations.

We now show the properties required by the result of Fisher
et al. [10] for the greedy algorithm to yield approximation ratio
1/(k + 1). We �rst show that the function tri(·) is submodular
with respect to weak edges.

Proposition 4.1. Consider a graphG = (V ,E). Let f (W ) =
tri(E \W ). The function f is submodular and non-decreasing.

Proof. To prove the submodularity we show that viol (·)
is supermodular with respect to strong edges. This makes
tri(·) submodular with respect to strong edges, which in turn
makes f submodular with respect to weak edges. For the last
implication it is well-known that a function is submodular if
and only if its complement is submodular.2

Let S be a set of strong edges. Fora vertexu, de�neNX (u) =
{v | (u,v ) ∈ S } to be the strong-neighbors of u. De�ne also
N (u) = {v | (u,v ) < E} to be the non-neighbors or u.

The number of additional stc violations introduced by
labeling edge e = (u,v ) as strong is

viol (S ∪ {e}) − viol (S ) = ���NS (u) ∩ N (v )��� +
���NS (v ) ∩ N (u)���.

Let T ⊆ S . For any u ∈ V and any edge setW , we have
|NT (u) ∩W | ≤ |NS (u) ∩W |. (1)

This implies that for T ⊆ S ⊆ E and any edge e < S ,
viol (T ∪ {e}) − viol (T ) ≤ viol (S ∪ {e}) − viol (S ),

which proves the supermodularity of viol (·).
To prove the monotonicity, we show that viol (·) is non-

decreasing. This makes tri(·) non-increasing, which makes f
non-decreasing.

Consider any subset Q ⊆ S of strong edges. Consider any
triangle that violates STC. It must be that two of the edges
are strong and the third one is missing. When we add more
strong ties to S , this violating triangle would still violating
STC, so the number of violating triangles does not decrease.
Consequently, viol (·) is non-decreasing. �

Our next step is to argue that the connectivity constraints
are matroids with respect to weak edges. Fortunately, this is
a known result and these matroids are commonly known as
bond matroids, see for example, Proposition 3.3 by Oxley [26].

Proposition 4.2. Assume a graph G = (V ,E) and a subset
C such that (C,E (C )) is connected. De�ne a family of sets

M = {W ⊆ E; (C,E (C ) \W (C )) is connected} .

ThenM is matroid.

The two propositions show that we can use the result
by Fisher et al. [10], and obtain 1/(k + 1) guarantee, where
k is the number of communities, i.e., the sets of vertices for
which we require a connectivity constraint.

We can obtain a better guarantee, 1/2, if we know that
communities are edge-disjoint. This follows from the fact
that we can express the connectivity constraints as a single
matroid.

Proposition 4.3. Assume a graphG = (V ,E) and family of

subsetsC1, . . . ,Ck , such that induced subgraphs (Ci ,E (Ci )) are
edge-disjoint and each (Ci ,E (Ci )) is connected. De�ne a family

of sets

M =
{
W ⊆ E; (Ci ,E (Ci ) \W (Ci )) is connected, for every i

}
.

ThenM is matroid.

The result follows from immediately Proposition 4.2. and
the following standard lemma which we state without a proof.
2see, for example, http://melodi.ee.washington.edu/~bilmes/ee595a_spring_
2011/lecture1_presented.pdf for a proof.
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Lemma 4.4. LetM1, . . . ,Mk be k matroids, each matroid

Mi is de�ned over its own ground setUi . Then a direct sum

M =




k⋃
i=1

Xi | Xi ∈ Mi




is a matroid over

⋃k
i=1Ui .

Thus we can use the result by Fisher et al. [10] but now we
have only one matroid instead of k matroids. This gives us an
approximation guarantee of 1/2.
Computational complexity: Let us �nish with the compu-
tational-complexity analysis of the greedy algorithm. Assume
that given a graph G = (V ,E), we have already enumerated
all open triangles. Let t be the number of such triangles.

During the while-loop of the greedy algorithm, we maintain
a priority queue for m edges, prioritized with the number
of violations induced by a single edge. Whenever, a strong
edge is deleted, we visit every open triangle induced by this
edge and reduce the number of violations of the strong sister
edge by 1. Note that we visit every triangle at most twice,
so maintaining the queue requires O (t +m logn) time, if we
use Fibonacci heap. To check the connectivity, we can use
the technique introduced by Holm et al. [14], allowing us to
do a connectivity check in O (log2 n) amortized time. Thus,
in total we need O (t + km log2 n) time, plus the time to build
the list of open triangles. Building such a list can be done in
O

(∑
v deg2 (v )

)
time.

5 RELATEDWORK
The study of interpresonal ties has a long history in social
psychology. Several researchers have investigated the role of
di�erent types of social ties with respect to structural proper-
ties of social networks, as well as with respect to information-
propagation phenomena. For example, in economics, Mont-
gomery [23] showed that weak ties are positively correlated to
higher wages and higher aggregate employment rates. More
recent works considered how di�erent social ties are formed
and how they evolve in online social networks, such as email
networks [17] and mobile-phone networks [25].

The strong triadic closure (stc) property, which forms
the basis of our inference algorithm, was �rst formulated in
the seminal paper of Granovetter [13], while evidence that
this property holds in social networks has appeared in earlier
works [5, 24]. Memic [22] have conducted a more recent study
con�rming that the principle remains valid on more recently-
collected datasets [22].

In computer science, there have been works that study the
problem of inferring the strength of social ties in a network.

Kahanda and Neville [16] use transactional events, such as
communication and �le transfers, to predict link strength, by
applying techniques from the literature of the link-prediction
problem [20]. It is shown that the approach can accurately
predict strong relationships. Gilbert and Karahalios [12] pro-
pose a predictive model for inferring tie strength. The model
uses variables describing the interaction of users in a social-
media platform. The paper also illustrates how the inferred tie
strength can be used to improve social-media features, such

as, privacy controls, message routing, and friend recommenda-
tion. Likewise, Xiang et al. [29] leverage user-level interaction
data. They formulate the problem of inferring hidden relation-
ship strengths using a latent-variable model, which is learned
by a coordinate-ascent optimization procedure. A feature of
their setting is that social strengths are modeled as real-valued
variables, not just binary. Jones et al. [15] examined a large
set of features for the task of predicting the strength of so-
cial ties on a Facebook interaction dataset, and found that the
frequency of online interaction is diagnostic of strong ties,
while private communications (messages) are not necessarily
more informative than public communications (comments,
wall posts, and other interactions).

Backstrom and Kleinberg [2] consider a particular type of
social ties — romantic relationships — and they ask whether
this can be accurately recognized. They use a large sample of
Facebook data to answer the question a�rmatively, and on the
way they develop a new type of tie strength, the extent to which
two people’s mutual friends are not themselves well-connected,
which they call “dispersion.”

In a di�erent direction, Fang and Tang [9] consider only
closed triangles and ask whether it is possible to �nd out which
edges are formed last, i.e., which edges closed an open triad.
The underlying research question is to recover the dynamic
information in the triadic-closure process. They approach this
problem using a probabilistic factor-graph model, and apply
the proposed model on a large collaboration network.

Researchers have also studied the tie-strength inference
problem in the presence of more than one social network.
Gilbert [11] explore how well a tie strength model developed
for one social-media platform adapts to another, while Tang
et al. [28] consider a generalization of the problem over multi-
ple heterogeneous networks. Their work uses a transfer-based
factor-graph model, and also incorporates features motivated
from social-psychology theories, such as social balance [8],
structural holes [3], and and social status [6].

Most of the above works on tie-strength inference utilize
pairwise user-level interaction data, such as email, private
messages, public mentions, frequency of interactions, etc. In
many cases such detailed data are not available. Our objective
is to address the tie-strength inference problem using non-
private data, such as the structure of the social network and
information about communities that users have participated.

Conceptually and methodologically our paper is related
to the work of Sintos and Tsaparas [27], who use as avail-
able information only the network structure, to infer strong
and weak ties with the means of the strong triadic closure
property [8]. We extend that work by introducing community-
level information and a corresponding connectivity constraint
to account for explaining the observed community structure:
namely, we require that each community should be connected
via strong ties. Like the work of Sintos and Tsaparas [27], we
follow a combinatorial approach, but the techniques we use
are signi�cantly di�erent.

A problem related to the inference of tie strength is the
problem of predicting edge signs in social networks [4, 18].
The sign of an edge is typically interpreted as ‘friend’ or ‘foe’,
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and thus, existing algorithms utilize theories from social psy-
chology that are developed for this kind of relationships, in
particular social balance [8] and social status theory [6].

In our experiments we are comparing our method with
the algorithm of Angluin et al. [1], which takes as input a
set of teams (communities) over a set of entities and seeks to
add a minimal number of edges among the entities so that
all given teams are connected. The algorithm is greedy and
it is shown to have a O (logn) approximation guarantee. In
our case, in addition to the set of teams we also have as input
an underlying network, and edges are selected only if they
are network edges. Selected edges are considered strong, and
non-selected edges are considered weak. Thus, the method of
Angluin et al. [1] is a combinatorial approach, which aim to
satisfy connectivity among the input communities (like our
method), but it does not take into account stc violations. On
the other hand, it aims to minimize the number of strong edges
(while our method is oblivious to this consideration).

6 EXPERIMENTAL EVALUATION
In this section we present our experimental evaluation. We
describe the used datasets, discuss the baselines, and then
present results of quantitative experiments and a case study.

The datasets and the implementation of the methods used
in our experimental evaluation are publicly available.3

Datasets. We use 10 datasets, each dataset consists of a net-
work and a set of communities. We describe these datasets
below, while their basic characteristics are shown in Table 1.
To ensure connectivity of each community, we selected only
one part of each disconnected community, which induces the
largest connected component.
• KDD and ICDM are subgraphs of the DBLP co-authorship
network, restricted to articles published in the respective con-
ferences. Edges represent co-authorships between authors.
Communities are formed by keywords from paper abstracts.
• FB-circles and FB-features are Facebook ego-networks avail-
able at the SNAP repository [19]. In FB-circles the communi-
ties are social-circles of users. In FB-features communities are
formed by user pro�le features.
• lastFM-artists and lastFM-tags are friendship networks of
last.fm users.4 A community in lastFM-artists and lastFM-tags

is formed by users who listen to the same artist and genre,
respectively.
• DB-bookmarks and DB-tags are friendship networks of De-
licious users.5 Community in DB-bookmarks and DB-tags is
formed by users who use the same bookmark and keyword,
respectively.

Additionally, we use SNAP datasets [19] with ground-truth
communities. To have more focused groups, we only keep
communities with size less than 10. To avoid having disjoint
communities, we start from a small number of seed commu-
nities and iteratively add other communities that intersect at
least one of the already selected. We stop when the number of

3https://github.com/polinapolina/connected-strong-triadic-closure
4grouplens.org/datasets/hetrec-2011/
5www.delicious.com

vertices reaches 10 000. In this way we construct the following
datasets:
• DBLP : This is also a co-authorship network. Communities
are de�ned by publication venues.
• Youtube: This is a social network of Youtube users. Commu-
nities consist of user groups created by users.
Baselines. There are no direct baselines to our approach
since the problem de�nition is novel. Instead we focus on
comparing our method with the two techniques that inspired
our approach. The �rst method is by Sintos and Tsaparas
[27] and it maximizes the number of strong edges while keep-
ing the number of stc violations equal to 0. The second
method is by Angluin et al. [1] and it minimizes the number of
edges needed to connect the communities. We refer to these
methods as Sintos and Angluin, respectively, and we call our
method Greedy.

Note that Angluin is oblivious to the stc property while
Sintos does not use any community information. As we com-
bine both goals, we expect that Greedy results in a compromise
of these two baselines.
Comparison with the baselines. We compare the perfor-
mance of Greedy with the two baselines. We run all algorithms
on our datasets and measure the number of edges selected as
strong, the number of stc violations, and the number of con-
nected components created by strong edges for each of the
input communities (so as to test the fragmentation of the com-
munities). The results are shown in Table 2. The number of
stc violations and the number of strong edges are reported as
ratios (see table) for easy comparison. As expected, Angluin in-
troduces more stc violations than Greedy: typically between
1%–21%. Interestingly, Angluin introduces less violations in
lastFM-tags and 60 times more violations in lastFM-artists.

On the other hand, Sintos results in disconnected commu-
nities, ranging from 1.74 to 8.76 connected components per
community, on average.

In the second experiment we test whether strong and weak
ties can predict intra- and inter-community edges, respectively.
The rationale of this experiment is to test the hypothesis that
weak ties are bridges between di�erent communities. With
respect to the di�erent methods, our objective is to further
demonstrate that Greedy method results as a middle ground
between Angluin and Sintos.

We randomly select half of the communities as test commu-

nities and run Greedy and Angluin using as input the underly-
ing network and the other half of the communities. We also
run Sintos using as input the underlying network; recall that
this algorithm does not use any community information as
input. Next, using the test communities we construct a set of
intra-community edges Eintra, consisting of edges that belong
to at least one community, and inter-community edges Einter ,
consisting of edges that bridge two communities (but do not
belong to any single community).

Let us denote all strong edges in the output of a given
method as S and the weak edges asW . We de�ne precision
PW and recall RW for weak edges as

PW =
|W ∩ Einter |

|W |
and RW =

|W ∩ Einter |

|Einter |
,
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Table 1: Network characteristics. |V |: number of vertices; |E |: number of edges in the underlying network; |V0 |:
number of vertices, which participate in any given set (community); |E0 |: number of edges induced by communities;
`: number of sets (communities); avg(α0): average density of subgraphs induced by input communities; smin, savg:
minimum and average set size; tmax, tavg: maximum and average participation of a vertex to a set.

Dataset |V | |E | |V0 | |E0 | ` avg(α0) smin savg tmax tavg

DBLP 10001 27687 10001 22264 1767 0.58 6 7.46 10 1.31
Youtube 10002 72215 10001 15445 5323 0.69 2 4.02 82 2.14
KDD 2891 11208 1598 3322 5601 0.96 2 2.40 107 8.41
ICDM 3140 10689 1720 3135 5937 0.96 2 2.34 139 8.11
FB-circles 4039 88234 2888 55896 191 0.64 2 23.15 44 1.53
FB-features 4039 88234 2261 20522 1239 0.93 2 3.75 13 2.05
lastFM-artists 1892 12717 1018 2323 2820 0.89 2 2.91 221 8.08
lastFM-tags 1892 12717 855 1800 651 0.88 2 3.43 20 2.61
DB-bookmarks 1861 7664 932 1145 1288 0.97 2 2.27 27 3.13
DB-tags 1861 7664 1507 2752 4167 0.96 2 2.26 68 6.25

Table 2: Characteristics of edges selected as strong byGreedy and the two baselines. b: number of violated triangles in
the solution divided by the number of open triangles (all possible violations); s: number of strong edges in the solution
divided by the number of all edges; c: average number of connected components per community. A corresponds to
Angluin; S corresponds to Sintos.

Greedy Angluin Sintos

Dataset b s c bA/b sA/s cA bS/b sS/s cS

DBLP 0.07 0.47 1 2.77 0.77 1 0.0 1.08 3.53
Youtube 0.01 0.16 1 1.21 0.98 1 0.0 0.49 3.30
KDD 0.08 0.35 1 1.09 0.63 1 0.0 0.81 1.93
ICDM 0.07 0.38 1 1.06 0.57 1 0.0 0.83 1.84
FB-circles 0.002 0.15 1 61.05 0.20 1 0.0 1.05 8.76
FB-features 0.003 0.12 1 0.36 0.22 1 0.0 1.35 2.41
lastFM-artists 0.02 0.15 1 1.11 0.78 1 0.0 0.67 2.58
lastFM-tags 0.008 0.12 1 1.17 0.68 1 0.0 0.83 2.98
DB-bookmarks 0.01 0.35 1 1.01 0.35 1 0.0 1.04 1.61
DB-tags 0.10 0.45 1 1.02 0.66 1 0.0 0.80 1.74

Table 3: Precision and recall of Angluin.

Dataset PW RW PS RS

KDD 0.86 0.92 0.63 0.48
ICDM 0.87 0.93 0.66 0.50
lastFM-artists 0.91 0.95 0.54 0.37
lastFM-tags 0.92 0.95 0.26 0.16
DB-bookmarks 0.92 0.94 0.36 0.27
DB-tags 0.82 0.87 0.50 0.41

and precision PS and recall RS for strong edges as

PS =
|S ∩ Eintra |

|S |
and RS =

|S ∩ Eintra |

|Eintra |
.

Angluin selects greedily edges that connect as many com-
munities as possible. In other words, it prefers edges that are
in many communities in the training set, and this acts as a
strong signal for an edge being also in a community in the test
set. The results shown in Tables 3–5 support this intuition,

Table 4: Precision and recall of Sintos.

Dataset PW RW PS RS

KDD 0.78 0.70 0.19 0.26
ICDM 0.77 0.66 0.18 0.28
lastFM-artists 0.88 0.90 0.14 0.12
lastFM-tags 0.91 0.89 0.09 0.11
DB-bookmarks 0.92 0.64 0.13 0.49
DB-tags 0.75 0.62 0.22 0.35

showing that Angluin obtains the best results. We also see that
Sintos, which does not use any community information, has
the worst results, while our method is able to improve Sintos

by incorporating information from communities.
Running time. Our implementation was done in Python
and the bottleneck of the algorithm is constructing the list
of wedges. The running times vary greatly from dataset to
dataset. At fastest we needed 52 seconds while the at slowest
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Table 5: Precision and recall of Greedy.

Dataset PW RW PS RS

KDD 0.85 0.75 0.36 0.51
ICDM 0.85 0.71 0.34 0.55
lastFM-artists 0.91 0.90 0.36 0.39
lastFM-tags 0.92 0.90 0.15 0.20
DB-bookmarks 0.93 0.67 0.15 0.57
DB-tags 0.81 0.66 0.32 0.55

we needed almost 5 hours. We should point out that a more
e�cient implementation as well using parallelization with
constructing the wedges should lead to signi�cant reduction
in computational time.
Case study. To demonstrate a simple use case, we use a snip-
pet of KDD dataset: We picked �ve recent winners of SIGKDD
innovation award: Philip S. Yu, Hans-Peter Kriegel, Pedro
Domingos, Jon M. Kleinberg and Vipin Kumar and constructed
an underlying network as a union of their ego-nets. We then
used 5 common topics, cluster, classif, pattern, network, and
distribut as communities. Figure 2 depicts the discovered edges
of Greedy. From the �gure we see that showing only strong
edges signi�cantly simpli�es the graph. The selected strong
edges are reasonable: for example a path from Hans-Peter
Kriegel to Pedro Domingo was Arthur Zimek, Karsten Borg-
wardt, and Luc De Raedt, while a path from Pedro Domingo
to Jon Kleinberg was Luc De Raedt, Xifeng Yan, Zhen Wen,
Ching-Yung Lin, Hang-hang Tong, Spiros Papadimitriou Chris-
tos Faloutsos, and Jure Leskovec.

A zoom-in version of the graph of Figure 2, showing the
names of all authors, is omitted due to space constraints but
can be found in the public code and dataset repository.6

7 CONCLUDING REMARKS
We presented a novel approach for the problem of inferring the
strength of social ties. We assume that social ties can be one of
two types, strong or weak, and as a guiding principle for the
inference process we use the strong triadic closure property.
In contrast to most works that use interaction data between
users, which are private and thus, typically not available, we
also consider as input a collection of tight communities. Our
assumption is that such tight communities are connected via
strong ties. This assumption is valid in cases when being part
of a community implies a strong connection to one of the
existing members. For instance, in a scienti�c collaboration
network, a student is introduced on a research topic by his/her
supervisor who is already working in that topic.

Based on the stc principle and our assumption about com-
munity-level connectivity, we formulate two variants of the
tie-strength inference problem: MinViol, where we ask to min-
imize the number of stc violations, and MaxTri, where we
the goal is to maximize the number of non-violated open trian-
gles. We show that both problems are NP-hard. Furthermore,
we show that the MinViol problem is hard to approximate,

6https://github.com/polinapolina/connected-strong-triadic-closure

while for MaxTri we develop an algorithm with approxima-
tion guarantee. For the approximation algorithm we use a
greedy algorithm for maximizing a submodular function on
intersection of matroids.

There are many interesting directions to explore in the fu-
ture. An interesting question is to consider alternative problem
formulations that combine the strong triadic closure property
with other community-level constraints, such as density and
small diameter. We would also like to consider formulations
that incorporate user features. A di�erent direction is to con-
sider an interactive version of the problem, where the goal is
to select a small number of edges to query, so that the correct
labeling on those edges can be used to maximize the accuracy
of inferring the strength of the remaining edges.
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